Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver
Very high order or pseudo-spectral Maxwell solvers are the method of choice to reduce discretization effects (e.g. numerical dispersion) that are inherent to low order Finite-Difference Time-Domain (FDTD) schemes. However, due to their large stencils, these solvers are often subject to truncation er...
Saved in:
Published in | Computer physics communications Vol. 200; pp. 147 - 167 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Very high order or pseudo-spectral Maxwell solvers are the method of choice to reduce discretization effects (e.g. numerical dispersion) that are inherent to low order Finite-Difference Time-Domain (FDTD) schemes. However, due to their large stencils, these solvers are often subject to truncation errors in many electromagnetic simulations. These truncation errors come from non-physical modifications of Maxwell’s equations in space that may generate spurious signals affecting the overall accuracy of the simulation results. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of the errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solvers and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation. |
---|---|
AbstractList | Very high order or pseudo-spectral Maxwell solvers are the method of choice to reduce discretization effects (e.g. numerical dispersion) that are inherent to low order Finite-Difference Time-Domain (FDTD) schemes. However, due to their large stencils, these solvers are often subject to truncation errors in many electromagnetic simulations. These truncation errors come from non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the simulation results. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of the errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solvers and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation. |
Author | Vay, J.-L. Vincenti, H. |
Author_xml | – sequence: 1 givenname: H. surname: Vincenti fullname: Vincenti, H. email: hvincenti@lbl.gov organization: Lawrence Berkeley National Laboratory, 1 cyclotron road, Berkeley, CA, USA – sequence: 2 givenname: J.-L. surname: Vay fullname: Vay, J.-L. email: jlvay@lbl.gov organization: Lawrence Berkeley National Laboratory, 1 cyclotron road, Berkeley, CA, USA |
BackLink | https://cea.hal.science/cea-01426492$$DView record in HAL |
BookMark | eNp9kU9v1DAUxC1UJLaFD8DNRzgk-CVOnIhTVf4UaREXOFuO_ULeyo0X292y3x5vFy4cevKzNL_RaOaSXaxhRcZeg6hBQP9uV9u9rRsBXQ1QCzE-YxsY1Fg1o5QXbCMEiEr2XfeCXaa0E0IoNbYbdvyA2ZBHx81q_DFR4mHmeUGO84w2P35TxtWS52lvMhnPDyZSucKa-APlhZs4UY4mHvlCP5cqRIeRz7RSxspR8YmFR_7V_H5AX2yCP2B8yZ7Pxid89fe9Yj8-ffx-c1ttv33-cnO9raxUKldz3_Sdw6YZsBU9jKab1OTc4Gw7K2uMxWkA0bsJ5wFl0zlo2gmNHMBO1nVde8Xenn0X4_U-0l3JqYMhfXu91RaNFiCbXo7NAYr2zVm7j-HXPaas7yjZktmsGO6TBjX00EnVyiJVZ6mNIaWIs7aUH0spTZDXIPRpGL3TZRh9GkYD6DJMIeE_8l-qp5j3ZwZLUwfCqJOlU6mOYllJu0BP0H8A3Iqq0w |
CitedBy_id | crossref_primary_10_1103_PhysRevE_104_055311 crossref_primary_10_1103_PhysRevLett_119_155001 crossref_primary_10_4236_jamp_2025_132030 crossref_primary_10_1063_1_4978569 crossref_primary_10_3847_1538_4357_acd75b crossref_primary_10_1103_PhysRevE_96_033305 crossref_primary_10_1103_PhysRevResearch_2_043007 crossref_primary_10_1103_PhysRevResearch_4_L012030 crossref_primary_10_1016_j_cpc_2022_108457 crossref_primary_10_1016_j_nima_2018_01_035 crossref_primary_10_1103_PhysRevE_110_025206 crossref_primary_10_1016_j_cpc_2019_07_009 crossref_primary_10_1142_S1793626816300085 crossref_primary_10_1016_j_cpc_2018_09_015 crossref_primary_10_1088_1367_2630_ac4ef1 crossref_primary_10_1088_1748_0221_16_10_T10003 crossref_primary_10_1063_5_0140028 crossref_primary_10_1103_PhysRevLett_127_114801 crossref_primary_10_1103_PhysRevE_102_013202 crossref_primary_10_1016_j_cpc_2018_03_018 crossref_primary_10_1109_TED_2017_2757279 crossref_primary_10_1103_PhysRevE_94_053305 crossref_primary_10_1103_PhysRevX_10_041064 crossref_primary_10_1063_5_0028512 crossref_primary_10_1140_epjs_s11734_023_00909_2 crossref_primary_10_1016_j_cpc_2018_12_013 crossref_primary_10_1016_j_jcp_2020_109622 crossref_primary_10_1017_hpl_2020_46 crossref_primary_10_1063_1_5084783 crossref_primary_10_1103_PhysRevAccelBeams_26_111302 crossref_primary_10_1103_PhysRevLett_123_105001 crossref_primary_10_1088_1367_2630_ac6f16 crossref_primary_10_1103_PhysRevX_9_011050 crossref_primary_10_1109_TED_2017_2786083 crossref_primary_10_1016_j_cpc_2017_09_024 crossref_primary_10_1063_1_4964770 crossref_primary_10_1137_23M1618910 crossref_primary_10_1016_j_parco_2021_102833 |
Cites_doi | 10.1137/0727052 10.1109/TAP.1966.1138693 10.1016/S0377-0427(02)00667-2 10.1016/j.jcp.2013.03.010 10.1016/0021-9991(74)90076-X 10.1038/nphys595 10.1038/ncomms4403 10.1006/jcph.2002.7175 10.1016/j.jcp.2013.10.053 10.1016/S0377-0427(99)00088-6 10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 10.1016/j.jcp.2004.06.021 10.1006/jcph.1994.1159 10.1016/j.cpc.2015.04.004 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D 1XC |
DOI | 10.1016/j.cpc.2015.11.009 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2944 |
EndPage | 167 |
ExternalDocumentID | oai_HAL_cea_01426492v1 10_1016_j_cpc_2015_11_009 S0010465515004208 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO AAYFN ABBOA ABFNM ABMAC ABNEU ABQEM ABQYD ABXDB ABYKQ ACDAQ ACFVG ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADECG ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE IMUCA J1W KOM LG9 LZ4 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCB SDF SDG SES SEW SHN SPC SPCBC SPD SPG SSE SSK SSQ SSV SSZ T5K TN5 UPT VH1 WUQ ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7U5 8FD H8D JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c477t-f6265de228e30619a5b7bdd8dc3f7caaceb8106dbef8e425d123bea481cbcd553 |
IEDL.DBID | .~1 |
ISSN | 0010-4655 |
IngestDate | Fri May 09 12:13:36 EDT 2025 Fri Jul 11 12:19:03 EDT 2025 Tue Jul 01 02:40:27 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Fri Feb 23 02:30:56 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Effects of stencil truncation errors Domain decomposition technique 3D electromagnetic simulations Very high-order Maxwell solver Pseudo-spectral Maxwell solver Perfectly Matched Layers |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-f6265de228e30619a5b7bdd8dc3f7caaceb8106dbef8e425d123bea481cbcd553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0040-799X 0000-0002-9839-2692 |
OpenAccessLink | https://doi.org/10.1016/j.cpc.2015.11.009 |
PQID | 1786154734 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | hal_primary_oai_HAL_cea_01426492v1 proquest_miscellaneous_1786154734 crossref_citationtrail_10_1016_j_cpc_2015_11_009 crossref_primary_10_1016_j_cpc_2015_11_009 elsevier_sciencedirect_doi_10_1016_j_cpc_2015_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Computer physics communications |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Liu (br000050) 1997; 15 Boyd (br000030) 2001 Lee, Vay (br000060) 2015; 194 Vay (br000055) 2002; 183 Khan, Ohba, Hozumi (br000085) 2003; 150 Greenwood, Cartwright, Luginsland, Baca (br000020) 2004; 201 Bérenger (br000090) 1994; 114 Vay, Haber, Godfrey (br000035) 2013; 243 Cholesky (br000065) 1910 Vincenti, Monchoce, Kahaly, Bonnaud, Martin, Quere (br000010) 2014; 5 Godfrey (br000015) 1974; 15 Yee (br000045) 1966; 14 Wolfram~Research (br000070) 2010 Khan, Ohba (br000080) 1999; 107 Thaury, Quere, Geindre, Levy, Ceccotti, Monot, Bougeard, Reau, D’Oliveira, Audebert, Marjoribanks, Martin (br000005) 2007; 3 Fornberg (br000075) 1990; 27 Godfrey, Vay, Haber (br000025) 2014; 258 Charney, Fjörtoft, Neumann (br000040) 2011; 2 Charney (10.1016/j.cpc.2015.11.009_br000040) 2011; 2 Wolfram~Research (10.1016/j.cpc.2015.11.009_br000070) 2010 Godfrey (10.1016/j.cpc.2015.11.009_br000025) 2014; 258 Greenwood (10.1016/j.cpc.2015.11.009_br000020) 2004; 201 Vay (10.1016/j.cpc.2015.11.009_br000055) 2002; 183 Godfrey (10.1016/j.cpc.2015.11.009_br000015) 1974; 15 Yee (10.1016/j.cpc.2015.11.009_br000045) 1966; 14 Bérenger (10.1016/j.cpc.2015.11.009_br000090) 1994; 114 Boyd (10.1016/j.cpc.2015.11.009_br000030) 2001 Vincenti (10.1016/j.cpc.2015.11.009_br000010) 2014; 5 Vay (10.1016/j.cpc.2015.11.009_br000035) 2013; 243 Khan (10.1016/j.cpc.2015.11.009_br000080) 1999; 107 Khan (10.1016/j.cpc.2015.11.009_br000085) 2003; 150 Liu (10.1016/j.cpc.2015.11.009_br000050) 1997; 15 Fornberg (10.1016/j.cpc.2015.11.009_br000075) 1990; 27 Thaury (10.1016/j.cpc.2015.11.009_br000005) 2007; 3 Lee (10.1016/j.cpc.2015.11.009_br000060) 2015; 194 Cholesky (10.1016/j.cpc.2015.11.009_br000065) 1910 |
References_xml | – volume: 107 start-page: 179 year: 1999 end-page: 193 ident: br000080 publication-title: J. Comput. Appl. Math. – year: 2001 ident: br000030 article-title: Chebyshev and Fourier Spectral Methods – volume: 15 start-page: 158 year: 1997 end-page: 165 ident: br000050 publication-title: Microw. Opt. Technol. Lett. – volume: 258 start-page: 689 year: 2014 end-page: 704 ident: br000025 publication-title: J. Comput. Phys. – volume: 243 start-page: 260 year: 2013 end-page: 268 ident: br000035 publication-title: J. Comput. Phys. – volume: 5 year: 2014 ident: br000010 publication-title: Nature Commun. – volume: 114 start-page: 185 year: 1994 end-page: 200 ident: br000090 publication-title: J. Comput. Phys. – volume: 3 start-page: 424 year: 2007 end-page: 429 ident: br000005 publication-title: Nat. Phys. – volume: 15 start-page: 504 year: 1974 end-page: 521 ident: br000015 publication-title: J. Comput. Phys. – year: 2010 ident: br000070 article-title: “Mathematica” – volume: 194 start-page: 1 year: 2015 end-page: 9 ident: br000060 publication-title: Comput. Phys. Comm. – volume: 2 year: 2011 ident: br000040 publication-title: Tellus A – volume: 201 start-page: 665 year: 2004 end-page: 684 ident: br000020 publication-title: J. Comput. Phys. – volume: 27 start-page: 904 year: 1990 end-page: 918 ident: br000075 publication-title: SIAM J. Numer. Anal. – volume: 183 start-page: 367 year: 2002 end-page: 399 ident: br000055 publication-title: J. Comput. Phys. – volume: 150 start-page: 303 year: 2003 end-page: 309 ident: br000085 publication-title: J. Comput. Appl. Math. – year: 1910 ident: br000065 article-title: Sur la résolution numérique des systèmes d’équations linéaires – volume: 14 start-page: 302 year: 1966 end-page: 307 ident: br000045 publication-title: IEEE Trans. Antennas and Propagation – volume: 27 start-page: 904 year: 1990 ident: 10.1016/j.cpc.2015.11.009_br000075 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0727052 – volume: 14 start-page: 302 year: 1966 ident: 10.1016/j.cpc.2015.11.009_br000045 publication-title: IEEE Trans. Antennas and Propagation doi: 10.1109/TAP.1966.1138693 – volume: 150 start-page: 303 year: 2003 ident: 10.1016/j.cpc.2015.11.009_br000085 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00667-2 – volume: 243 start-page: 260 year: 2013 ident: 10.1016/j.cpc.2015.11.009_br000035 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.03.010 – volume: 15 start-page: 504 year: 1974 ident: 10.1016/j.cpc.2015.11.009_br000015 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(74)90076-X – volume: 3 start-page: 424 year: 2007 ident: 10.1016/j.cpc.2015.11.009_br000005 publication-title: Nat. Phys. doi: 10.1038/nphys595 – volume: 5 year: 2014 ident: 10.1016/j.cpc.2015.11.009_br000010 publication-title: Nature Commun. doi: 10.1038/ncomms4403 – year: 1910 ident: 10.1016/j.cpc.2015.11.009_br000065 – volume: 183 start-page: 367 year: 2002 ident: 10.1016/j.cpc.2015.11.009_br000055 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2002.7175 – volume: 2 year: 2011 ident: 10.1016/j.cpc.2015.11.009_br000040 publication-title: Tellus A – volume: 258 start-page: 689 year: 2014 ident: 10.1016/j.cpc.2015.11.009_br000025 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.053 – volume: 107 start-page: 179 year: 1999 ident: 10.1016/j.cpc.2015.11.009_br000080 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00088-6 – year: 2001 ident: 10.1016/j.cpc.2015.11.009_br000030 – year: 2010 ident: 10.1016/j.cpc.2015.11.009_br000070 – volume: 15 start-page: 158 year: 1997 ident: 10.1016/j.cpc.2015.11.009_br000050 publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3 – volume: 201 start-page: 665 year: 2004 ident: 10.1016/j.cpc.2015.11.009_br000020 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.06.021 – volume: 114 start-page: 185 year: 1994 ident: 10.1016/j.cpc.2015.11.009_br000090 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1159 – volume: 194 start-page: 1 year: 2015 ident: 10.1016/j.cpc.2015.11.009_br000060 publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2015.04.004 |
SSID | ssj0007793 |
Score | 2.4076538 |
Snippet | Very high order or pseudo-spectral Maxwell solvers are the method of choice to reduce discretization effects (e.g. numerical dispersion) that are inherent to... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 147 |
SubjectTerms | 3D electromagnetic simulations Boundaries Computer simulation Domain decomposition Domain decomposition technique Effects of stencil truncation errors Finite difference method Mathematical analysis Mathematical models Perfectly Matched Layers Physics Pseudo-spectral Maxwell solver Solvers Truncation errors Very high-order Maxwell solver |
Title | Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver |
URI | https://dx.doi.org/10.1016/j.cpc.2015.11.009 https://www.proquest.com/docview/1786154734 https://cea.hal.science/cea-01426492 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA9WKfRSWtvS7YdE6akwujOb2WSPi1W2rnoolXoLycsLTpHdxV1FL_3b-14mo7QUDz0NGZLMkPfyPpJffhHiU39AMajzrigNukLpGAoTHSNzcBTJQaEGXoc8OR1OztTReX2-Jva7szAMq8y2v7XpyVrnN3t5NPcWTcNnfHl_kjx-zZqXDvwqpVnLd389wDy0zsS7ZG-4drezmTBesGAWw7LeZSJPxiT-2zc9uWCQ5F-2OjmgwxfieY4c5bj9uZdiDWeb4mlCcMLylbj7ksCgGKTLPCNyHiWFdzJDNri45Ai5uZRLxlFTZzeUKbdLdpIXZKW78k06hy-ZxrhIvJwyNhyXFt1VKoDyxN3ymp8kvaWZ8FqcHR58358U-V6FApTWqyJSElMHrCqDlDCUI1d77UMwAQZRg3OA3lCmGDxGgzSnA3k3j06ZEjyEuh68Eeuz-QzfCunK2DfB9BUA1QQwoAyUVUBdxziEqif63YhayKTjfPfFpe3QZT8tCcGyECgZsSSEnvh832TRMm48Vll1YrJ_qI0lj_BYsx0S6X33TLE9GR9bQGcpZaQYcVTdlD2x3Unc0pzjjRQ3w_n10pbaUCCo9EC9-7_vvxfPqDRssWwfxPrq6ho_UnCz8ltJe7fExvjrdHLKz-m3H9PfVvf8rQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLdY0bRd0Bib6MaHN-00KaNJ7do9VmwoQNsTSNws-9kWQaitaEHw3--9xKkEmjjsmMROIj_7ffn3fmbsR6-PPqh1Nst1sJlQ0Wc6WkLmhGFEAxUUUB5yMh2Ul-LsSl5tsOO2FoZglUn3Nzq91tbpzlEazaNFVVGNL-1PosWXNPOo4HeT2Klkh22OTs_L6VohK5W4d1HlUId2c7OGecGCiAxz-Yu4PAmW-G_z9OaacJIv1HVtg04-sK3kPPJR83_bbCPMPrK3NYgTljvs6XeNBw2e20Q1wueRo4fHE2qDLpfkJFe3fElQanzZAwbLTdaOU06W2ztX1aX4nJiMs5qak8eKXNOsPU0FAp_YR0r7cZy6uBg-scuTPxfHZZaOVshAKLXKIsYx0oei0AFjhnxopVPOe-2hHxVYC8FpDBa9C1EHXNYeDZwLVugcHHgp-59ZZzafhV3GbR572uueAMCWABqEhrzwQckYB1B0Wa8dUQOJd5yOv7g1LcDsxqAQDAkB4xGDQuiyn-sui4Z047XGohWTeTZzDBqF17p9R5GuX08s2-VobCBYg1EjuonD4iHvsm-txA0uO9pLsbMwv1-aXGn0BYXqiy__9_1D9q68mIzN-HR6_pW9xyeDBtq2xzqru_uwj77Oyh2kufwXDHX9uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detailed+analysis+of+the+effects+of+stencil+spatial+variations+with+arbitrary+high-order+finite-difference+Maxwell+solver&rft.jtitle=Computer+physics+communications&rft.au=Vincenti%2C+H.&rft.au=Vay%2C+J.-L.&rft.date=2016-03-01&rft.issn=0010-4655&rft.volume=200&rft.spage=147&rft.epage=167&rft_id=info:doi/10.1016%2Fj.cpc.2015.11.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2015_11_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon |