A high-performance method of deep learning for prostate MR-only radiotherapy planning using an optimized Pix2Pix architecture

•A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several parameters.•Performances of the Pix2Pix are more accurate than 5 other sCT generation methods.•Image and dose errors for the rectum were higher than for...

Full description

Saved in:
Bibliographic Details
Published inPhysica medica Vol. 103; pp. 108 - 118
Main Authors Tahri, S., Barateau, A., Cadin, C., Chourak, H., Ribault, S., Nozahic, F., Acosta, O., Dowling, J.A., Greer, P.B., Largent, A., Lafond, C., De Crevoisier, R., Nunes, J.C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several parameters.•Performances of the Pix2Pix are more accurate than 5 other sCT generation methods.•Image and dose errors for the rectum were higher than for other soft tissues. The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were −0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and −0.1 % for the bladder V50Gy. The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods.
AbstractList PURPOSE: The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). METHODS: For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. RESULTS: Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were -0.2% for the planning target volume V(95%), 0.1 % for the rectum V(70Gy), and -0.1 % for the bladder V(50Gy). CONCLUSION: The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods.
PURPOSEThe first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). METHODSFor 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. RESULTSCompared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were -0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and -0.1 % for the bladder V50Gy. CONCLUSIONThe sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods.
•A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several parameters.•Performances of the Pix2Pix are more accurate than 5 other sCT generation methods.•Image and dose errors for the rectum were higher than for other soft tissues. The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were −0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and −0.1 % for the bladder V50Gy. The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods.
Author Chourak, H.
Lafond, C.
Nozahic, F.
Dowling, J.A.
Barateau, A.
Acosta, O.
Largent, A.
Tahri, S.
Cadin, C.
Ribault, S.
Greer, P.B.
Nunes, J.C.
De Crevoisier, R.
Author_xml – sequence: 1
  givenname: S.
  surname: Tahri
  fullname: Tahri, S.
  email: safaa.tahri@univ-rennes1.fr
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 2
  givenname: A.
  surname: Barateau
  fullname: Barateau, A.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 3
  givenname: C.
  surname: Cadin
  fullname: Cadin, C.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 4
  givenname: H.
  surname: Chourak
  fullname: Chourak, H.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 5
  givenname: S.
  surname: Ribault
  fullname: Ribault, S.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 6
  givenname: F.
  surname: Nozahic
  fullname: Nozahic, F.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 7
  givenname: O.
  surname: Acosta
  fullname: Acosta, O.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 8
  givenname: J.A.
  surname: Dowling
  fullname: Dowling, J.A.
  organization: CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia
– sequence: 9
  givenname: P.B.
  surname: Greer
  fullname: Greer, P.B.
  organization: School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, Australia
– sequence: 10
  givenname: A.
  surname: Largent
  fullname: Largent, A.
  organization: Developing Brain Institute, Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC, USA
– sequence: 11
  givenname: C.
  surname: Lafond
  fullname: Lafond, C.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 12
  givenname: R.
  surname: De Crevoisier
  fullname: De Crevoisier, R.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
– sequence: 13
  givenname: J.C.
  surname: Nunes
  fullname: Nunes, J.C.
  organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France
BackLink https://hal.science/hal-03828675$$DView record in HAL
BookMark eNp9kUtr3DAUhUWZ0kyS_oGutEwWnuphWzZkMwxNUpjSEBLITsjy9ViDbTmSHDqB_vfKnZBlFnpw-O6Fc84pWgx2AIS-UbKihObf9yvY9-OKEcaisCKEf0JLKlia0JI-LeKfMpJQUYoTdOr9PgKMZdkXdMJzJhhnxRL9XePW7NpkBNdY16tBA-4htLbGtsE1wIg7UG4www5HAI_O-qAC4F_3iR26A3aqNja04NR4wGOnhv_o5OdbDdiOwfTmFWp8Z_6weLByujUBdJgcnKPPjeo8fH17z9Dj9Y-HzW2y_X3zc7PeJjoVIiTQAOGpqDNVEVJWFSsyDqIsqMhIk2oKPGvSWrEqzQueVlRQyEE0OS10XvGS8DN0edzbqk6OzvTKHaRVRt6ut3LWCC9YkYvshUb24shGq88T-CB74zV00RrYycuYnMh5UTIRUXZEdUzFO2jed1Mi54rkXs4VybmiWYsNxKGr4xBEwy8GnPTaQMy9Ni6mImtrPhr_B3TvmvU
CitedBy_id crossref_primary_10_1007_s13246_023_01268_x
crossref_primary_10_1007_s13246_023_01333_5
crossref_primary_10_1016_j_radonc_2024_110387
crossref_primary_10_1186_s43055_024_01287_y
crossref_primary_10_1088_2632_2153_acd6d8
crossref_primary_10_1109_ACCESS_2024_3404554
crossref_primary_10_1016_j_ejmp_2023_102544
crossref_primary_10_3389_fonc_2023_1279750
crossref_primary_10_1016_j_phro_2023_100511
crossref_primary_10_1088_1361_6560_acefa3
crossref_primary_10_3389_fradi_2024_1385742
Cites_doi 10.1088/0031-9155/60/22/R323
10.1016/j.radonc.2011.01.012
10.1016/j.radonc.2020.11.027
10.1088/1361-6560/ab857b
10.1016/j.ijrobp.2019.01.088
10.1016/j.media.2015.04.014
10.1088/1361-6560/abb1d6
10.1109/CVPR.2017.632
10.1259/bjr.20180948
10.1080/0284186X.2019.1630754
10.1016/j.radonc.2020.10.018
10.1002/mp.13264
10.1118/1.4873315
10.1118/1.4967480
10.1002/mp.13663
10.3389/fonc.2018.00110
10.1002/mp.13672
10.1007/978-3-319-24574-4_28
10.1259/bjr.20190001
10.1016/j.ejmp.2021.04.016
10.1016/j.ijrobp.2019.08.049
10.1016/j.ijrobp.2015.08.045
10.1016/j.ijrobp.2004.05.068
10.1002/acm2.13139
10.1088/0031-9155/60/2/825
10.1002/mp.15150
10.1118/1.2161407
10.1016/j.media.2019.101552
10.1118/1.4931417
10.1002/mrm.28008
10.1186/s13014-016-0747-y
10.1016/j.ejmp.2020.11.002
10.1016/j.ejmp.2021.03.009
10.1016/S0167-8140(02)00440-1
10.1088/1361-6560/ab7633
10.1016/j.ijrobp.2018.10.002
10.1002/mp.13187
10.1016/j.ejmp.2021.09.006
10.1016/j.ijrobp.2010.03.049
10.1016/j.ejmp.2021.07.027
10.1088/1361-6560/aada6d
10.1016/j.ejmp.2021.05.010
10.5694/j.1326-5377.2011.tb02939.x
10.1118/1.4958676
10.1016/j.compbiomed.2018.05.018
10.1038/nature14539
10.1109/TMI.2010.2046908
ContentType Journal Article
Copyright 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7X8
1XC
DOI 10.1016/j.ejmp.2022.10.003
DatabaseName CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1724-191X
EndPage 118
ExternalDocumentID oai_HAL_hal_03828675v1
10_1016_j_ejmp_2022_10_003
S1120179722020646
GroupedDBID ---
--K
--M
-QF
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
3J0
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACXCU
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AEVXI
AFCTW
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CLCPZ
CS3
DC1
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
PC.
Q38
RLW
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPC
SPCBC
SSH
SSQ
SSZ
T5K
UNMZH
Z5R
~G-
~XS
AAXKI
AAYXX
ADVLN
AFJKZ
CITATION
7X8
1XC
ID FETCH-LOGICAL-c477t-efe0347d5ab009bb2853e7981750f4c1e35f4da2b46834b171e6e7f618c6b3903
IEDL.DBID .~1
ISSN 1120-1797
IngestDate Fri Oct 18 06:52:41 EDT 2024
Fri Oct 25 04:27:49 EDT 2024
Thu Sep 26 15:26:35 EDT 2024
Fri Feb 23 02:39:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Dose evaluation
Synthetic CTs
Radiation therapy
MRI
Pix2Pix
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-efe0347d5ab009bb2853e7981750f4c1e35f4da2b46834b171e6e7f618c6b3903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://manuscript.elsevier.com/S1120179722020646/pdf/S1120179722020646.pdf
PMID 36272328
PQID 2727638927
PQPubID 23479
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03828675v1
proquest_miscellaneous_2727638927
crossref_primary_10_1016_j_ejmp_2022_10_003
elsevier_sciencedirect_doi_10_1016_j_ejmp_2022_10_003
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica medica
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Dinkla, Florkow, Maspero, Savenije, Zijlstra, Doornaert (b0155) 2019; 46
Lambert, Greer, Menk, Patterson, Parker, Dahl (b0030) 2011; 98
Andreasen, Van Leemput, Edmund (b0085) 2016; 43
Jarrett, Stride, Vallis, Gooding (b0115) 2019; 92
Neppl, Landry, Kurz, Hansen, Hoyle, Stöcklein (b0145) 2019; 58
Florkow, Zijlstra, Willemsen, Maspero, Berg, Kerkmeijer (b0160) 2020; 83
Cusumano, Boldrini, Dhont, Fiorino, Green, Güngör (b0020) 2021; 85
Demol, Boydev, Korhonen, Reynaert (b0080) 2016; 43
Beckendorf, Guerif, Le Prisé, Cosset, Bougnoux, Chauvet (b0220) 2011; 80
Rivest-Hénault, Dowson, Greer, Fripp, Dowling (b0215) 2015; 23
Mylona, Acosta, Lizee, Lafond, Crehange, Magné (b0230) 2019; 104
Largent, Barateau, Nunes, Mylona, Castelli, Lafond (b0090) 2019; 105
Papadimitroulas, Brocki, Christopher Chung, Marchadour, Vermet, Gaubert (b0130) 2021; 83
Ibanez L, Schroeder W. ITK Software Guide n.d.:836.
Edmund, Nyholm (b0050) 2017; 12
Meyer, Noblet, Mazzara, Lallement (b0120) 2018; 98
Tustison, Avants, Cook, Yuanjie Zheng, Egan, Yushkevich (b0205) 2010; 29
Lee (b0040) 2003; 66
Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol 2018;63:185001. https://doi.org/10.1088/1361-6560/aada6d.
Largent, Barateau, Nunes, Lafond, Greer, Dowling (b0045) 2019; 103
Spadea, Maspero, Zaffino, Seco (b0100) 2021; 48
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial Networks. ArXiv14062661 Cs Stat 2014.
Schmidt, Payne (b0015) 2015; 60
Dowling, Sun, Pichler, Rivest-Hénault, Ghose, Richardson (b0060) 2015; 93
Barragán-Montero, Javaid, Valdés, Nguyen, Desbordes, Macq (b0135) 2021; 83
Thummerer A, de Jong BA, Zaffino P, Meijers A, Marmitt GG, Seco J, et al. Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Phys Med Biol 2020;65:235036. https://doi.org/10.1088/1361-6560/abb1d6.
Brou Boni KND, Klein J, Vanquin L, Wagner A, Lacornerie T, Pasquier D, et al. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Phys Med Biol 2020;65:075002. https://doi.org/10.1088/1361-6560/ab7633.
Seco, Evans (b0005) 2006; 33
Weickert J. Anisotropic Diffusion in Image Processing n.d.:184.
Sahiner, Pezeshk, Hadjiiski, Wang, Drukker, Cha (b0110) 2019; 46
Yi, Walia, Babyn (b0180) 2019; 58
Bahrami, Karimian, Arabi (b0235) 2021; 90
Bird, Nix, McCallum, Teo, Gilbert, Casanova (b0240) 2021; 156
Uh J, Merchant TE, Li Y, Li X, Hua C. MRI-based treatment planning with pseudo CT generated through atlas registration: MRI-based treatment planning with atlas approach. Med Phys 2014;41:051711. https://doi.org/10.1118/1.4873315.
Pathmanathan, McNair, Schmidt, Brand, Delacroix, Eccles (b0010) 2019; 92
Kajikawa, Kadoya, Tanaka, Nemoto, Takahashi, Chiba (b0025) 2020; 80
He, Zhang, Ren, Sun (b0185) 2016
Arabi, Dowling, Burgos, Han, Greer, Koutsouvelis (b0140) 2018; 45
Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-Image Translation with Conditional Adversarial Networks. ArXiv161107004 Cs 2018.
Fu, Yang, Singhrao, Ruan, Chu, Low (b0150) 2019; 46
Greer, Dowling, Lambert, Fripp, Parker, Denham (b0065) 2011; 194
Boulanger, Nunes, Chourak, Largent, Tahri, Acosta (b0095) 2021; 89
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv150504597 Cs 2015.
Liu, Emami, Nejad‐Davarani, Morris, Schultz, Dong (b0190) 2021; 22
LeCun, Bengio, Hinton (b0105) 2015; 521
Sjölund, Forsberg, Andersson, Knutsson (b0055) 2015; 60
Chen, Price, Wang, Li, Qin, McNeeley (b0035) 2004; 60
Cusumano, Lenkowicz, Votta, Boldrini, Placidi, Catucci (b0255) 2020; 153
Siversson, Nordström, Nilsson, Nyholm, Jonsson, Gunnlaugsson (b0075) 2015; 42
Feng, Valdes, Dixit, Solberg (b0125) 2018; 8
Fetty L, Löfstedt T, Heilemann G, Furtado H, Nesvacil N, Nyholm T, et al. Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Phys Med Biol 2020;65:105004. https://doi.org/10.1088/1361-6560/ab857b.
10.1016/j.ejmp.2022.10.003_b0195
Fu (10.1016/j.ejmp.2022.10.003_b0150) 2019; 46
10.1016/j.ejmp.2022.10.003_b0070
Papadimitroulas (10.1016/j.ejmp.2022.10.003_b0130) 2021; 83
Demol (10.1016/j.ejmp.2022.10.003_b0080) 2016; 43
Boulanger (10.1016/j.ejmp.2022.10.003_b0095) 2021; 89
Lambert (10.1016/j.ejmp.2022.10.003_b0030) 2011; 98
Jarrett (10.1016/j.ejmp.2022.10.003_b0115) 2019; 92
Beckendorf (10.1016/j.ejmp.2022.10.003_b0220) 2011; 80
Edmund (10.1016/j.ejmp.2022.10.003_b0050) 2017; 12
10.1016/j.ejmp.2022.10.003_b0245
Largent (10.1016/j.ejmp.2022.10.003_b0045) 2019; 103
10.1016/j.ejmp.2022.10.003_b0165
10.1016/j.ejmp.2022.10.003_b0200
Dinkla (10.1016/j.ejmp.2022.10.003_b0155) 2019; 46
Spadea (10.1016/j.ejmp.2022.10.003_b0100) 2021; 48
Andreasen (10.1016/j.ejmp.2022.10.003_b0085) 2016; 43
Rivest-Hénault (10.1016/j.ejmp.2022.10.003_b0215) 2015; 23
Siversson (10.1016/j.ejmp.2022.10.003_b0075) 2015; 42
Dowling (10.1016/j.ejmp.2022.10.003_b0060) 2015; 93
Neppl (10.1016/j.ejmp.2022.10.003_b0145) 2019; 58
Cusumano (10.1016/j.ejmp.2022.10.003_b0255) 2020; 153
Lee (10.1016/j.ejmp.2022.10.003_b0040) 2003; 66
Sjölund (10.1016/j.ejmp.2022.10.003_b0055) 2015; 60
10.1016/j.ejmp.2022.10.003_b0250
Meyer (10.1016/j.ejmp.2022.10.003_b0120) 2018; 98
Liu (10.1016/j.ejmp.2022.10.003_b0190) 2021; 22
LeCun (10.1016/j.ejmp.2022.10.003_b0105) 2015; 521
10.1016/j.ejmp.2022.10.003_b0170
Seco (10.1016/j.ejmp.2022.10.003_b0005) 2006; 33
Sahiner (10.1016/j.ejmp.2022.10.003_b0110) 2019; 46
10.1016/j.ejmp.2022.10.003_b0175
Florkow (10.1016/j.ejmp.2022.10.003_b0160) 2020; 83
10.1016/j.ejmp.2022.10.003_b0210
Cusumano (10.1016/j.ejmp.2022.10.003_b0020) 2021; 85
Greer (10.1016/j.ejmp.2022.10.003_b0065) 2011; 194
Bahrami (10.1016/j.ejmp.2022.10.003_b0235) 2021; 90
He (10.1016/j.ejmp.2022.10.003_b0185) 2016
Schmidt (10.1016/j.ejmp.2022.10.003_b0015) 2015; 60
Kajikawa (10.1016/j.ejmp.2022.10.003_b0025) 2020; 80
Bird (10.1016/j.ejmp.2022.10.003_b0240) 2021; 156
Barragán-Montero (10.1016/j.ejmp.2022.10.003_b0135) 2021; 83
Arabi (10.1016/j.ejmp.2022.10.003_b0140) 2018; 45
Mylona (10.1016/j.ejmp.2022.10.003_b0230) 2019; 104
Tustison (10.1016/j.ejmp.2022.10.003_b0205) 2010; 29
Feng (10.1016/j.ejmp.2022.10.003_b0125) 2018; 8
10.1016/j.ejmp.2022.10.003_b0225
Pathmanathan (10.1016/j.ejmp.2022.10.003_b0010) 2019; 92
Yi (10.1016/j.ejmp.2022.10.003_b0180) 2019; 58
Chen (10.1016/j.ejmp.2022.10.003_b0035) 2004; 60
Largent (10.1016/j.ejmp.2022.10.003_b0090) 2019; 105
References_xml – volume: 89
  start-page: 265
  year: 2021
  end-page: 281
  ident: b0095
  article-title: Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review
  publication-title: Phys Med
  contributor:
    fullname: Acosta
– volume: 98
  start-page: 126
  year: 2018
  end-page: 146
  ident: b0120
  article-title: Survey on deep learning for radiotherapy
  publication-title: Comput Biol Med
  contributor:
    fullname: Lallement
– volume: 93
  start-page: 1144
  year: 2015
  end-page: 1153
  ident: b0060
  article-title: Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences
  publication-title: Int J Radiat Oncol
  contributor:
    fullname: Richardson
– volume: 58
  start-page: 1429
  year: 2019
  end-page: 1434
  ident: b0145
  article-title: Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans
  publication-title: Acta Oncol
  contributor:
    fullname: Stöcklein
– volume: 60
  start-page: R323
  year: 2015
  end-page: R361
  ident: b0015
  article-title: Radiotherapy planning using MRI
  publication-title: Phys Med Biol
  contributor:
    fullname: Payne
– volume: 42
  start-page: 6090
  year: 2015
  end-page: 6097
  ident: b0075
  article-title: Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm: MRI-only radiotherapy planning using the statistical decomposition algorithm
  publication-title: Med Phys
  contributor:
    fullname: Gunnlaugsson
– volume: 22
  start-page: 308
  year: 2021
  end-page: 317
  ident: b0190
  article-title: Performance of deep learning synthetic CTs for MR-only brain radiation therapy
  publication-title: J Appl Clin Med Phys
  contributor:
    fullname: Dong
– volume: 80
  start-page: 186
  year: 2020
  end-page: 192
  ident: b0025
  article-title: Dose distribution correction for the influence of magnetic field using a deep convolutional neural network for online MR-guided adaptive radiotherapy
  publication-title: Phys Med
  contributor:
    fullname: Chiba
– volume: 48
  start-page: 6537
  year: 2021
  end-page: 6566
  ident: b0100
  article-title: Deep learning based synthetic-CT generation in radiotherapy and PET: A review
  publication-title: Med Phys
  contributor:
    fullname: Seco
– volume: 60
  start-page: 825
  year: 2015
  end-page: 839
  ident: b0055
  article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression
  publication-title: Phys Med Biol
  contributor:
    fullname: Knutsson
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0185
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR
  contributor:
    fullname: Sun
– volume: 103
  start-page: 479
  year: 2019
  end-page: 490
  ident: b0045
  article-title: Pseudo-CT generation for MRI-only radiation therapy treatment planning: comparison among patch-based, atlas-based, and bulk density methods
  publication-title: Int J Radiat Oncol
  contributor:
    fullname: Dowling
– volume: 46
  start-page: 3788
  year: 2019
  end-page: 3798
  ident: b0150
  article-title: Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging
  publication-title: Med Phys
  contributor:
    fullname: Low
– volume: 45
  start-page: 5218
  year: 2018
  end-page: 5233
  ident: b0140
  article-title: Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region
  publication-title: Med Phys
  contributor:
    fullname: Koutsouvelis
– volume: 92
  start-page: 20180948
  year: 2019
  ident: b0010
  article-title: Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy
  publication-title: Br J Radiol
  contributor:
    fullname: Eccles
– volume: 43
  start-page: 4742
  year: 2016
  end-page: 4752
  ident: b0085
  article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis: A patch-based pseudo-CT approach
  publication-title: Med Phys
  contributor:
    fullname: Edmund
– volume: 92
  start-page: 20190001
  year: 2019
  ident: b0115
  article-title: Applications and limitations of machine learning in radiation oncology
  publication-title: Br J Radiol
  contributor:
    fullname: Gooding
– volume: 46
  start-page: e1
  year: 2019
  end-page: e36
  ident: b0110
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med Phys
  contributor:
    fullname: Cha
– volume: 98
  start-page: 330
  year: 2011
  end-page: 334
  ident: b0030
  article-title: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning
  publication-title: Radiother Oncol
  contributor:
    fullname: Dahl
– volume: 33
  start-page: 540
  year: 2006
  end-page: 552
  ident: b0005
  article-title: Assessing the effect of electron density in photon dose calculations: Effect of electron density in photon dose calculations
  publication-title: Med Phys
  contributor:
    fullname: Evans
– volume: 80
  start-page: 1056
  year: 2011
  end-page: 1063
  ident: b0220
  article-title: 70 Gy Versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial
  publication-title: Int J Radiat Oncol
  contributor:
    fullname: Chauvet
– volume: 194
  year: 2011
  ident: b0065
  article-title: A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer
  publication-title: Med J Aust
  contributor:
    fullname: Denham
– volume: 85
  start-page: 175
  year: 2021
  end-page: 191
  ident: b0020
  article-title: Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives
  publication-title: Phys Med
  contributor:
    fullname: Güngör
– volume: 105
  start-page: 1137
  year: 2019
  end-page: 1150
  ident: b0090
  article-title: Comparison of deep learning-based and patch-based methods for pseudo-CT generation in MRI-based prostate dose planning
  publication-title: Int J Radiat Oncol
  contributor:
    fullname: Lafond
– volume: 83
  start-page: 1429
  year: 2020
  end-page: 1441
  ident: b0160
  article-title: Deep learning–based MR-to-CT synthesis: The influence of varying gradient echo–based MR images as input channels
  publication-title: Magn Reson Med
  contributor:
    fullname: Kerkmeijer
– volume: 66
  start-page: 203
  year: 2003
  end-page: 216
  ident: b0040
  article-title: Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone
  publication-title: Radiother Oncol
  contributor:
    fullname: Lee
– volume: 43
  start-page: 6557
  year: 2016
  end-page: 6568
  ident: b0080
  article-title: Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard
  publication-title: Med Phys
  contributor:
    fullname: Reynaert
– volume: 90
  start-page: 99
  year: 2021
  end-page: 107
  ident: b0235
  article-title: Comparison of different deep learning architectures for synthetic CT generation from MR images
  publication-title: Phys Med
  contributor:
    fullname: Arabi
– volume: 83
  start-page: 242
  year: 2021
  end-page: 256
  ident: b0135
  article-title: Artificial intelligence and machine learning for medical imaging: A technology review
  publication-title: Phys Med
  contributor:
    fullname: Macq
– volume: 58
  year: 2019
  ident: b0180
  article-title: Generative adversarial network in medical imaging: A review
  publication-title: Med Image Anal
  contributor:
    fullname: Babyn
– volume: 23
  start-page: 56
  year: 2015
  end-page: 69
  ident: b0215
  article-title: Robust inverse-consistent affine CT–MR registration in MRI-assisted and MRI-alone prostate radiation therapy
  publication-title: Med Image Anal
  contributor:
    fullname: Dowling
– volume: 104
  start-page: 343
  year: 2019
  end-page: 354
  ident: b0230
  article-title: Voxel-based analysis for identification of urethrovesical subregions predicting urinary toxicity after prostate cancer radiation therapy
  publication-title: Int J Radiat Oncol
  contributor:
    fullname: Magné
– volume: 60
  start-page: 636
  year: 2004
  end-page: 647
  ident: b0035
  article-title: MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT
  publication-title: Int J Radiat Oncol
  contributor:
    fullname: McNeeley
– volume: 156
  start-page: 23
  year: 2021
  end-page: 28
  ident: b0240
  article-title: Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning
  publication-title: Radiother Oncol
  contributor:
    fullname: Casanova
– volume: 153
  start-page: 205
  year: 2020
  end-page: 212
  ident: b0255
  article-title: A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases
  publication-title: Radiother Oncol
  contributor:
    fullname: Catucci
– volume: 83
  start-page: 108
  year: 2021
  end-page: 121
  ident: b0130
  article-title: Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization
  publication-title: Phys Med
  contributor:
    fullname: Gaubert
– volume: 29
  start-page: 1310
  year: 2010
  end-page: 1320
  ident: b0205
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  contributor:
    fullname: Yushkevich
– volume: 12
  start-page: 28
  year: 2017
  ident: b0050
  article-title: A review of substitute CT generation for MRI-only radiation therapy
  publication-title: Radiat Oncol
  contributor:
    fullname: Nyholm
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0105
  article-title: Deep learning
  publication-title: Nature
  contributor:
    fullname: Hinton
– volume: 46
  start-page: 4095
  year: 2019
  end-page: 4104
  ident: b0155
  article-title: Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network
  publication-title: Med Phys
  contributor:
    fullname: Doornaert
– volume: 8
  start-page: 110
  year: 2018
  ident: b0125
  article-title: Machine learning in radiation oncology: opportunities, requirements, and needs
  publication-title: Front Oncol
  contributor:
    fullname: Solberg
– volume: 60
  start-page: R323
  year: 2015
  ident: 10.1016/j.ejmp.2022.10.003_b0015
  article-title: Radiotherapy planning using MRI
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/22/R323
  contributor:
    fullname: Schmidt
– volume: 98
  start-page: 330
  issue: 3
  year: 2011
  ident: 10.1016/j.ejmp.2022.10.003_b0030
  article-title: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2011.01.012
  contributor:
    fullname: Lambert
– volume: 156
  start-page: 23
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0240
  article-title: Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2020.11.027
  contributor:
    fullname: Bird
– ident: 10.1016/j.ejmp.2022.10.003_b0250
  doi: 10.1088/1361-6560/ab857b
– volume: 104
  start-page: 343
  issue: 2
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0230
  article-title: Voxel-based analysis for identification of urethrovesical subregions predicting urinary toxicity after prostate cancer radiation therapy
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2019.01.088
  contributor:
    fullname: Mylona
– volume: 23
  start-page: 56
  year: 2015
  ident: 10.1016/j.ejmp.2022.10.003_b0215
  article-title: Robust inverse-consistent affine CT–MR registration in MRI-assisted and MRI-alone prostate radiation therapy
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.04.014
  contributor:
    fullname: Rivest-Hénault
– ident: 10.1016/j.ejmp.2022.10.003_b0165
  doi: 10.1088/1361-6560/abb1d6
– ident: 10.1016/j.ejmp.2022.10.003_b0195
  doi: 10.1109/CVPR.2017.632
– volume: 92
  start-page: 20180948
  issue: 1096
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0010
  article-title: Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20180948
  contributor:
    fullname: Pathmanathan
– volume: 58
  start-page: 1429
  issue: 10
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0145
  article-title: Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans
  publication-title: Acta Oncol
  doi: 10.1080/0284186X.2019.1630754
  contributor:
    fullname: Neppl
– volume: 153
  start-page: 205
  year: 2020
  ident: 10.1016/j.ejmp.2022.10.003_b0255
  article-title: A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2020.10.018
  contributor:
    fullname: Cusumano
– volume: 46
  start-page: e1
  issue: 1
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0110
  article-title: Deep learning in medical imaging and radiation therapy
  publication-title: Med Phys
  doi: 10.1002/mp.13264
  contributor:
    fullname: Sahiner
– ident: 10.1016/j.ejmp.2022.10.003_b0070
  doi: 10.1118/1.4873315
– volume: 43
  start-page: 6557
  year: 2016
  ident: 10.1016/j.ejmp.2022.10.003_b0080
  article-title: Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T 1-weighted MR images: MRI-only treatment planning in atlas-based pseudo-CT images
  publication-title: Med Phys
  doi: 10.1118/1.4967480
  contributor:
    fullname: Demol
– volume: 46
  start-page: 4095
  issue: 9
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0155
  article-title: Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network
  publication-title: Med Phys
  doi: 10.1002/mp.13663
  contributor:
    fullname: Dinkla
– ident: 10.1016/j.ejmp.2022.10.003_b0175
– volume: 8
  start-page: 110
  year: 2018
  ident: 10.1016/j.ejmp.2022.10.003_b0125
  article-title: Machine learning in radiation oncology: opportunities, requirements, and needs
  publication-title: Front Oncol
  doi: 10.3389/fonc.2018.00110
  contributor:
    fullname: Feng
– volume: 46
  start-page: 3788
  issue: 9
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0150
  article-title: Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging
  publication-title: Med Phys
  doi: 10.1002/mp.13672
  contributor:
    fullname: Fu
– ident: 10.1016/j.ejmp.2022.10.003_b0170
  doi: 10.1007/978-3-319-24574-4_28
– volume: 92
  start-page: 20190001
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0115
  article-title: Applications and limitations of machine learning in radiation oncology
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20190001
  contributor:
    fullname: Jarrett
– volume: 83
  start-page: 242
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0135
  article-title: Artificial intelligence and machine learning for medical imaging: A technology review
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.04.016
  contributor:
    fullname: Barragán-Montero
– volume: 105
  start-page: 1137
  issue: 5
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0090
  article-title: Comparison of deep learning-based and patch-based methods for pseudo-CT generation in MRI-based prostate dose planning
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2019.08.049
  contributor:
    fullname: Largent
– volume: 93
  start-page: 1144
  issue: 5
  year: 2015
  ident: 10.1016/j.ejmp.2022.10.003_b0060
  article-title: Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2015.08.045
  contributor:
    fullname: Dowling
– volume: 60
  start-page: 636
  issue: 2
  year: 2004
  ident: 10.1016/j.ejmp.2022.10.003_b0035
  article-title: MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2004.05.068
  contributor:
    fullname: Chen
– volume: 22
  start-page: 308
  issue: 1
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0190
  article-title: Performance of deep learning synthetic CTs for MR-only brain radiation therapy
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13139
  contributor:
    fullname: Liu
– ident: 10.1016/j.ejmp.2022.10.003_b0210
– volume: 60
  start-page: 825
  year: 2015
  ident: 10.1016/j.ejmp.2022.10.003_b0055
  article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/60/2/825
  contributor:
    fullname: Sjölund
– volume: 48
  start-page: 6537
  issue: 11
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0100
  article-title: Deep learning based synthetic-CT generation in radiotherapy and PET: A review
  publication-title: Med Phys
  doi: 10.1002/mp.15150
  contributor:
    fullname: Spadea
– volume: 33
  start-page: 540
  year: 2006
  ident: 10.1016/j.ejmp.2022.10.003_b0005
  article-title: Assessing the effect of electron density in photon dose calculations: Effect of electron density in photon dose calculations
  publication-title: Med Phys
  doi: 10.1118/1.2161407
  contributor:
    fullname: Seco
– volume: 58
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0180
  article-title: Generative adversarial network in medical imaging: A review
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101552
  contributor:
    fullname: Yi
– volume: 42
  start-page: 6090
  issue: 10
  year: 2015
  ident: 10.1016/j.ejmp.2022.10.003_b0075
  article-title: Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm: MRI-only radiotherapy planning using the statistical decomposition algorithm
  publication-title: Med Phys
  doi: 10.1118/1.4931417
  contributor:
    fullname: Siversson
– volume: 83
  start-page: 1429
  issue: 4
  year: 2020
  ident: 10.1016/j.ejmp.2022.10.003_b0160
  article-title: Deep learning–based MR-to-CT synthesis: The influence of varying gradient echo–based MR images as input channels
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28008
  contributor:
    fullname: Florkow
– volume: 12
  start-page: 28
  year: 2017
  ident: 10.1016/j.ejmp.2022.10.003_b0050
  article-title: A review of substitute CT generation for MRI-only radiation therapy
  publication-title: Radiat Oncol
  doi: 10.1186/s13014-016-0747-y
  contributor:
    fullname: Edmund
– ident: 10.1016/j.ejmp.2022.10.003_b0200
– volume: 80
  start-page: 186
  year: 2020
  ident: 10.1016/j.ejmp.2022.10.003_b0025
  article-title: Dose distribution correction for the influence of magnetic field using a deep convolutional neural network for online MR-guided adaptive radiotherapy
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2020.11.002
  contributor:
    fullname: Kajikawa
– volume: 83
  start-page: 108
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0130
  article-title: Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.03.009
  contributor:
    fullname: Papadimitroulas
– volume: 66
  start-page: 203
  year: 2003
  ident: 10.1016/j.ejmp.2022.10.003_b0040
  article-title: Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(02)00440-1
  contributor:
    fullname: Lee
– ident: 10.1016/j.ejmp.2022.10.003_b0245
  doi: 10.1088/1361-6560/ab7633
– start-page: 770
  year: 2016
  ident: 10.1016/j.ejmp.2022.10.003_b0185
  article-title: Deep residual learning for image recognition
  contributor:
    fullname: He
– volume: 103
  start-page: 479
  issue: 2
  year: 2019
  ident: 10.1016/j.ejmp.2022.10.003_b0045
  article-title: Pseudo-CT generation for MRI-only radiation therapy treatment planning: comparison among patch-based, atlas-based, and bulk density methods
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2018.10.002
  contributor:
    fullname: Largent
– volume: 45
  start-page: 5218
  year: 2018
  ident: 10.1016/j.ejmp.2022.10.003_b0140
  article-title: Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region
  publication-title: Med Phys
  doi: 10.1002/mp.13187
  contributor:
    fullname: Arabi
– volume: 90
  start-page: 99
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0235
  article-title: Comparison of different deep learning architectures for synthetic CT generation from MR images
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.09.006
  contributor:
    fullname: Bahrami
– volume: 80
  start-page: 1056
  year: 2011
  ident: 10.1016/j.ejmp.2022.10.003_b0220
  article-title: 70 Gy Versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2010.03.049
  contributor:
    fullname: Beckendorf
– volume: 89
  start-page: 265
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0095
  article-title: Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.07.027
  contributor:
    fullname: Boulanger
– ident: 10.1016/j.ejmp.2022.10.003_b0225
  doi: 10.1088/1361-6560/aada6d
– volume: 85
  start-page: 175
  year: 2021
  ident: 10.1016/j.ejmp.2022.10.003_b0020
  article-title: Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2021.05.010
  contributor:
    fullname: Cusumano
– volume: 194
  issue: S4
  year: 2011
  ident: 10.1016/j.ejmp.2022.10.003_b0065
  article-title: A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer
  publication-title: Med J Aust
  doi: 10.5694/j.1326-5377.2011.tb02939.x
  contributor:
    fullname: Greer
– volume: 43
  start-page: 4742
  year: 2016
  ident: 10.1016/j.ejmp.2022.10.003_b0085
  article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis: A patch-based pseudo-CT approach
  publication-title: Med Phys
  doi: 10.1118/1.4958676
  contributor:
    fullname: Andreasen
– volume: 98
  start-page: 126
  year: 2018
  ident: 10.1016/j.ejmp.2022.10.003_b0120
  article-title: Survey on deep learning for radiotherapy
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.018
  contributor:
    fullname: Meyer
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.ejmp.2022.10.003_b0105
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
  contributor:
    fullname: LeCun
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 10.1016/j.ejmp.2022.10.003_b0205
  article-title: N4ITK: improved N3 bias correction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
  contributor:
    fullname: Tustison
SSID ssj0032255
Score 2.39743
Snippet •A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several...
PURPOSEThe first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for...
PURPOSE: The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 108
SubjectTerms Bioengineering
Deep learning
Dose evaluation
Life Sciences
MRI
Pix2Pix
Radiation therapy
Synthetic CTs
Title A high-performance method of deep learning for prostate MR-only radiotherapy planning using an optimized Pix2Pix architecture
URI https://dx.doi.org/10.1016/j.ejmp.2022.10.003
https://search.proquest.com/docview/2727638927
https://hal.science/hal-03828675
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF-sQulFtB_0aSvT0luJL_uRbHJ8SOW1VSlSwduS7G5spCZBn6UW9G93JtmoLbSHHnLIsiHLzsxvZtnfzDD2zvm0QECkuq22jNASeZTnooykFdbaNEPc7Fm-B-n8SH06To6X2M6YC0O0yoD9A6b3aB1GpmE3p11dT9EOBamTFnh-R8dKZbcVuj_U6e2bO5oH6WvSN1jBYxLNDokzA8fLn55RzUohtnuGl_ybc3r0jViSf4B174F219hqCB1hNqxunS355il7vB8ux5-x6xlQ8eGou88FgKFBNLQVOO87CD0iTgAnQEcJHxhqwv5h1Dbfr-C8cHVIyLqCLnQzAmLGn0DRQIvoclb_8g6-1D8FPvDwFuI5O9r98HVnHoXuCpFVWi8iX_lYKu2SAi0vL0uBjtvrPMN4Iq6U5V4mlXKFKFWaSVVyzX3qdZXyzKalzGP5gi03beNfMrCW2ziruHDSKq9Urh2X3MW5iD3nNp-w9-O2mm4oomFGdtmpISEYEgKNoRAmLBl33vymCgZR_p_fvUUx3f2A6mbPZ3uGxmJJ2fI6-cEn7M0oRYOGRLcjRePbywsjMJKj8E3ojf9cwCZ7Qm9DpuIrtrw4v_SvMWRZlFu9Tm6xldnHz_ODW0Fn6l4
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kIALogXE8qqpuKGw8SNxfFxVVCndXVWolXqzEtspqWgSlS2iSPx3ZhIHSqVy4JCLEyuWZ-abz_I8CHnrfFoAIGLdVltGYIks0pqXkbDcWptmgJt9lO8yzU_kx9PkdI3sjbkwGFYZsH_A9B6tw8g07Oa0q-sp2CFHdVIczu_gWNN1sglsQIN1bs4ODvPlCMiosknfYwVOSjgh5M4MYV7-_ALLVnL-vg_yEnf5p_XPGCh5C697J7T_iDwM7JHOhgVukTXfbJN7i3A__pj8nFGsPxx1f9IB6NAjmrYVdd53NLSJOKPwAe0w5wPYJl18itrmyzW9LFwdcrKuaRcaGlEMjj-jRUNbAJiL-od39Kj-zuGhNy8inpCT_Q_He3kUGixEViq1inzlYyGVSwowPl2WHHy3VzoDShFX0jIvkkq6gpcyzYQsmWI-9apKWWbTUuhYPCUbTdv4Z4Ray2ycVYw7YaWXUivHBHOx5rFnzOoJeTduq-mGOhpmDDA7NygEg0LAMRDChCTjzpu_tMEA0P9z3i6I6fcPsHR2PpsbHIsFJsyr5BubkDejFA3YEl6QFI1vr74aDmQOGRxXz_9zATvkfn68mJv5wfLwBXmAb4bExZdkY3V55V8Bg1mVr4OG_gJXCO0S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-performance+method+of+deep+learning+for+prostate+MR-only+radiotherapy+planning+using+an+optimized+Pix2Pix+architecture&rft.jtitle=Physica+medica&rft.au=Tahri%2C+S.&rft.au=Barateau%2C+A.&rft.au=Cadin%2C+C.&rft.au=Chourak%2C+H.&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=1120-1797&rft.eissn=1724-191X&rft.volume=103&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1016%2Fj.ejmp.2022.10.003&rft.externalDocID=S1120179722020646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon