A high-performance method of deep learning for prostate MR-only radiotherapy planning using an optimized Pix2Pix architecture
•A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several parameters.•Performances of the Pix2Pix are more accurate than 5 other sCT generation methods.•Image and dose errors for the rectum were higher than for...
Saved in:
Published in | Physica medica Vol. 103; pp. 108 - 118 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several parameters.•Performances of the Pix2Pix are more accurate than 5 other sCT generation methods.•Image and dose errors for the rectum were higher than for other soft tissues.
The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN).
For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images.
Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were −0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and −0.1 % for the bladder V50Gy.
The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods. |
---|---|
AbstractList | PURPOSE: The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). METHODS: For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. RESULTS: Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were -0.2% for the planning target volume V(95%), 0.1 % for the rectum V(70Gy), and -0.1 % for the bladder V(50Gy). CONCLUSION: The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods. PURPOSEThe first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). METHODSFor 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. RESULTSCompared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were -0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and -0.1 % for the bladder V50Gy. CONCLUSIONThe sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods. •A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several parameters.•Performances of the Pix2Pix are more accurate than 5 other sCT generation methods.•Image and dose errors for the rectum were higher than for other soft tissues. The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for MRI-only prostate radiotherapy planning by testing several generators, loss functions, and hyper-parameters. The second aim was to compare the optimized Pix2Pix model with five other architectures (bulk-density, atlas-based, patch-based, U-Net, and GAN). For 39 patients treated by VMAT for prostate cancer, T2-weighted MRI images were acquired in addition to CT images for treatment planning. sCT images were generated using the Pix2Pix model. The generator, loss function, and hyper-parameters were tuned to improve sCT image generation (in terms of imaging endpoints). The final evaluation was performed by 3-fold cross-validation. This method was compared to five other methods using the following imaging endpoints: the mean absolute error (MAE) and mean error (ME) between sCT and reference CT images (rCT) of the whole pelvis, bones, prostate, bladder, and rectum. For dose planning analysis, the dose-volume histogram metric differences and 3D gamma analysis (local, 1 %/1 mm) were calculated using the sCT and reference CT images. Compared with the other architectures, Pix2Pix with Perceptual loss function and generator ResNet 9 blocks showed the lowest MAE (29.5, 107.7, 16.0, 13.4, and 49.1 HU for the whole pelvis, bones, prostate, bladder, and rectum, respectively) and the highest gamma passing rates (99.4 %, using the 1 %/1mm and 10 % dose threshold criterion). Concerning the DVH points, the mean errors were −0.2% for the planning target volume V95%, 0.1 % for the rectum V70Gy, and −0.1 % for the bladder V50Gy. The sCT images generated from MRI data with the Pix2Pix architecture had the lowest image errors and similar dose uncertainties (in term of gamma pass-rate and dose-volume histogram metric differences) than other deep learning methods. |
Author | Chourak, H. Lafond, C. Nozahic, F. Dowling, J.A. Barateau, A. Acosta, O. Largent, A. Tahri, S. Cadin, C. Ribault, S. Greer, P.B. Nunes, J.C. De Crevoisier, R. |
Author_xml | – sequence: 1 givenname: S. surname: Tahri fullname: Tahri, S. email: safaa.tahri@univ-rennes1.fr organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 2 givenname: A. surname: Barateau fullname: Barateau, A. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 3 givenname: C. surname: Cadin fullname: Cadin, C. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 4 givenname: H. surname: Chourak fullname: Chourak, H. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 5 givenname: S. surname: Ribault fullname: Ribault, S. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 6 givenname: F. surname: Nozahic fullname: Nozahic, F. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 7 givenname: O. surname: Acosta fullname: Acosta, O. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 8 givenname: J.A. surname: Dowling fullname: Dowling, J.A. organization: CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia – sequence: 9 givenname: P.B. surname: Greer fullname: Greer, P.B. organization: School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, Australia – sequence: 10 givenname: A. surname: Largent fullname: Largent, A. organization: Developing Brain Institute, Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC, USA – sequence: 11 givenname: C. surname: Lafond fullname: Lafond, C. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 12 givenname: R. surname: De Crevoisier fullname: De Crevoisier, R. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France – sequence: 13 givenname: J.C. surname: Nunes fullname: Nunes, J.C. organization: Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI – UMR 1099, F-35000 Rennes, France |
BackLink | https://hal.science/hal-03828675$$DView record in HAL |
BookMark | eNp9kUtr3DAUhUWZ0kyS_oGutEwWnuphWzZkMwxNUpjSEBLITsjy9ViDbTmSHDqB_vfKnZBlFnpw-O6Fc84pWgx2AIS-UbKihObf9yvY9-OKEcaisCKEf0JLKlia0JI-LeKfMpJQUYoTdOr9PgKMZdkXdMJzJhhnxRL9XePW7NpkBNdY16tBA-4htLbGtsE1wIg7UG4www5HAI_O-qAC4F_3iR26A3aqNja04NR4wGOnhv_o5OdbDdiOwfTmFWp8Z_6weLByujUBdJgcnKPPjeo8fH17z9Dj9Y-HzW2y_X3zc7PeJjoVIiTQAOGpqDNVEVJWFSsyDqIsqMhIk2oKPGvSWrEqzQueVlRQyEE0OS10XvGS8DN0edzbqk6OzvTKHaRVRt6ut3LWCC9YkYvshUb24shGq88T-CB74zV00RrYycuYnMh5UTIRUXZEdUzFO2jed1Mi54rkXs4VybmiWYsNxKGr4xBEwy8GnPTaQMy9Ni6mImtrPhr_B3TvmvU |
CitedBy_id | crossref_primary_10_1007_s13246_023_01268_x crossref_primary_10_1007_s13246_023_01333_5 crossref_primary_10_1016_j_radonc_2024_110387 crossref_primary_10_1186_s43055_024_01287_y crossref_primary_10_1088_2632_2153_acd6d8 crossref_primary_10_1109_ACCESS_2024_3404554 crossref_primary_10_1016_j_ejmp_2023_102544 crossref_primary_10_3389_fonc_2023_1279750 crossref_primary_10_1016_j_phro_2023_100511 crossref_primary_10_1088_1361_6560_acefa3 crossref_primary_10_3389_fradi_2024_1385742 |
Cites_doi | 10.1088/0031-9155/60/22/R323 10.1016/j.radonc.2011.01.012 10.1016/j.radonc.2020.11.027 10.1088/1361-6560/ab857b 10.1016/j.ijrobp.2019.01.088 10.1016/j.media.2015.04.014 10.1088/1361-6560/abb1d6 10.1109/CVPR.2017.632 10.1259/bjr.20180948 10.1080/0284186X.2019.1630754 10.1016/j.radonc.2020.10.018 10.1002/mp.13264 10.1118/1.4873315 10.1118/1.4967480 10.1002/mp.13663 10.3389/fonc.2018.00110 10.1002/mp.13672 10.1007/978-3-319-24574-4_28 10.1259/bjr.20190001 10.1016/j.ejmp.2021.04.016 10.1016/j.ijrobp.2019.08.049 10.1016/j.ijrobp.2015.08.045 10.1016/j.ijrobp.2004.05.068 10.1002/acm2.13139 10.1088/0031-9155/60/2/825 10.1002/mp.15150 10.1118/1.2161407 10.1016/j.media.2019.101552 10.1118/1.4931417 10.1002/mrm.28008 10.1186/s13014-016-0747-y 10.1016/j.ejmp.2020.11.002 10.1016/j.ejmp.2021.03.009 10.1016/S0167-8140(02)00440-1 10.1088/1361-6560/ab7633 10.1016/j.ijrobp.2018.10.002 10.1002/mp.13187 10.1016/j.ejmp.2021.09.006 10.1016/j.ijrobp.2010.03.049 10.1016/j.ejmp.2021.07.027 10.1088/1361-6560/aada6d 10.1016/j.ejmp.2021.05.010 10.5694/j.1326-5377.2011.tb02939.x 10.1118/1.4958676 10.1016/j.compbiomed.2018.05.018 10.1038/nature14539 10.1109/TMI.2010.2046908 |
ContentType | Journal Article |
Copyright | 2022 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7X8 1XC |
DOI | 10.1016/j.ejmp.2022.10.003 |
DatabaseName | CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1724-191X |
EndPage | 118 |
ExternalDocumentID | oai_HAL_hal_03828675v1 10_1016_j_ejmp_2022_10_003 S1120179722020646 |
GroupedDBID | --- --K --M -QF .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 3J0 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ACXCU ADBBV ADEZE AEBSH AEFWE AEKER AEVXI AFCTW AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CLCPZ CS3 DC1 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 PC. Q38 RLW ROL RPZ SDF SDG SEL SES SJN SPC SPCBC SSH SSQ SSZ T5K UNMZH Z5R ~G- ~XS AAXKI AAYXX ADVLN AFJKZ CITATION 7X8 1XC |
ID | FETCH-LOGICAL-c477t-efe0347d5ab009bb2853e7981750f4c1e35f4da2b46834b171e6e7f618c6b3903 |
IEDL.DBID | .~1 |
ISSN | 1120-1797 |
IngestDate | Fri Oct 18 06:52:41 EDT 2024 Fri Oct 25 04:27:49 EDT 2024 Thu Sep 26 15:26:35 EDT 2024 Fri Feb 23 02:39:36 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Dose evaluation Synthetic CTs Radiation therapy MRI Pix2Pix |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-efe0347d5ab009bb2853e7981750f4c1e35f4da2b46834b171e6e7f618c6b3903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://manuscript.elsevier.com/S1120179722020646/pdf/S1120179722020646.pdf |
PMID | 36272328 |
PQID | 2727638927 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_03828675v1 proquest_miscellaneous_2727638927 crossref_primary_10_1016_j_ejmp_2022_10_003 elsevier_sciencedirect_doi_10_1016_j_ejmp_2022_10_003 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physica medica |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Dinkla, Florkow, Maspero, Savenije, Zijlstra, Doornaert (b0155) 2019; 46 Lambert, Greer, Menk, Patterson, Parker, Dahl (b0030) 2011; 98 Andreasen, Van Leemput, Edmund (b0085) 2016; 43 Jarrett, Stride, Vallis, Gooding (b0115) 2019; 92 Neppl, Landry, Kurz, Hansen, Hoyle, Stöcklein (b0145) 2019; 58 Florkow, Zijlstra, Willemsen, Maspero, Berg, Kerkmeijer (b0160) 2020; 83 Cusumano, Boldrini, Dhont, Fiorino, Green, Güngör (b0020) 2021; 85 Demol, Boydev, Korhonen, Reynaert (b0080) 2016; 43 Beckendorf, Guerif, Le Prisé, Cosset, Bougnoux, Chauvet (b0220) 2011; 80 Rivest-Hénault, Dowson, Greer, Fripp, Dowling (b0215) 2015; 23 Mylona, Acosta, Lizee, Lafond, Crehange, Magné (b0230) 2019; 104 Largent, Barateau, Nunes, Mylona, Castelli, Lafond (b0090) 2019; 105 Papadimitroulas, Brocki, Christopher Chung, Marchadour, Vermet, Gaubert (b0130) 2021; 83 Ibanez L, Schroeder W. ITK Software Guide n.d.:836. Edmund, Nyholm (b0050) 2017; 12 Meyer, Noblet, Mazzara, Lallement (b0120) 2018; 98 Tustison, Avants, Cook, Yuanjie Zheng, Egan, Yushkevich (b0205) 2010; 29 Lee (b0040) 2003; 66 Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol 2018;63:185001. https://doi.org/10.1088/1361-6560/aada6d. Largent, Barateau, Nunes, Lafond, Greer, Dowling (b0045) 2019; 103 Spadea, Maspero, Zaffino, Seco (b0100) 2021; 48 Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative Adversarial Networks. ArXiv14062661 Cs Stat 2014. Schmidt, Payne (b0015) 2015; 60 Dowling, Sun, Pichler, Rivest-Hénault, Ghose, Richardson (b0060) 2015; 93 Barragán-Montero, Javaid, Valdés, Nguyen, Desbordes, Macq (b0135) 2021; 83 Thummerer A, de Jong BA, Zaffino P, Meijers A, Marmitt GG, Seco J, et al. Comparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients. Phys Med Biol 2020;65:235036. https://doi.org/10.1088/1361-6560/abb1d6. Brou Boni KND, Klein J, Vanquin L, Wagner A, Lacornerie T, Pasquier D, et al. MR to CT synthesis with multicenter data in the pelvic area using a conditional generative adversarial network. Phys Med Biol 2020;65:075002. https://doi.org/10.1088/1361-6560/ab7633. Seco, Evans (b0005) 2006; 33 Weickert J. Anisotropic Diffusion in Image Processing n.d.:184. Sahiner, Pezeshk, Hadjiiski, Wang, Drukker, Cha (b0110) 2019; 46 Yi, Walia, Babyn (b0180) 2019; 58 Bahrami, Karimian, Arabi (b0235) 2021; 90 Bird, Nix, McCallum, Teo, Gilbert, Casanova (b0240) 2021; 156 Uh J, Merchant TE, Li Y, Li X, Hua C. MRI-based treatment planning with pseudo CT generated through atlas registration: MRI-based treatment planning with atlas approach. Med Phys 2014;41:051711. https://doi.org/10.1118/1.4873315. Pathmanathan, McNair, Schmidt, Brand, Delacroix, Eccles (b0010) 2019; 92 Kajikawa, Kadoya, Tanaka, Nemoto, Takahashi, Chiba (b0025) 2020; 80 He, Zhang, Ren, Sun (b0185) 2016 Arabi, Dowling, Burgos, Han, Greer, Koutsouvelis (b0140) 2018; 45 Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-Image Translation with Conditional Adversarial Networks. ArXiv161107004 Cs 2018. Fu, Yang, Singhrao, Ruan, Chu, Low (b0150) 2019; 46 Greer, Dowling, Lambert, Fripp, Parker, Denham (b0065) 2011; 194 Boulanger, Nunes, Chourak, Largent, Tahri, Acosta (b0095) 2021; 89 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. ArXiv150504597 Cs 2015. Liu, Emami, Nejad‐Davarani, Morris, Schultz, Dong (b0190) 2021; 22 LeCun, Bengio, Hinton (b0105) 2015; 521 Sjölund, Forsberg, Andersson, Knutsson (b0055) 2015; 60 Chen, Price, Wang, Li, Qin, McNeeley (b0035) 2004; 60 Cusumano, Lenkowicz, Votta, Boldrini, Placidi, Catucci (b0255) 2020; 153 Siversson, Nordström, Nilsson, Nyholm, Jonsson, Gunnlaugsson (b0075) 2015; 42 Feng, Valdes, Dixit, Solberg (b0125) 2018; 8 Fetty L, Löfstedt T, Heilemann G, Furtado H, Nesvacil N, Nyholm T, et al. Investigating conditional GAN performance with different generator architectures, an ensemble model, and different MR scanners for MR-sCT conversion. Phys Med Biol 2020;65:105004. https://doi.org/10.1088/1361-6560/ab857b. 10.1016/j.ejmp.2022.10.003_b0195 Fu (10.1016/j.ejmp.2022.10.003_b0150) 2019; 46 10.1016/j.ejmp.2022.10.003_b0070 Papadimitroulas (10.1016/j.ejmp.2022.10.003_b0130) 2021; 83 Demol (10.1016/j.ejmp.2022.10.003_b0080) 2016; 43 Boulanger (10.1016/j.ejmp.2022.10.003_b0095) 2021; 89 Lambert (10.1016/j.ejmp.2022.10.003_b0030) 2011; 98 Jarrett (10.1016/j.ejmp.2022.10.003_b0115) 2019; 92 Beckendorf (10.1016/j.ejmp.2022.10.003_b0220) 2011; 80 Edmund (10.1016/j.ejmp.2022.10.003_b0050) 2017; 12 10.1016/j.ejmp.2022.10.003_b0245 Largent (10.1016/j.ejmp.2022.10.003_b0045) 2019; 103 10.1016/j.ejmp.2022.10.003_b0165 10.1016/j.ejmp.2022.10.003_b0200 Dinkla (10.1016/j.ejmp.2022.10.003_b0155) 2019; 46 Spadea (10.1016/j.ejmp.2022.10.003_b0100) 2021; 48 Andreasen (10.1016/j.ejmp.2022.10.003_b0085) 2016; 43 Rivest-Hénault (10.1016/j.ejmp.2022.10.003_b0215) 2015; 23 Siversson (10.1016/j.ejmp.2022.10.003_b0075) 2015; 42 Dowling (10.1016/j.ejmp.2022.10.003_b0060) 2015; 93 Neppl (10.1016/j.ejmp.2022.10.003_b0145) 2019; 58 Cusumano (10.1016/j.ejmp.2022.10.003_b0255) 2020; 153 Lee (10.1016/j.ejmp.2022.10.003_b0040) 2003; 66 Sjölund (10.1016/j.ejmp.2022.10.003_b0055) 2015; 60 10.1016/j.ejmp.2022.10.003_b0250 Meyer (10.1016/j.ejmp.2022.10.003_b0120) 2018; 98 Liu (10.1016/j.ejmp.2022.10.003_b0190) 2021; 22 LeCun (10.1016/j.ejmp.2022.10.003_b0105) 2015; 521 10.1016/j.ejmp.2022.10.003_b0170 Seco (10.1016/j.ejmp.2022.10.003_b0005) 2006; 33 Sahiner (10.1016/j.ejmp.2022.10.003_b0110) 2019; 46 10.1016/j.ejmp.2022.10.003_b0175 Florkow (10.1016/j.ejmp.2022.10.003_b0160) 2020; 83 10.1016/j.ejmp.2022.10.003_b0210 Cusumano (10.1016/j.ejmp.2022.10.003_b0020) 2021; 85 Greer (10.1016/j.ejmp.2022.10.003_b0065) 2011; 194 Bahrami (10.1016/j.ejmp.2022.10.003_b0235) 2021; 90 He (10.1016/j.ejmp.2022.10.003_b0185) 2016 Schmidt (10.1016/j.ejmp.2022.10.003_b0015) 2015; 60 Kajikawa (10.1016/j.ejmp.2022.10.003_b0025) 2020; 80 Bird (10.1016/j.ejmp.2022.10.003_b0240) 2021; 156 Barragán-Montero (10.1016/j.ejmp.2022.10.003_b0135) 2021; 83 Arabi (10.1016/j.ejmp.2022.10.003_b0140) 2018; 45 Mylona (10.1016/j.ejmp.2022.10.003_b0230) 2019; 104 Tustison (10.1016/j.ejmp.2022.10.003_b0205) 2010; 29 Feng (10.1016/j.ejmp.2022.10.003_b0125) 2018; 8 10.1016/j.ejmp.2022.10.003_b0225 Pathmanathan (10.1016/j.ejmp.2022.10.003_b0010) 2019; 92 Yi (10.1016/j.ejmp.2022.10.003_b0180) 2019; 58 Chen (10.1016/j.ejmp.2022.10.003_b0035) 2004; 60 Largent (10.1016/j.ejmp.2022.10.003_b0090) 2019; 105 |
References_xml | – volume: 89 start-page: 265 year: 2021 end-page: 281 ident: b0095 article-title: Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review publication-title: Phys Med contributor: fullname: Acosta – volume: 98 start-page: 126 year: 2018 end-page: 146 ident: b0120 article-title: Survey on deep learning for radiotherapy publication-title: Comput Biol Med contributor: fullname: Lallement – volume: 93 start-page: 1144 year: 2015 end-page: 1153 ident: b0060 article-title: Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences publication-title: Int J Radiat Oncol contributor: fullname: Richardson – volume: 58 start-page: 1429 year: 2019 end-page: 1434 ident: b0145 article-title: Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans publication-title: Acta Oncol contributor: fullname: Stöcklein – volume: 60 start-page: R323 year: 2015 end-page: R361 ident: b0015 article-title: Radiotherapy planning using MRI publication-title: Phys Med Biol contributor: fullname: Payne – volume: 42 start-page: 6090 year: 2015 end-page: 6097 ident: b0075 article-title: Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm: MRI-only radiotherapy planning using the statistical decomposition algorithm publication-title: Med Phys contributor: fullname: Gunnlaugsson – volume: 22 start-page: 308 year: 2021 end-page: 317 ident: b0190 article-title: Performance of deep learning synthetic CTs for MR-only brain radiation therapy publication-title: J Appl Clin Med Phys contributor: fullname: Dong – volume: 80 start-page: 186 year: 2020 end-page: 192 ident: b0025 article-title: Dose distribution correction for the influence of magnetic field using a deep convolutional neural network for online MR-guided adaptive radiotherapy publication-title: Phys Med contributor: fullname: Chiba – volume: 48 start-page: 6537 year: 2021 end-page: 6566 ident: b0100 article-title: Deep learning based synthetic-CT generation in radiotherapy and PET: A review publication-title: Med Phys contributor: fullname: Seco – volume: 60 start-page: 825 year: 2015 end-page: 839 ident: b0055 article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression publication-title: Phys Med Biol contributor: fullname: Knutsson – start-page: 770 year: 2016 end-page: 778 ident: b0185 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR contributor: fullname: Sun – volume: 103 start-page: 479 year: 2019 end-page: 490 ident: b0045 article-title: Pseudo-CT generation for MRI-only radiation therapy treatment planning: comparison among patch-based, atlas-based, and bulk density methods publication-title: Int J Radiat Oncol contributor: fullname: Dowling – volume: 46 start-page: 3788 year: 2019 end-page: 3798 ident: b0150 article-title: Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging publication-title: Med Phys contributor: fullname: Low – volume: 45 start-page: 5218 year: 2018 end-page: 5233 ident: b0140 article-title: Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region publication-title: Med Phys contributor: fullname: Koutsouvelis – volume: 92 start-page: 20180948 year: 2019 ident: b0010 article-title: Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy publication-title: Br J Radiol contributor: fullname: Eccles – volume: 43 start-page: 4742 year: 2016 end-page: 4752 ident: b0085 article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis: A patch-based pseudo-CT approach publication-title: Med Phys contributor: fullname: Edmund – volume: 92 start-page: 20190001 year: 2019 ident: b0115 article-title: Applications and limitations of machine learning in radiation oncology publication-title: Br J Radiol contributor: fullname: Gooding – volume: 46 start-page: e1 year: 2019 end-page: e36 ident: b0110 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med Phys contributor: fullname: Cha – volume: 98 start-page: 330 year: 2011 end-page: 334 ident: b0030 article-title: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning publication-title: Radiother Oncol contributor: fullname: Dahl – volume: 33 start-page: 540 year: 2006 end-page: 552 ident: b0005 article-title: Assessing the effect of electron density in photon dose calculations: Effect of electron density in photon dose calculations publication-title: Med Phys contributor: fullname: Evans – volume: 80 start-page: 1056 year: 2011 end-page: 1063 ident: b0220 article-title: 70 Gy Versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial publication-title: Int J Radiat Oncol contributor: fullname: Chauvet – volume: 194 year: 2011 ident: b0065 article-title: A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer publication-title: Med J Aust contributor: fullname: Denham – volume: 85 start-page: 175 year: 2021 end-page: 191 ident: b0020 article-title: Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives publication-title: Phys Med contributor: fullname: Güngör – volume: 105 start-page: 1137 year: 2019 end-page: 1150 ident: b0090 article-title: Comparison of deep learning-based and patch-based methods for pseudo-CT generation in MRI-based prostate dose planning publication-title: Int J Radiat Oncol contributor: fullname: Lafond – volume: 83 start-page: 1429 year: 2020 end-page: 1441 ident: b0160 article-title: Deep learning–based MR-to-CT synthesis: The influence of varying gradient echo–based MR images as input channels publication-title: Magn Reson Med contributor: fullname: Kerkmeijer – volume: 66 start-page: 203 year: 2003 end-page: 216 ident: b0040 article-title: Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone publication-title: Radiother Oncol contributor: fullname: Lee – volume: 43 start-page: 6557 year: 2016 end-page: 6568 ident: b0080 article-title: Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard publication-title: Med Phys contributor: fullname: Reynaert – volume: 90 start-page: 99 year: 2021 end-page: 107 ident: b0235 article-title: Comparison of different deep learning architectures for synthetic CT generation from MR images publication-title: Phys Med contributor: fullname: Arabi – volume: 83 start-page: 242 year: 2021 end-page: 256 ident: b0135 article-title: Artificial intelligence and machine learning for medical imaging: A technology review publication-title: Phys Med contributor: fullname: Macq – volume: 58 year: 2019 ident: b0180 article-title: Generative adversarial network in medical imaging: A review publication-title: Med Image Anal contributor: fullname: Babyn – volume: 23 start-page: 56 year: 2015 end-page: 69 ident: b0215 article-title: Robust inverse-consistent affine CT–MR registration in MRI-assisted and MRI-alone prostate radiation therapy publication-title: Med Image Anal contributor: fullname: Dowling – volume: 104 start-page: 343 year: 2019 end-page: 354 ident: b0230 article-title: Voxel-based analysis for identification of urethrovesical subregions predicting urinary toxicity after prostate cancer radiation therapy publication-title: Int J Radiat Oncol contributor: fullname: Magné – volume: 60 start-page: 636 year: 2004 end-page: 647 ident: b0035 article-title: MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT publication-title: Int J Radiat Oncol contributor: fullname: McNeeley – volume: 156 start-page: 23 year: 2021 end-page: 28 ident: b0240 article-title: Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning publication-title: Radiother Oncol contributor: fullname: Casanova – volume: 153 start-page: 205 year: 2020 end-page: 212 ident: b0255 article-title: A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases publication-title: Radiother Oncol contributor: fullname: Catucci – volume: 83 start-page: 108 year: 2021 end-page: 121 ident: b0130 article-title: Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization publication-title: Phys Med contributor: fullname: Gaubert – volume: 29 start-page: 1310 year: 2010 end-page: 1320 ident: b0205 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging contributor: fullname: Yushkevich – volume: 12 start-page: 28 year: 2017 ident: b0050 article-title: A review of substitute CT generation for MRI-only radiation therapy publication-title: Radiat Oncol contributor: fullname: Nyholm – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0105 article-title: Deep learning publication-title: Nature contributor: fullname: Hinton – volume: 46 start-page: 4095 year: 2019 end-page: 4104 ident: b0155 article-title: Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network publication-title: Med Phys contributor: fullname: Doornaert – volume: 8 start-page: 110 year: 2018 ident: b0125 article-title: Machine learning in radiation oncology: opportunities, requirements, and needs publication-title: Front Oncol contributor: fullname: Solberg – volume: 60 start-page: R323 year: 2015 ident: 10.1016/j.ejmp.2022.10.003_b0015 article-title: Radiotherapy planning using MRI publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/22/R323 contributor: fullname: Schmidt – volume: 98 start-page: 330 issue: 3 year: 2011 ident: 10.1016/j.ejmp.2022.10.003_b0030 article-title: MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning publication-title: Radiother Oncol doi: 10.1016/j.radonc.2011.01.012 contributor: fullname: Lambert – volume: 156 start-page: 23 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0240 article-title: Multicentre, deep learning, synthetic-CT generation for ano-rectal MR-only radiotherapy treatment planning publication-title: Radiother Oncol doi: 10.1016/j.radonc.2020.11.027 contributor: fullname: Bird – ident: 10.1016/j.ejmp.2022.10.003_b0250 doi: 10.1088/1361-6560/ab857b – volume: 104 start-page: 343 issue: 2 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0230 article-title: Voxel-based analysis for identification of urethrovesical subregions predicting urinary toxicity after prostate cancer radiation therapy publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2019.01.088 contributor: fullname: Mylona – volume: 23 start-page: 56 year: 2015 ident: 10.1016/j.ejmp.2022.10.003_b0215 article-title: Robust inverse-consistent affine CT–MR registration in MRI-assisted and MRI-alone prostate radiation therapy publication-title: Med Image Anal doi: 10.1016/j.media.2015.04.014 contributor: fullname: Rivest-Hénault – ident: 10.1016/j.ejmp.2022.10.003_b0165 doi: 10.1088/1361-6560/abb1d6 – ident: 10.1016/j.ejmp.2022.10.003_b0195 doi: 10.1109/CVPR.2017.632 – volume: 92 start-page: 20180948 issue: 1096 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0010 article-title: Comparison of prostate delineation on multimodality imaging for MR-guided radiotherapy publication-title: Br J Radiol doi: 10.1259/bjr.20180948 contributor: fullname: Pathmanathan – volume: 58 start-page: 1429 issue: 10 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0145 article-title: Evaluation of proton and photon dose distributions recalculated on 2D and 3D Unet-generated pseudoCTs from T1-weighted MR head scans publication-title: Acta Oncol doi: 10.1080/0284186X.2019.1630754 contributor: fullname: Neppl – volume: 153 start-page: 205 year: 2020 ident: 10.1016/j.ejmp.2022.10.003_b0255 article-title: A deep learning approach to generate synthetic CT in low field MR-guided adaptive radiotherapy for abdominal and pelvic cases publication-title: Radiother Oncol doi: 10.1016/j.radonc.2020.10.018 contributor: fullname: Cusumano – volume: 46 start-page: e1 issue: 1 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0110 article-title: Deep learning in medical imaging and radiation therapy publication-title: Med Phys doi: 10.1002/mp.13264 contributor: fullname: Sahiner – ident: 10.1016/j.ejmp.2022.10.003_b0070 doi: 10.1118/1.4873315 – volume: 43 start-page: 6557 year: 2016 ident: 10.1016/j.ejmp.2022.10.003_b0080 article-title: Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T 1-weighted MR images: MRI-only treatment planning in atlas-based pseudo-CT images publication-title: Med Phys doi: 10.1118/1.4967480 contributor: fullname: Demol – volume: 46 start-page: 4095 issue: 9 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0155 article-title: Dosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural network publication-title: Med Phys doi: 10.1002/mp.13663 contributor: fullname: Dinkla – ident: 10.1016/j.ejmp.2022.10.003_b0175 – volume: 8 start-page: 110 year: 2018 ident: 10.1016/j.ejmp.2022.10.003_b0125 article-title: Machine learning in radiation oncology: opportunities, requirements, and needs publication-title: Front Oncol doi: 10.3389/fonc.2018.00110 contributor: fullname: Feng – volume: 46 start-page: 3788 issue: 9 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0150 article-title: Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging publication-title: Med Phys doi: 10.1002/mp.13672 contributor: fullname: Fu – ident: 10.1016/j.ejmp.2022.10.003_b0170 doi: 10.1007/978-3-319-24574-4_28 – volume: 92 start-page: 20190001 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0115 article-title: Applications and limitations of machine learning in radiation oncology publication-title: Br J Radiol doi: 10.1259/bjr.20190001 contributor: fullname: Jarrett – volume: 83 start-page: 242 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0135 article-title: Artificial intelligence and machine learning for medical imaging: A technology review publication-title: Phys Med doi: 10.1016/j.ejmp.2021.04.016 contributor: fullname: Barragán-Montero – volume: 105 start-page: 1137 issue: 5 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0090 article-title: Comparison of deep learning-based and patch-based methods for pseudo-CT generation in MRI-based prostate dose planning publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2019.08.049 contributor: fullname: Largent – volume: 93 start-page: 1144 issue: 5 year: 2015 ident: 10.1016/j.ejmp.2022.10.003_b0060 article-title: Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2015.08.045 contributor: fullname: Dowling – volume: 60 start-page: 636 issue: 2 year: 2004 ident: 10.1016/j.ejmp.2022.10.003_b0035 article-title: MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2004.05.068 contributor: fullname: Chen – volume: 22 start-page: 308 issue: 1 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0190 article-title: Performance of deep learning synthetic CTs for MR-only brain radiation therapy publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13139 contributor: fullname: Liu – ident: 10.1016/j.ejmp.2022.10.003_b0210 – volume: 60 start-page: 825 year: 2015 ident: 10.1016/j.ejmp.2022.10.003_b0055 article-title: Generating patient specific pseudo-CT of the head from MR using atlas-based regression publication-title: Phys Med Biol doi: 10.1088/0031-9155/60/2/825 contributor: fullname: Sjölund – volume: 48 start-page: 6537 issue: 11 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0100 article-title: Deep learning based synthetic-CT generation in radiotherapy and PET: A review publication-title: Med Phys doi: 10.1002/mp.15150 contributor: fullname: Spadea – volume: 33 start-page: 540 year: 2006 ident: 10.1016/j.ejmp.2022.10.003_b0005 article-title: Assessing the effect of electron density in photon dose calculations: Effect of electron density in photon dose calculations publication-title: Med Phys doi: 10.1118/1.2161407 contributor: fullname: Seco – volume: 58 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0180 article-title: Generative adversarial network in medical imaging: A review publication-title: Med Image Anal doi: 10.1016/j.media.2019.101552 contributor: fullname: Yi – volume: 42 start-page: 6090 issue: 10 year: 2015 ident: 10.1016/j.ejmp.2022.10.003_b0075 article-title: Technical Note: MRI only prostate radiotherapy planning using the statistical decomposition algorithm: MRI-only radiotherapy planning using the statistical decomposition algorithm publication-title: Med Phys doi: 10.1118/1.4931417 contributor: fullname: Siversson – volume: 83 start-page: 1429 issue: 4 year: 2020 ident: 10.1016/j.ejmp.2022.10.003_b0160 article-title: Deep learning–based MR-to-CT synthesis: The influence of varying gradient echo–based MR images as input channels publication-title: Magn Reson Med doi: 10.1002/mrm.28008 contributor: fullname: Florkow – volume: 12 start-page: 28 year: 2017 ident: 10.1016/j.ejmp.2022.10.003_b0050 article-title: A review of substitute CT generation for MRI-only radiation therapy publication-title: Radiat Oncol doi: 10.1186/s13014-016-0747-y contributor: fullname: Edmund – ident: 10.1016/j.ejmp.2022.10.003_b0200 – volume: 80 start-page: 186 year: 2020 ident: 10.1016/j.ejmp.2022.10.003_b0025 article-title: Dose distribution correction for the influence of magnetic field using a deep convolutional neural network for online MR-guided adaptive radiotherapy publication-title: Phys Med doi: 10.1016/j.ejmp.2020.11.002 contributor: fullname: Kajikawa – volume: 83 start-page: 108 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0130 article-title: Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization publication-title: Phys Med doi: 10.1016/j.ejmp.2021.03.009 contributor: fullname: Papadimitroulas – volume: 66 start-page: 203 year: 2003 ident: 10.1016/j.ejmp.2022.10.003_b0040 article-title: Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone publication-title: Radiother Oncol doi: 10.1016/S0167-8140(02)00440-1 contributor: fullname: Lee – ident: 10.1016/j.ejmp.2022.10.003_b0245 doi: 10.1088/1361-6560/ab7633 – start-page: 770 year: 2016 ident: 10.1016/j.ejmp.2022.10.003_b0185 article-title: Deep residual learning for image recognition contributor: fullname: He – volume: 103 start-page: 479 issue: 2 year: 2019 ident: 10.1016/j.ejmp.2022.10.003_b0045 article-title: Pseudo-CT generation for MRI-only radiation therapy treatment planning: comparison among patch-based, atlas-based, and bulk density methods publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2018.10.002 contributor: fullname: Largent – volume: 45 start-page: 5218 year: 2018 ident: 10.1016/j.ejmp.2022.10.003_b0140 article-title: Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region publication-title: Med Phys doi: 10.1002/mp.13187 contributor: fullname: Arabi – volume: 90 start-page: 99 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0235 article-title: Comparison of different deep learning architectures for synthetic CT generation from MR images publication-title: Phys Med doi: 10.1016/j.ejmp.2021.09.006 contributor: fullname: Bahrami – volume: 80 start-page: 1056 year: 2011 ident: 10.1016/j.ejmp.2022.10.003_b0220 article-title: 70 Gy Versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2010.03.049 contributor: fullname: Beckendorf – volume: 89 start-page: 265 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0095 article-title: Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review publication-title: Phys Med doi: 10.1016/j.ejmp.2021.07.027 contributor: fullname: Boulanger – ident: 10.1016/j.ejmp.2022.10.003_b0225 doi: 10.1088/1361-6560/aada6d – volume: 85 start-page: 175 year: 2021 ident: 10.1016/j.ejmp.2022.10.003_b0020 article-title: Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives publication-title: Phys Med doi: 10.1016/j.ejmp.2021.05.010 contributor: fullname: Cusumano – volume: 194 issue: S4 year: 2011 ident: 10.1016/j.ejmp.2022.10.003_b0065 article-title: A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer publication-title: Med J Aust doi: 10.5694/j.1326-5377.2011.tb02939.x contributor: fullname: Greer – volume: 43 start-page: 4742 year: 2016 ident: 10.1016/j.ejmp.2022.10.003_b0085 article-title: A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis: A patch-based pseudo-CT approach publication-title: Med Phys doi: 10.1118/1.4958676 contributor: fullname: Andreasen – volume: 98 start-page: 126 year: 2018 ident: 10.1016/j.ejmp.2022.10.003_b0120 article-title: Survey on deep learning for radiotherapy publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.018 contributor: fullname: Meyer – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.ejmp.2022.10.003_b0105 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 contributor: fullname: LeCun – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 10.1016/j.ejmp.2022.10.003_b0205 article-title: N4ITK: improved N3 bias correction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2046908 contributor: fullname: Tustison |
SSID | ssj0032255 |
Score | 2.39743 |
Snippet | •A competitive method of deep learning (Pix2Pix) for prostate MR-only radiotherapy.•Significant variation in image evaluation depending on several... PURPOSEThe first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for... PURPOSE: The first aim was to generate and compare synthetic-CT (sCT) images using a conditional generative adversarial network (cGAN) method (Pix2Pix) for... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 108 |
SubjectTerms | Bioengineering Deep learning Dose evaluation Life Sciences MRI Pix2Pix Radiation therapy Synthetic CTs |
Title | A high-performance method of deep learning for prostate MR-only radiotherapy planning using an optimized Pix2Pix architecture |
URI | https://dx.doi.org/10.1016/j.ejmp.2022.10.003 https://search.proquest.com/docview/2727638927 https://hal.science/hal-03828675 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEF-sQulFtB_0aSvT0luJL_uRbHJ8SOW1VSlSwduS7G5spCZBn6UW9G93JtmoLbSHHnLIsiHLzsxvZtnfzDD2zvm0QECkuq22jNASeZTnooykFdbaNEPc7Fm-B-n8SH06To6X2M6YC0O0yoD9A6b3aB1GpmE3p11dT9EOBamTFnh-R8dKZbcVuj_U6e2bO5oH6WvSN1jBYxLNDokzA8fLn55RzUohtnuGl_ybc3r0jViSf4B174F219hqCB1hNqxunS355il7vB8ux5-x6xlQ8eGou88FgKFBNLQVOO87CD0iTgAnQEcJHxhqwv5h1Dbfr-C8cHVIyLqCLnQzAmLGn0DRQIvoclb_8g6-1D8FPvDwFuI5O9r98HVnHoXuCpFVWi8iX_lYKu2SAi0vL0uBjtvrPMN4Iq6U5V4mlXKFKFWaSVVyzX3qdZXyzKalzGP5gi03beNfMrCW2ziruHDSKq9Urh2X3MW5iD3nNp-w9-O2mm4oomFGdtmpISEYEgKNoRAmLBl33vymCgZR_p_fvUUx3f2A6mbPZ3uGxmJJ2fI6-cEn7M0oRYOGRLcjRePbywsjMJKj8E3ojf9cwCZ7Qm9DpuIrtrw4v_SvMWRZlFu9Tm6xldnHz_ODW0Fn6l4 |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kIALogXE8qqpuKGw8SNxfFxVVCndXVWolXqzEtspqWgSlS2iSPx3ZhIHSqVy4JCLEyuWZ-abz_I8CHnrfFoAIGLdVltGYIks0pqXkbDcWptmgJt9lO8yzU_kx9PkdI3sjbkwGFYZsH_A9B6tw8g07Oa0q-sp2CFHdVIczu_gWNN1sglsQIN1bs4ODvPlCMiosknfYwVOSjgh5M4MYV7-_ALLVnL-vg_yEnf5p_XPGCh5C697J7T_iDwM7JHOhgVukTXfbJN7i3A__pj8nFGsPxx1f9IB6NAjmrYVdd53NLSJOKPwAe0w5wPYJl18itrmyzW9LFwdcrKuaRcaGlEMjj-jRUNbAJiL-od39Kj-zuGhNy8inpCT_Q_He3kUGixEViq1inzlYyGVSwowPl2WHHy3VzoDShFX0jIvkkq6gpcyzYQsmWI-9apKWWbTUuhYPCUbTdv4Z4Ray2ycVYw7YaWXUivHBHOx5rFnzOoJeTduq-mGOhpmDDA7NygEg0LAMRDChCTjzpu_tMEA0P9z3i6I6fcPsHR2PpsbHIsFJsyr5BubkDejFA3YEl6QFI1vr74aDmQOGRxXz_9zATvkfn68mJv5wfLwBXmAb4bExZdkY3V55V8Bg1mVr4OG_gJXCO0S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-performance+method+of+deep+learning+for+prostate+MR-only+radiotherapy+planning+using+an+optimized+Pix2Pix+architecture&rft.jtitle=Physica+medica&rft.au=Tahri%2C+S.&rft.au=Barateau%2C+A.&rft.au=Cadin%2C+C.&rft.au=Chourak%2C+H.&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=1120-1797&rft.eissn=1724-191X&rft.volume=103&rft.spage=108&rft.epage=118&rft_id=info:doi/10.1016%2Fj.ejmp.2022.10.003&rft.externalDocID=S1120179722020646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon |