Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk
Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation is modulated, most notably by microRNAs (miRNAs). This modulation is controlled by transcriptional and post-transcriptional events that alte...
Saved in:
Published in | Critical reviews in biochemistry and molecular biology Vol. 53; no. 3; pp. 231 - 245 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation is modulated, most notably by microRNAs (miRNAs). This modulation is controlled by transcriptional and post-transcriptional events that alter the availability of miRNAs for target binding. Recent studies have proposed that some transcripts - termed competitive endogenous RNAs (ceRNAs) - sequester a miRNA and diminish its repressive effects on other transcripts. Such ceRNAs thus mutually alter each other's abundance by competing for binding to a common set of miRNAs. Some question the relevance of ceRNA crosstalk, arguing that an individual transcript, when its abundance lies within a physiological range of gene expression, will fail to compete for miRNA binding due to the high abundance of other miRNA binding sites across the transcriptome. Despite this, some experimental evidence is consistent with the ceRNA hypothesis. In this review, we draw upon existing data to highlight mechanistic and theoretical aspects of ceRNA crosstalk. Our intent is to propose how understanding of ceRNA crosstalk mechanisms can be improved and what evidence is required to demonstrate a ceRNA mechanism. A greater understanding of factors affecting ceRNA crosstalk should shed light on its relevance in physiological states. |
---|---|
AbstractList | Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation is modulated, most notably by microRNAs (miRNAs). This modulation is controlled by transcriptional and post-transcriptional events that alter the availability of miRNAs for target binding. Recent studies have proposed that some transcripts - termed competitive endogenous RNAs (ceRNAs) - sequester a miRNA and diminish its repressive effects on other transcripts. Such ceRNAs thus mutually alter each other's abundance by competing for binding to a common set of miRNAs. Some question the relevance of ceRNA crosstalk, arguing that an individual transcript, when its abundance lies within a physiological range of gene expression, will fail to compete for miRNA binding due to the high abundance of other miRNA binding sites across the transcriptome. Despite this, some experimental evidence is consistent with the ceRNA hypothesis. In this review, we draw upon existing data to highlight mechanistic and theoretical aspects of ceRNA crosstalk. Our intent is to propose how understanding of ceRNA crosstalk mechanisms can be improved and what evidence is required to demonstrate a ceRNA mechanism. A greater understanding of factors affecting ceRNA crosstalk should shed light on its relevance in physiological states. Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation is modulated, most notably by microRNAs (miRNAs). This modulation is controlled by transcriptional and post-transcriptional events that alter the availability of miRNAs for target binding. Recent studies have proposed that some transcripts - termed competitive endogenous RNAs (ceRNAs) - sequester a miRNA and diminish its repressive effects on other transcripts. Such ceRNAs thus mutually alter each other's abundance by competing for binding to a common set of miRNAs. Some question the relevance of ceRNA crosstalk, arguing that an individual transcript, when its abundance lies within a physiological range of gene expression, will fail to compete for miRNA binding due to the high abundance of other miRNA binding sites across the transcriptome. Despite this, some experimental evidence is consistent with the ceRNA hypothesis. In this review, we draw upon existing data to highlight mechanistic and theoretical aspects of ceRNA crosstalk. Our intent is to propose how understanding of ceRNA crosstalk mechanisms can be improved and what evidence is required to demonstrate a ceRNA mechanism. A greater understanding of factors affecting ceRNA crosstalk should shed light on its relevance in physiological states.Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation is modulated, most notably by microRNAs (miRNAs). This modulation is controlled by transcriptional and post-transcriptional events that alter the availability of miRNAs for target binding. Recent studies have proposed that some transcripts - termed competitive endogenous RNAs (ceRNAs) - sequester a miRNA and diminish its repressive effects on other transcripts. Such ceRNAs thus mutually alter each other's abundance by competing for binding to a common set of miRNAs. Some question the relevance of ceRNA crosstalk, arguing that an individual transcript, when its abundance lies within a physiological range of gene expression, will fail to compete for miRNA binding due to the high abundance of other miRNA binding sites across the transcriptome. Despite this, some experimental evidence is consistent with the ceRNA hypothesis. In this review, we draw upon existing data to highlight mechanistic and theoretical aspects of ceRNA crosstalk. Our intent is to propose how understanding of ceRNA crosstalk mechanisms can be improved and what evidence is required to demonstrate a ceRNA mechanism. A greater understanding of factors affecting ceRNA crosstalk should shed light on its relevance in physiological states. |
Author | Sirey, Tamara Smillie, Claire L. Ponting, Chris P. |
Author_xml | – sequence: 1 givenname: Claire L. orcidid: 0000-0003-1350-2301 surname: Smillie fullname: Smillie, Claire L. organization: MRC Human Genetics Unit within the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK – sequence: 2 givenname: Tamara orcidid: 0000-0001-5606-2858 surname: Sirey fullname: Sirey, Tamara organization: MRC Human Genetics Unit within the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK – sequence: 3 givenname: Chris P. orcidid: 0000-0003-0202-7816 surname: Ponting fullname: Ponting, Chris P. organization: MRC Human Genetics Unit within the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29569941$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOxCAUJUajjvoJmi7ddAQK0xITEzPxlRhNfKwJUDqiFGphjP69dJwx6sLV5YbzuDlnBNaddxqAfQTHCFbwCEECGS6qMYaoGiNCSkrwGthGlLC8LFm1nt4Jkw-gLTAK4RlCNCkrugm2MKMTxgjaBvdT33ZWv5todMh8k3U-xDz2wgXVmy4a74TNej2bWzEsmXB1Fp901vpaW-NmA0fpu5vTTPU-hCjsyy7YaIQNem85d8Dj-dnD9DK_vr24mp5e54qUZczrBlMsKJUV01LSQpYSYakUgWRCipoWTQMbgXEhsURFma5nulGEEjGRkjBR7ICTL91uLltdK-3S3ZZ3vWlF_8G9MPz3jzNPfObfOGUFhaRKAodLgd6_znWIvDVBaWuF034e-BAtRClZmKAHP72-TVZJJsDxF2ARQ68brkxcRJasjeUI8qE3vuptIc6XvSU2_cNeGfzP-wRzkpxg |
CitedBy_id | crossref_primary_10_1007_s10565_021_09632_x crossref_primary_10_1080_15476286_2018_1536593 crossref_primary_10_1097_PRS_0000000000010083 crossref_primary_10_1016_j_arcmed_2021_05_004 crossref_primary_10_1002_mc_23294 crossref_primary_10_1186_s12881_020_01145_4 crossref_primary_10_1016_j_lfs_2020_118386 crossref_primary_10_1016_j_cellsig_2021_109992 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2022044404 crossref_primary_10_26508_lsa_202201643 crossref_primary_10_1002_1873_3468_13480 crossref_primary_10_1002_jcb_29434 crossref_primary_10_1002_wrna_1686 crossref_primary_10_1080_15384101_2022_2058839 crossref_primary_10_1089_cbr_2019_2996 crossref_primary_10_2174_2211536612666230524153442 crossref_primary_10_1080_15476286_2019_1662268 crossref_primary_10_1016_j_fsi_2023_109073 crossref_primary_10_1080_15384101_2022_2046984 crossref_primary_10_18632_aging_205781 crossref_primary_10_1016_j_yexcr_2020_112384 crossref_primary_10_1097_MPA_0000000000002136 crossref_primary_10_1186_s12864_019_5861_4 crossref_primary_10_1186_s12935_020_01378_6 crossref_primary_10_1007_s43032_021_00626_y crossref_primary_10_3390_cancers12092464 crossref_primary_10_3390_ijms252111547 crossref_primary_10_1016_j_bbagrm_2024_195073 crossref_primary_10_1177_11769343221113286 crossref_primary_10_2147_JIR_S488841 crossref_primary_10_3389_fcell_2021_793638 crossref_primary_10_3389_fnins_2021_627945 crossref_primary_10_1016_j_gene_2024_148162 crossref_primary_10_1177_09636897221077928 crossref_primary_10_3390_ijms232012411 crossref_primary_10_1002_jbt_70012 crossref_primary_10_1016_j_biocel_2019_105621 crossref_primary_10_1186_s12891_021_04109_8 crossref_primary_10_1002_wnan_2012 crossref_primary_10_2220_biomedres_44_105 crossref_primary_10_3389_fonc_2022_842790 crossref_primary_10_1016_j_omtn_2022_07_001 crossref_primary_10_1093_cvr_cvz154 crossref_primary_10_3389_fimmu_2021_684807 crossref_primary_10_3390_ijms252212354 crossref_primary_10_1016_j_gene_2024_148519 crossref_primary_10_1186_s12931_021_01632_z crossref_primary_10_1111_neup_12764 crossref_primary_10_1080_21655979_2020_1860492 crossref_primary_10_1016_j_prp_2020_152861 crossref_primary_10_1016_j_yexcr_2021_112929 crossref_primary_10_3389_fcvm_2024_1501608 crossref_primary_10_1007_s12035_023_03631_1 crossref_primary_10_5551_jat_52274 crossref_primary_10_1016_j_archoralbio_2021_105114 crossref_primary_10_1093_bib_bbz006 crossref_primary_10_1007_s12013_024_01472_w crossref_primary_10_1158_0008_5472_CAN_22_0283 crossref_primary_10_2147_CMAR_S274204 crossref_primary_10_3390_ijms242015377 crossref_primary_10_18632_aging_202254 crossref_primary_10_1080_15384101_2022_2064957 crossref_primary_10_1186_s12890_021_01657_6 crossref_primary_10_3390_cancers15133375 crossref_primary_10_1016_j_neuroscience_2020_10_010 crossref_primary_10_3390_jcm12072478 crossref_primary_10_3390_ijms241713336 crossref_primary_10_1080_15384047_2021_1877864 crossref_primary_10_1002_tox_23157 crossref_primary_10_1080_08923973_2022_2038193 crossref_primary_10_1186_s12935_020_01505_3 crossref_primary_10_1155_2022_4283534 crossref_primary_10_1155_2022_1032557 crossref_primary_10_1155_2023_9340499 crossref_primary_10_3390_ijms23063074 crossref_primary_10_2147_NDT_S305182 crossref_primary_10_3389_fmolb_2022_937505 crossref_primary_10_1007_s12035_023_03398_5 crossref_primary_10_1093_molbev_msy183 crossref_primary_10_1080_21655979_2021_2009413 crossref_primary_10_1016_j_lfs_2020_118409 crossref_primary_10_1080_15384101_2020_1850971 crossref_primary_10_1038_s42003_024_06961_5 crossref_primary_10_3389_fgene_2022_962574 crossref_primary_10_1038_s41420_022_01061_x crossref_primary_10_3389_fmed_2022_833301 crossref_primary_10_1002_brb3_2321 crossref_primary_10_1007_s12031_024_02262_y crossref_primary_10_1080_15384101_2021_1965722 crossref_primary_10_1002_iub_2415 crossref_primary_10_3233_CH_221657 crossref_primary_10_1016_j_prp_2024_155151 crossref_primary_10_1667_RADE_20_00265_1 crossref_primary_10_3390_ijms21031027 crossref_primary_10_1186_s12935_021_01912_0 crossref_primary_10_3390_cancers16173057 crossref_primary_10_1155_2022_1014347 crossref_primary_10_1186_s12967_022_03483_8 crossref_primary_10_3390_ijms231911755 crossref_primary_10_1016_j_heliyon_2024_e33835 crossref_primary_10_1080_15384101_2021_1924450 crossref_primary_10_3892_mmr_2019_10361 crossref_primary_10_3389_fmolb_2022_886904 crossref_primary_10_1016_j_prp_2021_153526 crossref_primary_10_1186_s10020_021_00345_9 crossref_primary_10_3389_fmicb_2019_01300 crossref_primary_10_3389_fphar_2021_792138 crossref_primary_10_1002_ccs3_70005 crossref_primary_10_1371_journal_pcbi_1011308 crossref_primary_10_2147_CMAR_S274426 crossref_primary_10_1007_s12033_022_00448_6 crossref_primary_10_1007_s10863_021_09879_3 crossref_primary_10_1186_s12885_021_08668_w crossref_primary_10_1186_s12920_024_01813_x crossref_primary_10_1111_ejn_15607 crossref_primary_10_3892_etm_2021_10324 crossref_primary_10_3389_fcimb_2022_912492 crossref_primary_10_1016_j_biopha_2023_114692 crossref_primary_10_1016_j_imbio_2024_152796 crossref_primary_10_1007_s10616_023_00577_z crossref_primary_10_1111_jcmm_15163 crossref_primary_10_1186_s12967_021_03114_8 crossref_primary_10_2174_1573409918666220615151614 crossref_primary_10_3389_fphar_2025_1552581 crossref_primary_10_1016_j_talanta_2024_127078 crossref_primary_10_1042_BSR20211895 crossref_primary_10_3389_fgene_2021_679446 crossref_primary_10_3389_fimmu_2023_1168920 crossref_primary_10_1016_j_cellsig_2023_111018 crossref_primary_10_3892_ijo_2023_5556 crossref_primary_10_1002_aro2_76 crossref_primary_10_1080_21655979_2021_1957071 crossref_primary_10_7554_eLife_45051 crossref_primary_10_1002_cam4_2927 crossref_primary_10_1002_kjm2_12548 crossref_primary_10_1186_s12864_019_5915_7 crossref_primary_10_1515_hsz_2023_0183 crossref_primary_10_1007_s12013_024_01466_8 crossref_primary_10_1016_j_yexmp_2020_104545 crossref_primary_10_3389_fpls_2024_1403060 crossref_primary_10_2147_CMAR_S227327 crossref_primary_10_1093_jas_skad218 crossref_primary_10_1016_j_pharmthera_2021_107868 crossref_primary_10_1007_s12010_023_04740_2 crossref_primary_10_1007_s13402_022_00752_y crossref_primary_10_3892_ijo_2023_5529 crossref_primary_10_1002_jgm_3287 crossref_primary_10_1016_j_identj_2024_04_024 crossref_primary_10_1515_med_2020_0401 crossref_primary_10_1111_aji_70017 crossref_primary_10_1016_j_heliyon_2024_e38427 crossref_primary_10_1155_2023_4500810 crossref_primary_10_1016_j_cellsig_2021_110013 crossref_primary_10_1080_15384101_2021_2005273 crossref_primary_10_1016_j_biopha_2019_109517 crossref_primary_10_1186_s13062_021_00302_w crossref_primary_10_3389_fgene_2022_827193 crossref_primary_10_3390_cells9071574 crossref_primary_10_3390_ijms19051310 crossref_primary_10_3389_fgene_2021_733925 crossref_primary_10_1016_j_omtn_2021_11_010 crossref_primary_10_1038_s41467_018_07657_1 crossref_primary_10_1016_j_arcmed_2021_10_008 crossref_primary_10_3389_fonc_2022_921194 crossref_primary_10_1016_j_ygeno_2024_110903 crossref_primary_10_1002_term_3291 crossref_primary_10_1042_CS20190990 crossref_primary_10_1071_FP19267 crossref_primary_10_1515_biol_2022_0053 crossref_primary_10_1113_EP088608 crossref_primary_10_1155_2022_8204818 crossref_primary_10_1016_j_intimp_2021_107488 crossref_primary_10_3892_or_2021_8164 crossref_primary_10_1016_j_heliyon_2024_e36531 crossref_primary_10_1016_j_omtn_2021_05_021 crossref_primary_10_1186_s12967_022_03347_1 |
Cites_doi | 10.1016/j.molcel.2014.09.018 10.1038/emboj.2013.52 10.1038/nrg3853 10.1038/ncb1265 10.1038/nrg3765 10.1016/j.ymeth.2007.04.007 10.1371/journal.pone.0028730 10.1038/nsmb.2516 10.1016/j.cell.2011.09.041 10.1101/gad.1399806 10.1038/ng2079 10.1126/science.1187058 10.1186/gb-2003-5-1-r1 10.1016/j.cell.2011.09.029 10.1016/j.bpj.2013.01.012 10.1016/j.molcel.2007.06.017 10.1093/nar/gkq285 10.7554/eLife.05005 10.1016/j.molcel.2014.03.045 10.1038/nature09144 10.1101/gr.181974.114 10.1016/j.cell.2015.02.043 10.1073/pnas.0608845103 10.1126/science.aaf8995 10.1038/s41598-017-12973-5 10.1158/1541-7786.MCR-15-0061 10.1128/MCB.00128-07 10.1093/nar/gkm133 10.1016/j.devcel.2013.03.002 10.1101/gr.082701.108 10.1093/nar/gkt1393 10.1016/j.cell.2011.09.028 10.1016/S0092-8674(04)00045-5 10.1016/j.molcel.2010.09.027 10.1016/j.cell.2004.12.035 10.1093/nar/gkq1003 10.1126/science.1258040 10.1016/j.cell.2012.02.005 10.1002/wdev.223 10.1038/nature11993 10.1073/pnas.1222509110 10.1016/j.cell.2015.06.029 10.1038/nature13182 10.1007/s10735-016-9659-2 10.1038/ncb1274 10.1083/jcb.200309008 10.1101/gad.1064703 10.1371/journal.pone.0020746 10.1016/j.cell.2014.05.047 10.1016/j.molcel.2016.09.027 10.1186/gb-2012-13-11-r102 10.1038/nature21025 10.1016/j.semcdb.2016.05.017 10.1038/msb.2010.24 10.1073/pnas.1424217112 10.1161/CIRCRESAHA.112.267732 10.1186/gb-2011-12-11-132 10.1016/j.cell.2011.07.014 10.1038/nmeth1079 10.1016/j.cell.2015.06.032 10.1016/j.cell.2009.01.002 10.1091/mbc.01-11-0544 10.1093/nar/gkv720 10.1126/science.aam8526 10.1038/nature11928 10.1093/nar/gkw116 10.1371/journal.pone.0020220 10.1038/nmeth.2078 10.1021/bi00527a028 10.1038/nsmb.2902 10.1093/nar/gkx640 10.1038/ng.2653 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2018 The Author(s). |
Copyright_xml | – notice: 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2018 The Author(s). |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/10409238.2018.1447542 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | C. L. Smillie et al |
EISSN | 1549-7798 |
EndPage | 245 |
ExternalDocumentID | PMC5935048 29569941 10_1080_10409238_2018_1447542 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 106956/Z/15/Z – fundername: Medical Research Council grantid: MC_UU_12008/1 – fundername: Wellcome Trust – fundername: ; ; – fundername: ; ; grantid: 56/Z/15/Z |
GroupedDBID | --- 00X 03L 0BK 0R~ 29F 30N 36B 4.4 5GY 5RE 6J9 A8Z AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABJNI ABLIJ ABLKL ABPAQ ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACPRK ACTIO ACUHS ADCVX ADGTB ADRBQ ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AHDZW AHMBA AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AWYRJ BABNJ BLEHA CCCUG CITATION COF CS3 DGEBU DKSSO DU5 EAP EBC EBD EBS EDH EJD EMB EMK EMOBN EPL EST ESX F5P H13 HZ~ H~9 IH2 KRBQP KWAYT KYCEM M4Z O9- P2P RNANH ROSJB RTWRZ RWL SV3 TAE TBQAZ TDBHL TFDNU TFL TFT TFW TQWBC TTHFI TUROJ TUS V1S ZGOLN ~1N .GJ 0VX 34G 39C 53G 5VS 7X7 88E 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ AAGME AALIY AAOAP AAPXX ABEFU ABFMO ABJCF ABTAA ABUWG ACBBU ACDHJ ACQMU ACZPZ ADBBV ADGTR ADOPC AFDYB AFFNX AFKRA AI. APNXG AURDB AZQEC BBNVY BENPR BFWEY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU CGR CUY CVF CWRZV D1I D1J DWQXO ECM EIF FYUFA GNUQQ HCIFZ HGUVV HMCUK JEPSP KB. LJTGL LK8 M1P M2P M44 M7P MVM NPM NUSFT OHT OWHGL PCLFJ PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RRB S0X TASJS UHS UKHRP VH1 XJT ZGI ZXP ~KM 7X8 5PM |
ID | FETCH-LOGICAL-c477t-df252a55b89ebb53b7b12bcc404643d53ff0fa223b2b1370019efc454a6bb49a3 |
ISSN | 1040-9238 1549-7798 |
IngestDate | Thu Aug 21 13:38:18 EDT 2025 Fri Jul 11 08:47:33 EDT 2025 Mon Jul 21 06:05:44 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Tue Jul 01 02:07:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | microRNA competitive endogenous RNA RNA-induced silencing complex cooperativity subcellular localization post-transcriptional regulation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-df252a55b89ebb53b7b12bcc404643d53ff0fa223b2b1370019efc454a6bb49a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1350-2301 0000-0003-0202-7816 0000-0001-5606-2858 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5935048 |
PMID | 29569941 |
PQID | 2018014750 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5935048 proquest_miscellaneous_2018014750 pubmed_primary_29569941 crossref_citationtrail_10_1080_10409238_2018_1447542 crossref_primary_10_1080_10409238_2018_1447542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-00 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Critical reviews in biochemistry and molecular biology |
PublicationTitleAlternate | Crit Rev Biochem Mol Biol |
PublicationYear | 2018 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0071 CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0070 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0080 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0010 doi: 10.1016/j.molcel.2014.09.018 – ident: CIT0059 doi: 10.1038/emboj.2013.52 – ident: CIT0032 doi: 10.1038/nrg3853 – ident: CIT0058 doi: 10.1038/ncb1265 – ident: CIT0031 doi: 10.1038/nrg3765 – ident: CIT0050 doi: 10.1016/j.ymeth.2007.04.007 – ident: CIT0065 doi: 10.1371/journal.pone.0028730 – ident: CIT0034 doi: 10.1038/nsmb.2516 – ident: CIT0062 doi: 10.1016/j.cell.2011.09.041 – ident: CIT0067 doi: 10.1101/gad.1399806 – ident: CIT0025 doi: 10.1038/ng2079 – ident: CIT0003 doi: 10.1126/science.1187058 – ident: CIT0019 doi: 10.1186/gb-2003-5-1-r1 – ident: CIT0066 doi: 10.1016/j.cell.2011.09.029 – ident: CIT0022 doi: 10.1016/j.bpj.2013.01.012 – ident: CIT0029 doi: 10.1016/j.molcel.2007.06.017 – ident: CIT0068 doi: 10.1093/nar/gkq285 – ident: CIT0001 doi: 10.7554/eLife.05005 – ident: CIT0015 doi: 10.1016/j.molcel.2014.03.045 – ident: CIT0052 doi: 10.1038/nature09144 – ident: CIT0063 doi: 10.1101/gr.181974.114 – ident: CIT0035 doi: 10.1016/j.cell.2015.02.043 – ident: CIT0038 doi: 10.1073/pnas.0608845103 – ident: CIT0056 doi: 10.1126/science.aaf8995 – ident: CIT0061 doi: 10.1038/s41598-017-12973-5 – ident: CIT0070 doi: 10.1158/1541-7786.MCR-15-0061 – ident: CIT0020 doi: 10.1128/MCB.00128-07 – ident: CIT0053 doi: 10.1093/nar/gkm133 – ident: CIT0069 doi: 10.1016/j.devcel.2013.03.002 – ident: CIT0026 doi: 10.1101/gr.082701.108 – ident: CIT0023 doi: 10.1093/nar/gkt1393 – ident: CIT0011 doi: 10.1016/j.cell.2011.09.028 – ident: CIT0007 doi: 10.1016/S0092-8674(04)00045-5 – ident: CIT0039 doi: 10.1016/j.molcel.2010.09.027 – ident: CIT0040 doi: 10.1016/j.cell.2004.12.035 – ident: CIT0033 doi: 10.1093/nar/gkq1003 – ident: CIT0057 doi: 10.1126/science.1258040 – ident: CIT0048 doi: 10.1016/j.cell.2012.02.005 – ident: CIT0060 doi: 10.1002/wdev.223 – ident: CIT0030 doi: 10.1038/nature11993 – ident: CIT0002 doi: 10.1073/pnas.1222509110 – ident: CIT0055 doi: 10.1016/j.cell.2015.06.029 – ident: CIT0024 doi: 10.1038/nature13182 – ident: CIT0027 doi: 10.1007/s10735-016-9659-2 – ident: CIT0041 doi: 10.1038/ncb1274 – ident: CIT0013 doi: 10.1083/jcb.200309008 – ident: CIT0017 doi: 10.1101/gad.1064703 – ident: CIT0005 doi: 10.1371/journal.pone.0020746 – ident: CIT0071 doi: 10.1016/j.cell.2014.05.047 – ident: CIT0016 doi: 10.1016/j.molcel.2016.09.027 – ident: CIT0044 doi: 10.1186/gb-2012-13-11-r102 – ident: CIT0028 doi: 10.1038/nature21025 – ident: CIT0036 doi: 10.1016/j.semcdb.2016.05.017 – ident: CIT0004 doi: 10.1038/msb.2010.24 – ident: CIT0037 doi: 10.1073/pnas.1424217112 – ident: CIT0014 doi: 10.1161/CIRCRESAHA.112.267732 – ident: CIT0045 doi: 10.1186/gb-2011-12-11-132 – ident: CIT0054 doi: 10.1016/j.cell.2011.07.014 – ident: CIT0018 doi: 10.1038/nmeth1079 – ident: CIT0012 doi: 10.1016/j.cell.2015.06.032 – ident: CIT0008 doi: 10.1016/j.cell.2009.01.002 – ident: CIT0021 doi: 10.1091/mbc.01-11-0544 – ident: CIT0046 doi: 10.1093/nar/gkv720 – ident: CIT0051 doi: 10.1126/science.aam8526 – ident: CIT0047 doi: 10.1038/nature11928 – ident: CIT0043 doi: 10.1093/nar/gkw116 – ident: CIT0006 doi: 10.1371/journal.pone.0020220 – ident: CIT0049 doi: 10.1038/nmeth.2078 – ident: CIT0009 doi: 10.1021/bi00527a028 – ident: CIT0064 doi: 10.1038/nsmb.2902 – ident: CIT0080 doi: 10.1093/nar/gkx640 – ident: CIT0042 doi: 10.1038/ng.2653 |
SSID | ssj0016785 |
Score | 2.595055 |
SecondaryResourceType | review_article |
Snippet | Control of gene and protein expression is required for cellular homeostasis and is disrupted in disease. Following transcription, mRNA turnover and translation... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 231 |
SubjectTerms | Animals Gene Expression Regulation - physiology Humans MicroRNAs - genetics MicroRNAs - metabolism Models, Biological Review RNA, Messenger - genetics RNA, Messenger - metabolism Transcriptome - physiology |
Title | Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29569941 https://www.proquest.com/docview/2018014750 https://pubmed.ncbi.nlm.nih.gov/PMC5935048 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege-EFwcZHgSEjIV6qlHzY-XisNqYKiQmxTky8RLbrjIk2mbbsAf567hzbSVkRHy9RmzhXqb-z7853_h0hr8HplFmqq2CZ5zpgqkgDwTOIeXi6VFIiAQjud3w4Tuen7P0ZP-szuuZ0SSun6sfWcyX_gyrcA1zxlOw_IOuFwg34DPjCFRCG619hjJMZCS2RFNWULjfXbdCi9XFrgaHtP7ctuny1pGl_Y8udlf50PJsYYwl--Lehs-rbIFjKUtwbkRfYYqvrEWfkrV1_3Ynlcxrs2axWXfbjYCVgZZ34feYT-GbAXYi1uPKG4WNj2lZ4zgN79szuSUR5Xzs11XYdZQU47l2DabfQdqzAVqGS4arZGYJbq3lX_ggBYwhuqKnDyzEZjU17h-MBlMu1gTiGaK8oWNQbN19y6B7dJTsxRBTxiOzM5odfPvuUE1ht7o545eHbrb-K1NFWzqYfcys4-bXGduC0LB6Q-zbaoLNOdR6SO7reJXuzWrTN-jt9Q039r0Ftj5wMtYk2Fd2mTbTXJgroU9Am6rQJ3zHaRL02PSKnR-8WB_PAttwIFMuyNlhWMY8F5zIvtJQ8kZmMYqkUwwx4suRJVYWVAJdSxjJKsGah0JVinIlUSlaI5DEZ1U2tnxIa6ghFVCKTOSviSISZ5KkSrAoxaNBjwtwfWCrLR49tUVZlZGlrHQQlQlBaCMZk6l-77AhZ_vTCK4dOCbMD82Gi1s3NtRkVRjAoHJMnHVpepIN5TLINHP0ApGXffFJffDX07LxIONjFZ7-V-Zzc6yfNCzJqr270Pri2rXxplfInCRKkIA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexities+of+post-transcriptional+regulation+and+the+modeling+of+ceRNA+crosstalk&rft.jtitle=Critical+reviews+in+biochemistry+and+molecular+biology&rft.au=Smillie%2C+Claire+L&rft.au=Sirey%2C+Tamara&rft.au=Ponting%2C+Chris+P&rft.date=2018-06-01&rft.eissn=1549-7798&rft.volume=53&rft.issue=3&rft.spage=231&rft_id=info:doi/10.1080%2F10409238.2018.1447542&rft_id=info%3Apmid%2F29569941&rft.externalDocID=29569941 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-9238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-9238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-9238&client=summon |