Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases...
Saved in:
Published in | Nucleic acids research Vol. 40; no. 10; pp. 4273 - 4287 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. |
---|---|
AbstractList | Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. |
Author | Wanker, Erich E. Schaefer, Martin H. Andrade-Navarro, Miguel A. |
AuthorAffiliation | 1 Computational Biology and Data Mining and 2 Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany |
AuthorAffiliation_xml | – name: 1 Computational Biology and Data Mining and 2 Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany |
Author_xml | – sequence: 1 givenname: Martin H. surname: Schaefer fullname: Schaefer, Martin H. – sequence: 2 givenname: Erich E. surname: Wanker fullname: Wanker, Erich E. – sequence: 3 givenname: Miguel A. surname: Andrade-Navarro fullname: Andrade-Navarro, Miguel A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22287626$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc9u1DAQxi3Uim4LFx6gyhEhhR3_Ty5I1aq0lSpxgSOyHMdZTLN2ajuteuMdeEOeBLe7VFD1wGk8nt98mpnvEO354C1CbzC8x9DSpddxub5KgPELtMBUkJq1guyhBVDgNQbWHKDDlL4DYIY5e4kOCCGNFEQs0NfTmzDO2QVfad9Xw-zNQxKGanVytpzCeLcudb1x3lbRTlbnVDlfTTFk6_yvHz93r_KZbdTbbm_zbYhX6RXaH_SY7OtdPEJfPp5-Xp3Xl5_OLlYnl7VhUua67xgRBhvRatlJKsXAAaBhQkAjTY-F1J3QUrMOKO-JJpq2PZa8rIptL4EeoQ9b3WnuNrY31ueoRzVFt9HxTgXt1L8V776pdbhRlMqmEaQIvN0JxHA925TVxiVjx1F7G-akMBBoeEN5-x8o5pIzJmRBj_8e63GeP-cvwLstYGJIKdrhEcGg7r1VxVu19bbA8AQ2Luv7e5eV3Phcy2-Wvqrt |
CitedBy_id | crossref_primary_10_1042_bse0560167 crossref_primary_10_1016_j_cbpb_2020_110505 crossref_primary_10_1016_j_str_2020_04_008 crossref_primary_10_1186_s13062_016_0129_2 crossref_primary_10_1093_hmg_ddu049 crossref_primary_10_1007_s13205_020_2120_y crossref_primary_10_1016_j_mib_2015_07_001 crossref_primary_10_1007_s11055_023_01408_6 crossref_primary_10_1007_s12192_013_0448_5 crossref_primary_10_1017_S0031182018000112 crossref_primary_10_1016_j_bbrc_2013_09_145 crossref_primary_10_1093_gbe_evz216 crossref_primary_10_1007_s00214_017_2172_1 crossref_primary_10_1016_j_ceb_2021_01_003 crossref_primary_10_3390_genes11040407 crossref_primary_10_1016_j_molcel_2018_04_007 crossref_primary_10_3390_genes13050758 crossref_primary_10_18632_oncoscience_153 crossref_primary_10_1371_journal_pone_0186363 crossref_primary_10_1002_prot_25250 crossref_primary_10_1128_mbio_00638_23 crossref_primary_10_1534_genetics_116_193359 crossref_primary_10_1016_j_celrep_2023_112811 crossref_primary_10_3109_08830185_2013_816698 crossref_primary_10_1089_cmb_2015_0191 crossref_primary_10_1093_nar_gks1329 crossref_primary_10_4161_pri_24628 crossref_primary_10_1007_s00401_022_02428_1 crossref_primary_10_1101_cshperspect_a024257 crossref_primary_10_1128_JVI_02245_20 crossref_primary_10_1038_s42003_021_01930_8 crossref_primary_10_1371_journal_pgen_1011524 crossref_primary_10_1021_acs_biochem_5b00644 crossref_primary_10_1016_j_jsb_2018_09_001 crossref_primary_10_1002_mds_29355 crossref_primary_10_1515_jib_2022_0056 crossref_primary_10_1016_j_cbd_2024_101218 crossref_primary_10_1016_j_celrep_2017_10_097 crossref_primary_10_1016_j_isci_2023_108036 crossref_primary_10_1038_s41467_020_17145_0 crossref_primary_10_1093_jxb_erac514 crossref_primary_10_1002_jnr_23980 crossref_primary_10_1186_s13104_018_3221_0 crossref_primary_10_3390_ijms25126789 crossref_primary_10_1002_bip_23021 crossref_primary_10_2174_0929867326666190621101909 crossref_primary_10_7554_eLife_62307 crossref_primary_10_1038_s41598_018_27900_5 crossref_primary_10_1038_srep38265 crossref_primary_10_17116_jnevro202212207142 crossref_primary_10_1016_j_jgg_2013_08_003 crossref_primary_10_1016_j_jns_2022_120274 crossref_primary_10_1016_j_molcel_2015_07_003 crossref_primary_10_1038_s41467_019_09923_2 crossref_primary_10_1038_nrg_2017_115 crossref_primary_10_1038_s41419_019_2193_x crossref_primary_10_1016_j_jbc_2022_102062 crossref_primary_10_1371_journal_pone_0177299 crossref_primary_10_1016_j_jmb_2015_05_023 crossref_primary_10_1186_s12920_019_0594_4 crossref_primary_10_3389_fgene_2015_00345 crossref_primary_10_1016_j_csbj_2020_01_012 crossref_primary_10_1093_ve_vead034 crossref_primary_10_3233_JHD_200394 crossref_primary_10_3390_cells10082121 crossref_primary_10_1534_genetics_120_303029 crossref_primary_10_1093_bioinformatics_btw790 crossref_primary_10_1111_jeb_14106 crossref_primary_10_1242_jcs_263433 crossref_primary_10_1038_s41598_020_57994_9 crossref_primary_10_1109_JPROC_2016_2613076 crossref_primary_10_1111_ene_15291 crossref_primary_10_3389_fnmol_2017_00399 crossref_primary_10_1016_j_celrep_2018_06_015 crossref_primary_10_1038_ni_2890 crossref_primary_10_1371_journal_pgen_1005746 crossref_primary_10_3390_v7010072 crossref_primary_10_1002_pmic_202300114 crossref_primary_10_1007_s11538_020_00823_x crossref_primary_10_1016_j_bbrc_2016_07_023 crossref_primary_10_1074_jbc_M113_523696 crossref_primary_10_3390_ijms21155210 crossref_primary_10_4161_nucl_29404 crossref_primary_10_1016_j_csbj_2021_04_037 crossref_primary_10_1083_jcb_202103185 crossref_primary_10_1074_jbc_M113_516765 crossref_primary_10_1093_nargab_lqab032 crossref_primary_10_1093_gbe_evy046 crossref_primary_10_1111_tra_12814 crossref_primary_10_3390_genes12030451 crossref_primary_10_3390_ijms21030967 crossref_primary_10_1002_pld3_295 crossref_primary_10_1186_s13068_015_0311_2 crossref_primary_10_3390_plants9070814 crossref_primary_10_1016_j_csbj_2022_09_011 crossref_primary_10_1016_j_sbi_2023_102726 crossref_primary_10_1074_jbc_M112_362764 crossref_primary_10_3390_ijms150915963 crossref_primary_10_1016_j_bbadis_2015_06_010 crossref_primary_10_1371_journal_pone_0170801 crossref_primary_10_1016_j_jsb_2023_107962 crossref_primary_10_1080_19420889_2016_1139251 crossref_primary_10_1016_j_sbi_2023_102607 crossref_primary_10_1111_mmi_12329 crossref_primary_10_1534_genetics_115_184218 crossref_primary_10_1074_jbc_M112_430678 crossref_primary_10_3390_diagnostics11061051 crossref_primary_10_3389_fnins_2020_00489 crossref_primary_10_1002_cbic_201900583 crossref_primary_10_7717_peerj_10014 crossref_primary_10_1002_bies_201300001 crossref_primary_10_3390_ijms22041727 crossref_primary_10_2174_1389202921666200326152119 crossref_primary_10_1128_JVI_01388_14 crossref_primary_10_3390_biom13071116 crossref_primary_10_1534_g3_116_035675 crossref_primary_10_1534_g3_118_200188 crossref_primary_10_3389_fnmol_2023_1140719 crossref_primary_10_7554_eLife_84043 crossref_primary_10_1186_s12862_020_01626_3 crossref_primary_10_1016_j_jsb_2019_08_003 crossref_primary_10_1016_j_jsb_2017_09_006 crossref_primary_10_1007_s00300_017_2164_6 crossref_primary_10_3389_fpsyt_2022_826135 crossref_primary_10_1073_pnas_1807206115 crossref_primary_10_1016_j_tig_2014_07_008 crossref_primary_10_1080_07391102_2021_1871957 crossref_primary_10_1007_s12539_019_00317_y crossref_primary_10_3389_fnins_2021_695049 crossref_primary_10_1093_nargab_lqae053 crossref_primary_10_3390_biom7030057 crossref_primary_10_1371_journal_ppat_1005697 crossref_primary_10_1261_rna_057851_116 crossref_primary_10_1016_j_jnutbio_2024_109837 crossref_primary_10_3390_biom12020157 crossref_primary_10_1016_j_jbc_2024_108048 crossref_primary_10_1371_journal_pone_0311519 crossref_primary_10_1016_j_heliyon_2024_e37861 crossref_primary_10_1016_j_devcel_2013_06_004 crossref_primary_10_1093_molbev_msac019 crossref_primary_10_1016_j_csbj_2023_10_054 crossref_primary_10_1021_acs_biochem_7b00518 crossref_primary_10_1093_nar_gkz523 crossref_primary_10_1038_s41570_020_0204_1 crossref_primary_10_1186_s12859_018_2342_8 crossref_primary_10_1128_mBio_01367_16 crossref_primary_10_7554_eLife_70344 crossref_primary_10_1152_jn_01053_2015 crossref_primary_10_1371_journal_pone_0296085 crossref_primary_10_1534_genetics_114_167866 |
Cites_doi | 10.1016/S0092-8674(00)81200-3 10.1093/nar/gkq935 10.1073/pnas.0409402102 10.1016/0092-8674(93)90664-C 10.1371/journal.pbio.1000450 10.1093/nar/30.1.276 10.1093/nar/gkm936 10.1126/science.252.5009.1162 10.1073/pnas.012608599 10.1186/1471-2164-11-654 10.1126/science.292.5521.1552 10.1016/j.tcb.2009.09.001 10.1016/j.bbagrm.2008.05.008 10.1093/database/bar009 10.1016/j.jmb.2005.10.053 10.1038/20974 10.1016/j.str.2009.08.002 10.1007/s002390010153 10.1016/S0962-8924(00)01852-3 10.1091/mbc.12.5.1393 10.1093/nar/gkg129 10.1016/S0962-8924(03)00076-X 10.1093/bioinformatics/bti797 10.1016/j.cell.2005.10.030 10.1186/gb-2009-10-6-r59 10.1101/gr.3096505 10.1007/s002390010073 10.1101/gr.1925704 10.1016/S0014-5793(01)03308-7 10.1093/nar/gkm1005 10.1093/hmg/8.4.673 10.1186/1471-2105-7-441 10.1126/science.2667136 10.1371/journal.pone.0031826 10.1073/pnas.0909740107 10.1016/j.bbalip.2006.04.008 10.1016/S0361-9230(01)00596-2 10.1038/cr.2008.5 10.1186/1471-2164-7-288 10.1073/pnas.1018748108 10.1186/gb-2003-4-5-p3 10.1016/S0896-6273(00)80405-5 10.1038/365274a0 10.1093/nar/gkq1116 10.1074/jbc.M605558200 10.1038/nature06909 10.1110/ps.0241903 10.1093/hmg/ddn412 10.1016/j.cell.2010.11.042 10.1073/pnas.152101299 10.1038/nature05292 10.1016/S0959-440X(96)80016-9 10.1186/1471-2164-8-126 10.1016/j.molcel.2010.04.007 10.1093/nar/gkn787 10.1016/j.pneurobio.2006.11.004 10.1002/1531-8249(199912)46:6<842::AID-ANA6>3.0.CO;2-O 10.1093/nar/gkq127 10.1083/jcb.153.2.283 10.1038/nn2011 10.1074/jbc.M511523200 10.1073/pnas.93.4.1560 10.1093/nar/gkp985 10.1016/S0166-2236(99)01409-5 10.1093/bioinformatics/bti534 10.1038/nature03481 10.1093/nar/gkn808 10.1038/nrg1691 10.1007/BF00173185 10.1093/emboj/19.17.4439 |
ContentType | Journal Article |
Copyright | The Author(s) 2012. Published by Oxford University Press. 2012 |
Copyright_xml | – notice: The Author(s) 2012. Published by Oxford University Press. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1093/nar/gks011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 4287 |
ExternalDocumentID | PMC3378862 22287626 10_1093_nar_gks011 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ AAYXX ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT CITATION COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM ABQTQ AJDVS CGR CUY CVF ECM EIF M49 NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c477t-db426c1c69a7b7376f50008466087cd167ab6a7a4b035d2a2a39d1753621ed703 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:07:44 EDT 2025 Thu Jul 10 17:18:59 EDT 2025 Fri Jul 11 09:39:57 EDT 2025 Thu Apr 03 07:05:04 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 Tue Jul 01 01:41:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-db426c1c69a7b7376f50008466087cd167ab6a7a4b035d2a2a39d1753621ed703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gks011 |
PMID | 22287626 |
PQID | 1015754467 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3378862 proquest_miscellaneous_1020858359 proquest_miscellaneous_1015754467 pubmed_primary_22287626 crossref_primary_10_1093_nar_gks011 crossref_citationtrail_10_1093_nar_gks011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Dhalluin ( key 20170512142448_gks011-B39) 1999; 399 Lin ( key 20170512142448_gks011-B67) 2006; 443 Tran ( key 20170512142448_gks011-B2) 1999; 22 Schaefer ( key 20170512142448_gks011-B23) 2012; 7 Simon ( key 20170512142448_gks011-B60) 2009; 10 Mitchell ( key 20170512142448_gks011-B15) 1989; 245 Karolchik ( key 20170512142448_gks011-B19) 2003; 31 Stenmark ( key 20170512142448_gks011-B34) 2002; 513 Pennuto ( key 20170512142448_gks011-B8) 2009; 18 Chan ( key 20170512142448_gks011-B29) 2009; 37 Dehay ( key 20170512142448_gks011-B57) 2006; 281 Li ( key 20170512142448_gks011-B63) 2008; 453 Magrane ( key 20170512142448_gks011-B20) 2011; 2011 Lupas ( key 20170512142448_gks011-B41) 1991; 252 David ( key 20170512142448_gks011-B69) 2010; 8 Kovtun ( key 20170512142448_gks011-B45) 2008; 18 Friedman ( key 20170512142448_gks011-B52) 2007; 10 Waelter ( key 20170512142448_gks011-B66) 2001; 12 Karlin ( key 20170512142448_gks011-B48) 2002; 99 Gatchel ( key 20170512142448_gks011-B1) 2005; 6 Reddy ( key 20170512142448_gks011-B31) 2010; 39 Ruan ( key 20170512142448_gks011-B22) 2008; 36 Kozlowski ( key 20170512142448_gks011-B27) 2010; 38 Alba ( key 20170512142448_gks011-B16) 2004; 14 Strand ( key 20170512142448_gks011-B26) 1993; 365 Ignatova ( key 20170512142448_gks011-B59) 2006; 281 Bhattacharyya ( key 20170512142448_gks011-B42) 2006; 355 Filimonenko ( key 20170512142448_gks011-B50) 2010; 38 Chai ( key 20170512142448_gks011-B64) 1999; 8 Chai ( key 20170512142448_gks011-B6) 2002; 99 Lin ( key 20170512142448_gks011-B32) 2010; 107 Suhr ( key 20170512142448_gks011-B49) 2001; 153 Yang ( key 20170512142448_gks011-B61) 2005; 21 Jafar-Nejad ( key 20170512142448_gks011-B70) 2011; 108 Holmes ( key 20170512142448_gks011-B28) 2001; 56 Finn ( key 20170512142448_gks011-B33) 2010; 38 Miller ( key 20170512142448_gks011-B30) 2000; 19 Gissi ( key 20170512142448_gks011-B51) 2006; 7 Bateman ( key 20170512142448_gks011-B21) 2002; 30 Kuemmerle ( key 20170512142448_gks011-B7) 1999; 46 von Mikecz ( key 20170512142448_gks011-B11) 2009; 19 Alba ( key 20170512142448_gks011-B46) 2001; 52 McDonnell ( key 20170512142448_gks011-B44) 2006; 22 Fiumara ( key 20170512142448_gks011-B40) 2010; 143 Stark ( key 20170512142448_gks011-B24) 2011; 39 Ross ( key 20170512142448_gks011-B4) 1997; 19 Warrick ( key 20170512142448_gks011-B5) 1998; 93 Kopito ( key 20170512142448_gks011-B3) 2000; 10 Truant ( key 20170512142448_gks011-B62) 2007; 83 Dennis ( key 20170512142448_gks011-B25) 2003; 4 Butland ( key 20170512142448_gks011-B9) 2007; 8 Harrison ( key 20170512142448_gks011-B17) 2006; 7 Bence ( key 20170512142448_gks011-B65) 2001; 292 Ruepp ( key 20170512142448_gks011-B36) 2008; 36 Hands ( key 20170512142448_gks011-B18) 2008; 1779 Faux ( key 20170512142448_gks011-B14) 2005; 15 Whan ( key 20170512142448_gks011-B55) 2010; 11 Tang ( key 20170512142448_gks011-B68) 2005; 102 Letunic ( key 20170512142448_gks011-B35) 2009; 37 Karlin ( key 20170512142448_gks011-B12) 1996; 93 Eichinger ( key 20170512142448_gks011-B10) 2005; 435 Zhai ( key 20170512142448_gks011-B54) 2005; 123 DiNitto ( key 20170512142448_gks011-B37) 2006; 1761 Hancock ( key 20170512142448_gks011-B47) 1995; 41 Duncan ( key 20170512142448_gks011-B38) 2003; 13 Perutz ( key 20170512142448_gks011-B58) 1996; 6 Huntley ( key 20170512142448_gks011-B13) 2000; 51 Hinderaker ( key 20170512142448_gks011-B43) 2003; 12 Kim ( key 20170512142448_gks011-B56) 2009; 17 Hoey ( key 20170512142448_gks011-B53) 1993; 72 16321399 - J Mol Biol. 2006 Jan 20;355(3):524-35 16377565 - Cell. 2005 Dec 29;123(7):1241-53 19297400 - Hum Mol Genet. 2009 Apr 15;18(R1):R40-7 18056084 - Nucleic Acids Res. 2008 Jan;36(Database issue):D735-40 11121744 - Trends Cell Biol. 2000 Dec;10(12):524-30 2667136 - Science. 1989 Jul 28;245(4916):371-8 11309410 - J Cell Biol. 2001 Apr 16;153(2):283-94 21447597 - Database (Oxford). 2011;2011:bar009 15805494 - Genome Res. 2005 Apr;15(4):537-51 21071413 - Nucleic Acids Res. 2011 Jan;39(Database issue):D698-704 15695335 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2602-7 16524881 - J Biol Chem. 2006 May 5;281(18):12959-67 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 18582603 - Biochim Biophys Acta. 2008 Aug;1779(8):507-21 21183075 - Cell. 2010 Dec 23;143(7):1121-35 10948269 - J Mol Evol. 2000 Aug;51(2):131-40 16317077 - Bioinformatics. 2006 Feb 1;22(3):356-8 16973603 - J Biol Chem. 2006 Nov 24;281(47):35608-15 11719278 - Brain Res Bull. 2001 Oct-Nov 1;56(3-4):397-403 17994014 - Nat Neurosci. 2007 Dec;10(12):1519-28 11359930 - Mol Biol Cell. 2001 May;12(5):1393-407 8587102 - J Mol Evol. 1995 Dec;41(6):1038-47 12761389 - Protein Sci. 2003 Jun;12(6):1188-94 11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80 2031185 - Science. 1991 May 24;252(5009):1162-4 17032452 - BMC Bioinformatics. 2006;7:441 20711477 - PLoS Biol. 2010;8(8):e1000450 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 10970838 - EMBO J. 2000 Sep 1;19(17):4439-48 12734009 - Genome Biol. 2003;4(5):P3 12519945 - Nucleic Acids Res. 2003 Jan 1;31(1):51-4 7678780 - Cell. 1993 Jan 29;72(2):247-60 20417604 - Mol Cell. 2010 Apr 23;38(2):265-79 9427237 - Neuron. 1997 Dec;19(6):1147-50 12084819 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9310-5 18978020 - Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32 21051337 - Nucleic Acids Res. 2011 Mar;39(5):1749-62 18984615 - Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7 20080737 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):692-7 18166978 - Cell Res. 2008 Jan;18(1):198-213 12742163 - Trends Cell Biol. 2003 May;13(5):211-5 19796946 - Trends Cell Biol. 2009 Dec;19(12):685-91 21092319 - BMC Genomics. 2010;11:654 11782551 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):333-8 20215431 - Nucleic Acids Res. 2010 Jul;38(12):4027-39 19486509 - Genome Biol. 2009;10(6):R59 17519034 - BMC Genomics. 2007;8:126 8994886 - Curr Opin Struct Biol. 1996 Dec;6(6):848-58 18449188 - Nature. 2008 Jun 19;453(7198):1107-11 21245341 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2142-7 17240517 - Prog Neurobiol. 2007 Nov;83(4):211-27 17051205 - Nature. 2006 Oct 19;443(7113):787-95 11911884 - FEBS Lett. 2002 Feb 20;513(1):77-84 10072437 - Hum Mol Genet. 1999 Apr;8(4):673-82 15947016 - Bioinformatics. 2005 Aug 15;21(16):3369-76 11375494 - Science. 2001 May 25;292(5521):1552-5 15875012 - Nature. 2005 May 5;435(7038):43-57 11428462 - J Mol Evol. 2001 Mar;52(3):249-59 10589536 - Ann Neurol. 1999 Dec;46(6):842-9 16807090 - Biochim Biophys Acta. 2006 Aug;1761(8):850-67 19748341 - Structure. 2009 Sep 9;17(9):1205-12 17092333 - BMC Genomics. 2006;7:288 9635424 - Cell. 1998 Jun 12;93(6):939-49 8643671 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1560-5 16205714 - Nat Rev Genet. 2005 Oct;6(10):743-55 15059995 - Genome Res. 2004 Apr;14(4):549-54 22348130 - PLoS One. 2012;7(2):e31826 8371783 - Nature. 1993 Sep 16;365(6443):274-6 10322490 - Trends Neurosci. 1999 May;22(5):194-7 10365964 - Nature. 1999 Jun 3;399(6735):491-6 |
References_xml | – volume: 93 start-page: 939 year: 1998 ident: key 20170512142448_gks011-B5 article-title: Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila publication-title: Cell doi: 10.1016/S0092-8674(00)81200-3 – volume: 39 start-page: 1749 year: 2010 ident: key 20170512142448_gks011-B31 article-title: Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq935 – volume: 102 start-page: 2602 year: 2005 ident: key 20170512142448_gks011-B68 article-title: Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0409402102 – volume: 72 start-page: 247 year: 1993 ident: key 20170512142448_gks011-B53 article-title: Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators publication-title: Cell doi: 10.1016/0092-8674(93)90664-C – volume: 8 start-page: e1000450 year: 2010 ident: key 20170512142448_gks011-B69 article-title: Widespread protein aggregation as an inherent part of aging in C. elegans publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000450 – volume: 30 start-page: 276 year: 2002 ident: key 20170512142448_gks011-B21 article-title: The Pfam protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.276 – volume: 36 start-page: D646 year: 2008 ident: key 20170512142448_gks011-B36 article-title: CORUM: the comprehensive resource of mammalian protein complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm936 – volume: 252 start-page: 1162 year: 1991 ident: key 20170512142448_gks011-B41 article-title: Predicting coiled coils from protein sequences publication-title: Science doi: 10.1126/science.252.5009.1162 – volume: 99 start-page: 333 year: 2002 ident: key 20170512142448_gks011-B48 article-title: Amino acid runs in eukaryotic proteomes and disease associations publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.012608599 – volume: 11 start-page: 654 year: 2010 ident: key 20170512142448_gks011-B55 article-title: Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes publication-title: BMC Genomics doi: 10.1186/1471-2164-11-654 – volume: 292 start-page: 1552 year: 2001 ident: key 20170512142448_gks011-B65 article-title: Impairment of the ubiquitin-proteasome system by protein aggregation publication-title: Science doi: 10.1126/science.292.5521.1552 – volume: 19 start-page: 685 year: 2009 ident: key 20170512142448_gks011-B11 article-title: PolyQ fibrillation in the cell nucleus: who's bad? publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2009.09.001 – volume: 1779 start-page: 507 year: 2008 ident: key 20170512142448_gks011-B18 article-title: Polyglutamine gene function and dysfunction in the ageing brain publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2008.05.008 – volume: 2011 start-page: bar009 year: 2011 ident: key 20170512142448_gks011-B20 article-title: UniProt Knowledgebase: a hub of integrated protein data publication-title: Database doi: 10.1093/database/bar009 – volume: 355 start-page: 524 year: 2006 ident: key 20170512142448_gks011-B42 article-title: Oligoproline effects on polyglutamine conformation and aggregation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2005.10.053 – volume: 399 start-page: 491 year: 1999 ident: key 20170512142448_gks011-B39 article-title: Structure and ligand of a histone acetyltransferase bromodomain publication-title: Nature doi: 10.1038/20974 – volume: 17 start-page: 1205 year: 2009 ident: key 20170512142448_gks011-B56 article-title: Secondary structure of Huntingtin amino-terminal region publication-title: Structure doi: 10.1016/j.str.2009.08.002 – volume: 52 start-page: 249 year: 2001 ident: key 20170512142448_gks011-B46 article-title: The comparative genomics of polyglutamine repeats: extreme differences in the codon organization of repeat-encoding regions between mammals and Drosophila publication-title: J. Mol. Evol. doi: 10.1007/s002390010153 – volume: 10 start-page: 524 year: 2000 ident: key 20170512142448_gks011-B3 article-title: Aggresomes, inclusion bodies and protein aggregation publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(00)01852-3 – volume: 12 start-page: 1393 year: 2001 ident: key 20170512142448_gks011-B66 article-title: Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.5.1393 – volume: 31 start-page: 51 year: 2003 ident: key 20170512142448_gks011-B19 article-title: The UCSC Genome Browser Database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg129 – volume: 13 start-page: 211 year: 2003 ident: key 20170512142448_gks011-B38 article-title: ENTH/ANTH domains expand to the Golgi publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(03)00076-X – volume: 22 start-page: 356 year: 2006 ident: key 20170512142448_gks011-B44 article-title: Paircoil2: improved prediction of coiled coils from sequence publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti797 – volume: 123 start-page: 1241 year: 2005 ident: key 20170512142448_gks011-B54 article-title: In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets publication-title: Cell doi: 10.1016/j.cell.2005.10.030 – volume: 10 start-page: R59 year: 2009 ident: key 20170512142448_gks011-B60 article-title: Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins publication-title: Genome Biol. doi: 10.1186/gb-2009-10-6-r59 – volume: 15 start-page: 537 year: 2005 ident: key 20170512142448_gks011-B14 article-title: Functional insights from the distribution and role of homopeptide repeat-containing proteins publication-title: Genome Res. doi: 10.1101/gr.3096505 – volume: 51 start-page: 131 year: 2000 ident: key 20170512142448_gks011-B13 article-title: Evolution of simple sequence in proteins publication-title: J. Mol. Evol. doi: 10.1007/s002390010073 – volume: 14 start-page: 549 year: 2004 ident: key 20170512142448_gks011-B16 article-title: Comparative analysis of amino acid repeats in rodents and humans publication-title: Genome Res. doi: 10.1101/gr.1925704 – volume: 513 start-page: 77 year: 2002 ident: key 20170512142448_gks011-B34 article-title: The phosphatidylinositol 3-phosphate-binding FYVE finger publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)03308-7 – volume: 36 start-page: D735 year: 2008 ident: key 20170512142448_gks011-B22 article-title: TreeFam: 2008 Update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1005 – volume: 8 start-page: 673 year: 1999 ident: key 20170512142448_gks011-B64 article-title: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.4.673 – volume: 7 start-page: 441 year: 2006 ident: key 20170512142448_gks011-B17 article-title: Exhaustive assignment of compositional bias reveals universally prevalent biased regions: analysis of functional associations in human and Drosophila publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-441 – volume: 245 start-page: 371 year: 1989 ident: key 20170512142448_gks011-B15 article-title: Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins publication-title: Science doi: 10.1126/science.2667136 – volume: 7 start-page: e31826 year: 2012 ident: key 20170512142448_gks011-B23 article-title: HIPPIE: integrating protein interaction networks with experiment based quality scores publication-title: PLoS One. doi: 10.1371/journal.pone.0031826 – volume: 107 start-page: 692 year: 2010 ident: key 20170512142448_gks011-B32 article-title: R loops stimulate genetic instability of CTG.CAG repeats publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0909740107 – volume: 1761 start-page: 850 year: 2006 ident: key 20170512142448_gks011-B37 article-title: Membrane and juxtamembrane targeting by PH and PTB domains publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2006.04.008 – volume: 56 start-page: 397 year: 2001 ident: key 20170512142448_gks011-B28 article-title: SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia publication-title: Brain Res. Bull. doi: 10.1016/S0361-9230(01)00596-2 – volume: 18 start-page: 198 year: 2008 ident: key 20170512142448_gks011-B45 article-title: Features of trinucleotide repeat instability in vivo publication-title: Cell Res. doi: 10.1038/cr.2008.5 – volume: 7 start-page: 288 year: 2006 ident: key 20170512142448_gks011-B51 article-title: Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus publication-title: BMC Genomics doi: 10.1186/1471-2164-7-288 – volume: 108 start-page: 2142 year: 2011 ident: key 20170512142448_gks011-B70 article-title: Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1018748108 – volume: 4 start-page: P3 year: 2003 ident: key 20170512142448_gks011-B25 article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery publication-title: Genome Biol. doi: 10.1186/gb-2003-4-5-p3 – volume: 19 start-page: 1147 year: 1997 ident: key 20170512142448_gks011-B4 article-title: Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? publication-title: Neuron doi: 10.1016/S0896-6273(00)80405-5 – volume: 365 start-page: 274 year: 1993 ident: key 20170512142448_gks011-B26 article-title: Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair publication-title: Nature doi: 10.1038/365274a0 – volume: 39 start-page: D698 year: 2011 ident: key 20170512142448_gks011-B24 article-title: The BioGRID Interaction Database: 2011 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1116 – volume: 281 start-page: 35608 year: 2006 ident: key 20170512142448_gks011-B57 article-title: Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605558200 – volume: 453 start-page: 1107 year: 2008 ident: key 20170512142448_gks011-B63 article-title: RNA toxicity is a component of ataxin-3 degeneration in Drosophila publication-title: Nature doi: 10.1038/nature06909 – volume: 12 start-page: 1188 year: 2003 ident: key 20170512142448_gks011-B43 article-title: An electronic effect on protein structure publication-title: Protein Sci. doi: 10.1110/ps.0241903 – volume: 18 start-page: R40 year: 2009 ident: key 20170512142448_gks011-B8 article-title: Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn412 – volume: 143 start-page: 1121 year: 2010 ident: key 20170512142448_gks011-B40 article-title: Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins publication-title: Cell doi: 10.1016/j.cell.2010.11.042 – volume: 99 start-page: 9310 year: 2002 ident: key 20170512142448_gks011-B6 article-title: Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.152101299 – volume: 443 start-page: 787 year: 2006 ident: key 20170512142448_gks011-B67 article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases publication-title: Nature doi: 10.1038/nature05292 – volume: 6 start-page: 848 year: 1996 ident: key 20170512142448_gks011-B58 article-title: Glutamine repeats and inherited neurodegenerative diseases: molecular aspects publication-title: C Opin. Struct. Biol. doi: 10.1016/S0959-440X(96)80016-9 – volume: 8 start-page: 126 year: 2007 ident: key 20170512142448_gks011-B9 article-title: CAG-encoded polyglutamine length polymorphism in the human genome publication-title: BMC Genomics doi: 10.1186/1471-2164-8-126 – volume: 38 start-page: 265 year: 2010 ident: key 20170512142448_gks011-B50 article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.04.007 – volume: 37 start-page: D93 year: 2009 ident: key 20170512142448_gks011-B29 article-title: GtRNAdb: a database of transfer RNA genes detected in genomic sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn787 – volume: 83 start-page: 211 year: 2007 ident: key 20170512142448_gks011-B62 article-title: Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2006.11.004 – volume: 46 start-page: 842 year: 1999 ident: key 20170512142448_gks011-B7 article-title: Huntington aggregates may not predict neuronal death in Huntington's disease publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199912)46:6<842::AID-ANA6>3.0.CO;2-O – volume: 38 start-page: 4027 year: 2010 ident: key 20170512142448_gks011-B27 article-title: Trinucleotide repeats in human genome and exome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq127 – volume: 153 start-page: 283 year: 2001 ident: key 20170512142448_gks011-B49 article-title: Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression publication-title: J. Cell. Biol. doi: 10.1083/jcb.153.2.283 – volume: 10 start-page: 1519 year: 2007 ident: key 20170512142448_gks011-B52 article-title: Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration publication-title: Nat. Neurosci. doi: 10.1038/nn2011 – volume: 281 start-page: 12959 year: 2006 ident: key 20170512142448_gks011-B59 article-title: Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent beta barrel protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511523200 – volume: 93 start-page: 1560 year: 1996 ident: key 20170512142448_gks011-B12 article-title: Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.4.1560 – volume: 38 start-page: D211 year: 2010 ident: key 20170512142448_gks011-B33 article-title: The Pfam protein families database publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp985 – volume: 22 start-page: 194 year: 1999 ident: key 20170512142448_gks011-B2 article-title: Aggregates in neurodegenerative disease: crowds and power? publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(99)01409-5 – volume: 21 start-page: 3369 year: 2005 ident: key 20170512142448_gks011-B61 article-title: RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti534 – volume: 435 start-page: 43 year: 2005 ident: key 20170512142448_gks011-B10 article-title: The genome of the social amoeba Dictyostelium discoideum publication-title: Nature doi: 10.1038/nature03481 – volume: 37 start-page: D229 year: 2009 ident: key 20170512142448_gks011-B35 article-title: SMART 6: recent updates and new developments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn808 – volume: 6 start-page: 743 year: 2005 ident: key 20170512142448_gks011-B1 article-title: Diseases of unstable repeat expansion: mechanisms and common principles publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1691 – volume: 41 start-page: 1038 year: 1995 ident: key 20170512142448_gks011-B47 article-title: The contribution of slippage-like processes to genome evolution publication-title: J. Mol. Evol. doi: 10.1007/BF00173185 – volume: 19 start-page: 4439 year: 2000 ident: key 20170512142448_gks011-B30 article-title: Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy publication-title: EMBO J. doi: 10.1093/emboj/19.17.4439 – reference: 15875012 - Nature. 2005 May 5;435(7038):43-57 – reference: 12734009 - Genome Biol. 2003;4(5):P3 – reference: 16321399 - J Mol Biol. 2006 Jan 20;355(3):524-35 – reference: 9427237 - Neuron. 1997 Dec;19(6):1147-50 – reference: 10365964 - Nature. 1999 Jun 3;399(6735):491-6 – reference: 11121744 - Trends Cell Biol. 2000 Dec;10(12):524-30 – reference: 2667136 - Science. 1989 Jul 28;245(4916):371-8 – reference: 16205714 - Nat Rev Genet. 2005 Oct;6(10):743-55 – reference: 19297400 - Hum Mol Genet. 2009 Apr 15;18(R1):R40-7 – reference: 10948269 - J Mol Evol. 2000 Aug;51(2):131-40 – reference: 19748341 - Structure. 2009 Sep 9;17(9):1205-12 – reference: 15695335 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2602-7 – reference: 11428462 - J Mol Evol. 2001 Mar;52(3):249-59 – reference: 15059995 - Genome Res. 2004 Apr;14(4):549-54 – reference: 21447597 - Database (Oxford). 2011;2011:bar009 – reference: 17092333 - BMC Genomics. 2006;7:288 – reference: 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22 – reference: 15805494 - Genome Res. 2005 Apr;15(4):537-51 – reference: 20711477 - PLoS Biol. 2010;8(8):e1000450 – reference: 17051205 - Nature. 2006 Oct 19;443(7113):787-95 – reference: 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50 – reference: 11782551 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):333-8 – reference: 19796946 - Trends Cell Biol. 2009 Dec;19(12):685-91 – reference: 16524881 - J Biol Chem. 2006 May 5;281(18):12959-67 – reference: 10322490 - Trends Neurosci. 1999 May;22(5):194-7 – reference: 20417604 - Mol Cell. 2010 Apr 23;38(2):265-79 – reference: 21183075 - Cell. 2010 Dec 23;143(7):1121-35 – reference: 11309410 - J Cell Biol. 2001 Apr 16;153(2):283-94 – reference: 2031185 - Science. 1991 May 24;252(5009):1162-4 – reference: 10589536 - Ann Neurol. 1999 Dec;46(6):842-9 – reference: 9635424 - Cell. 1998 Jun 12;93(6):939-49 – reference: 16973603 - J Biol Chem. 2006 Nov 24;281(47):35608-15 – reference: 8643671 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1560-5 – reference: 16377565 - Cell. 2005 Dec 29;123(7):1241-53 – reference: 7678780 - Cell. 1993 Jan 29;72(2):247-60 – reference: 18166978 - Cell Res. 2008 Jan;18(1):198-213 – reference: 12084819 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9310-5 – reference: 21092319 - BMC Genomics. 2010;11:654 – reference: 10072437 - Hum Mol Genet. 1999 Apr;8(4):673-82 – reference: 8587102 - J Mol Evol. 1995 Dec;41(6):1038-47 – reference: 21051337 - Nucleic Acids Res. 2011 Mar;39(5):1749-62 – reference: 16317077 - Bioinformatics. 2006 Feb 1;22(3):356-8 – reference: 18582603 - Biochim Biophys Acta. 2008 Aug;1779(8):507-21 – reference: 12761389 - Protein Sci. 2003 Jun;12(6):1188-94 – reference: 20080737 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):692-7 – reference: 17994014 - Nat Neurosci. 2007 Dec;10(12):1519-28 – reference: 8994886 - Curr Opin Struct Biol. 1996 Dec;6(6):848-58 – reference: 11359930 - Mol Biol Cell. 2001 May;12(5):1393-407 – reference: 15947016 - Bioinformatics. 2005 Aug 15;21(16):3369-76 – reference: 12519945 - Nucleic Acids Res. 2003 Jan 1;31(1):51-4 – reference: 18984615 - Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7 – reference: 11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80 – reference: 21071413 - Nucleic Acids Res. 2011 Jan;39(Database issue):D698-704 – reference: 11375494 - Science. 2001 May 25;292(5521):1552-5 – reference: 8371783 - Nature. 1993 Sep 16;365(6443):274-6 – reference: 11719278 - Brain Res Bull. 2001 Oct-Nov 1;56(3-4):397-403 – reference: 17519034 - BMC Genomics. 2007;8:126 – reference: 18449188 - Nature. 2008 Jun 19;453(7198):1107-11 – reference: 10970838 - EMBO J. 2000 Sep 1;19(17):4439-48 – reference: 12742163 - Trends Cell Biol. 2003 May;13(5):211-5 – reference: 16807090 - Biochim Biophys Acta. 2006 Aug;1761(8):850-67 – reference: 17032452 - BMC Bioinformatics. 2006;7:441 – reference: 18978020 - Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32 – reference: 22348130 - PLoS One. 2012;7(2):e31826 – reference: 19486509 - Genome Biol. 2009;10(6):R59 – reference: 21245341 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2142-7 – reference: 20215431 - Nucleic Acids Res. 2010 Jul;38(12):4027-39 – reference: 11911884 - FEBS Lett. 2002 Feb 20;513(1):77-84 – reference: 17240517 - Prog Neurobiol. 2007 Nov;83(4):211-27 – reference: 18056084 - Nucleic Acids Res. 2008 Jan;36(Database issue):D735-40 |
SSID | ssj0014154 |
Score | 2.4557853 |
Snippet | Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4273 |
SubjectTerms | Amino Acid Sequence Animals Ataxia Computational Biology Computer programs Evolution Evolution, Molecular Genome, Human genomics Humans Information systems Molecular Sequence Data Multiprotein Complexes - chemistry Peptides - genetics Phylogeny Polyglutamine polyglutamine diseases Protein interaction Protein Interaction Domains and Motifs Protein Interaction Mapping Proteins - chemistry Proteins - genetics Proteins - physiology Sequence Alignment trinucleotide repeat diseases Trinucleotide Repeats |
Title | Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22287626 https://www.proquest.com/docview/1015754467 https://www.proquest.com/docview/1020858359 https://pubmed.ncbi.nlm.nih.gov/PMC3378862 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeFSLQEgIOXH82LWPUZRSIZFTK_WCovV681DbdZU4lcqJI3f-Ib-EGe-ua7cRKlwix951ZM9kZnbnm28IeQ8RQMhUzLw4U4kXSeF7iUqUJ5MUKzUTJasN_a8TdngcfTmJTzqdnw3U0qbMevL71rqS_5EqnAO5YpXsP0i2vimcgGOQL3yChOHzTjIeX9rbVykAdFEu_hsNP2Nb3eLsag4jxDnGkit1AYbX4MaRnWGpHdIhtN8r8oiV7R6uDUB83QxfJ8h-jAyvcpljvqGxFVYlcxYCeWttDVCJNFq96x17bQEcaHoXn8b1FcRUilx5E3GJjJAGzD_fKNCdXnNTAtEdDgLoirEqglNDotlTxrZWBVpp2_garianZH7DlEaB6XFi3TIu7baafEOHpRGOfjA_XfvWdreYtW94vBqHaDLw4RRmT83ce-R-AAsOtJjcH9f5KAhzDBGZfSxHdJuGfZjbN3Pboc2t9cpN2G0jjjl6TB7ZBQgdGm16QjpK75K9oRZlcX5FP9AKElzlWnbJg5FrB7hHvtXKRkHZqFM2WswoKFu_pWrUqhpdampV6_ePX_aINpSMOiV7So4PxkejQ8_25vBkxHnp5RmEdnIgWSp4xsFLzbCzBgSzzE-4zAeMi4wJLqLMD-M8EIEI0xxZYVkwUDm4mWdkRxdavSBUqQzWAZicwCLtIMxEJFN_xrKQg_OL4i756F7rVFrieuyfcja9Lb4ueVePvTB0LVtHvXXSmcJbxBSZ0KrYrBHwGCMlJON_G4N9bWHlknbJcyPR-rdwPxXCC9YlvCXregCyubev6OWiYnUPsbMDC17e6QlekYfXf7vXZKdcbdQbiI7LbL9S3P1qb-kPyZfBeQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+and+function+of+CAG%2Fpolyglutamine+repeats+in+protein%E2%80%93protein+interaction+networks&rft.jtitle=Nucleic+acids+research&rft.au=Schaefer%2C+Martin+H.&rft.au=Wanker%2C+Erich+E.&rft.au=Andrade-Navarro%2C+Miguel+A.&rft.date=2012-05-01&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=40&rft.issue=10&rft.spage=4273&rft.epage=4287&rft_id=info:doi/10.1093%2Fnar%2Fgks011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gks011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |