Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks

Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 40; no. 10; pp. 4273 - 4287
Main Authors Schaefer, Martin H., Wanker, Erich E., Andrade-Navarro, Miguel A.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.
AbstractList Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.
Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions.
Author Wanker, Erich E.
Schaefer, Martin H.
Andrade-Navarro, Miguel A.
AuthorAffiliation 1 Computational Biology and Data Mining and 2 Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
AuthorAffiliation_xml – name: 1 Computational Biology and Data Mining and 2 Neuroproteomics, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
Author_xml – sequence: 1
  givenname: Martin H.
  surname: Schaefer
  fullname: Schaefer, Martin H.
– sequence: 2
  givenname: Erich E.
  surname: Wanker
  fullname: Wanker, Erich E.
– sequence: 3
  givenname: Miguel A.
  surname: Andrade-Navarro
  fullname: Andrade-Navarro, Miguel A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22287626$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9u1DAQxi3Uim4LFx6gyhEhhR3_Ty5I1aq0lSpxgSOyHMdZTLN2ajuteuMdeEOeBLe7VFD1wGk8nt98mpnvEO354C1CbzC8x9DSpddxub5KgPELtMBUkJq1guyhBVDgNQbWHKDDlL4DYIY5e4kOCCGNFEQs0NfTmzDO2QVfad9Xw-zNQxKGanVytpzCeLcudb1x3lbRTlbnVDlfTTFk6_yvHz93r_KZbdTbbm_zbYhX6RXaH_SY7OtdPEJfPp5-Xp3Xl5_OLlYnl7VhUua67xgRBhvRatlJKsXAAaBhQkAjTY-F1J3QUrMOKO-JJpq2PZa8rIptL4EeoQ9b3WnuNrY31ueoRzVFt9HxTgXt1L8V776pdbhRlMqmEaQIvN0JxHA925TVxiVjx1F7G-akMBBoeEN5-x8o5pIzJmRBj_8e63GeP-cvwLstYGJIKdrhEcGg7r1VxVu19bbA8AQ2Luv7e5eV3Phcy2-Wvqrt
CitedBy_id crossref_primary_10_1042_bse0560167
crossref_primary_10_1016_j_cbpb_2020_110505
crossref_primary_10_1016_j_str_2020_04_008
crossref_primary_10_1186_s13062_016_0129_2
crossref_primary_10_1093_hmg_ddu049
crossref_primary_10_1007_s13205_020_2120_y
crossref_primary_10_1016_j_mib_2015_07_001
crossref_primary_10_1007_s11055_023_01408_6
crossref_primary_10_1007_s12192_013_0448_5
crossref_primary_10_1017_S0031182018000112
crossref_primary_10_1016_j_bbrc_2013_09_145
crossref_primary_10_1093_gbe_evz216
crossref_primary_10_1007_s00214_017_2172_1
crossref_primary_10_1016_j_ceb_2021_01_003
crossref_primary_10_3390_genes11040407
crossref_primary_10_1016_j_molcel_2018_04_007
crossref_primary_10_3390_genes13050758
crossref_primary_10_18632_oncoscience_153
crossref_primary_10_1371_journal_pone_0186363
crossref_primary_10_1002_prot_25250
crossref_primary_10_1128_mbio_00638_23
crossref_primary_10_1534_genetics_116_193359
crossref_primary_10_1016_j_celrep_2023_112811
crossref_primary_10_3109_08830185_2013_816698
crossref_primary_10_1089_cmb_2015_0191
crossref_primary_10_1093_nar_gks1329
crossref_primary_10_4161_pri_24628
crossref_primary_10_1007_s00401_022_02428_1
crossref_primary_10_1101_cshperspect_a024257
crossref_primary_10_1128_JVI_02245_20
crossref_primary_10_1038_s42003_021_01930_8
crossref_primary_10_1371_journal_pgen_1011524
crossref_primary_10_1021_acs_biochem_5b00644
crossref_primary_10_1016_j_jsb_2018_09_001
crossref_primary_10_1002_mds_29355
crossref_primary_10_1515_jib_2022_0056
crossref_primary_10_1016_j_cbd_2024_101218
crossref_primary_10_1016_j_celrep_2017_10_097
crossref_primary_10_1016_j_isci_2023_108036
crossref_primary_10_1038_s41467_020_17145_0
crossref_primary_10_1093_jxb_erac514
crossref_primary_10_1002_jnr_23980
crossref_primary_10_1186_s13104_018_3221_0
crossref_primary_10_3390_ijms25126789
crossref_primary_10_1002_bip_23021
crossref_primary_10_2174_0929867326666190621101909
crossref_primary_10_7554_eLife_62307
crossref_primary_10_1038_s41598_018_27900_5
crossref_primary_10_1038_srep38265
crossref_primary_10_17116_jnevro202212207142
crossref_primary_10_1016_j_jgg_2013_08_003
crossref_primary_10_1016_j_jns_2022_120274
crossref_primary_10_1016_j_molcel_2015_07_003
crossref_primary_10_1038_s41467_019_09923_2
crossref_primary_10_1038_nrg_2017_115
crossref_primary_10_1038_s41419_019_2193_x
crossref_primary_10_1016_j_jbc_2022_102062
crossref_primary_10_1371_journal_pone_0177299
crossref_primary_10_1016_j_jmb_2015_05_023
crossref_primary_10_1186_s12920_019_0594_4
crossref_primary_10_3389_fgene_2015_00345
crossref_primary_10_1016_j_csbj_2020_01_012
crossref_primary_10_1093_ve_vead034
crossref_primary_10_3233_JHD_200394
crossref_primary_10_3390_cells10082121
crossref_primary_10_1534_genetics_120_303029
crossref_primary_10_1093_bioinformatics_btw790
crossref_primary_10_1111_jeb_14106
crossref_primary_10_1242_jcs_263433
crossref_primary_10_1038_s41598_020_57994_9
crossref_primary_10_1109_JPROC_2016_2613076
crossref_primary_10_1111_ene_15291
crossref_primary_10_3389_fnmol_2017_00399
crossref_primary_10_1016_j_celrep_2018_06_015
crossref_primary_10_1038_ni_2890
crossref_primary_10_1371_journal_pgen_1005746
crossref_primary_10_3390_v7010072
crossref_primary_10_1002_pmic_202300114
crossref_primary_10_1007_s11538_020_00823_x
crossref_primary_10_1016_j_bbrc_2016_07_023
crossref_primary_10_1074_jbc_M113_523696
crossref_primary_10_3390_ijms21155210
crossref_primary_10_4161_nucl_29404
crossref_primary_10_1016_j_csbj_2021_04_037
crossref_primary_10_1083_jcb_202103185
crossref_primary_10_1074_jbc_M113_516765
crossref_primary_10_1093_nargab_lqab032
crossref_primary_10_1093_gbe_evy046
crossref_primary_10_1111_tra_12814
crossref_primary_10_3390_genes12030451
crossref_primary_10_3390_ijms21030967
crossref_primary_10_1002_pld3_295
crossref_primary_10_1186_s13068_015_0311_2
crossref_primary_10_3390_plants9070814
crossref_primary_10_1016_j_csbj_2022_09_011
crossref_primary_10_1016_j_sbi_2023_102726
crossref_primary_10_1074_jbc_M112_362764
crossref_primary_10_3390_ijms150915963
crossref_primary_10_1016_j_bbadis_2015_06_010
crossref_primary_10_1371_journal_pone_0170801
crossref_primary_10_1016_j_jsb_2023_107962
crossref_primary_10_1080_19420889_2016_1139251
crossref_primary_10_1016_j_sbi_2023_102607
crossref_primary_10_1111_mmi_12329
crossref_primary_10_1534_genetics_115_184218
crossref_primary_10_1074_jbc_M112_430678
crossref_primary_10_3390_diagnostics11061051
crossref_primary_10_3389_fnins_2020_00489
crossref_primary_10_1002_cbic_201900583
crossref_primary_10_7717_peerj_10014
crossref_primary_10_1002_bies_201300001
crossref_primary_10_3390_ijms22041727
crossref_primary_10_2174_1389202921666200326152119
crossref_primary_10_1128_JVI_01388_14
crossref_primary_10_3390_biom13071116
crossref_primary_10_1534_g3_116_035675
crossref_primary_10_1534_g3_118_200188
crossref_primary_10_3389_fnmol_2023_1140719
crossref_primary_10_7554_eLife_84043
crossref_primary_10_1186_s12862_020_01626_3
crossref_primary_10_1016_j_jsb_2019_08_003
crossref_primary_10_1016_j_jsb_2017_09_006
crossref_primary_10_1007_s00300_017_2164_6
crossref_primary_10_3389_fpsyt_2022_826135
crossref_primary_10_1073_pnas_1807206115
crossref_primary_10_1016_j_tig_2014_07_008
crossref_primary_10_1080_07391102_2021_1871957
crossref_primary_10_1007_s12539_019_00317_y
crossref_primary_10_3389_fnins_2021_695049
crossref_primary_10_1093_nargab_lqae053
crossref_primary_10_3390_biom7030057
crossref_primary_10_1371_journal_ppat_1005697
crossref_primary_10_1261_rna_057851_116
crossref_primary_10_1016_j_jnutbio_2024_109837
crossref_primary_10_3390_biom12020157
crossref_primary_10_1016_j_jbc_2024_108048
crossref_primary_10_1371_journal_pone_0311519
crossref_primary_10_1016_j_heliyon_2024_e37861
crossref_primary_10_1016_j_devcel_2013_06_004
crossref_primary_10_1093_molbev_msac019
crossref_primary_10_1016_j_csbj_2023_10_054
crossref_primary_10_1021_acs_biochem_7b00518
crossref_primary_10_1093_nar_gkz523
crossref_primary_10_1038_s41570_020_0204_1
crossref_primary_10_1186_s12859_018_2342_8
crossref_primary_10_1128_mBio_01367_16
crossref_primary_10_7554_eLife_70344
crossref_primary_10_1152_jn_01053_2015
crossref_primary_10_1371_journal_pone_0296085
crossref_primary_10_1534_genetics_114_167866
Cites_doi 10.1016/S0092-8674(00)81200-3
10.1093/nar/gkq935
10.1073/pnas.0409402102
10.1016/0092-8674(93)90664-C
10.1371/journal.pbio.1000450
10.1093/nar/30.1.276
10.1093/nar/gkm936
10.1126/science.252.5009.1162
10.1073/pnas.012608599
10.1186/1471-2164-11-654
10.1126/science.292.5521.1552
10.1016/j.tcb.2009.09.001
10.1016/j.bbagrm.2008.05.008
10.1093/database/bar009
10.1016/j.jmb.2005.10.053
10.1038/20974
10.1016/j.str.2009.08.002
10.1007/s002390010153
10.1016/S0962-8924(00)01852-3
10.1091/mbc.12.5.1393
10.1093/nar/gkg129
10.1016/S0962-8924(03)00076-X
10.1093/bioinformatics/bti797
10.1016/j.cell.2005.10.030
10.1186/gb-2009-10-6-r59
10.1101/gr.3096505
10.1007/s002390010073
10.1101/gr.1925704
10.1016/S0014-5793(01)03308-7
10.1093/nar/gkm1005
10.1093/hmg/8.4.673
10.1186/1471-2105-7-441
10.1126/science.2667136
10.1371/journal.pone.0031826
10.1073/pnas.0909740107
10.1016/j.bbalip.2006.04.008
10.1016/S0361-9230(01)00596-2
10.1038/cr.2008.5
10.1186/1471-2164-7-288
10.1073/pnas.1018748108
10.1186/gb-2003-4-5-p3
10.1016/S0896-6273(00)80405-5
10.1038/365274a0
10.1093/nar/gkq1116
10.1074/jbc.M605558200
10.1038/nature06909
10.1110/ps.0241903
10.1093/hmg/ddn412
10.1016/j.cell.2010.11.042
10.1073/pnas.152101299
10.1038/nature05292
10.1016/S0959-440X(96)80016-9
10.1186/1471-2164-8-126
10.1016/j.molcel.2010.04.007
10.1093/nar/gkn787
10.1016/j.pneurobio.2006.11.004
10.1002/1531-8249(199912)46:6<842::AID-ANA6>3.0.CO;2-O
10.1093/nar/gkq127
10.1083/jcb.153.2.283
10.1038/nn2011
10.1074/jbc.M511523200
10.1073/pnas.93.4.1560
10.1093/nar/gkp985
10.1016/S0166-2236(99)01409-5
10.1093/bioinformatics/bti534
10.1038/nature03481
10.1093/nar/gkn808
10.1038/nrg1691
10.1007/BF00173185
10.1093/emboj/19.17.4439
ContentType Journal Article
Copyright The Author(s) 2012. Published by Oxford University Press. 2012
Copyright_xml – notice: The Author(s) 2012. Published by Oxford University Press. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1093/nar/gks011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 4287
ExternalDocumentID PMC3378862
22287626
10_1093_nar_gks011
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
AAYXX
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
CITATION
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
ABQTQ
AJDVS
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c477t-db426c1c69a7b7376f50008466087cd167ab6a7a4b035d2a2a39d1753621ed703
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:07:44 EDT 2025
Thu Jul 10 17:18:59 EDT 2025
Fri Jul 11 09:39:57 EDT 2025
Thu Apr 03 07:05:04 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
Tue Jul 01 01:41:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://creativecommons.org/licenses/by-nc/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-db426c1c69a7b7376f50008466087cd167ab6a7a4b035d2a2a39d1753621ed703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://dx.doi.org/10.1093/nar/gks011
PMID 22287626
PQID 1015754467
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3378862
proquest_miscellaneous_1020858359
proquest_miscellaneous_1015754467
pubmed_primary_22287626
crossref_primary_10_1093_nar_gks011
crossref_citationtrail_10_1093_nar_gks011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Dhalluin ( key 20170512142448_gks011-B39) 1999; 399
Lin ( key 20170512142448_gks011-B67) 2006; 443
Tran ( key 20170512142448_gks011-B2) 1999; 22
Schaefer ( key 20170512142448_gks011-B23) 2012; 7
Simon ( key 20170512142448_gks011-B60) 2009; 10
Mitchell ( key 20170512142448_gks011-B15) 1989; 245
Karolchik ( key 20170512142448_gks011-B19) 2003; 31
Stenmark ( key 20170512142448_gks011-B34) 2002; 513
Pennuto ( key 20170512142448_gks011-B8) 2009; 18
Chan ( key 20170512142448_gks011-B29) 2009; 37
Dehay ( key 20170512142448_gks011-B57) 2006; 281
Li ( key 20170512142448_gks011-B63) 2008; 453
Magrane ( key 20170512142448_gks011-B20) 2011; 2011
Lupas ( key 20170512142448_gks011-B41) 1991; 252
David ( key 20170512142448_gks011-B69) 2010; 8
Kovtun ( key 20170512142448_gks011-B45) 2008; 18
Friedman ( key 20170512142448_gks011-B52) 2007; 10
Waelter ( key 20170512142448_gks011-B66) 2001; 12
Karlin ( key 20170512142448_gks011-B48) 2002; 99
Gatchel ( key 20170512142448_gks011-B1) 2005; 6
Reddy ( key 20170512142448_gks011-B31) 2010; 39
Ruan ( key 20170512142448_gks011-B22) 2008; 36
Kozlowski ( key 20170512142448_gks011-B27) 2010; 38
Alba ( key 20170512142448_gks011-B16) 2004; 14
Strand ( key 20170512142448_gks011-B26) 1993; 365
Ignatova ( key 20170512142448_gks011-B59) 2006; 281
Bhattacharyya ( key 20170512142448_gks011-B42) 2006; 355
Filimonenko ( key 20170512142448_gks011-B50) 2010; 38
Chai ( key 20170512142448_gks011-B64) 1999; 8
Chai ( key 20170512142448_gks011-B6) 2002; 99
Lin ( key 20170512142448_gks011-B32) 2010; 107
Suhr ( key 20170512142448_gks011-B49) 2001; 153
Yang ( key 20170512142448_gks011-B61) 2005; 21
Jafar-Nejad ( key 20170512142448_gks011-B70) 2011; 108
Holmes ( key 20170512142448_gks011-B28) 2001; 56
Finn ( key 20170512142448_gks011-B33) 2010; 38
Miller ( key 20170512142448_gks011-B30) 2000; 19
Gissi ( key 20170512142448_gks011-B51) 2006; 7
Bateman ( key 20170512142448_gks011-B21) 2002; 30
Kuemmerle ( key 20170512142448_gks011-B7) 1999; 46
von Mikecz ( key 20170512142448_gks011-B11) 2009; 19
Alba ( key 20170512142448_gks011-B46) 2001; 52
McDonnell ( key 20170512142448_gks011-B44) 2006; 22
Fiumara ( key 20170512142448_gks011-B40) 2010; 143
Stark ( key 20170512142448_gks011-B24) 2011; 39
Ross ( key 20170512142448_gks011-B4) 1997; 19
Warrick ( key 20170512142448_gks011-B5) 1998; 93
Kopito ( key 20170512142448_gks011-B3) 2000; 10
Truant ( key 20170512142448_gks011-B62) 2007; 83
Dennis ( key 20170512142448_gks011-B25) 2003; 4
Butland ( key 20170512142448_gks011-B9) 2007; 8
Harrison ( key 20170512142448_gks011-B17) 2006; 7
Bence ( key 20170512142448_gks011-B65) 2001; 292
Ruepp ( key 20170512142448_gks011-B36) 2008; 36
Hands ( key 20170512142448_gks011-B18) 2008; 1779
Faux ( key 20170512142448_gks011-B14) 2005; 15
Whan ( key 20170512142448_gks011-B55) 2010; 11
Tang ( key 20170512142448_gks011-B68) 2005; 102
Letunic ( key 20170512142448_gks011-B35) 2009; 37
Karlin ( key 20170512142448_gks011-B12) 1996; 93
Eichinger ( key 20170512142448_gks011-B10) 2005; 435
Zhai ( key 20170512142448_gks011-B54) 2005; 123
DiNitto ( key 20170512142448_gks011-B37) 2006; 1761
Hancock ( key 20170512142448_gks011-B47) 1995; 41
Duncan ( key 20170512142448_gks011-B38) 2003; 13
Perutz ( key 20170512142448_gks011-B58) 1996; 6
Huntley ( key 20170512142448_gks011-B13) 2000; 51
Hinderaker ( key 20170512142448_gks011-B43) 2003; 12
Kim ( key 20170512142448_gks011-B56) 2009; 17
Hoey ( key 20170512142448_gks011-B53) 1993; 72
16321399 - J Mol Biol. 2006 Jan 20;355(3):524-35
16377565 - Cell. 2005 Dec 29;123(7):1241-53
19297400 - Hum Mol Genet. 2009 Apr 15;18(R1):R40-7
18056084 - Nucleic Acids Res. 2008 Jan;36(Database issue):D735-40
11121744 - Trends Cell Biol. 2000 Dec;10(12):524-30
2667136 - Science. 1989 Jul 28;245(4916):371-8
11309410 - J Cell Biol. 2001 Apr 16;153(2):283-94
21447597 - Database (Oxford). 2011;2011:bar009
15805494 - Genome Res. 2005 Apr;15(4):537-51
21071413 - Nucleic Acids Res. 2011 Jan;39(Database issue):D698-704
15695335 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2602-7
16524881 - J Biol Chem. 2006 May 5;281(18):12959-67
19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22
18582603 - Biochim Biophys Acta. 2008 Aug;1779(8):507-21
21183075 - Cell. 2010 Dec 23;143(7):1121-35
10948269 - J Mol Evol. 2000 Aug;51(2):131-40
16317077 - Bioinformatics. 2006 Feb 1;22(3):356-8
16973603 - J Biol Chem. 2006 Nov 24;281(47):35608-15
11719278 - Brain Res Bull. 2001 Oct-Nov 1;56(3-4):397-403
17994014 - Nat Neurosci. 2007 Dec;10(12):1519-28
11359930 - Mol Biol Cell. 2001 May;12(5):1393-407
8587102 - J Mol Evol. 1995 Dec;41(6):1038-47
12761389 - Protein Sci. 2003 Jun;12(6):1188-94
11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80
2031185 - Science. 1991 May 24;252(5009):1162-4
17032452 - BMC Bioinformatics. 2006;7:441
20711477 - PLoS Biol. 2010;8(8):e1000450
17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50
10970838 - EMBO J. 2000 Sep 1;19(17):4439-48
12734009 - Genome Biol. 2003;4(5):P3
12519945 - Nucleic Acids Res. 2003 Jan 1;31(1):51-4
7678780 - Cell. 1993 Jan 29;72(2):247-60
20417604 - Mol Cell. 2010 Apr 23;38(2):265-79
9427237 - Neuron. 1997 Dec;19(6):1147-50
12084819 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9310-5
18978020 - Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32
21051337 - Nucleic Acids Res. 2011 Mar;39(5):1749-62
18984615 - Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7
20080737 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):692-7
18166978 - Cell Res. 2008 Jan;18(1):198-213
12742163 - Trends Cell Biol. 2003 May;13(5):211-5
19796946 - Trends Cell Biol. 2009 Dec;19(12):685-91
21092319 - BMC Genomics. 2010;11:654
11782551 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):333-8
20215431 - Nucleic Acids Res. 2010 Jul;38(12):4027-39
19486509 - Genome Biol. 2009;10(6):R59
17519034 - BMC Genomics. 2007;8:126
8994886 - Curr Opin Struct Biol. 1996 Dec;6(6):848-58
18449188 - Nature. 2008 Jun 19;453(7198):1107-11
21245341 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2142-7
17240517 - Prog Neurobiol. 2007 Nov;83(4):211-27
17051205 - Nature. 2006 Oct 19;443(7113):787-95
11911884 - FEBS Lett. 2002 Feb 20;513(1):77-84
10072437 - Hum Mol Genet. 1999 Apr;8(4):673-82
15947016 - Bioinformatics. 2005 Aug 15;21(16):3369-76
11375494 - Science. 2001 May 25;292(5521):1552-5
15875012 - Nature. 2005 May 5;435(7038):43-57
11428462 - J Mol Evol. 2001 Mar;52(3):249-59
10589536 - Ann Neurol. 1999 Dec;46(6):842-9
16807090 - Biochim Biophys Acta. 2006 Aug;1761(8):850-67
19748341 - Structure. 2009 Sep 9;17(9):1205-12
17092333 - BMC Genomics. 2006;7:288
9635424 - Cell. 1998 Jun 12;93(6):939-49
8643671 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1560-5
16205714 - Nat Rev Genet. 2005 Oct;6(10):743-55
15059995 - Genome Res. 2004 Apr;14(4):549-54
22348130 - PLoS One. 2012;7(2):e31826
8371783 - Nature. 1993 Sep 16;365(6443):274-6
10322490 - Trends Neurosci. 1999 May;22(5):194-7
10365964 - Nature. 1999 Jun 3;399(6735):491-6
References_xml – volume: 93
  start-page: 939
  year: 1998
  ident: key 20170512142448_gks011-B5
  article-title: Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81200-3
– volume: 39
  start-page: 1749
  year: 2010
  ident: key 20170512142448_gks011-B31
  article-title: Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq935
– volume: 102
  start-page: 2602
  year: 2005
  ident: key 20170512142448_gks011-B68
  article-title: Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0409402102
– volume: 72
  start-page: 247
  year: 1993
  ident: key 20170512142448_gks011-B53
  article-title: Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90664-C
– volume: 8
  start-page: e1000450
  year: 2010
  ident: key 20170512142448_gks011-B69
  article-title: Widespread protein aggregation as an inherent part of aging in C. elegans
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000450
– volume: 30
  start-page: 276
  year: 2002
  ident: key 20170512142448_gks011-B21
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.276
– volume: 36
  start-page: D646
  year: 2008
  ident: key 20170512142448_gks011-B36
  article-title: CORUM: the comprehensive resource of mammalian protein complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm936
– volume: 252
  start-page: 1162
  year: 1991
  ident: key 20170512142448_gks011-B41
  article-title: Predicting coiled coils from protein sequences
  publication-title: Science
  doi: 10.1126/science.252.5009.1162
– volume: 99
  start-page: 333
  year: 2002
  ident: key 20170512142448_gks011-B48
  article-title: Amino acid runs in eukaryotic proteomes and disease associations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.012608599
– volume: 11
  start-page: 654
  year: 2010
  ident: key 20170512142448_gks011-B55
  article-title: Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-654
– volume: 292
  start-page: 1552
  year: 2001
  ident: key 20170512142448_gks011-B65
  article-title: Impairment of the ubiquitin-proteasome system by protein aggregation
  publication-title: Science
  doi: 10.1126/science.292.5521.1552
– volume: 19
  start-page: 685
  year: 2009
  ident: key 20170512142448_gks011-B11
  article-title: PolyQ fibrillation in the cell nucleus: who's bad?
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2009.09.001
– volume: 1779
  start-page: 507
  year: 2008
  ident: key 20170512142448_gks011-B18
  article-title: Polyglutamine gene function and dysfunction in the ageing brain
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2008.05.008
– volume: 2011
  start-page: bar009
  year: 2011
  ident: key 20170512142448_gks011-B20
  article-title: UniProt Knowledgebase: a hub of integrated protein data
  publication-title: Database
  doi: 10.1093/database/bar009
– volume: 355
  start-page: 524
  year: 2006
  ident: key 20170512142448_gks011-B42
  article-title: Oligoproline effects on polyglutamine conformation and aggregation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2005.10.053
– volume: 399
  start-page: 491
  year: 1999
  ident: key 20170512142448_gks011-B39
  article-title: Structure and ligand of a histone acetyltransferase bromodomain
  publication-title: Nature
  doi: 10.1038/20974
– volume: 17
  start-page: 1205
  year: 2009
  ident: key 20170512142448_gks011-B56
  article-title: Secondary structure of Huntingtin amino-terminal region
  publication-title: Structure
  doi: 10.1016/j.str.2009.08.002
– volume: 52
  start-page: 249
  year: 2001
  ident: key 20170512142448_gks011-B46
  article-title: The comparative genomics of polyglutamine repeats: extreme differences in the codon organization of repeat-encoding regions between mammals and Drosophila
  publication-title: J. Mol. Evol.
  doi: 10.1007/s002390010153
– volume: 10
  start-page: 524
  year: 2000
  ident: key 20170512142448_gks011-B3
  article-title: Aggresomes, inclusion bodies and protein aggregation
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(00)01852-3
– volume: 12
  start-page: 1393
  year: 2001
  ident: key 20170512142448_gks011-B66
  article-title: Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.5.1393
– volume: 31
  start-page: 51
  year: 2003
  ident: key 20170512142448_gks011-B19
  article-title: The UCSC Genome Browser Database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg129
– volume: 13
  start-page: 211
  year: 2003
  ident: key 20170512142448_gks011-B38
  article-title: ENTH/ANTH domains expand to the Golgi
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(03)00076-X
– volume: 22
  start-page: 356
  year: 2006
  ident: key 20170512142448_gks011-B44
  article-title: Paircoil2: improved prediction of coiled coils from sequence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti797
– volume: 123
  start-page: 1241
  year: 2005
  ident: key 20170512142448_gks011-B54
  article-title: In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.030
– volume: 10
  start-page: R59
  year: 2009
  ident: key 20170512142448_gks011-B60
  article-title: Tandem and cryptic amino acid repeats accumulate in disordered regions of proteins
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-6-r59
– volume: 15
  start-page: 537
  year: 2005
  ident: key 20170512142448_gks011-B14
  article-title: Functional insights from the distribution and role of homopeptide repeat-containing proteins
  publication-title: Genome Res.
  doi: 10.1101/gr.3096505
– volume: 51
  start-page: 131
  year: 2000
  ident: key 20170512142448_gks011-B13
  article-title: Evolution of simple sequence in proteins
  publication-title: J. Mol. Evol.
  doi: 10.1007/s002390010073
– volume: 14
  start-page: 549
  year: 2004
  ident: key 20170512142448_gks011-B16
  article-title: Comparative analysis of amino acid repeats in rodents and humans
  publication-title: Genome Res.
  doi: 10.1101/gr.1925704
– volume: 513
  start-page: 77
  year: 2002
  ident: key 20170512142448_gks011-B34
  article-title: The phosphatidylinositol 3-phosphate-binding FYVE finger
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)03308-7
– volume: 36
  start-page: D735
  year: 2008
  ident: key 20170512142448_gks011-B22
  article-title: TreeFam: 2008 Update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1005
– volume: 8
  start-page: 673
  year: 1999
  ident: key 20170512142448_gks011-B64
  article-title: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.4.673
– volume: 7
  start-page: 441
  year: 2006
  ident: key 20170512142448_gks011-B17
  article-title: Exhaustive assignment of compositional bias reveals universally prevalent biased regions: analysis of functional associations in human and Drosophila
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-441
– volume: 245
  start-page: 371
  year: 1989
  ident: key 20170512142448_gks011-B15
  article-title: Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins
  publication-title: Science
  doi: 10.1126/science.2667136
– volume: 7
  start-page: e31826
  year: 2012
  ident: key 20170512142448_gks011-B23
  article-title: HIPPIE: integrating protein interaction networks with experiment based quality scores
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0031826
– volume: 107
  start-page: 692
  year: 2010
  ident: key 20170512142448_gks011-B32
  article-title: R loops stimulate genetic instability of CTG.CAG repeats
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0909740107
– volume: 1761
  start-page: 850
  year: 2006
  ident: key 20170512142448_gks011-B37
  article-title: Membrane and juxtamembrane targeting by PH and PTB domains
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2006.04.008
– volume: 56
  start-page: 397
  year: 2001
  ident: key 20170512142448_gks011-B28
  article-title: SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(01)00596-2
– volume: 18
  start-page: 198
  year: 2008
  ident: key 20170512142448_gks011-B45
  article-title: Features of trinucleotide repeat instability in vivo
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.5
– volume: 7
  start-page: 288
  year: 2006
  ident: key 20170512142448_gks011-B51
  article-title: Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-288
– volume: 108
  start-page: 2142
  year: 2011
  ident: key 20170512142448_gks011-B70
  article-title: Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1018748108
– volume: 4
  start-page: P3
  year: 2003
  ident: key 20170512142448_gks011-B25
  article-title: DAVID: Database for Annotation, Visualization, and Integrated Discovery
  publication-title: Genome Biol.
  doi: 10.1186/gb-2003-4-5-p3
– volume: 19
  start-page: 1147
  year: 1997
  ident: key 20170512142448_gks011-B4
  article-title: Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases?
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80405-5
– volume: 365
  start-page: 274
  year: 1993
  ident: key 20170512142448_gks011-B26
  article-title: Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair
  publication-title: Nature
  doi: 10.1038/365274a0
– volume: 39
  start-page: D698
  year: 2011
  ident: key 20170512142448_gks011-B24
  article-title: The BioGRID Interaction Database: 2011 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1116
– volume: 281
  start-page: 35608
  year: 2006
  ident: key 20170512142448_gks011-B57
  article-title: Critical role of the proline-rich region in Huntingtin for aggregation and cytotoxicity in yeast
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605558200
– volume: 453
  start-page: 1107
  year: 2008
  ident: key 20170512142448_gks011-B63
  article-title: RNA toxicity is a component of ataxin-3 degeneration in Drosophila
  publication-title: Nature
  doi: 10.1038/nature06909
– volume: 12
  start-page: 1188
  year: 2003
  ident: key 20170512142448_gks011-B43
  article-title: An electronic effect on protein structure
  publication-title: Protein Sci.
  doi: 10.1110/ps.0241903
– volume: 18
  start-page: R40
  year: 2009
  ident: key 20170512142448_gks011-B8
  article-title: Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn412
– volume: 143
  start-page: 1121
  year: 2010
  ident: key 20170512142448_gks011-B40
  article-title: Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.042
– volume: 99
  start-page: 9310
  year: 2002
  ident: key 20170512142448_gks011-B6
  article-title: Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.152101299
– volume: 443
  start-page: 787
  year: 2006
  ident: key 20170512142448_gks011-B67
  article-title: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases
  publication-title: Nature
  doi: 10.1038/nature05292
– volume: 6
  start-page: 848
  year: 1996
  ident: key 20170512142448_gks011-B58
  article-title: Glutamine repeats and inherited neurodegenerative diseases: molecular aspects
  publication-title: C Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(96)80016-9
– volume: 8
  start-page: 126
  year: 2007
  ident: key 20170512142448_gks011-B9
  article-title: CAG-encoded polyglutamine length polymorphism in the human genome
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-126
– volume: 38
  start-page: 265
  year: 2010
  ident: key 20170512142448_gks011-B50
  article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.04.007
– volume: 37
  start-page: D93
  year: 2009
  ident: key 20170512142448_gks011-B29
  article-title: GtRNAdb: a database of transfer RNA genes detected in genomic sequence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn787
– volume: 83
  start-page: 211
  year: 2007
  ident: key 20170512142448_gks011-B62
  article-title: Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2006.11.004
– volume: 46
  start-page: 842
  year: 1999
  ident: key 20170512142448_gks011-B7
  article-title: Huntington aggregates may not predict neuronal death in Huntington's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199912)46:6<842::AID-ANA6>3.0.CO;2-O
– volume: 38
  start-page: 4027
  year: 2010
  ident: key 20170512142448_gks011-B27
  article-title: Trinucleotide repeats in human genome and exome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq127
– volume: 153
  start-page: 283
  year: 2001
  ident: key 20170512142448_gks011-B49
  article-title: Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.153.2.283
– volume: 10
  start-page: 1519
  year: 2007
  ident: key 20170512142448_gks011-B52
  article-title: Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2011
– volume: 281
  start-page: 12959
  year: 2006
  ident: key 20170512142448_gks011-B59
  article-title: Extended polyglutamine tracts cause aggregation and structural perturbation of an adjacent beta barrel protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511523200
– volume: 93
  start-page: 1560
  year: 1996
  ident: key 20170512142448_gks011-B12
  article-title: Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.4.1560
– volume: 38
  start-page: D211
  year: 2010
  ident: key 20170512142448_gks011-B33
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp985
– volume: 22
  start-page: 194
  year: 1999
  ident: key 20170512142448_gks011-B2
  article-title: Aggregates in neurodegenerative disease: crowds and power?
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(99)01409-5
– volume: 21
  start-page: 3369
  year: 2005
  ident: key 20170512142448_gks011-B61
  article-title: RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti534
– volume: 435
  start-page: 43
  year: 2005
  ident: key 20170512142448_gks011-B10
  article-title: The genome of the social amoeba Dictyostelium discoideum
  publication-title: Nature
  doi: 10.1038/nature03481
– volume: 37
  start-page: D229
  year: 2009
  ident: key 20170512142448_gks011-B35
  article-title: SMART 6: recent updates and new developments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn808
– volume: 6
  start-page: 743
  year: 2005
  ident: key 20170512142448_gks011-B1
  article-title: Diseases of unstable repeat expansion: mechanisms and common principles
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1691
– volume: 41
  start-page: 1038
  year: 1995
  ident: key 20170512142448_gks011-B47
  article-title: The contribution of slippage-like processes to genome evolution
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00173185
– volume: 19
  start-page: 4439
  year: 2000
  ident: key 20170512142448_gks011-B30
  article-title: Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.17.4439
– reference: 15875012 - Nature. 2005 May 5;435(7038):43-57
– reference: 12734009 - Genome Biol. 2003;4(5):P3
– reference: 16321399 - J Mol Biol. 2006 Jan 20;355(3):524-35
– reference: 9427237 - Neuron. 1997 Dec;19(6):1147-50
– reference: 10365964 - Nature. 1999 Jun 3;399(6735):491-6
– reference: 11121744 - Trends Cell Biol. 2000 Dec;10(12):524-30
– reference: 2667136 - Science. 1989 Jul 28;245(4916):371-8
– reference: 16205714 - Nat Rev Genet. 2005 Oct;6(10):743-55
– reference: 19297400 - Hum Mol Genet. 2009 Apr 15;18(R1):R40-7
– reference: 10948269 - J Mol Evol. 2000 Aug;51(2):131-40
– reference: 19748341 - Structure. 2009 Sep 9;17(9):1205-12
– reference: 15695335 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2602-7
– reference: 11428462 - J Mol Evol. 2001 Mar;52(3):249-59
– reference: 15059995 - Genome Res. 2004 Apr;14(4):549-54
– reference: 21447597 - Database (Oxford). 2011;2011:bar009
– reference: 17092333 - BMC Genomics. 2006;7:288
– reference: 19920124 - Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22
– reference: 15805494 - Genome Res. 2005 Apr;15(4):537-51
– reference: 20711477 - PLoS Biol. 2010;8(8):e1000450
– reference: 17051205 - Nature. 2006 Oct 19;443(7113):787-95
– reference: 17965090 - Nucleic Acids Res. 2008 Jan;36(Database issue):D646-50
– reference: 11782551 - Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):333-8
– reference: 19796946 - Trends Cell Biol. 2009 Dec;19(12):685-91
– reference: 16524881 - J Biol Chem. 2006 May 5;281(18):12959-67
– reference: 10322490 - Trends Neurosci. 1999 May;22(5):194-7
– reference: 20417604 - Mol Cell. 2010 Apr 23;38(2):265-79
– reference: 21183075 - Cell. 2010 Dec 23;143(7):1121-35
– reference: 11309410 - J Cell Biol. 2001 Apr 16;153(2):283-94
– reference: 2031185 - Science. 1991 May 24;252(5009):1162-4
– reference: 10589536 - Ann Neurol. 1999 Dec;46(6):842-9
– reference: 9635424 - Cell. 1998 Jun 12;93(6):939-49
– reference: 16973603 - J Biol Chem. 2006 Nov 24;281(47):35608-15
– reference: 8643671 - Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1560-5
– reference: 16377565 - Cell. 2005 Dec 29;123(7):1241-53
– reference: 7678780 - Cell. 1993 Jan 29;72(2):247-60
– reference: 18166978 - Cell Res. 2008 Jan;18(1):198-213
– reference: 12084819 - Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9310-5
– reference: 21092319 - BMC Genomics. 2010;11:654
– reference: 10072437 - Hum Mol Genet. 1999 Apr;8(4):673-82
– reference: 8587102 - J Mol Evol. 1995 Dec;41(6):1038-47
– reference: 21051337 - Nucleic Acids Res. 2011 Mar;39(5):1749-62
– reference: 16317077 - Bioinformatics. 2006 Feb 1;22(3):356-8
– reference: 18582603 - Biochim Biophys Acta. 2008 Aug;1779(8):507-21
– reference: 12761389 - Protein Sci. 2003 Jun;12(6):1188-94
– reference: 20080737 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):692-7
– reference: 17994014 - Nat Neurosci. 2007 Dec;10(12):1519-28
– reference: 8994886 - Curr Opin Struct Biol. 1996 Dec;6(6):848-58
– reference: 11359930 - Mol Biol Cell. 2001 May;12(5):1393-407
– reference: 15947016 - Bioinformatics. 2005 Aug 15;21(16):3369-76
– reference: 12519945 - Nucleic Acids Res. 2003 Jan 1;31(1):51-4
– reference: 18984615 - Nucleic Acids Res. 2009 Jan;37(Database issue):D93-7
– reference: 11752314 - Nucleic Acids Res. 2002 Jan 1;30(1):276-80
– reference: 21071413 - Nucleic Acids Res. 2011 Jan;39(Database issue):D698-704
– reference: 11375494 - Science. 2001 May 25;292(5521):1552-5
– reference: 8371783 - Nature. 1993 Sep 16;365(6443):274-6
– reference: 11719278 - Brain Res Bull. 2001 Oct-Nov 1;56(3-4):397-403
– reference: 17519034 - BMC Genomics. 2007;8:126
– reference: 18449188 - Nature. 2008 Jun 19;453(7198):1107-11
– reference: 10970838 - EMBO J. 2000 Sep 1;19(17):4439-48
– reference: 12742163 - Trends Cell Biol. 2003 May;13(5):211-5
– reference: 16807090 - Biochim Biophys Acta. 2006 Aug;1761(8):850-67
– reference: 17032452 - BMC Bioinformatics. 2006;7:441
– reference: 18978020 - Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32
– reference: 22348130 - PLoS One. 2012;7(2):e31826
– reference: 19486509 - Genome Biol. 2009;10(6):R59
– reference: 21245341 - Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2142-7
– reference: 20215431 - Nucleic Acids Res. 2010 Jul;38(12):4027-39
– reference: 11911884 - FEBS Lett. 2002 Feb 20;513(1):77-84
– reference: 17240517 - Prog Neurobiol. 2007 Nov;83(4):211-27
– reference: 18056084 - Nucleic Acids Res. 2008 Jan;36(Database issue):D735-40
SSID ssj0014154
Score 2.4557853
Snippet Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4273
SubjectTerms Amino Acid Sequence
Animals
Ataxia
Computational Biology
Computer programs
Evolution
Evolution, Molecular
Genome, Human
genomics
Humans
Information systems
Molecular Sequence Data
Multiprotein Complexes - chemistry
Peptides - genetics
Phylogeny
Polyglutamine
polyglutamine diseases
Protein interaction
Protein Interaction Domains and Motifs
Protein Interaction Mapping
Proteins - chemistry
Proteins - genetics
Proteins - physiology
Sequence Alignment
trinucleotide repeat diseases
Trinucleotide Repeats
Title Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks
URI https://www.ncbi.nlm.nih.gov/pubmed/22287626
https://www.proquest.com/docview/1015754467
https://www.proquest.com/docview/1020858359
https://pubmed.ncbi.nlm.nih.gov/PMC3378862
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeFSLQEgIOXH82LWPUZRSIZFTK_WCovV681DbdZU4lcqJI3f-Ib-EGe-ua7cRKlwix951ZM9kZnbnm28IeQ8RQMhUzLw4U4kXSeF7iUqUJ5MUKzUTJasN_a8TdngcfTmJTzqdnw3U0qbMevL71rqS_5EqnAO5YpXsP0i2vimcgGOQL3yChOHzTjIeX9rbVykAdFEu_hsNP2Nb3eLsag4jxDnGkit1AYbX4MaRnWGpHdIhtN8r8oiV7R6uDUB83QxfJ8h-jAyvcpljvqGxFVYlcxYCeWttDVCJNFq96x17bQEcaHoXn8b1FcRUilx5E3GJjJAGzD_fKNCdXnNTAtEdDgLoirEqglNDotlTxrZWBVpp2_garianZH7DlEaB6XFi3TIu7baafEOHpRGOfjA_XfvWdreYtW94vBqHaDLw4RRmT83ce-R-AAsOtJjcH9f5KAhzDBGZfSxHdJuGfZjbN3Pboc2t9cpN2G0jjjl6TB7ZBQgdGm16QjpK75K9oRZlcX5FP9AKElzlWnbJg5FrB7hHvtXKRkHZqFM2WswoKFu_pWrUqhpdampV6_ePX_aINpSMOiV7So4PxkejQ8_25vBkxHnp5RmEdnIgWSp4xsFLzbCzBgSzzE-4zAeMi4wJLqLMD-M8EIEI0xxZYVkwUDm4mWdkRxdavSBUqQzWAZicwCLtIMxEJFN_xrKQg_OL4i756F7rVFrieuyfcja9Lb4ueVePvTB0LVtHvXXSmcJbxBSZ0KrYrBHwGCMlJON_G4N9bWHlknbJcyPR-rdwPxXCC9YlvCXregCyubev6OWiYnUPsbMDC17e6QlekYfXf7vXZKdcbdQbiI7LbL9S3P1qb-kPyZfBeQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+and+function+of+CAG%2Fpolyglutamine+repeats+in+protein%E2%80%93protein+interaction+networks&rft.jtitle=Nucleic+acids+research&rft.au=Schaefer%2C+Martin+H.&rft.au=Wanker%2C+Erich+E.&rft.au=Andrade-Navarro%2C+Miguel+A.&rft.date=2012-05-01&rft.issn=0305-1048&rft.eissn=1362-4962&rft.volume=40&rft.issue=10&rft.spage=4273&rft.epage=4287&rft_id=info:doi/10.1093%2Fnar%2Fgks011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_gks011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon