An Automated Vertebrae Localization, Segmentation, and Osteoporotic Compression Fracture Detection Pipeline for Computed Tomographic Imaging
Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an...
Saved in:
Published in | Journal of digital imaging Vol. 37; no. 5; pp. 2428 - 2443 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
DOI | 10.1007/s10278-024-01135-5 |
Cover
Loading…
Abstract | Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (
p
-value = 0.028). |
---|---|
AbstractList | Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028). Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity ( p -value = 0.028). Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028).Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028). |
Author | Nazarian, Ara Vaziri, Ashkan Rodriguez, Edward K. Wu, Jim Yıldız Potter, İlkay |
Author_xml | – sequence: 1 givenname: İlkay orcidid: 0000-0002-2827-7672 surname: Yıldız Potter fullname: Yıldız Potter, İlkay email: ilkay.yildiz@biosensics.com organization: BioSensics, LLC – sequence: 2 givenname: Edward K. surname: Rodriguez fullname: Rodriguez, Edward K. organization: Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School – sequence: 3 givenname: Jim surname: Wu fullname: Wu, Jim organization: Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School – sequence: 4 givenname: Ara surname: Nazarian fullname: Nazarian, Ara organization: Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Orthopaedics Surgery, Yerevan State University – sequence: 5 givenname: Ashkan surname: Vaziri fullname: Vaziri, Ashkan organization: BioSensics, LLC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38717516$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us1u1DAYtFARLaUvwAFF4sKBgH_iODmh1UKh0kpFonC1vPaX1FViB9tBos_Qh8bbLKX00JNtfTPzzcjzHB047wChlwS_IxiL95FgKpoS06rEhDBe8ifoiLZVU9KWsYN790N0EuMVxpgxwliNn6FD1ggiOKmP0M3KFas5-VElMMUPCAm2QUGx8VoN9lol693b4hv0I7i0fylnivOYwE8--GR1sfbjFCDGPC1Og9JpDlB8hAR6Ryi-2gkG66DofLjFzrtdF370fVDTZRY4G1VvXf8CPe3UEOFkfx6j76efLtZfys3557P1alPqSohUGtGYpuNthVmtjGAVFcJwVZtty7tGV3rLK2MwNorWHHQOLQwow7QyqqJYs2P0YdGd5u0IRudoQQ1yCnZU4bf0ysr_J85eyt7_koRwSinmWeHNXiH4nzPEJEcbNQyDcuDnKBnmlLecVlWGvn4AvfJzcDmfZIQS0Tactxn16r6lOy9_fyoD6ALQwccYoLuDECx3jZBLI2RuhLxthNzZbB6QtF1-Mceyw-NUtlBj3uN6CP9sP8L6A8d5zWQ |
CitedBy_id | crossref_primary_10_1007_s10278_024_01373_7 crossref_primary_10_3389_fmed_2024_1485095 |
Cites_doi | 10.1109/ISBI45749.2020.9098714 10.1007/978-3-030-87202-1_51 10.1007/978-3-030-00937-3_74 10.1016/j.patrec.2005.10.010 10.1148/radiology.143.1.7063747 10.1148/ryai.230024 10.1007/s00521-017-3086-5 10.1016/j.spinee.2006.04.013 10.1007/s00586-023-07905-z 10.1007/s00132-016-3359-1 10.1007/s12194-017-0406-5 10.1109/3DV.2016.79 10.1109/CVPR.2018.00745 10.1371/journal.pone.0232127 10.1109/CVPR.2017.243 10.1117/12.2249635 10.1016/j.compbiomed.2018.05.011 10.1109/TMI.2018.2867261 10.1002/jbmr.5650060106 10.1148/ryai.2021210015 10.1002/VIW.20220012 10.2147/jmdh.S31659 10.1007/978-1-4757-1923-9 10.1016/S0969-8043(98)00026-8 10.1016/j.sintl.2023.100229 10.1109/TMI.2022.3222730 10.1016/j.media.2020.101943 10.1038/s41597-021-01060-0 10.21037/qims.2017.10.05 10.1109/CVPR.2017.195 10.1109/ACCESS.2021.3079215 10.1007/978-3-030-87589-3_51 10.1016/j.media.2021.102166 10.1117/12.878055 10.7812/TPP/12-037 10.1148/ryai.2020190138 10.1109/ISBI52829.2022.9761649 10.1007/978-3-030-39752-4_1 10.1148/radiol.2017162100 10.1007/978-3-030-59725-2_70 10.1007/s00198-005-1891-7 10.2214/ajr.183.4.1830949 10.1016/j.media.2022.102646 10.1136/eb-2012-100645 10.1109/CVPR.2016.90 10.1007/s00198-009-0972-4 10.1016/j.jclinane.2023.111147 10.1007/978-3-030-17795-9_10 10.1016/j.ijrobp.2016.09.029 10.1007/978-3-319-46723-8_49 10.3390/app9030404 10.1155/2014/853897 10.1109/ISBI.2016.7493477 10.1002/jbmr.5650080915 10.1109/TNNLS.2023.3297113 10.1016/j.media.2016.10.004 10.1109/IACC.2016.25 10.2106/jbjs.G.00675 10.1186/s13018-018-0835-9 10.1359/jbmr.2002.17.4.716 10.1097/BRS.0b013e3181f0f726 10.3171/2022.1.FOCUS21745 10.1093/oxfordjournals.aje.a115204 10.1016/j.commatsci.2019.06.010 10.1001/jama.285.3.320 10.1007/978-3-030-87589-3_39 10.1016/j.neuroimage.2006.01.015 10.1007/s11916-020-00849-9 10.1016/j.jcot.2017.02.001 10.1007/978-3-030-59725-2_72 10.1016/j.media.2022.102444 10.1002/jbm4.10778 10.1007/978-3-030-59722-1_42 10.1016/j.media.2022.102652 10.1016/j.imu.2023.101238 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024 |
Copyright_xml | – notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine. – notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024 |
DBID | AAYXX CITATION NPM 7QO 7SC 7TK 8FD FR3 JQ2 K9. L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1007/s10278-024-01135-5 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2948-2933 1618-727X |
EndPage | 2443 |
ExternalDocumentID | PMC11522205 38717516 10_1007_s10278_024_01135_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute on Aging grantid: R44AG084327 funderid: http://dx.doi.org/10.13039/100000049 – fundername: NIA NIH HHS grantid: R44AG084327 – fundername: NIA NIH HHS grantid: R44 AG084327 |
GroupedDBID | 53G AAJBT AAYZH ABJNI ACPIV ALMA_UNASSIGNED_HOLDINGS BGNMA DPUIP EBLON FIGPU JZLTJ M4Y NU0 PT4 ROL RPM RSV SJYHP SNE SOJ 0R~ 2JN AASML AAYXX ABAKF ABDBE ABFSG ACAOD ACSTC ACZOJ ADKFA AEFQL AEZWR AFDZB AFHIU AHWEU AIGIU AIXLP ATHPR CITATION ABRTQ NPM --- .4S .86 .DC .VR 04C 06C 06D 0VY 1N0 203 29K 29~ 2J2 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5RE 5VS 67Z 6NX 6PF 78A 7QO 7RV 7SC 7TK 8FD 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHNG AAJKR AAKDD AAKPC AANZL AAPKM AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ADBBV ADHHG ADHIR ADJJI ADKNI ADKPE ADMLS ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BA0 BAWUL BENPR BHPHI BMSDO BSONS CS3 CSCUP D-I DDRTE DL5 DNIVK DU5 EBD EBS ECT EDO EIHBH EIOEI EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FNLPD FR3 FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GX1 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I-F I09 IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JQ2 K9. KDC KOV KPH L7M LAS LLZTM L~C L~D MA- NAPCQ NB0 NPVJJ NQJWS O93 O9I O9J OAM OK1 P2P P64 P9S PF0 QOK QOR QOS R89 R9I RNS RPX RRX S16 S27 S37 S3B SAP SDH SHX SISQX SMD SNPRN SNX SOHCF SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 7X8 5PM |
ID | FETCH-LOGICAL-c477t-d78d8f594036ad734277d5a6db95f8c4cb54dd00da265ec1337dead3cada420c3 |
ISSN | 2948-2933 0897-1889 2948-2925 |
IngestDate | Thu Aug 21 18:44:01 EDT 2025 Thu Sep 04 22:19:07 EDT 2025 Sat Aug 16 17:42:59 EDT 2025 Mon Jul 21 06:08:57 EDT 2025 Tue Jul 01 00:58:58 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Deep learning Osteoporosis Computed tomography Vertebral compression fracture |
Language | English |
License | 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-d78d8f594036ad734277d5a6db95f8c4cb54dd00da265ec1337dead3cada420c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2827-7672 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11522205 |
PMID | 38717516 |
PQID | 3121798559 |
PQPubID | 34218 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11522205 proquest_miscellaneous_3052595244 proquest_journals_3121798559 pubmed_primary_38717516 crossref_primary_10_1007_s10278_024_01135_5 crossref_citationtrail_10_1007_s10278_024_01135_5 springer_journals_10_1007_s10278_024_01135_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York |
PublicationTitle | Journal of digital imaging |
PublicationTitleAbbrev | J Digit Imaging. Inform. med |
PublicationTitleAlternate | J Imaging Inform Med |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | KamnitsasKLedigCNewcombeVFSimpsonJPKaneADMenonDKRueckertDGlockerBEfficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentationMedical Image Analysis201736617810.1016/j.media.2016.10.00427865153 LinCZhaoGYinAYangZGuoLChenHZhaoLLiSLuoHMaZA novel chromosome cluster types identification method using ResNeXt WSL modelMedical Image Analysis20216910.1016/j.media.2020.10194333388457 Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251–1258). Thibault I, Whyne CM, Zhou S, Campbell M, Atenafu EG, Myrehaug S, Soliman H, Lee YK, Ebrahimi H, Yee AJ, Sahgal A. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography-Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81. Epub 2016/11/16. https://doi.org/10.1016/j.ijrobp.2016.09.029. PubMed PMID: 27843032. SejutiZAIslamMSA hybrid CNN–KNN approach for identification of COVID-19 with 5-fold cross validationSensors International2023410.1016/j.sintl.2023.100229367429939886434 Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Hoyt D, Urits I, Orhurhu V, Orhurhu MS, Callan J, Powell J, Manchikanti L, Kaye AD, Kaye RJ, Viswanath O. Current Concepts in the Management of Vertebral Compression Fractures. Curr Pain Headache Rep. 2020;24(5):16. Epub 2020/03/22. https://doi.org/10.1007/s11916-020-00849-9. PubMed PMID: 32198571. Wang, Y., Yao, J., Burns, J.E. and Summers, R., 2016, April. Osteoporotic and neoplastic compression fracture classification on longitudinal CT. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1181–1184). IEEE. Zhang, J., Liu, T. and Tao, D., 2023. Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems. AquariusRHommingaJVerdonschotNTanckEThe fracture risk of adjacent vertebrae is increased by the changed loading direction after a wedge fractureSpine2011366E408E41210.1097/BRS.0b013e3181f0f72621224753 NjehCFFuerstTHansDBlakeGMGenantHKRadiation exposure in bone mineral density assessmentApplied Radiation and Isotopes19995012152361:CAS:528:DyaK1MXnsVSntA%3D%3D10.1016/S0969-8043(98)00026-810028639 PageJHMoserFGMayaMMPrasadRPressmanBDOpportunistic CT screening—machine learning algorithm identifies majority of vertebral compression fractures: a cohort studyJBMR plus20237810.1002/jbm4.107783761430610443072 BuehringBKruegerDChecovichMGemarDVallarta-AstNGenantHKBinkleyNVertebral fracture assessment: impact of instrument and readerOsteoporosis international2010214874941:STN:280:DC%2BC3c%2FovFCqsg%3D%3D10.1007/s00198-009-0972-419506794 Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J. 2006;6(5):479–87. Epub 2006/08/29. https://doi.org/10.1016/j.spinee.2006.04.013. PubMed PMID: 16934715. HuXZhuYQianYHuangRYinSZengZXieNMaBYuYZhaoQWuZPrediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learningView202236202200121:CAS:528:DC%2BB38Xit1entbbE10.1002/VIW.20220012 Bukas, Christina, Bailiang Jian, Luis Francisco Rodríguez Venegas, Francesca De Benetti, Sebastian Ruehling, Anjany Sekuboyina, Jens Gempt et al. "Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 529–539. Springer, Cham, 2021. Ghosh, S., Raja'S, A., Chaudhary, V. and Dhillon, G., 2011, March. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In Medical imaging 2011: computer-aided diagnosis (Vol. 7963, pp. 21–29). SPIE. Bar, A., Wolf, L., Amitai, O.B., Toledano, E. and Elnekave, E., 2017, March. Compression fractures detection on CT. In Medical imaging 2017: computer-aided diagnosis (Vol. 10134, pp. 1036–1043). SPIE. PowerMichaelFellGregWrightMichaelPrinciples for high-quality, high-value testingBMJ Evidence-Based Medicine201318151010.1136/eb-2012-100645 AlexandruDSoWEvaluation and management of vertebral compression fracturesThe Permanente Journal20121644610.7812/TPP/12-037232511173523935 ZakharovAPisovMBukharaevAPetraikinAMorozovSGombolevskiyVBelyaevMInterpretable vertebral fracture quantification via anchor-free landmarks localizationMedical Image Analysis20238310.1016/j.media.2022.10264636279768 Löffler, M.T., Sekuboyina, A., Jacob, A., Grau, A.L., Scharr, A., El Husseini, M., Kallweit, M., Zimmer, C., Baum, T. and Kirschke, J.S., 2020. A vertebral segmentation dataset with fracture grading. Radiology: Artificial Intelligence, 2(4), p.e190138. SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingThe journal of machine learning research201415119291958 Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708). DeyPGopalMPradhanPOn robustness of radial basis function network with input perturbationNeural Comput & Applic20193152353710.1007/s00521-017-3086-5 Hu, J., Shen, L. and Sun, G., 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141). LiXShenXZhouYWangXLiTQClassification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)PloS one20201551:CAS:528:DC%2BB3cXhtVGjtL7M10.1371/journal.pone.0232127323651427198071 Chettrit, D., Meir, T., Lebel, H., Orlovsky, M., Gordon, R., Akselrod-Ballin, A. and Bar, A., 2020. 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23 (pp. 743–752). Springer International Publishing. Loshchilov, I. and Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983. FawcettTAn introduction to ROC analysisPattern recognition letters200627886187410.1016/j.patrec.2005.10.010 Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556. Iyer, S., Sowmya, A., Blair, A., White, C., Dawes, L. and Moses, D., 2020, April. A novel approach to vertebral compression fracture detection using imitation learning and patch based convolutional neural network. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 726–730). IEEE. Krogh, A. and Hertz, J., 1991. A simple weight decay can improve generalization. Advances in neural information processing systems, 4. BinkleyNKruegerDGangnonRGenantHKDreznerMKLateral vertebral assessment: a valuable technique to detect clinically significant vertebral fracturesOsteoporosis international2005161513151810.1007/s00198-005-1891-715834512 JiaHSimpsonSSathishVCurranBPMaciasAAWatermanRSGabrielRADevelopment and benchmarking of machine learning models to classify patients suitable for outpatient lower extremity joint arthroplastyJournal of Clinical Anesthesia20238810.1016/j.jclinane.2023.11114737201387 Gao, Z., Puttapirat, P., Shi, J. and Li, C., 2020. Renal cell carcinoma detection and subtyping with minimal point-based annotation in whole-slide images. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23 (pp. 439–448). Springer International Publishing. Garg B, Dixit V, Batra S, Malhotra R, Sharan A. Non-surgical management of acute osteoporotic vertebral compression fracture: A review. J Clin Orthop Trauma. 2017;8(2):131–8. Epub 2017/02/07. https://doi.org/10.1016/j.jcot.2017.02.001. PubMed PMID: 28720988. Sekuboyina, Anjany, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, and Bjoern H. Menze. "Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–657. Springer, Cham, 2018. Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). pp. 565–571. IEEE GaoZHongBLiYZhangXWuJWangCZhangXGongTZhengYMengDLiCA semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide imagesMedical Image Analysis20238310.1016/j.media.2022.10265236327654 Han, X., Zhai, Y., Yu, Z., Peng, T. and Zhang, X.Y., 2021. Detecting extremely small lesions in mouse brain MRI with point annotations via multi-task learning. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12 (pp. 498–506). Springer International Publishing. ChenXWangXZhangKFungKMThaiTCMooreKMannelRSLiuHZhengBQiuYRecent advances and clinical applications of deep learning in medical image analysisMedical Image Analysis20227910.1016/j.media.2022.102444354728449156578 Gutierrez-GonzalezROrtegaCRoyuelaAZamarronAVertebral compression fractures managed with brace: risk factors for progressionEuropean Spine Journal20233211388538911:STN:280:DC%2BB2snotVSltg%3D%3D10.1007/s00586-023-07905-z37632559 LehmannELRomanoJP Lin Chengchuang (1135_CR52) 2021; 15 B Buehring (1135_CR73) 2010; 21 SA Doerr (1135_CR24) 2022; 52 1135_CR48 T Fawcett (1135_CR65) 2006; 27 X Chen (1135_CR35) 2022; 79 1135_CR87 A Sekuboyina (1135_CR46) 2021; 73 1135_CR86 1135_CR41 M Kolařík (1135_CR49) 2019; 9 1135_CR45 1135_CR44 A Zakharov (1135_CR26) 2023; 83 MELTON III, L.J., Kan, S.H., Frye (1135_CR30) 1989; 129 H Liebl (1135_CR37) 2021; 8 1135_CR83 HJ Lu (1135_CR42) 2019; 169 1135_CR81 JA Hanley (1135_CR66) 1982; 143 1135_CR7 1135_CR6 1135_CR9 1135_CR8 1135_CR16 1135_CR15 1135_CR1 1135_CR3 1135_CR2 S Iyer (1135_CR23) 2023; 38 JE Burns (1135_CR27) 2017; 284 1135_CR10 1135_CR54 C Lin (1135_CR63) 2021; 69 AG Roy (1135_CR59) 2018; 38 1135_CR51 1135_CR14 1135_CR13 1135_CR57 K Kamnitsas (1135_CR80) 2017; 36 1135_CR12 1135_CR56 1135_CR11 1135_CR50 X Li (1135_CR58) 2020; 15 ZA Sejuti (1135_CR43) 2023; 4 EL Lehmann (1135_CR67) 1986 D Alexandru (1135_CR5) 2012; 16 1135_CR29 LA Schobs (1135_CR47) 2022; 42 1135_CR28 N Srivastava (1135_CR55) 2014; 15 CF Njeh (1135_CR82) 1999; 50 1135_CR21 1135_CR20 1135_CR62 1135_CR25 J Han (1135_CR84) 2021; 9 1135_CR22 Michael Power (1135_CR69) 2013; 18 R Smith-Bindman (1135_CR31) 1991; 6 K Suzuki (1135_CR34) 2017; 10 1135_CR61 J McCarthy (1135_CR4) 2016; 94 HK Genant (1135_CR40) 1993; 8 1135_CR60 N Binkley (1135_CR72) 2005; 16 JH Page (1135_CR19) 2023; 7 1135_CR39 H Jia (1135_CR68) 2023; 88 1135_CR38 R Gutierrez-Gonzalez (1135_CR75) 2023; 32 YZ Yan (1135_CR53) 2018; 13 N Tomita (1135_CR17) 2018; 98 1135_CR32 1135_CR76 X Hu (1135_CR18) 2022; 3 Z Gao (1135_CR85) 2023; 83 1135_CR36 P Dey (1135_CR64) 2019; 31 1135_CR79 1135_CR78 1135_CR33 R Aquarius (1135_CR74) 2011; 36 1135_CR77 1135_CR71 1135_CR70 |
References_xml | – reference: Thibault I, Whyne CM, Zhou S, Campbell M, Atenafu EG, Myrehaug S, Soliman H, Lee YK, Ebrahimi H, Yee AJ, Sahgal A. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography-Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81. Epub 2016/11/16. https://doi.org/10.1016/j.ijrobp.2016.09.029. PubMed PMID: 27843032. – reference: Lau E, Ong K, Kurtz S, Schmier J, Edidin A. Mortality following the diagnosis of a vertebral compression fracture in the Medicare population. J Bone Joint Surg Am. 2008;90(7):1479–86. Epub 2008/07/03. https://doi.org/10.2106/jbjs.G.00675. PubMed PMID: 18594096. – reference: IyerSBlairAWhiteCDawesLMosesDSowmyaAVertebral compression fracture detection using imitation learning, patch based convolutional neural networks and majority votingInformatics in Medicine Unlocked20233810.1016/j.imu.2023.101238 – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingThe journal of machine learning research201415119291958 – reference: Zhang, J., Liu, T. and Tao, D., 2023. Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems. – reference: SuzukiKOverview of deep learning in medical imagingRadiological physics and technology201710325727310.1007/s12194-017-0406-528689314 – reference: Krogh, A. and Hertz, J., 1991. A simple weight decay can improve generalization. Advances in neural information processing systems, 4. – reference: HanleyJAMcNeilBJThe meaning and use of the area under a receiver operating characteristic (ROC) curveRadiology1982143129361:STN:280:DyaL387ltFyksQ%3D%3D10.1148/radiology.143.1.70637477063747 – reference: O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V., Krpalkova, L., Riordan, D. and Walsh, J., 2020. Deep learning vs. traditional computer vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1 (pp. 128–144). Springer International Publishing. – reference: BuehringBKruegerDChecovichMGemarDVallarta-AstNGenantHKBinkleyNVertebral fracture assessment: impact of instrument and readerOsteoporosis international2010214874941:STN:280:DC%2BC3c%2FovFCqsg%3D%3D10.1007/s00198-009-0972-419506794 – reference: Gao, Z., Puttapirat, P., Shi, J. and Li, C., 2020. Renal cell carcinoma detection and subtyping with minimal point-based annotation in whole-slide images. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23 (pp. 439–448). Springer International Publishing. – reference: He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). – reference: Han, X., Zhai, Y., Yu, Z., Peng, T. and Zhang, X.Y., 2021. Detecting extremely small lesions in mouse brain MRI with point annotations via multi-task learning. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12 (pp. 498–506). Springer International Publishing. – reference: JiaHSimpsonSSathishVCurranBPMaciasAAWatermanRSGabrielRADevelopment and benchmarking of machine learning models to classify patients suitable for outpatient lower extremity joint arthroplastyJournal of Clinical Anesthesia20238810.1016/j.jclinane.2023.11114737201387 – reference: Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251–1258). – reference: Smith-BindmanRCummingsSRSteigerPGenantHKA comparison of morphometric definitions of vertebral fractureJournal of Bone and Mineral Research19916125341:STN:280:DyaK3M3mtlKrug%3D%3D10.1002/jbmr.56500601062048427 – reference: FawcettTAn introduction to ROC analysisPattern recognition letters200627886187410.1016/j.patrec.2005.10.010 – reference: GaoZHongBLiYZhangXWuJWangCZhangXGongTZhengYMengDLiCA semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide imagesMedical Image Analysis20238310.1016/j.media.2022.10265236327654 – reference: Eschler, A., Ender, S.A., Ulmar, B., Herlyn, P., Mittlmeier, T. and Gradl, G., 2014. Cementless fixation of osteoporotic VCFs using titanium mesh implants (OsseoFix): preliminary results. BioMed Research International, 2014. – reference: AquariusRHommingaJVerdonschotNTanckEThe fracture risk of adjacent vertebrae is increased by the changed loading direction after a wedge fractureSpine2011366E408E41210.1097/BRS.0b013e3181f0f72621224753 – reference: Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J. 2006;6(5):479–87. Epub 2006/08/29. https://doi.org/10.1016/j.spinee.2006.04.013. PubMed PMID: 16934715. – reference: ChengchuangLinChunShanGansenZhaoReview of image data augmentation in computer visionJournal of Frontiers of Computer Science & Technology2021154583 – reference: YanYZLiQPWuCCPanXXShaoZXChenSQWangKChenXBWangXYRate of presence of 11 thoracic vertebrae and 6 lumbar vertebrae in asymptomatic Chinese adult volunteersJournal of Orthopaedic Surgery and Research20181311610.1186/s13018-018-0835-9 – reference: Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556. – reference: Bukas, Christina, Bailiang Jian, Luis Francisco Rodríguez Venegas, Francesca De Benetti, Sebastian Ruehling, Anjany Sekuboyina, Jens Gempt et al. "Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 529–539. Springer, Cham, 2021. – reference: AlexandruDSoWEvaluation and management of vertebral compression fracturesThe Permanente Journal20121644610.7812/TPP/12-037232511173523935 – reference: Wang, Y., Yao, J., Burns, J.E. and Summers, R., 2016, April. Osteoporotic and neoplastic compression fracture classification on longitudinal CT. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1181–1184). IEEE. – reference: Huynh, T.M., Nguyen, C.D., Nguyen, K.N., Bui, T. and Truong, S.Q., 2022, March. CapNeXt: Unifying Capsule And Resnext For Medical Image Segmentation. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE. – reference: Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." In International Conference on Machine Learning, pp. 448–456. PMLR, 2015. – reference: BurnsJEYaoJSummersRMVertebral body compression fractures and bone density: automated detection and classification on CT imagesRadiology2017284378879710.1148/radiol.201716210028301777 – reference: SekuboyinaAHusseiniMEBayatALöfflerMLieblHLiHTettehGKukačkaJPayerCŠternDUrschlerMVerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT imagesMedical image analysis20217310.1016/j.media.2021.10216634340104 – reference: Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Schedit-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res. 2002;17(4):716–24. Epub 2002/03/29. https://doi.org/10.1359/jbmr.2002.17.4.716. PubMed PMID: 11918229. – reference: Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. – reference: LinCZhaoGYinAYangZGuoLChenHZhaoLLiSLuoHMaZA novel chromosome cluster types identification method using ResNeXt WSL modelMedical Image Analysis20216910.1016/j.media.2020.10194333388457 – reference: NjehCFFuerstTHansDBlakeGMGenantHKRadiation exposure in bone mineral density assessmentApplied Radiation and Isotopes19995012152361:CAS:528:DyaK1MXnsVSntA%3D%3D10.1016/S0969-8043(98)00026-810028639 – reference: Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E. Risk of new vertebral fracture in the year following a fracture. Jama. 2001;285(3):320–3. Epub 2001/02/15. https://doi.org/10.1001/jama.285.3.320. PubMed PMID: 11176842. – reference: DoerrSAWeber-LevineCHershAMAwosikaTJudyBJinYRajDLiuALubelskiDJonesCKSairHIAutomated prediction of the Thoracolumbar Injury Classification and Severity Score from CT using a novel deep learning algorithmNeurosurgical focus2022524E510.3171/2022.1.FOCUS2174535364582 – reference: Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). pp. 565–571. IEEE – reference: TomitaNCheungYYHassanpourSDeep neural networks for automatic detection of osteoporotic vertebral fractures on CT scansComputers in biology and medicine20189881510.1016/j.compbiomed.2018.05.01129758455 – reference: Zhang YL, Shi LT, Tang PF, Sun ZJ, Wang YH. Correlation analysis of osteoporotic vertebral compression fractures and spinal sagittal imbalance. Orthopade. 2017;46(3):249–55. Epub 2017/01/25. https://doi.org/10.1007/s00132-016-3359-1. PubMed PMID: 28116458. – reference: MELTON III, L.J., Kan, S.H., Frye, M.A., Wahner, H.W., O'fallon, W.M. and Riggs, B.L. Epidemiology of vertebral fractures in womenAmerican journal of epidemiology198912951000101110.1093/oxfordjournals.aje.a115204 – reference: Gutierrez-GonzalezROrtegaCRoyuelaAZamarronAVertebral compression fractures managed with brace: risk factors for progressionEuropean Spine Journal20233211388538911:STN:280:DC%2BB2snotVSltg%3D%3D10.1007/s00586-023-07905-z37632559 – reference: SejutiZAIslamMSA hybrid CNN–KNN approach for identification of COVID-19 with 5-fold cross validationSensors International2023410.1016/j.sintl.2023.100229367429939886434 – reference: Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – reference: Yadav, S. and Shukla, S., 2016, February. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In 2016 IEEE 6th International conference on advanced computing (IACC) (pp. 78–83). IEEE. – reference: Iyer, S., Sowmya, A., Blair, A., White, C., Dawes, L. and Moses, D., 2020, April. A novel approach to vertebral compression fracture detection using imitation learning and patch based convolutional neural network. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 726–730). IEEE. – reference: McCarthyJDavisADiagnosis and Management of Vertebral Compression FracturesAm Fam Physician.2016941445027386723Epub 2016/07/09 PubMed PMID: 27386723 – reference: Löffler, M.T., Sekuboyina, A., Jacob, A., Grau, A.L., Scharr, A., El Husseini, M., Kallweit, M., Zimmer, C., Baum, T. and Kirschke, J.S., 2020. A vertebral segmentation dataset with fracture grading. Radiology: Artificial Intelligence, 2(4), p.e190138. – reference: Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho, James C. Gee, and Guido Gerig. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006 Jul 1;31(3):1116–28. – reference: BinkleyNKruegerDGangnonRGenantHKDreznerMKLateral vertebral assessment: a valuable technique to detect clinically significant vertebral fracturesOsteoporosis international2005161513151810.1007/s00198-005-1891-715834512 – reference: HanJWangXLiuWContextual Prior Constrained Deep Networks for Mitosis Detection With Point AnnotationsIEEE Access20219719547196710.1109/ACCESS.2021.3079215 – reference: Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol. 2004;183(4):949–58. Epub 2004/09/24. https://doi.org/10.2214/ajr.183.4.1830949. PubMed PMID: 15385286. – reference: Hoyt D, Urits I, Orhurhu V, Orhurhu MS, Callan J, Powell J, Manchikanti L, Kaye AD, Kaye RJ, Viswanath O. Current Concepts in the Management of Vertebral Compression Fractures. Curr Pain Headache Rep. 2020;24(5):16. Epub 2020/03/22. https://doi.org/10.1007/s11916-020-00849-9. PubMed PMID: 32198571. – reference: LiXShenXZhouYWangXLiTQClassification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)PloS one20201551:CAS:528:DC%2BB3cXhtVGjtL7M10.1371/journal.pone.0232127323651427198071 – reference: RoyAGNavabNWachingerCRecalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocksIEEE transactions on medical imaging201838254054910.1109/TMI.2018.2867261 – reference: Pisov, M., Kondratenko, V., Zakharov, A., Petraikin, A., Gombolevskiy, V., Morozov, S. and Belyaev, M., 2020. Keypoints localization for joint vertebra detection and fracture severity quantification. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23 (pp. 723–732). Springer International Publishing. – reference: Nicolaes, J., Raeymaeckers, S., Robben, D., Wilms, G., Vandermeulen, D., Libanati, C. and Debois, M., 2020. Detection of vertebral fractures in CT using 3D convolutional neural networks. In Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings 6 (pp. 3–14). Springer International Publishing. – reference: Donnally IC, DiPompeo CM, Varacallo M. Vertebral Compression Fractures. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021. – reference: DeyPGopalMPradhanPOn robustness of radial basis function network with input perturbationNeural Comput & Applic20193152353710.1007/s00521-017-3086-5 – reference: Garg B, Dixit V, Batra S, Malhotra R, Sharan A. Non-surgical management of acute osteoporotic vertebral compression fracture: A review. J Clin Orthop Trauma. 2017;8(2):131–8. Epub 2017/02/07. https://doi.org/10.1016/j.jcot.2017.02.001. PubMed PMID: 28720988. – reference: Ghosh, S., Raja'S, A., Chaudhary, V. and Dhillon, G., 2011, March. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In Medical imaging 2011: computer-aided diagnosis (Vol. 7963, pp. 21–29). SPIE. – reference: PowerMichaelFellGregWrightMichaelPrinciples for high-quality, high-value testingBMJ Evidence-Based Medicine201318151010.1136/eb-2012-100645 – reference: Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T., Boll, D.T., Cyriac, J., Yang, S. and Bach, M., 2023. Totalsegmentator: Robust segmentation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence, 5(5). – reference: Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. – reference: Wáng YXJ, Santiago FR, Deng M, Nogueira-Barbosa MH. Identifying osteoporotic vertebral endplate and cortex fractures. Quant Imaging Med Surg. 2017;7(5):555–91. https://doi.org/10.21037/qims.2017.10.05. PubMed PMID: 29184768. – reference: Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708). – reference: Bar, A., Wolf, L., Amitai, O.B., Toledano, E. and Elnekave, E., 2017, March. Compression fractures detection on CT. In Medical imaging 2017: computer-aided diagnosis (Vol. 10134, pp. 1036–1043). SPIE. – reference: Suri, A., Jones, B.C., Ng, G., Anabaraonye, N., Beyrer, P., Domi, A., Choi, G., Tang, S., Terry, A., Leichner, T. and Fathali, I., 2021. Vertebral deformity measurements at MRI, CT, and radiography using deep learning. Radiology: Artificial Intelligence, 4(1), p.e210015. – reference: ZakharovAPisovMBukharaevAPetraikinAMorozovSGombolevskiyVBelyaevMInterpretable vertebral fracture quantification via anchor-free landmarks localizationMedical Image Analysis20238310.1016/j.media.2022.10264636279768 – reference: LuHJZouNJacobsRAfflerbachBLuXGMorganDError assessment and optimal cross-validation approaches in machine learning applied to impurity diffusionComputational Materials Science201916910.1016/j.commatsci.2019.06.010 – reference: HuXZhuYQianYHuangRYinSZengZXieNMaBYuYZhaoQWuZPrediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learningView202236202200121:CAS:528:DC%2BB38Xit1entbbE10.1002/VIW.20220012 – reference: SchobsLASwiftAJLuHUncertainty estimation for heatmap-based landmark localizationIEEE Transactions on Medical Imaging20224241021103410.1109/TMI.2022.3222730 – reference: Loshchilov, I. and Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983. – reference: Chettrit, D., Meir, T., Lebel, H., Orlovsky, M., Gordon, R., Akselrod-Ballin, A. and Bar, A., 2020. 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23 (pp. 743–752). Springer International Publishing. – reference: Yilmaz, E.B., Buerger, C., Fricke, T., Sagar, M.M.R., Peña, J., Lorenz, C., Glüer, C.C. and Meyer, C., 2021. Automated deep learning-based detection of osteoporotic fractures in CT images. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12 (pp. 376–385). Springer International Publishing. – reference: ChenXWangXZhangKFungKMThaiTCMooreKMannelRSLiuHZhengBQiuYRecent advances and clinical applications of deep learning in medical image analysisMedical Image Analysis20227910.1016/j.media.2022.102444354728449156578 – reference: KolaříkMBurgetRUherVŘíhaKDuttaMKOptimized high resolution 3D dense-U-Net network for brain and spine segmentationApplied Sciences20199340410.3390/app9030404 – reference: GenantHKWuCYvan KuijkCNevittMCVertebral fracture assessment using a semiquantitative techniqueJ Bone Miner Res199389113711481:STN:280:DyaK2c%2FlsFyhuw%3D%3D10.1002/jbmr.56500809158237484 – reference: Hu, J., Shen, L. and Sun, G., 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141). – reference: LieblHSchinzDSekuboyinaAMalaguttiLLöfflerMTBayatAEl HusseiniMTettehGGrauKNiederreiterEBaumTA computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner dataScientific data2021811710.1038/s41597-021-01060-0 – reference: PageJHMoserFGMayaMMPrasadRPressmanBDOpportunistic CT screening—machine learning algorithm identifies majority of vertebral compression fractures: a cohort studyJBMR plus20237810.1002/jbm4.107783761430610443072 – reference: Sekuboyina, Anjany, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, and Bjoern H. Menze. "Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–657. Springer, Cham, 2018. – reference: LehmannELRomanoJPCasellaGTesting statistical hypotheses1986New YorkSpringer10.1007/978-1-4757-1923-9 – reference: Keicher, M., Atad, M., Schinz, D., Gersing, A.S., Foreman, S.C., Goller, S.S., Weissinger, J., Rischewski, J., Dietrich, A.S., Wiestler, B. and Kirschke, J.S., 2023. Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading. arXiv preprintarXiv:2303.12031. – reference: Chou S, Grover A, LeBoff MS. New Osteoporotic/Vertebral Compression Fractures. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext. South Dartmouth (MA)2000. – reference: KamnitsasKLedigCNewcombeVFSimpsonJPKaneADMenonDKRueckertDGlockerBEfficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentationMedical Image Analysis201736617810.1016/j.media.2016.10.00427865153 – reference: Wong CC, McGirt MJ. Vertebral compression fractures: a review of current management and multimodal therapy. J Multidiscip Healthc. 2013;6:205–14. Epub 2013/07/03. https://doi.org/10.2147/jmdh.S31659. PubMed PMID: 23818797; PMCID: PMC3693826. – ident: 1135_CR22 doi: 10.1109/ISBI45749.2020.9098714 – ident: 1135_CR45 doi: 10.1007/978-3-030-87202-1_51 – ident: 1135_CR51 doi: 10.1007/978-3-030-00937-3_74 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 1135_CR65 publication-title: Pattern recognition letters doi: 10.1016/j.patrec.2005.10.010 – volume: 143 start-page: 29 issue: 1 year: 1982 ident: 1135_CR66 publication-title: Radiology doi: 10.1148/radiology.143.1.7063747 – ident: 1135_CR70 doi: 10.1148/ryai.230024 – volume: 31 start-page: 523 year: 2019 ident: 1135_CR64 publication-title: Neural Comput & Applic doi: 10.1007/s00521-017-3086-5 – ident: 1135_CR20 – ident: 1135_CR8 doi: 10.1016/j.spinee.2006.04.013 – volume: 32 start-page: 3885 issue: 11 year: 2023 ident: 1135_CR75 publication-title: European Spine Journal doi: 10.1007/s00586-023-07905-z – ident: 1135_CR6 doi: 10.1007/s00132-016-3359-1 – volume: 10 start-page: 257 issue: 3 year: 2017 ident: 1135_CR34 publication-title: Radiological physics and technology doi: 10.1007/s12194-017-0406-5 – ident: 1135_CR54 doi: 10.1109/3DV.2016.79 – ident: 1135_CR61 doi: 10.1109/CVPR.2018.00745 – volume: 15 issue: 5 year: 2020 ident: 1135_CR58 publication-title: PloS one doi: 10.1371/journal.pone.0232127 – ident: 1135_CR60 doi: 10.1109/CVPR.2017.243 – ident: 1135_CR16 doi: 10.1117/12.2249635 – volume: 98 start-page: 8 year: 2018 ident: 1135_CR17 publication-title: Computers in biology and medicine doi: 10.1016/j.compbiomed.2018.05.011 – volume: 38 start-page: 540 issue: 2 year: 2018 ident: 1135_CR59 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2018.2867261 – volume: 6 start-page: 25 issue: 1 year: 1991 ident: 1135_CR31 publication-title: Journal of Bone and Mineral Research doi: 10.1002/jbmr.5650060106 – ident: 1135_CR83 doi: 10.1148/ryai.2021210015 – volume: 3 start-page: 20220012 issue: 6 year: 2022 ident: 1135_CR18 publication-title: View doi: 10.1002/VIW.20220012 – ident: 1135_CR81 – ident: 1135_CR3 doi: 10.2147/jmdh.S31659 – volume-title: Testing statistical hypotheses year: 1986 ident: 1135_CR67 doi: 10.1007/978-1-4757-1923-9 – volume: 50 start-page: 215 issue: 1 year: 1999 ident: 1135_CR82 publication-title: Applied Radiation and Isotopes doi: 10.1016/S0969-8043(98)00026-8 – volume: 4 year: 2023 ident: 1135_CR43 publication-title: Sensors International doi: 10.1016/j.sintl.2023.100229 – volume: 42 start-page: 1021 issue: 4 year: 2022 ident: 1135_CR47 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2022.3222730 – ident: 1135_CR57 – volume: 69 year: 2021 ident: 1135_CR63 publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101943 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 1135_CR37 publication-title: Scientific data doi: 10.1038/s41597-021-01060-0 – ident: 1135_CR29 doi: 10.21037/qims.2017.10.05 – ident: 1135_CR79 doi: 10.1109/CVPR.2017.195 – volume: 9 start-page: 71954 year: 2021 ident: 1135_CR84 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3079215 – ident: 1135_CR87 doi: 10.1007/978-3-030-87589-3_51 – volume: 73 year: 2021 ident: 1135_CR46 publication-title: Medical image analysis doi: 10.1016/j.media.2021.102166 – ident: 1135_CR32 doi: 10.1117/12.878055 – volume: 16 start-page: 46 issue: 4 year: 2012 ident: 1135_CR5 publication-title: The Permanente Journal doi: 10.7812/TPP/12-037 – ident: 1135_CR39 doi: 10.1148/ryai.2020190138 – ident: 1135_CR62 doi: 10.1109/ISBI52829.2022.9761649 – ident: 1135_CR21 doi: 10.1007/978-3-030-39752-4_1 – volume: 284 start-page: 788 issue: 3 year: 2017 ident: 1135_CR27 publication-title: Radiology doi: 10.1148/radiol.2017162100 – ident: 1135_CR56 – ident: 1135_CR10 – ident: 1135_CR25 doi: 10.1007/978-3-030-59725-2_70 – ident: 1135_CR2 – volume: 16 start-page: 1513 year: 2005 ident: 1135_CR72 publication-title: Osteoporosis international doi: 10.1007/s00198-005-1891-7 – ident: 1135_CR14 doi: 10.2214/ajr.183.4.1830949 – volume: 83 year: 2023 ident: 1135_CR26 publication-title: Medical Image Analysis doi: 10.1016/j.media.2022.102646 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 1135_CR55 publication-title: The journal of machine learning research – ident: 1135_CR77 – volume: 18 start-page: 5 issue: 1 year: 2013 ident: 1135_CR69 publication-title: BMJ Evidence-Based Medicine doi: 10.1136/eb-2012-100645 – ident: 1135_CR78 doi: 10.1109/CVPR.2016.90 – volume: 94 start-page: 44 issue: 1 year: 2016 ident: 1135_CR4 publication-title: Am Fam Physician. – volume: 21 start-page: 487 year: 2010 ident: 1135_CR73 publication-title: Osteoporosis international doi: 10.1007/s00198-009-0972-4 – volume: 88 year: 2023 ident: 1135_CR68 publication-title: Journal of Clinical Anesthesia doi: 10.1016/j.jclinane.2023.111147 – ident: 1135_CR36 doi: 10.1007/978-3-030-17795-9_10 – ident: 1135_CR7 doi: 10.1016/j.ijrobp.2016.09.029 – ident: 1135_CR48 doi: 10.1007/978-3-319-46723-8_49 – volume: 9 start-page: 404 issue: 3 year: 2019 ident: 1135_CR49 publication-title: Applied Sciences doi: 10.3390/app9030404 – ident: 1135_CR76 doi: 10.1155/2014/853897 – ident: 1135_CR33 doi: 10.1109/ISBI.2016.7493477 – volume: 8 start-page: 1137 issue: 9 year: 1993 ident: 1135_CR40 publication-title: J Bone Miner Res doi: 10.1002/jbmr.5650080915 – ident: 1135_CR71 doi: 10.1109/TNNLS.2023.3297113 – volume: 36 start-page: 61 year: 2017 ident: 1135_CR80 publication-title: Medical Image Analysis doi: 10.1016/j.media.2016.10.004 – ident: 1135_CR41 doi: 10.1109/IACC.2016.25 – ident: 1135_CR12 doi: 10.2106/jbjs.G.00675 – volume: 13 start-page: 1 issue: 1 year: 2018 ident: 1135_CR53 publication-title: Journal of Orthopaedic Surgery and Research doi: 10.1186/s13018-018-0835-9 – ident: 1135_CR9 doi: 10.1359/jbmr.2002.17.4.716 – ident: 1135_CR44 – volume: 36 start-page: E408 issue: 6 year: 2011 ident: 1135_CR74 publication-title: Spine doi: 10.1097/BRS.0b013e3181f0f726 – volume: 52 start-page: E5 issue: 4 year: 2022 ident: 1135_CR24 publication-title: Neurosurgical focus doi: 10.3171/2022.1.FOCUS21745 – volume: 129 start-page: 1000 issue: 5 year: 1989 ident: 1135_CR30 publication-title: American journal of epidemiology doi: 10.1093/oxfordjournals.aje.a115204 – volume: 169 year: 2019 ident: 1135_CR42 publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2019.06.010 – ident: 1135_CR13 doi: 10.1001/jama.285.3.320 – ident: 1135_CR28 doi: 10.1007/978-3-030-87589-3_39 – ident: 1135_CR38 doi: 10.1016/j.neuroimage.2006.01.015 – ident: 1135_CR1 doi: 10.1007/s11916-020-00849-9 – ident: 1135_CR11 doi: 10.1016/j.jcot.2017.02.001 – volume: 15 start-page: 583 issue: 4 year: 2021 ident: 1135_CR52 publication-title: Journal of Frontiers of Computer Science & Technology – ident: 1135_CR15 doi: 10.1007/978-3-030-59725-2_72 – ident: 1135_CR50 – volume: 79 year: 2022 ident: 1135_CR35 publication-title: Medical Image Analysis doi: 10.1016/j.media.2022.102444 – volume: 7 issue: 8 year: 2023 ident: 1135_CR19 publication-title: JBMR plus doi: 10.1002/jbm4.10778 – ident: 1135_CR86 doi: 10.1007/978-3-030-59722-1_42 – volume: 83 year: 2023 ident: 1135_CR85 publication-title: Medical Image Analysis doi: 10.1016/j.media.2022.102652 – volume: 38 year: 2023 ident: 1135_CR23 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2023.101238 |
SSID | ssj0003313360 ssj0017574 |
Score | 2.3792834 |
Snippet | Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2428 |
SubjectTerms | Automation Body height Bone diseases Bone imaging Compression Computed tomography Deep learning Fractures Image segmentation Imaging Injury analysis Localization Medical imaging Medicine Medicine & Public Health Osteoporosis Planet detection Radiology Segmentation Sensitivity Spine Vertebrae |
Title | An Automated Vertebrae Localization, Segmentation, and Osteoporotic Compression Fracture Detection Pipeline for Computed Tomographic Imaging |
URI | https://link.springer.com/article/10.1007/s10278-024-01135-5 https://www.ncbi.nlm.nih.gov/pubmed/38717516 https://www.proquest.com/docview/3121798559 https://www.proquest.com/docview/3052595244 https://pubmed.ncbi.nlm.nih.gov/PMC11522205 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF41Rar6AOIsgVItEm-JIx-7Ph5DOcoRiFCLwpO19q6LRWJHwXnpb-BHM3v4SEIR9MVJ1utzvszOzs58g9ALJ0yczCWh5bOIWCSgicVYklmUEz8JWCKcUCYKTz75Zxfk_YzO9nq3O1FL6yoZpVd_zCu5iVShDeQqs2T_Q7LNSaEBvoN8YQsShu0_yXgsfRVVCUYnmI1fxaqSq8Bi8FGOTya_Unk3xeXCpBgVdbTmZ5BuCbZ3KQlbpVLQ8bCFtGT1qsIrUQldR3yaL4WyRmVIoikDIQNwFpruGk7wbqGKHV1j6eZ678CQtCpi6LzYWdb_Jg3bl86c68-rwbSsTNkQ1WLPf7QRP19Kvsov19r_rStPDz6MmiFmrdCZLxpfN7tiIBDNl7BiXV-HS5qouU1f55a3tHXYtcrTjYjMLtFJ1SPRbdPEG7X215QzBuW0q8qJyVoX5qemk9oZcuw6BduVXMWujOlxPGrRbmeAzXKhQOjBBDWgzhb7t7InppNTMM9dmfncQ7dcmPbYHe-TtCw8z_E8lfjePJ7JAzPZoFu3cIgO6uttml07c6ndkOCtuABlbp3fRXcMevBYg_4e2hPFfXQwMZB5gH6NC9xgHzfYx13sD3EX-UMMuMdd3OMO7nGNe9zgHte4xwBbXOMed3CPDe4foos3r89PzyxTWcRKSRBUFg9CHmY0ImC_MR54BN42p8znSUSzMCVpQgnnts2Z61ORwlsPOKhcL2WcEddOvUdovygL8Rhhj2VBErlhGIUJcQhN_CiFk2UOydLMzWgfOfWLj1NDuy-rv8zjljBcyi0GucVKbjEcM2iOWWrSmb_2Pq7lGRvl9DP2HFdSEVIa9dHzZjcMHXI9kBWiXEMfWcMyooDsPjrS4m8uV-Omj8INYDQdJC395p4i_67o6WsQ99GwxlB7X9c_xpObX-kpOmy1xTHar1Zr8QzmClVygnpvZ86J-hv9Bqj5FrI |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+Vertebrae+Localization%2C+Segmentation%2C+and+Osteoporotic+Compression+Fracture+Detection+Pipeline+for+Computed+Tomographic+Imaging&rft.jtitle=Journal+of+imaging+informatics+in+medicine&rft.au=Y%C4%B1ld%C4%B1z+Potter%2C+%C4%B0lkay&rft.au=Rodriguez%2C+Edward+K.&rft.au=Wu%2C+Jim&rft.au=Nazarian%2C+Ara&rft.date=2024-10-01&rft.pub=Springer+International+Publishing&rft.issn=2948-2925&rft.eissn=2948-2933&rft.volume=37&rft.issue=5&rft.spage=2428&rft.epage=2443&rft_id=info:doi/10.1007%2Fs10278-024-01135-5&rft_id=info%3Apmid%2F38717516&rft.externalDocID=PMC11522205 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2933&client=summon |