An Automated Vertebrae Localization, Segmentation, and Osteoporotic Compression Fracture Detection Pipeline for Computed Tomographic Imaging

Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an...

Full description

Saved in:
Bibliographic Details
Published inJournal of digital imaging Vol. 37; no. 5; pp. 2428 - 2443
Main Authors Yıldız Potter, İlkay, Rodriguez, Edward K., Wu, Jim, Nazarian, Ara, Vaziri, Ashkan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
DOI10.1007/s10278-024-01135-5

Cover

Loading…
Abstract Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity ( p -value = 0.028).
AbstractList Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028).
Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity ( p -value = 0.028).
Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028).Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic fracture. Approximately 700,000 osteoporotic VCFs are diagnosed annually in the USA alone, resulting in an annual economic burden of ~$13.8B. With an aging population, the rate of osteoporotic VCFs and their associated burdens are expected to rise. Those burdens include pain, functional impairment, and increased medical expenditure. Therefore, it is of utmost importance to develop an analytical tool to aid in the identification of VCFs. Computed Tomography (CT) imaging is commonly used to detect occult injuries. Unlike the existing VCF detection approaches based on CT, the standard clinical criteria for determining VCF relies on the shape of vertebrae, such as loss of vertebral body height. We developed a novel automated vertebrae localization, segmentation, and osteoporotic VCF detection pipeline for CT scans using state-of-the-art deep learning models to bridge this gap. To do so, we employed a publicly available dataset of spine CT scans with 325 scans annotated for segmentation, 126 of which also graded for VCF (81 with VCFs and 45 without VCFs). Our approach attained 96% sensitivity and 81% specificity in detecting VCF at the vertebral-level, and 100% accuracy at the subject-level, outperforming deep learning counterparts tested for VCF detection without segmentation. Crucially, we showed that adding predicted vertebrae segments as inputs significantly improved VCF detection at both vertebral and subject levels by up to 14% Sensitivity and 20% Specificity (p-value = 0.028).
Author Nazarian, Ara
Vaziri, Ashkan
Rodriguez, Edward K.
Wu, Jim
Yıldız Potter, İlkay
Author_xml – sequence: 1
  givenname: İlkay
  orcidid: 0000-0002-2827-7672
  surname: Yıldız Potter
  fullname: Yıldız Potter, İlkay
  email: ilkay.yildiz@biosensics.com
  organization: BioSensics, LLC
– sequence: 2
  givenname: Edward K.
  surname: Rodriguez
  fullname: Rodriguez, Edward K.
  organization: Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School
– sequence: 3
  givenname: Jim
  surname: Wu
  fullname: Wu, Jim
  organization: Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School
– sequence: 4
  givenname: Ara
  surname: Nazarian
  fullname: Nazarian, Ara
  organization: Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Orthopaedics Surgery, Yerevan State University
– sequence: 5
  givenname: Ashkan
  surname: Vaziri
  fullname: Vaziri, Ashkan
  organization: BioSensics, LLC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38717516$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1u1DAYtFARLaUvwAFF4sKBgH_iODmh1UKh0kpFonC1vPaX1FViB9tBos_Qh8bbLKX00JNtfTPzzcjzHB047wChlwS_IxiL95FgKpoS06rEhDBe8ifoiLZVU9KWsYN790N0EuMVxpgxwliNn6FD1ggiOKmP0M3KFas5-VElMMUPCAm2QUGx8VoN9lol693b4hv0I7i0fylnivOYwE8--GR1sfbjFCDGPC1Og9JpDlB8hAR6Ryi-2gkG66DofLjFzrtdF370fVDTZRY4G1VvXf8CPe3UEOFkfx6j76efLtZfys3557P1alPqSohUGtGYpuNthVmtjGAVFcJwVZtty7tGV3rLK2MwNorWHHQOLQwow7QyqqJYs2P0YdGd5u0IRudoQQ1yCnZU4bf0ysr_J85eyt7_koRwSinmWeHNXiH4nzPEJEcbNQyDcuDnKBnmlLecVlWGvn4AvfJzcDmfZIQS0Tactxn16r6lOy9_fyoD6ALQwccYoLuDECx3jZBLI2RuhLxthNzZbB6QtF1-Mceyw-NUtlBj3uN6CP9sP8L6A8d5zWQ
CitedBy_id crossref_primary_10_1007_s10278_024_01373_7
crossref_primary_10_3389_fmed_2024_1485095
Cites_doi 10.1109/ISBI45749.2020.9098714
10.1007/978-3-030-87202-1_51
10.1007/978-3-030-00937-3_74
10.1016/j.patrec.2005.10.010
10.1148/radiology.143.1.7063747
10.1148/ryai.230024
10.1007/s00521-017-3086-5
10.1016/j.spinee.2006.04.013
10.1007/s00586-023-07905-z
10.1007/s00132-016-3359-1
10.1007/s12194-017-0406-5
10.1109/3DV.2016.79
10.1109/CVPR.2018.00745
10.1371/journal.pone.0232127
10.1109/CVPR.2017.243
10.1117/12.2249635
10.1016/j.compbiomed.2018.05.011
10.1109/TMI.2018.2867261
10.1002/jbmr.5650060106
10.1148/ryai.2021210015
10.1002/VIW.20220012
10.2147/jmdh.S31659
10.1007/978-1-4757-1923-9
10.1016/S0969-8043(98)00026-8
10.1016/j.sintl.2023.100229
10.1109/TMI.2022.3222730
10.1016/j.media.2020.101943
10.1038/s41597-021-01060-0
10.21037/qims.2017.10.05
10.1109/CVPR.2017.195
10.1109/ACCESS.2021.3079215
10.1007/978-3-030-87589-3_51
10.1016/j.media.2021.102166
10.1117/12.878055
10.7812/TPP/12-037
10.1148/ryai.2020190138
10.1109/ISBI52829.2022.9761649
10.1007/978-3-030-39752-4_1
10.1148/radiol.2017162100
10.1007/978-3-030-59725-2_70
10.1007/s00198-005-1891-7
10.2214/ajr.183.4.1830949
10.1016/j.media.2022.102646
10.1136/eb-2012-100645
10.1109/CVPR.2016.90
10.1007/s00198-009-0972-4
10.1016/j.jclinane.2023.111147
10.1007/978-3-030-17795-9_10
10.1016/j.ijrobp.2016.09.029
10.1007/978-3-319-46723-8_49
10.3390/app9030404
10.1155/2014/853897
10.1109/ISBI.2016.7493477
10.1002/jbmr.5650080915
10.1109/TNNLS.2023.3297113
10.1016/j.media.2016.10.004
10.1109/IACC.2016.25
10.2106/jbjs.G.00675
10.1186/s13018-018-0835-9
10.1359/jbmr.2002.17.4.716
10.1097/BRS.0b013e3181f0f726
10.3171/2022.1.FOCUS21745
10.1093/oxfordjournals.aje.a115204
10.1016/j.commatsci.2019.06.010
10.1001/jama.285.3.320
10.1007/978-3-030-87589-3_39
10.1016/j.neuroimage.2006.01.015
10.1007/s11916-020-00849-9
10.1016/j.jcot.2017.02.001
10.1007/978-3-030-59725-2_72
10.1016/j.media.2022.102444
10.1002/jbm4.10778
10.1007/978-3-030-59722-1_42
10.1016/j.media.2022.102652
10.1016/j.imu.2023.101238
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024
Copyright_xml – notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
– notice: The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024
DBID AAYXX
CITATION
NPM
7QO
7SC
7TK
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1007/s10278-024-01135-5
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2948-2933
1618-727X
EndPage 2443
ExternalDocumentID PMC11522205
38717516
10_1007_s10278_024_01135_5
Genre Journal Article
GrantInformation_xml – fundername: National Institute on Aging
  grantid: R44AG084327
  funderid: http://dx.doi.org/10.13039/100000049
– fundername: NIA NIH HHS
  grantid: R44AG084327
– fundername: NIA NIH HHS
  grantid: R44 AG084327
GroupedDBID 53G
AAJBT
AAYZH
ABJNI
ACPIV
ALMA_UNASSIGNED_HOLDINGS
BGNMA
DPUIP
EBLON
FIGPU
JZLTJ
M4Y
NU0
PT4
ROL
RPM
RSV
SJYHP
SNE
SOJ
0R~
2JN
AASML
AAYXX
ABAKF
ABDBE
ABFSG
ACAOD
ACSTC
ACZOJ
ADKFA
AEFQL
AEZWR
AFDZB
AFHIU
AHWEU
AIGIU
AIXLP
ATHPR
CITATION
ABRTQ
NPM
---
.4S
.86
.DC
.VR
04C
06C
06D
0VY
1N0
203
29K
29~
2J2
2JY
2KG
2KM
2LR
2~H
30V
36B
4.4
406
408
409
40D
40E
5GY
5RE
5VS
67Z
6NX
6PF
78A
7QO
7RV
7SC
7TK
8FD
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAJKR
AAKDD
AAKPC
AANZL
AAPKM
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ADBBV
ADHHG
ADHIR
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BAWUL
BENPR
BHPHI
BMSDO
BSONS
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DU5
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FNLPD
FR3
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GX1
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
K9.
KDC
KOV
KPH
L7M
LAS
LLZTM
L~C
L~D
MA-
NAPCQ
NB0
NPVJJ
NQJWS
O93
O9I
O9J
OAM
OK1
P2P
P64
P9S
PF0
QOK
QOR
QOS
R89
R9I
RNS
RPX
RRX
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNPRN
SNX
SOHCF
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
7X8
5PM
ID FETCH-LOGICAL-c477t-d78d8f594036ad734277d5a6db95f8c4cb54dd00da265ec1337dead3cada420c3
ISSN 2948-2933
0897-1889
2948-2925
IngestDate Thu Aug 21 18:44:01 EDT 2025
Thu Sep 04 22:19:07 EDT 2025
Sat Aug 16 17:42:59 EDT 2025
Mon Jul 21 06:08:57 EDT 2025
Tue Jul 01 00:58:58 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Deep learning
Osteoporosis
Computed tomography
Vertebral compression fracture
Language English
License 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-d78d8f594036ad734277d5a6db95f8c4cb54dd00da265ec1337dead3cada420c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2827-7672
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11522205
PMID 38717516
PQID 3121798559
PQPubID 34218
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11522205
proquest_miscellaneous_3052595244
proquest_journals_3121798559
pubmed_primary_38717516
crossref_primary_10_1007_s10278_024_01135_5
crossref_citationtrail_10_1007_s10278_024_01135_5
springer_journals_10_1007_s10278_024_01135_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging. Inform. med
PublicationTitleAlternate J Imaging Inform Med
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References KamnitsasKLedigCNewcombeVFSimpsonJPKaneADMenonDKRueckertDGlockerBEfficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentationMedical Image Analysis201736617810.1016/j.media.2016.10.00427865153
LinCZhaoGYinAYangZGuoLChenHZhaoLLiSLuoHMaZA novel chromosome cluster types identification method using ResNeXt WSL modelMedical Image Analysis20216910.1016/j.media.2020.10194333388457
Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251–1258).
Thibault I, Whyne CM, Zhou S, Campbell M, Atenafu EG, Myrehaug S, Soliman H, Lee YK, Ebrahimi H, Yee AJ, Sahgal A. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography-Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81. Epub 2016/11/16. https://doi.org/10.1016/j.ijrobp.2016.09.029. PubMed PMID: 27843032.
SejutiZAIslamMSA hybrid CNN–KNN approach for identification of COVID-19 with 5-fold cross validationSensors International2023410.1016/j.sintl.2023.100229367429939886434
Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016.
Hoyt D, Urits I, Orhurhu V, Orhurhu MS, Callan J, Powell J, Manchikanti L, Kaye AD, Kaye RJ, Viswanath O. Current Concepts in the Management of Vertebral Compression Fractures. Curr Pain Headache Rep. 2020;24(5):16. Epub 2020/03/22. https://doi.org/10.1007/s11916-020-00849-9. PubMed PMID: 32198571.
Wang, Y., Yao, J., Burns, J.E. and Summers, R., 2016, April. Osteoporotic and neoplastic compression fracture classification on longitudinal CT. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1181–1184). IEEE.
Zhang, J., Liu, T. and Tao, D., 2023. Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems.
AquariusRHommingaJVerdonschotNTanckEThe fracture risk of adjacent vertebrae is increased by the changed loading direction after a wedge fractureSpine2011366E408E41210.1097/BRS.0b013e3181f0f72621224753
NjehCFFuerstTHansDBlakeGMGenantHKRadiation exposure in bone mineral density assessmentApplied Radiation and Isotopes19995012152361:CAS:528:DyaK1MXnsVSntA%3D%3D10.1016/S0969-8043(98)00026-810028639
PageJHMoserFGMayaMMPrasadRPressmanBDOpportunistic CT screening—machine learning algorithm identifies majority of vertebral compression fractures: a cohort studyJBMR plus20237810.1002/jbm4.107783761430610443072
BuehringBKruegerDChecovichMGemarDVallarta-AstNGenantHKBinkleyNVertebral fracture assessment: impact of instrument and readerOsteoporosis international2010214874941:STN:280:DC%2BC3c%2FovFCqsg%3D%3D10.1007/s00198-009-0972-419506794
Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J. 2006;6(5):479–87. Epub 2006/08/29. https://doi.org/10.1016/j.spinee.2006.04.013. PubMed PMID: 16934715.
HuXZhuYQianYHuangRYinSZengZXieNMaBYuYZhaoQWuZPrediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learningView202236202200121:CAS:528:DC%2BB38Xit1entbbE10.1002/VIW.20220012
Bukas, Christina, Bailiang Jian, Luis Francisco Rodríguez Venegas, Francesca De Benetti, Sebastian Ruehling, Anjany Sekuboyina, Jens Gempt et al. "Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 529–539. Springer, Cham, 2021.
Ghosh, S., Raja'S, A., Chaudhary, V. and Dhillon, G., 2011, March. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In Medical imaging 2011: computer-aided diagnosis (Vol. 7963, pp. 21–29). SPIE.
Bar, A., Wolf, L., Amitai, O.B., Toledano, E. and Elnekave, E., 2017, March. Compression fractures detection on CT. In Medical imaging 2017: computer-aided diagnosis (Vol. 10134, pp. 1036–1043). SPIE.
PowerMichaelFellGregWrightMichaelPrinciples for high-quality, high-value testingBMJ Evidence-Based Medicine201318151010.1136/eb-2012-100645
AlexandruDSoWEvaluation and management of vertebral compression fracturesThe Permanente Journal20121644610.7812/TPP/12-037232511173523935
ZakharovAPisovMBukharaevAPetraikinAMorozovSGombolevskiyVBelyaevMInterpretable vertebral fracture quantification via anchor-free landmarks localizationMedical Image Analysis20238310.1016/j.media.2022.10264636279768
Löffler, M.T., Sekuboyina, A., Jacob, A., Grau, A.L., Scharr, A., El Husseini, M., Kallweit, M., Zimmer, C., Baum, T. and Kirschke, J.S., 2020. A vertebral segmentation dataset with fracture grading. Radiology: Artificial Intelligence, 2(4), p.e190138.
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingThe journal of machine learning research201415119291958
Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).
DeyPGopalMPradhanPOn robustness of radial basis function network with input perturbationNeural Comput & Applic20193152353710.1007/s00521-017-3086-5
Hu, J., Shen, L. and Sun, G., 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).
LiXShenXZhouYWangXLiTQClassification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)PloS one20201551:CAS:528:DC%2BB3cXhtVGjtL7M10.1371/journal.pone.0232127323651427198071
Chettrit, D., Meir, T., Lebel, H., Orlovsky, M., Gordon, R., Akselrod-Ballin, A. and Bar, A., 2020. 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23 (pp. 743–752). Springer International Publishing.
Loshchilov, I. and Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.
FawcettTAn introduction to ROC analysisPattern recognition letters200627886187410.1016/j.patrec.2005.10.010
Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556.
Iyer, S., Sowmya, A., Blair, A., White, C., Dawes, L. and Moses, D., 2020, April. A novel approach to vertebral compression fracture detection using imitation learning and patch based convolutional neural network. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 726–730). IEEE.
Krogh, A. and Hertz, J., 1991. A simple weight decay can improve generalization. Advances in neural information processing systems, 4.
BinkleyNKruegerDGangnonRGenantHKDreznerMKLateral vertebral assessment: a valuable technique to detect clinically significant vertebral fracturesOsteoporosis international2005161513151810.1007/s00198-005-1891-715834512
JiaHSimpsonSSathishVCurranBPMaciasAAWatermanRSGabrielRADevelopment and benchmarking of machine learning models to classify patients suitable for outpatient lower extremity joint arthroplastyJournal of Clinical Anesthesia20238810.1016/j.jclinane.2023.11114737201387
Gao, Z., Puttapirat, P., Shi, J. and Li, C., 2020. Renal cell carcinoma detection and subtyping with minimal point-based annotation in whole-slide images. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23 (pp. 439–448). Springer International Publishing.
Garg B, Dixit V, Batra S, Malhotra R, Sharan A. Non-surgical management of acute osteoporotic vertebral compression fracture: A review. J Clin Orthop Trauma. 2017;8(2):131–8. Epub 2017/02/07. https://doi.org/10.1016/j.jcot.2017.02.001. PubMed PMID: 28720988.
Sekuboyina, Anjany, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, and Bjoern H. Menze. "Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–657. Springer, Cham, 2018.
Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). pp. 565–571. IEEE
GaoZHongBLiYZhangXWuJWangCZhangXGongTZhengYMengDLiCA semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide imagesMedical Image Analysis20238310.1016/j.media.2022.10265236327654
Han, X., Zhai, Y., Yu, Z., Peng, T. and Zhang, X.Y., 2021. Detecting extremely small lesions in mouse brain MRI with point annotations via multi-task learning. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12 (pp. 498–506). Springer International Publishing.
ChenXWangXZhangKFungKMThaiTCMooreKMannelRSLiuHZhengBQiuYRecent advances and clinical applications of deep learning in medical image analysisMedical Image Analysis20227910.1016/j.media.2022.102444354728449156578
Gutierrez-GonzalezROrtegaCRoyuelaAZamarronAVertebral compression fractures managed with brace: risk factors for progressionEuropean Spine Journal20233211388538911:STN:280:DC%2BB2snotVSltg%3D%3D10.1007/s00586-023-07905-z37632559
LehmannELRomanoJP
Lin Chengchuang (1135_CR52) 2021; 15
B Buehring (1135_CR73) 2010; 21
SA Doerr (1135_CR24) 2022; 52
1135_CR48
T Fawcett (1135_CR65) 2006; 27
X Chen (1135_CR35) 2022; 79
1135_CR87
A Sekuboyina (1135_CR46) 2021; 73
1135_CR86
1135_CR41
M Kolařík (1135_CR49) 2019; 9
1135_CR45
1135_CR44
A Zakharov (1135_CR26) 2023; 83
MELTON III, L.J., Kan, S.H., Frye (1135_CR30) 1989; 129
H Liebl (1135_CR37) 2021; 8
1135_CR83
HJ Lu (1135_CR42) 2019; 169
1135_CR81
JA Hanley (1135_CR66) 1982; 143
1135_CR7
1135_CR6
1135_CR9
1135_CR8
1135_CR16
1135_CR15
1135_CR1
1135_CR3
1135_CR2
S Iyer (1135_CR23) 2023; 38
JE Burns (1135_CR27) 2017; 284
1135_CR10
1135_CR54
C Lin (1135_CR63) 2021; 69
AG Roy (1135_CR59) 2018; 38
1135_CR51
1135_CR14
1135_CR13
1135_CR57
K Kamnitsas (1135_CR80) 2017; 36
1135_CR12
1135_CR56
1135_CR11
1135_CR50
X Li (1135_CR58) 2020; 15
ZA Sejuti (1135_CR43) 2023; 4
EL Lehmann (1135_CR67) 1986
D Alexandru (1135_CR5) 2012; 16
1135_CR29
LA Schobs (1135_CR47) 2022; 42
1135_CR28
N Srivastava (1135_CR55) 2014; 15
CF Njeh (1135_CR82) 1999; 50
1135_CR21
1135_CR20
1135_CR62
1135_CR25
J Han (1135_CR84) 2021; 9
1135_CR22
Michael Power (1135_CR69) 2013; 18
R Smith-Bindman (1135_CR31) 1991; 6
K Suzuki (1135_CR34) 2017; 10
1135_CR61
J McCarthy (1135_CR4) 2016; 94
HK Genant (1135_CR40) 1993; 8
1135_CR60
N Binkley (1135_CR72) 2005; 16
JH Page (1135_CR19) 2023; 7
1135_CR39
H Jia (1135_CR68) 2023; 88
1135_CR38
R Gutierrez-Gonzalez (1135_CR75) 2023; 32
YZ Yan (1135_CR53) 2018; 13
N Tomita (1135_CR17) 2018; 98
1135_CR32
1135_CR76
X Hu (1135_CR18) 2022; 3
Z Gao (1135_CR85) 2023; 83
1135_CR36
P Dey (1135_CR64) 2019; 31
1135_CR79
1135_CR78
1135_CR33
R Aquarius (1135_CR74) 2011; 36
1135_CR77
1135_CR71
1135_CR70
References_xml – reference: Thibault I, Whyne CM, Zhou S, Campbell M, Atenafu EG, Myrehaug S, Soliman H, Lee YK, Ebrahimi H, Yee AJ, Sahgal A. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography-Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys. 2017;97(1):75–81. Epub 2016/11/16. https://doi.org/10.1016/j.ijrobp.2016.09.029. PubMed PMID: 27843032.
– reference: Lau E, Ong K, Kurtz S, Schmier J, Edidin A. Mortality following the diagnosis of a vertebral compression fracture in the Medicare population. J Bone Joint Surg Am. 2008;90(7):1479–86. Epub 2008/07/03. https://doi.org/10.2106/jbjs.G.00675. PubMed PMID: 18594096.
– reference: IyerSBlairAWhiteCDawesLMosesDSowmyaAVertebral compression fracture detection using imitation learning, patch based convolutional neural networks and majority votingInformatics in Medicine Unlocked20233810.1016/j.imu.2023.101238
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingThe journal of machine learning research201415119291958
– reference: Zhang, J., Liu, T. and Tao, D., 2023. Going Deeper, Generalizing Better: An Information-Theoretic View for Deep Learning. IEEE Transactions on Neural Networks and Learning Systems.
– reference: SuzukiKOverview of deep learning in medical imagingRadiological physics and technology201710325727310.1007/s12194-017-0406-528689314
– reference: Krogh, A. and Hertz, J., 1991. A simple weight decay can improve generalization. Advances in neural information processing systems, 4.
– reference: HanleyJAMcNeilBJThe meaning and use of the area under a receiver operating characteristic (ROC) curveRadiology1982143129361:STN:280:DyaL387ltFyksQ%3D%3D10.1148/radiology.143.1.70637477063747
– reference: O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V., Krpalkova, L., Riordan, D. and Walsh, J., 2020. Deep learning vs. traditional computer vision. In Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1 (pp. 128–144). Springer International Publishing.
– reference: BuehringBKruegerDChecovichMGemarDVallarta-AstNGenantHKBinkleyNVertebral fracture assessment: impact of instrument and readerOsteoporosis international2010214874941:STN:280:DC%2BC3c%2FovFCqsg%3D%3D10.1007/s00198-009-0972-419506794
– reference: Gao, Z., Puttapirat, P., Shi, J. and Li, C., 2020. Renal cell carcinoma detection and subtyping with minimal point-based annotation in whole-slide images. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23 (pp. 439–448). Springer International Publishing.
– reference: He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
– reference: Han, X., Zhai, Y., Yu, Z., Peng, T. and Zhang, X.Y., 2021. Detecting extremely small lesions in mouse brain MRI with point annotations via multi-task learning. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12 (pp. 498–506). Springer International Publishing.
– reference: JiaHSimpsonSSathishVCurranBPMaciasAAWatermanRSGabrielRADevelopment and benchmarking of machine learning models to classify patients suitable for outpatient lower extremity joint arthroplastyJournal of Clinical Anesthesia20238810.1016/j.jclinane.2023.11114737201387
– reference: Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251–1258).
– reference: Smith-BindmanRCummingsSRSteigerPGenantHKA comparison of morphometric definitions of vertebral fractureJournal of Bone and Mineral Research19916125341:STN:280:DyaK3M3mtlKrug%3D%3D10.1002/jbmr.56500601062048427
– reference: FawcettTAn introduction to ROC analysisPattern recognition letters200627886187410.1016/j.patrec.2005.10.010
– reference: GaoZHongBLiYZhangXWuJWangCZhangXGongTZhengYMengDLiCA semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide imagesMedical Image Analysis20238310.1016/j.media.2022.10265236327654
– reference: Eschler, A., Ender, S.A., Ulmar, B., Herlyn, P., Mittlmeier, T. and Gradl, G., 2014. Cementless fixation of osteoporotic VCFs using titanium mesh implants (OsseoFix): preliminary results. BioMed Research International, 2014.
– reference: AquariusRHommingaJVerdonschotNTanckEThe fracture risk of adjacent vertebrae is increased by the changed loading direction after a wedge fractureSpine2011366E408E41210.1097/BRS.0b013e3181f0f72621224753
– reference: Kim DH, Vaccaro AR. Osteoporotic compression fractures of the spine; current options and considerations for treatment. Spine J. 2006;6(5):479–87. Epub 2006/08/29. https://doi.org/10.1016/j.spinee.2006.04.013. PubMed PMID: 16934715.
– reference: ChengchuangLinChunShanGansenZhaoReview of image data augmentation in computer visionJournal of Frontiers of Computer Science & Technology2021154583
– reference: YanYZLiQPWuCCPanXXShaoZXChenSQWangKChenXBWangXYRate of presence of 11 thoracic vertebrae and 6 lumbar vertebrae in asymptomatic Chinese adult volunteersJournal of Orthopaedic Surgery and Research20181311610.1186/s13018-018-0835-9
– reference: Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556.
– reference: Bukas, Christina, Bailiang Jian, Luis Francisco Rodríguez Venegas, Francesca De Benetti, Sebastian Ruehling, Anjany Sekuboyina, Jens Gempt et al. "Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 529–539. Springer, Cham, 2021.
– reference: AlexandruDSoWEvaluation and management of vertebral compression fracturesThe Permanente Journal20121644610.7812/TPP/12-037232511173523935
– reference: Wang, Y., Yao, J., Burns, J.E. and Summers, R., 2016, April. Osteoporotic and neoplastic compression fracture classification on longitudinal CT. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (pp. 1181–1184). IEEE.
– reference: Huynh, T.M., Nguyen, C.D., Nguyen, K.N., Bui, T. and Truong, S.Q., 2022, March. CapNeXt: Unifying Capsule And Resnext For Medical Image Segmentation. In 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (pp. 1–5). IEEE.
– reference: Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." In International Conference on Machine Learning, pp. 448–456. PMLR, 2015.
– reference: BurnsJEYaoJSummersRMVertebral body compression fractures and bone density: automated detection and classification on CT imagesRadiology2017284378879710.1148/radiol.201716210028301777
– reference: SekuboyinaAHusseiniMEBayatALöfflerMLieblHLiHTettehGKukačkaJPayerCŠternDUrschlerMVerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT imagesMedical image analysis20217310.1016/j.media.2021.10216634340104
– reference: Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Schedit-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res. 2002;17(4):716–24. Epub 2002/03/29. https://doi.org/10.1359/jbmr.2002.17.4.716. PubMed PMID: 11918229.
– reference: Çiçek Ö., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O. (2016) 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016.
– reference: LinCZhaoGYinAYangZGuoLChenHZhaoLLiSLuoHMaZA novel chromosome cluster types identification method using ResNeXt WSL modelMedical Image Analysis20216910.1016/j.media.2020.10194333388457
– reference: NjehCFFuerstTHansDBlakeGMGenantHKRadiation exposure in bone mineral density assessmentApplied Radiation and Isotopes19995012152361:CAS:528:DyaK1MXnsVSntA%3D%3D10.1016/S0969-8043(98)00026-810028639
– reference: Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E. Risk of new vertebral fracture in the year following a fracture. Jama. 2001;285(3):320–3. Epub 2001/02/15. https://doi.org/10.1001/jama.285.3.320. PubMed PMID: 11176842.
– reference: DoerrSAWeber-LevineCHershAMAwosikaTJudyBJinYRajDLiuALubelskiDJonesCKSairHIAutomated prediction of the Thoracolumbar Injury Classification and Severity Score from CT using a novel deep learning algorithmNeurosurgical focus2022524E510.3171/2022.1.FOCUS2174535364582
– reference: Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). pp. 565–571. IEEE
– reference: TomitaNCheungYYHassanpourSDeep neural networks for automatic detection of osteoporotic vertebral fractures on CT scansComputers in biology and medicine20189881510.1016/j.compbiomed.2018.05.01129758455
– reference: Zhang YL, Shi LT, Tang PF, Sun ZJ, Wang YH. Correlation analysis of osteoporotic vertebral compression fractures and spinal sagittal imbalance. Orthopade. 2017;46(3):249–55. Epub 2017/01/25. https://doi.org/10.1007/s00132-016-3359-1. PubMed PMID: 28116458.
– reference: MELTON III, L.J., Kan, S.H., Frye, M.A., Wahner, H.W., O'fallon, W.M. and Riggs, B.L. Epidemiology of vertebral fractures in womenAmerican journal of epidemiology198912951000101110.1093/oxfordjournals.aje.a115204
– reference: Gutierrez-GonzalezROrtegaCRoyuelaAZamarronAVertebral compression fractures managed with brace: risk factors for progressionEuropean Spine Journal20233211388538911:STN:280:DC%2BB2snotVSltg%3D%3D10.1007/s00586-023-07905-z37632559
– reference: SejutiZAIslamMSA hybrid CNN–KNN approach for identification of COVID-19 with 5-fold cross validationSensors International2023410.1016/j.sintl.2023.100229367429939886434
– reference: Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: Yadav, S. and Shukla, S., 2016, February. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In 2016 IEEE 6th International conference on advanced computing (IACC) (pp. 78–83). IEEE.
– reference: Iyer, S., Sowmya, A., Blair, A., White, C., Dawes, L. and Moses, D., 2020, April. A novel approach to vertebral compression fracture detection using imitation learning and patch based convolutional neural network. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) (pp. 726–730). IEEE.
– reference: McCarthyJDavisADiagnosis and Management of Vertebral Compression FracturesAm Fam Physician.2016941445027386723Epub 2016/07/09 PubMed PMID: 27386723
– reference: Löffler, M.T., Sekuboyina, A., Jacob, A., Grau, A.L., Scharr, A., El Husseini, M., Kallweit, M., Zimmer, C., Baum, T. and Kirschke, J.S., 2020. A vertebral segmentation dataset with fracture grading. Radiology: Artificial Intelligence, 2(4), p.e190138.
– reference: Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho, James C. Gee, and Guido Gerig. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006 Jul 1;31(3):1116–28.
– reference: BinkleyNKruegerDGangnonRGenantHKDreznerMKLateral vertebral assessment: a valuable technique to detect clinically significant vertebral fracturesOsteoporosis international2005161513151810.1007/s00198-005-1891-715834512
– reference: HanJWangXLiuWContextual Prior Constrained Deep Networks for Mitosis Detection With Point AnnotationsIEEE Access20219719547196710.1109/ACCESS.2021.3079215
– reference: Lenchik L, Rogers LF, Delmas PD, Genant HK. Diagnosis of osteoporotic vertebral fractures: importance of recognition and description by radiologists. AJR Am J Roentgenol. 2004;183(4):949–58. Epub 2004/09/24. https://doi.org/10.2214/ajr.183.4.1830949. PubMed PMID: 15385286.
– reference: Hoyt D, Urits I, Orhurhu V, Orhurhu MS, Callan J, Powell J, Manchikanti L, Kaye AD, Kaye RJ, Viswanath O. Current Concepts in the Management of Vertebral Compression Fractures. Curr Pain Headache Rep. 2020;24(5):16. Epub 2020/03/22. https://doi.org/10.1007/s11916-020-00849-9. PubMed PMID: 32198571.
– reference: LiXShenXZhouYWangXLiTQClassification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet)PloS one20201551:CAS:528:DC%2BB3cXhtVGjtL7M10.1371/journal.pone.0232127323651427198071
– reference: RoyAGNavabNWachingerCRecalibrating fully convolutional networks with spatial and channel “squeeze and excitation” blocksIEEE transactions on medical imaging201838254054910.1109/TMI.2018.2867261
– reference: Pisov, M., Kondratenko, V., Zakharov, A., Petraikin, A., Gombolevskiy, V., Morozov, S. and Belyaev, M., 2020. Keypoints localization for joint vertebra detection and fracture severity quantification. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23 (pp. 723–732). Springer International Publishing.
– reference: Nicolaes, J., Raeymaeckers, S., Robben, D., Wilms, G., Vandermeulen, D., Libanati, C. and Debois, M., 2020. Detection of vertebral fractures in CT using 3D convolutional neural networks. In Computational Methods and Clinical Applications for Spine Imaging: 6th International Workshop and Challenge, CSI 2019, Shenzhen, China, October 17, 2019, Proceedings 6 (pp. 3–14). Springer International Publishing.
– reference: Donnally IC, DiPompeo CM, Varacallo M. Vertebral Compression Fractures. StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
– reference: DeyPGopalMPradhanPOn robustness of radial basis function network with input perturbationNeural Comput & Applic20193152353710.1007/s00521-017-3086-5
– reference: Garg B, Dixit V, Batra S, Malhotra R, Sharan A. Non-surgical management of acute osteoporotic vertebral compression fracture: A review. J Clin Orthop Trauma. 2017;8(2):131–8. Epub 2017/02/07. https://doi.org/10.1016/j.jcot.2017.02.001. PubMed PMID: 28720988.
– reference: Ghosh, S., Raja'S, A., Chaudhary, V. and Dhillon, G., 2011, March. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In Medical imaging 2011: computer-aided diagnosis (Vol. 7963, pp. 21–29). SPIE.
– reference: PowerMichaelFellGregWrightMichaelPrinciples for high-quality, high-value testingBMJ Evidence-Based Medicine201318151010.1136/eb-2012-100645
– reference: Wasserthal, J., Breit, H.C., Meyer, M.T., Pradella, M., Hinck, D., Sauter, A.W., Heye, T., Boll, D.T., Cyriac, J., Yang, S. and Bach, M., 2023. Totalsegmentator: Robust segmentation of 104 anatomic structures in ct images. Radiology: Artificial Intelligence, 5(5).
– reference: Ren, S., He, K., Girshick, R. and Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28.
– reference: Wáng YXJ, Santiago FR, Deng M, Nogueira-Barbosa MH. Identifying osteoporotic vertebral endplate and cortex fractures. Quant Imaging Med Surg. 2017;7(5):555–91. https://doi.org/10.21037/qims.2017.10.05. PubMed PMID: 29184768.
– reference: Huang, G., Liu, Z., Van Der Maaten, L. and Weinberger, K.Q., 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).
– reference: Bar, A., Wolf, L., Amitai, O.B., Toledano, E. and Elnekave, E., 2017, March. Compression fractures detection on CT. In Medical imaging 2017: computer-aided diagnosis (Vol. 10134, pp. 1036–1043). SPIE.
– reference: Suri, A., Jones, B.C., Ng, G., Anabaraonye, N., Beyrer, P., Domi, A., Choi, G., Tang, S., Terry, A., Leichner, T. and Fathali, I., 2021. Vertebral deformity measurements at MRI, CT, and radiography using deep learning. Radiology: Artificial Intelligence, 4(1), p.e210015.
– reference: ZakharovAPisovMBukharaevAPetraikinAMorozovSGombolevskiyVBelyaevMInterpretable vertebral fracture quantification via anchor-free landmarks localizationMedical Image Analysis20238310.1016/j.media.2022.10264636279768
– reference: LuHJZouNJacobsRAfflerbachBLuXGMorganDError assessment and optimal cross-validation approaches in machine learning applied to impurity diffusionComputational Materials Science201916910.1016/j.commatsci.2019.06.010
– reference: HuXZhuYQianYHuangRYinSZengZXieNMaBYuYZhaoQWuZPrediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learningView202236202200121:CAS:528:DC%2BB38Xit1entbbE10.1002/VIW.20220012
– reference: SchobsLASwiftAJLuHUncertainty estimation for heatmap-based landmark localizationIEEE Transactions on Medical Imaging20224241021103410.1109/TMI.2022.3222730
– reference: Loshchilov, I. and Hutter, F., 2016. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.
– reference: Chettrit, D., Meir, T., Lebel, H., Orlovsky, M., Gordon, R., Akselrod-Ballin, A. and Bar, A., 2020. 3D convolutional sequence to sequence model for vertebral compression fractures identification in CT. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI 23 (pp. 743–752). Springer International Publishing.
– reference: Yilmaz, E.B., Buerger, C., Fricke, T., Sagar, M.M.R., Peña, J., Lorenz, C., Glüer, C.C. and Meyer, C., 2021. Automated deep learning-based detection of osteoporotic fractures in CT images. In Machine Learning in Medical Imaging: 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 12 (pp. 376–385). Springer International Publishing.
– reference: ChenXWangXZhangKFungKMThaiTCMooreKMannelRSLiuHZhengBQiuYRecent advances and clinical applications of deep learning in medical image analysisMedical Image Analysis20227910.1016/j.media.2022.102444354728449156578
– reference: KolaříkMBurgetRUherVŘíhaKDuttaMKOptimized high resolution 3D dense-U-Net network for brain and spine segmentationApplied Sciences20199340410.3390/app9030404
– reference: GenantHKWuCYvan KuijkCNevittMCVertebral fracture assessment using a semiquantitative techniqueJ Bone Miner Res199389113711481:STN:280:DyaK2c%2FlsFyhuw%3D%3D10.1002/jbmr.56500809158237484
– reference: Hu, J., Shen, L. and Sun, G., 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).
– reference: LieblHSchinzDSekuboyinaAMalaguttiLLöfflerMTBayatAEl HusseiniMTettehGGrauKNiederreiterEBaumTA computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner dataScientific data2021811710.1038/s41597-021-01060-0
– reference: PageJHMoserFGMayaMMPrasadRPressmanBDOpportunistic CT screening—machine learning algorithm identifies majority of vertebral compression fractures: a cohort studyJBMR plus20237810.1002/jbm4.107783761430610443072
– reference: Sekuboyina, Anjany, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, and Bjoern H. Menze. "Btrfly net: Vertebrae labelling with energy-based adversarial learning of local spine prior." In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–657. Springer, Cham, 2018.
– reference: LehmannELRomanoJPCasellaGTesting statistical hypotheses1986New YorkSpringer10.1007/978-1-4757-1923-9
– reference: Keicher, M., Atad, M., Schinz, D., Gersing, A.S., Foreman, S.C., Goller, S.S., Weissinger, J., Rischewski, J., Dietrich, A.S., Wiestler, B. and Kirschke, J.S., 2023. Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading. arXiv preprintarXiv:2303.12031.
– reference: Chou S, Grover A, LeBoff MS. New Osteoporotic/Vertebral Compression Fractures. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland J, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Purnell J, Singer F, Stratakis CA, Trence DL, Wilson DP, editors. Endotext. South Dartmouth (MA)2000.
– reference: KamnitsasKLedigCNewcombeVFSimpsonJPKaneADMenonDKRueckertDGlockerBEfficient multi-scale 3d CNN with fully connected CRF for accurate brain lesion segmentationMedical Image Analysis201736617810.1016/j.media.2016.10.00427865153
– reference: Wong CC, McGirt MJ. Vertebral compression fractures: a review of current management and multimodal therapy. J Multidiscip Healthc. 2013;6:205–14. Epub 2013/07/03. https://doi.org/10.2147/jmdh.S31659. PubMed PMID: 23818797; PMCID: PMC3693826.
– ident: 1135_CR22
  doi: 10.1109/ISBI45749.2020.9098714
– ident: 1135_CR45
  doi: 10.1007/978-3-030-87202-1_51
– ident: 1135_CR51
  doi: 10.1007/978-3-030-00937-3_74
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 1135_CR65
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 1135_CR66
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– ident: 1135_CR70
  doi: 10.1148/ryai.230024
– volume: 31
  start-page: 523
  year: 2019
  ident: 1135_CR64
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-017-3086-5
– ident: 1135_CR20
– ident: 1135_CR8
  doi: 10.1016/j.spinee.2006.04.013
– volume: 32
  start-page: 3885
  issue: 11
  year: 2023
  ident: 1135_CR75
  publication-title: European Spine Journal
  doi: 10.1007/s00586-023-07905-z
– ident: 1135_CR6
  doi: 10.1007/s00132-016-3359-1
– volume: 10
  start-page: 257
  issue: 3
  year: 2017
  ident: 1135_CR34
  publication-title: Radiological physics and technology
  doi: 10.1007/s12194-017-0406-5
– ident: 1135_CR54
  doi: 10.1109/3DV.2016.79
– ident: 1135_CR61
  doi: 10.1109/CVPR.2018.00745
– volume: 15
  issue: 5
  year: 2020
  ident: 1135_CR58
  publication-title: PloS one
  doi: 10.1371/journal.pone.0232127
– ident: 1135_CR60
  doi: 10.1109/CVPR.2017.243
– ident: 1135_CR16
  doi: 10.1117/12.2249635
– volume: 98
  start-page: 8
  year: 2018
  ident: 1135_CR17
  publication-title: Computers in biology and medicine
  doi: 10.1016/j.compbiomed.2018.05.011
– volume: 38
  start-page: 540
  issue: 2
  year: 2018
  ident: 1135_CR59
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2018.2867261
– volume: 6
  start-page: 25
  issue: 1
  year: 1991
  ident: 1135_CR31
  publication-title: Journal of Bone and Mineral Research
  doi: 10.1002/jbmr.5650060106
– ident: 1135_CR83
  doi: 10.1148/ryai.2021210015
– volume: 3
  start-page: 20220012
  issue: 6
  year: 2022
  ident: 1135_CR18
  publication-title: View
  doi: 10.1002/VIW.20220012
– ident: 1135_CR81
– ident: 1135_CR3
  doi: 10.2147/jmdh.S31659
– volume-title: Testing statistical hypotheses
  year: 1986
  ident: 1135_CR67
  doi: 10.1007/978-1-4757-1923-9
– volume: 50
  start-page: 215
  issue: 1
  year: 1999
  ident: 1135_CR82
  publication-title: Applied Radiation and Isotopes
  doi: 10.1016/S0969-8043(98)00026-8
– volume: 4
  year: 2023
  ident: 1135_CR43
  publication-title: Sensors International
  doi: 10.1016/j.sintl.2023.100229
– volume: 42
  start-page: 1021
  issue: 4
  year: 2022
  ident: 1135_CR47
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2022.3222730
– ident: 1135_CR57
– volume: 69
  year: 2021
  ident: 1135_CR63
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101943
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 1135_CR37
  publication-title: Scientific data
  doi: 10.1038/s41597-021-01060-0
– ident: 1135_CR29
  doi: 10.21037/qims.2017.10.05
– ident: 1135_CR79
  doi: 10.1109/CVPR.2017.195
– volume: 9
  start-page: 71954
  year: 2021
  ident: 1135_CR84
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3079215
– ident: 1135_CR87
  doi: 10.1007/978-3-030-87589-3_51
– volume: 73
  year: 2021
  ident: 1135_CR46
  publication-title: Medical image analysis
  doi: 10.1016/j.media.2021.102166
– ident: 1135_CR32
  doi: 10.1117/12.878055
– volume: 16
  start-page: 46
  issue: 4
  year: 2012
  ident: 1135_CR5
  publication-title: The Permanente Journal
  doi: 10.7812/TPP/12-037
– ident: 1135_CR39
  doi: 10.1148/ryai.2020190138
– ident: 1135_CR62
  doi: 10.1109/ISBI52829.2022.9761649
– ident: 1135_CR21
  doi: 10.1007/978-3-030-39752-4_1
– volume: 284
  start-page: 788
  issue: 3
  year: 2017
  ident: 1135_CR27
  publication-title: Radiology
  doi: 10.1148/radiol.2017162100
– ident: 1135_CR56
– ident: 1135_CR10
– ident: 1135_CR25
  doi: 10.1007/978-3-030-59725-2_70
– ident: 1135_CR2
– volume: 16
  start-page: 1513
  year: 2005
  ident: 1135_CR72
  publication-title: Osteoporosis international
  doi: 10.1007/s00198-005-1891-7
– ident: 1135_CR14
  doi: 10.2214/ajr.183.4.1830949
– volume: 83
  year: 2023
  ident: 1135_CR26
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102646
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 1135_CR55
  publication-title: The journal of machine learning research
– ident: 1135_CR77
– volume: 18
  start-page: 5
  issue: 1
  year: 2013
  ident: 1135_CR69
  publication-title: BMJ Evidence-Based Medicine
  doi: 10.1136/eb-2012-100645
– ident: 1135_CR78
  doi: 10.1109/CVPR.2016.90
– volume: 94
  start-page: 44
  issue: 1
  year: 2016
  ident: 1135_CR4
  publication-title: Am Fam Physician.
– volume: 21
  start-page: 487
  year: 2010
  ident: 1135_CR73
  publication-title: Osteoporosis international
  doi: 10.1007/s00198-009-0972-4
– volume: 88
  year: 2023
  ident: 1135_CR68
  publication-title: Journal of Clinical Anesthesia
  doi: 10.1016/j.jclinane.2023.111147
– ident: 1135_CR36
  doi: 10.1007/978-3-030-17795-9_10
– ident: 1135_CR7
  doi: 10.1016/j.ijrobp.2016.09.029
– ident: 1135_CR48
  doi: 10.1007/978-3-319-46723-8_49
– volume: 9
  start-page: 404
  issue: 3
  year: 2019
  ident: 1135_CR49
  publication-title: Applied Sciences
  doi: 10.3390/app9030404
– ident: 1135_CR76
  doi: 10.1155/2014/853897
– ident: 1135_CR33
  doi: 10.1109/ISBI.2016.7493477
– volume: 8
  start-page: 1137
  issue: 9
  year: 1993
  ident: 1135_CR40
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.5650080915
– ident: 1135_CR71
  doi: 10.1109/TNNLS.2023.3297113
– volume: 36
  start-page: 61
  year: 2017
  ident: 1135_CR80
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.10.004
– ident: 1135_CR41
  doi: 10.1109/IACC.2016.25
– ident: 1135_CR12
  doi: 10.2106/jbjs.G.00675
– volume: 13
  start-page: 1
  issue: 1
  year: 2018
  ident: 1135_CR53
  publication-title: Journal of Orthopaedic Surgery and Research
  doi: 10.1186/s13018-018-0835-9
– ident: 1135_CR9
  doi: 10.1359/jbmr.2002.17.4.716
– ident: 1135_CR44
– volume: 36
  start-page: E408
  issue: 6
  year: 2011
  ident: 1135_CR74
  publication-title: Spine
  doi: 10.1097/BRS.0b013e3181f0f726
– volume: 52
  start-page: E5
  issue: 4
  year: 2022
  ident: 1135_CR24
  publication-title: Neurosurgical focus
  doi: 10.3171/2022.1.FOCUS21745
– volume: 129
  start-page: 1000
  issue: 5
  year: 1989
  ident: 1135_CR30
  publication-title: American journal of epidemiology
  doi: 10.1093/oxfordjournals.aje.a115204
– volume: 169
  year: 2019
  ident: 1135_CR42
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2019.06.010
– ident: 1135_CR13
  doi: 10.1001/jama.285.3.320
– ident: 1135_CR28
  doi: 10.1007/978-3-030-87589-3_39
– ident: 1135_CR38
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: 1135_CR1
  doi: 10.1007/s11916-020-00849-9
– ident: 1135_CR11
  doi: 10.1016/j.jcot.2017.02.001
– volume: 15
  start-page: 583
  issue: 4
  year: 2021
  ident: 1135_CR52
  publication-title: Journal of Frontiers of Computer Science & Technology
– ident: 1135_CR15
  doi: 10.1007/978-3-030-59725-2_72
– ident: 1135_CR50
– volume: 79
  year: 2022
  ident: 1135_CR35
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102444
– volume: 7
  issue: 8
  year: 2023
  ident: 1135_CR19
  publication-title: JBMR plus
  doi: 10.1002/jbm4.10778
– ident: 1135_CR86
  doi: 10.1007/978-3-030-59722-1_42
– volume: 83
  year: 2023
  ident: 1135_CR85
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2022.102652
– volume: 38
  year: 2023
  ident: 1135_CR23
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2023.101238
SSID ssj0003313360
ssj0017574
Score 2.3792834
Snippet Osteoporosis is the most common chronic metabolic bone disease worldwide. Vertebral compression fracture (VCF) is the most common type of osteoporotic...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2428
SubjectTerms Automation
Body height
Bone diseases
Bone imaging
Compression
Computed tomography
Deep learning
Fractures
Image segmentation
Imaging
Injury analysis
Localization
Medical imaging
Medicine
Medicine & Public Health
Osteoporosis
Planet detection
Radiology
Segmentation
Sensitivity
Spine
Vertebrae
Title An Automated Vertebrae Localization, Segmentation, and Osteoporotic Compression Fracture Detection Pipeline for Computed Tomographic Imaging
URI https://link.springer.com/article/10.1007/s10278-024-01135-5
https://www.ncbi.nlm.nih.gov/pubmed/38717516
https://www.proquest.com/docview/3121798559
https://www.proquest.com/docview/3052595244
https://pubmed.ncbi.nlm.nih.gov/PMC11522205
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF41Rar6AOIsgVItEm-JIx-7Ph5DOcoRiFCLwpO19q6LRWJHwXnpb-BHM3v4SEIR9MVJ1utzvszOzs58g9ALJ0yczCWh5bOIWCSgicVYklmUEz8JWCKcUCYKTz75Zxfk_YzO9nq3O1FL6yoZpVd_zCu5iVShDeQqs2T_Q7LNSaEBvoN8YQsShu0_yXgsfRVVCUYnmI1fxaqSq8Bi8FGOTya_Unk3xeXCpBgVdbTmZ5BuCbZ3KQlbpVLQ8bCFtGT1qsIrUQldR3yaL4WyRmVIoikDIQNwFpruGk7wbqGKHV1j6eZ678CQtCpi6LzYWdb_Jg3bl86c68-rwbSsTNkQ1WLPf7QRP19Kvsov19r_rStPDz6MmiFmrdCZLxpfN7tiIBDNl7BiXV-HS5qouU1f55a3tHXYtcrTjYjMLtFJ1SPRbdPEG7X215QzBuW0q8qJyVoX5qemk9oZcuw6BduVXMWujOlxPGrRbmeAzXKhQOjBBDWgzhb7t7InppNTMM9dmfncQ7dcmPbYHe-TtCw8z_E8lfjePJ7JAzPZoFu3cIgO6uttml07c6ndkOCtuABlbp3fRXcMevBYg_4e2hPFfXQwMZB5gH6NC9xgHzfYx13sD3EX-UMMuMdd3OMO7nGNe9zgHte4xwBbXOMed3CPDe4foos3r89PzyxTWcRKSRBUFg9CHmY0ImC_MR54BN42p8znSUSzMCVpQgnnts2Z61ORwlsPOKhcL2WcEddOvUdovygL8Rhhj2VBErlhGIUJcQhN_CiFk2UOydLMzWgfOfWLj1NDuy-rv8zjljBcyi0GucVKbjEcM2iOWWrSmb_2Pq7lGRvl9DP2HFdSEVIa9dHzZjcMHXI9kBWiXEMfWcMyooDsPjrS4m8uV-Omj8INYDQdJC395p4i_67o6WsQ99GwxlB7X9c_xpObX-kpOmy1xTHar1Zr8QzmClVygnpvZ86J-hv9Bqj5FrI
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Automated+Vertebrae+Localization%2C+Segmentation%2C+and+Osteoporotic+Compression+Fracture+Detection+Pipeline+for+Computed+Tomographic+Imaging&rft.jtitle=Journal+of+imaging+informatics+in+medicine&rft.au=Y%C4%B1ld%C4%B1z+Potter%2C+%C4%B0lkay&rft.au=Rodriguez%2C+Edward+K.&rft.au=Wu%2C+Jim&rft.au=Nazarian%2C+Ara&rft.date=2024-10-01&rft.pub=Springer+International+Publishing&rft.issn=2948-2925&rft.eissn=2948-2933&rft.volume=37&rft.issue=5&rft.spage=2428&rft.epage=2443&rft_id=info:doi/10.1007%2Fs10278-024-01135-5&rft_id=info%3Apmid%2F38717516&rft.externalDocID=PMC11522205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2933&client=summon