Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway
In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. A...
Saved in:
Published in | Journal of molecular and cellular cardiology Vol. 121; pp. 242 - 255 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. Adult male wild-type, mouse-FNDC5 (irisin-precursor)-knockout and FNDC5 transgenic mice received 4 weeks of transverse aortic constriction (TAC) alone or combined with intraperitoneal injection of chloroquine diphosphate (CQ). Endogenous FNDC5 ablation aggravated and exogenous FNDC5 overexpression attenuated the TAC-induced hypertrophic damage in the heart, which was comparable to the protection of irisin against cardiomyocyte hypertrophy induced by angiotensin II (Ang II) or phenylephrine (PE). Accumulated autophagosome and impaired autophagy flux occurred in the TAC-treated myocardium and Ang II- or PE-insulted cardiomyocytes. Irisin deficiency caused reduced autophagy and aggravated autophagy flux failure, whereas irisin overexpression or supplementation induced protective autophagy and improved autophagy flux, which were reversed by autophagy inhibitors Atg5 siRNA, 3-MA and CQ. Irisin boosted the activity of only AMPK but not Akt and MAPK family members in hypertrophic hearts and cultured cardiomyocytes and further activated ULK1 at Ser555 but not Ser757 and did not affect the mTOR-S6K axis. Blockage of AMPK and ULK1 with compund C and SBI-0206965, respectively, both abrogated irisin's protection against cardiomyocyte hypertrophic injury and reversed its induction of both autophagy and autophagy flux. Our results suggest that irisin protects against pressure overload-induced cardiac hypertrophy by inducing protective autophagy and autophagy flux via activating AMPK-ULK1 signaling.
•Irisin is highly expressed in mouse hearts.•FNDC5 deletion aggravated and FNDC5 overexpression ameliorated the left ventricle hypertrophy, remodeling, injury and dysfunction induced by pressure overload.•Irisin supplementation attenuated hypertrophy in Ang II– or phenylephrine-induced cardiomyocytes.•Irisin alleviated cardiomyocyte hypertrophy in vivo and in vitro by inducing beneficial autophagy and autophagy influx via AMPK-ULK1 signaling but independent of mTOR. |
---|---|
AbstractList | In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. Adult male wild-type, mouse-FNDC5 (irisin-precursor)-knockout and FNDC5 transgenic mice received 4 weeks of transverse aortic constriction (TAC) alone or combined with intraperitoneal injection of chloroquine diphosphate (CQ). Endogenous FNDC5 ablation aggravated and exogenous FNDC5 overexpression attenuated the TAC-induced hypertrophic damage in the heart, which was comparable to the protection of irisin against cardiomyocyte hypertrophy induced by angiotensin II (Ang II) or phenylephrine (PE). Accumulated autophagosome and impaired autophagy flux occurred in the TAC-treated myocardium and Ang II- or PE-insulted cardiomyocytes. Irisin deficiency caused reduced autophagy and aggravated autophagy flux failure, whereas irisin overexpression or supplementation induced protective autophagy and improved autophagy flux, which were reversed by autophagy inhibitors Atg5 siRNA, 3-MA and CQ. Irisin boosted the activity of only AMPK but not Akt and MAPK family members in hypertrophic hearts and cultured cardiomyocytes and further activated ULK1 at Ser555 but not Ser757 and did not affect the mTOR-S6K axis. Blockage of AMPK and ULK1 with compund C and SBI-0206965, respectively, both abrogated irisin's protection against cardiomyocyte hypertrophic injury and reversed its induction of both autophagy and autophagy flux. Our results suggest that irisin protects against pressure overload-induced cardiac hypertrophy by inducing protective autophagy and autophagy flux via activating AMPK-ULK1 signaling.
•Irisin is highly expressed in mouse hearts.•FNDC5 deletion aggravated and FNDC5 overexpression ameliorated the left ventricle hypertrophy, remodeling, injury and dysfunction induced by pressure overload.•Irisin supplementation attenuated hypertrophy in Ang II– or phenylephrine-induced cardiomyocytes.•Irisin alleviated cardiomyocyte hypertrophy in vivo and in vitro by inducing beneficial autophagy and autophagy influx via AMPK-ULK1 signaling but independent of mTOR. In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. Adult male wild-type, mouse-FNDC5 (irisin-precursor)-knockout and FNDC5 transgenic mice received 4 weeks of transverse aortic constriction (TAC) alone or combined with intraperitoneal injection of chloroquine diphosphate (CQ). Endogenous FNDC5 ablation aggravated and exogenous FNDC5 overexpression attenuated the TAC-induced hypertrophic damage in the heart, which was comparable to the protection of irisin against cardiomyocyte hypertrophy induced by angiotensin II (Ang II) or phenylephrine (PE). Accumulated autophagosome and impaired autophagy flux occurred in the TAC-treated myocardium and Ang II- or PE-insulted cardiomyocytes. Irisin deficiency caused reduced autophagy and aggravated autophagy flux failure, whereas irisin overexpression or supplementation induced protective autophagy and improved autophagy flux, which were reversed by autophagy inhibitors Atg5 siRNA, 3-MA and CQ. Irisin boosted the activity of only AMPK but not Akt and MAPK family members in hypertrophic hearts and cultured cardiomyocytes and further activated ULK1 at Ser555 but not Ser757 and did not affect the mTOR-S6K axis. Blockage of AMPK and ULK1 with compund C and SBI-0206965, respectively, both abrogated irisin's protection against cardiomyocyte hypertrophic injury and reversed its induction of both autophagy and autophagy flux. Our results suggest that irisin protects against pressure overload-induced cardiac hypertrophy by inducing protective autophagy and autophagy flux via activating AMPK-ULK1 signaling. In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. Adult male wild-type, mouse-FNDC5 (irisin-precursor)-knockout and FNDC5 transgenic mice received 4 weeks of transverse aortic constriction (TAC) alone or combined with intraperitoneal injection of chloroquine diphosphate (CQ). Endogenous FNDC5 ablation aggravated and exogenous FNDC5 overexpression attenuated the TAC-induced hypertrophic damage in the heart, which was comparable to the protection of irisin against cardiomyocyte hypertrophy induced by angiotensin II (Ang II) or phenylephrine (PE). Accumulated autophagosome and impaired autophagy flux occurred in the TAC-treated myocardium and Ang II- or PE-insulted cardiomyocytes. Irisin deficiency caused reduced autophagy and aggravated autophagy flux failure, whereas irisin overexpression or supplementation induced protective autophagy and improved autophagy flux, which were reversed by autophagy inhibitors Atg5 siRNA, 3-MA and CQ. Irisin boosted the activity of only AMPK but not Akt and MAPK family members in hypertrophic hearts and cultured cardiomyocytes and further activated ULK1 at Ser555 but not Ser757 and did not affect the mTOR-S6K axis. Blockage of AMPK and ULK1 with compund C and SBI-0206965, respectively, both abrogated irisin's protection against cardiomyocyte hypertrophic injury and reversed its induction of both autophagy and autophagy flux. Our results suggest that irisin protects against pressure overload-induced cardiac hypertrophy by inducing protective autophagy and autophagy flux via activating AMPK-ULK1 signaling.In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study aimed to illuminate the cardioprotective role and mechanisms of a new myokine and adipokine, irisin, in cardiac hypertrophy and remodeling. Adult male wild-type, mouse-FNDC5 (irisin-precursor)-knockout and FNDC5 transgenic mice received 4 weeks of transverse aortic constriction (TAC) alone or combined with intraperitoneal injection of chloroquine diphosphate (CQ). Endogenous FNDC5 ablation aggravated and exogenous FNDC5 overexpression attenuated the TAC-induced hypertrophic damage in the heart, which was comparable to the protection of irisin against cardiomyocyte hypertrophy induced by angiotensin II (Ang II) or phenylephrine (PE). Accumulated autophagosome and impaired autophagy flux occurred in the TAC-treated myocardium and Ang II- or PE-insulted cardiomyocytes. Irisin deficiency caused reduced autophagy and aggravated autophagy flux failure, whereas irisin overexpression or supplementation induced protective autophagy and improved autophagy flux, which were reversed by autophagy inhibitors Atg5 siRNA, 3-MA and CQ. Irisin boosted the activity of only AMPK but not Akt and MAPK family members in hypertrophic hearts and cultured cardiomyocytes and further activated ULK1 at Ser555 but not Ser757 and did not affect the mTOR-S6K axis. Blockage of AMPK and ULK1 with compund C and SBI-0206965, respectively, both abrogated irisin's protection against cardiomyocyte hypertrophic injury and reversed its induction of both autophagy and autophagy flux. Our results suggest that irisin protects against pressure overload-induced cardiac hypertrophy by inducing protective autophagy and autophagy flux via activating AMPK-ULK1 signaling. |
Author | Xin, Juan-juan Tang, Chao-Shu Wu, Si-Si Li, He Li, Ru-Li Jiang, Wei Zhang, Heng-Yu Zhuo, Cai-Li Xue, Kun-Yue Wu, Yao Chen, Hong-Ying He, Jin-Han Li, Xue Cai, Yu-Yan Wang, Wang Wang, Xiao-Xiao Lan, Jie |
Author_xml | – sequence: 1 givenname: Ru-Li surname: Li fullname: Li, Ru-Li organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 2 givenname: Si-Si surname: Wu fullname: Wu, Si-Si organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 3 givenname: Yao surname: Wu fullname: Wu, Yao organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 4 givenname: Xiao-Xiao surname: Wang fullname: Wang, Xiao-Xiao organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 5 givenname: Hong-Ying surname: Chen fullname: Chen, Hong-Ying organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 6 givenname: Juan-juan surname: Xin fullname: Xin, Juan-juan organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 7 givenname: He surname: Li fullname: Li, He organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 8 givenname: Jie surname: Lan fullname: Lan, Jie organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 9 givenname: Kun-Yue surname: Xue fullname: Xue, Kun-Yue organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 10 givenname: Xue surname: Li fullname: Li, Xue organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 11 givenname: Cai-Li surname: Zhuo fullname: Zhuo, Cai-Li organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 12 givenname: Yu-Yan surname: Cai fullname: Cai, Yu-Yan organization: Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 13 givenname: Jin-Han surname: He fullname: He, Jin-Han organization: Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 14 givenname: Heng-Yu surname: Zhang fullname: Zhang, Heng-Yu organization: Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China – sequence: 15 givenname: Chao-Shu surname: Tang fullname: Tang, Chao-Shu organization: Department of Pathology and Physiology, Peking University Health Science Center, Beijing 10038, PR China – sequence: 16 givenname: Wang orcidid: 0000-0001-9093-412X surname: Wang fullname: Wang, Wang organization: Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, 850 Republican Street N121, Seattle, WA 98109, USA – sequence: 17 givenname: Wei surname: Jiang fullname: Jiang, Wei email: wcumsjw@scu.edu.cn organization: Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30053525$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAYhC1URLeFJ0BCPnJJ6thxEgtxqKoCVRcVofZsOfafrpdsHGxnUR6Ft8W723LoZS_-DzPfyJo5QyeDGwCh9wXJC1JUF-t8Xm-0zikpmpzUOeXkFVoURPCs4U15ghaEUJrRhjan6CyENSFElIy9QaeMEM445Qv098bbYAes-h62VkUIePQQwuQBuy343imT2cFMGgzWyhurNF7NI_jo3biacTvjvWyHx0S6CDraLWA1xSSrxxmnVLy5v_u5S4ER0jNErHYuFa0bsOtwXAG-_P7jNntY3hZ4VHH1R81v0etO9QHePd1z9PDl-v7qW7a8-3pzdbnMdFnXMdNVCUSLSrQMWiO6mjdU0IqCYTRJQpdtWZi2MkY0QDpeNqIDUxvOaVc2LWPn6OMhN_3-9wQhyo0NGvpeDeCmICmpGy4Eq0SyfniyTu0GjBy93Sg_y-c6k4EdDNq7EDx0_y0FkbvR5FruR5O70SSpZRotUeIFpW3clxO9sv0R9vOBhVTR1oKXQVsY0lrWpymkcfYI_-kFr3s7WK36XzAfpf8Bie3LJA |
CitedBy_id | crossref_primary_10_15283_ijsc21005 crossref_primary_10_1042_BSR20191860 crossref_primary_10_3390_cells11182794 crossref_primary_10_1038_s41401_025_01509_7 crossref_primary_10_1002_ctm2_166 crossref_primary_10_1038_s41467_024_53564_z crossref_primary_10_1016_j_mvr_2023_104572 crossref_primary_10_1016_j_biopha_2022_113967 crossref_primary_10_2174_1574888X18666221117111829 crossref_primary_10_1002_jcp_29307 crossref_primary_10_1016_j_arr_2022_101680 crossref_primary_10_3389_fnagi_2021_649929 crossref_primary_10_3390_cells10082103 crossref_primary_10_1089_ars_2019_7949 crossref_primary_10_1002_jcp_29561 crossref_primary_10_3389_fphys_2022_935772 crossref_primary_10_2174_0115701611285736240516101803 crossref_primary_10_1016_j_cellsig_2020_109805 crossref_primary_10_1016_j_taap_2022_116037 crossref_primary_10_1039_D2FO01761J crossref_primary_10_3390_ph18010110 crossref_primary_10_1002_iub_2907 crossref_primary_10_3389_fphar_2020_565160 crossref_primary_10_1186_s43556_022_00096_x crossref_primary_10_3390_cells13030277 crossref_primary_10_1007_s11033_023_09050_8 crossref_primary_10_1016_j_taap_2019_114647 crossref_primary_10_1016_j_tem_2022_06_003 crossref_primary_10_1536_ihj_19_443 crossref_primary_10_1038_s41420_021_00434_y crossref_primary_10_1016_j_freeradbiomed_2020_06_038 crossref_primary_10_1152_ajpcell_00161_2019 crossref_primary_10_3389_fphys_2021_620608 crossref_primary_10_3390_biomedicines11020457 crossref_primary_10_1016_j_redox_2025_103527 crossref_primary_10_31857_S1027813323020036 crossref_primary_10_1038_s41401_020_00557_5 crossref_primary_10_3389_fendo_2022_962968 crossref_primary_10_1038_s41598_022_11343_0 crossref_primary_10_1016_j_omto_2020_08_002 crossref_primary_10_1016_j_biopha_2022_112785 crossref_primary_10_1152_ajpcell_00232_2023 crossref_primary_10_14336_AD_2019_0901 crossref_primary_10_1093_abbs_gmaa038 crossref_primary_10_1002_cbin_11441 crossref_primary_10_1016_j_cbi_2019_01_031 crossref_primary_10_3390_diagnostics12122940 crossref_primary_10_1007_s10565_021_09649_2 crossref_primary_10_1186_s13578_020_00413_3 crossref_primary_10_1007_s13105_024_01049_4 crossref_primary_10_1002_tox_23677 crossref_primary_10_1111_1440_1681_13807 crossref_primary_10_18632_aging_202143 crossref_primary_10_3389_fendo_2021_678309 crossref_primary_10_3892_ijo_2021_5300 crossref_primary_10_3390_ijerph17113863 crossref_primary_10_2147_IJGM_S403564 crossref_primary_10_1007_s12192_019_00992_2 crossref_primary_10_3389_fnmol_2022_997054 crossref_primary_10_3389_fphar_2023_1307651 crossref_primary_10_1016_j_bbcan_2022_188761 crossref_primary_10_3390_antiox9090810 crossref_primary_10_1016_j_cyto_2020_155292 crossref_primary_10_1002_jcp_28382 crossref_primary_10_1007_s11033_020_06067_1 crossref_primary_10_1016_j_biopha_2023_115551 crossref_primary_10_1016_j_phymed_2022_154084 crossref_primary_10_1016_j_tox_2023_153597 crossref_primary_10_1097_CM9_0000000000002846 crossref_primary_10_3724_SP_J_1329_2023_01005 crossref_primary_10_1016_j_crphar_2021_100033 crossref_primary_10_1016_j_mce_2020_110840 crossref_primary_10_3390_foods14020327 crossref_primary_10_1038_s41418_019_0372_z crossref_primary_10_1002_biof_1834 crossref_primary_10_1016_j_jare_2024_12_036 crossref_primary_10_1161_JAHA_121_022453 crossref_primary_10_3390_jcdd9090305 crossref_primary_10_3390_biom11020286 crossref_primary_10_1002_jcp_28432 crossref_primary_10_1016_j_metabol_2022_155348 crossref_primary_10_1155_2020_5732956 crossref_primary_10_1016_j_ejphar_2025_177311 crossref_primary_10_1016_j_arcmed_2020_10_006 crossref_primary_10_4081_ejh_2024_4104 crossref_primary_10_7717_peerj_18413 crossref_primary_10_3389_fragi_2022_888190 crossref_primary_10_1210_endrev_bnab003 crossref_primary_10_1292_jvms_21_0268 crossref_primary_10_3390_ijms21207587 crossref_primary_10_1080_10799893_2020_1808675 crossref_primary_10_1016_j_lfs_2020_117624 crossref_primary_10_1016_j_mce_2022_111676 crossref_primary_10_3390_biomedicines12081827 crossref_primary_10_1089_scd_2019_0232 crossref_primary_10_1111_acel_12883 crossref_primary_10_3389_fnagi_2022_863901 crossref_primary_10_1016_j_arcmed_2025_103203 crossref_primary_10_1017_erm_2022_41 crossref_primary_10_1016_j_biocel_2022_106208 crossref_primary_10_1002_cbin_11763 crossref_primary_10_1134_S1819712423020034 crossref_primary_10_1016_j_bbadis_2020_165980 crossref_primary_10_1016_j_ejphar_2025_177416 crossref_primary_10_18632_aging_102247 crossref_primary_10_2147_JIR_S390497 crossref_primary_10_1007_s12265_022_10310_4 crossref_primary_10_1016_j_bcp_2024_116476 crossref_primary_10_3389_fendo_2022_989135 crossref_primary_10_1002_jcp_29613 crossref_primary_10_1093_ndt_gfae193 crossref_primary_10_3389_fcvm_2022_888319 crossref_primary_10_3389_fcell_2019_00183 |
Cites_doi | 10.1038/nrendo.2016.221 10.1210/jc.2014-2932 10.1016/j.cell.2010.01.028 10.1016/j.gene.2015.06.029 10.1172/JCI73939 10.1371/journal.pone.0122888 10.1038/nm1137 10.1016/j.yjmcc.2015.12.003 10.1016/j.bcp.2014.01.040 10.1016/j.jash.2016.06.014 10.1007/s10557-015-6580-y 10.1002/jcp.25857 10.1128/MCB.06159-11 10.1038/nm1574 10.1038/nature10992 10.1016/j.abb.2014.06.023 10.1016/j.peptides.2014.04.002 10.1371/journal.pone.0064757 10.1111/j.1582-4934.2011.01293.x 10.1016/j.yjmcc.2015.11.019 10.1016/j.mcna.2016.08.003 10.1016/j.peptides.2013.11.024 10.1161/CIRCULATIONAHA.115.017443 10.1074/jbc.M805514200 10.1161/CIRCULATIONAHA.115.013894 10.1038/hr.2009.120 10.1016/j.peptides.2014.02.008 10.1016/j.ddmod.2007.11.002 10.1111/nyas.13345 10.1155/2017/3920195 10.1038/nature10777 10.1074/jbc.M900301200 10.1016/S0008-6363(00)00076-6 10.1152/ajpheart.00145.2017 10.3389/fphys.2016.00104 10.1038/ncomms11314 10.1146/annurev-physiol-021317-121427 10.1016/j.abb.2017.09.012 10.1371/journal.pone.0181461 10.1016/j.molcel.2015.05.031 10.1016/S0196-9781(01)00527-7 10.1161/CIRCRESAHA.117.305349 10.1007/s00424-011-0930-9 10.1007/s00395-016-0531-z |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.yjmcc.2018.07.250 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-8584 |
EndPage | 255 |
ExternalDocumentID | 30053525 10_1016_j_yjmcc_2018_07_250 S0022282818306965 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29L 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADUVX AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HLW HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LX2 M29 M41 MO0 N9A O-L O9- OAUVE OA~ OL0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBG SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K WUQ X7M XPP Z5R ZGI ZMT ZU3 ~G- AACTN AAIAV ABLVK ABYKQ AEHWI AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG SSU AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c477t-c64e0c969b3ebd9f75829262ed3264e9c4b41db6dd98e0f5489fed7d552f48b33 |
IEDL.DBID | .~1 |
ISSN | 0022-2828 1095-8584 |
IngestDate | Fri Jul 11 11:56:54 EDT 2025 Mon Jul 21 06:07:15 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 04:05:25 EDT 2025 Fri Feb 23 02:29:13 EST 2024 Tue Aug 26 16:48:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transverse aortic constriction BNP DMSO JNK LVP LVIDd LV LVEDP Irisin Tg EDV mTOR LC3B-I LVEDV RFP EF LVPWd Cardiac hypertrophy LVW/TL FNDC5 FNDC4 AMPK LVIDs ULK1 Ang-II LC3B-II SQSTM1 ERK dPmin ANP CK-MB FS LVESP GFP LDH LVSd WT ATG5 dPmax CC SV KO CK ESV PGC-1α CO LVEDD CQ NRCMs PE Autophagy flux TAC 3-MA |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-c64e0c969b3ebd9f75829262ed3264e9c4b41db6dd98e0f5489fed7d552f48b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9093-412X |
PMID | 30053525 |
PQID | 2078599369 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2078599369 pubmed_primary_30053525 crossref_primary_10_1016_j_yjmcc_2018_07_250 crossref_citationtrail_10_1016_j_yjmcc_2018_07_250 elsevier_sciencedirect_doi_10_1016_j_yjmcc_2018_07_250 elsevier_clinicalkey_doi_10_1016_j_yjmcc_2018_07_250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of molecular and cellular cardiology |
PublicationTitleAlternate | J Mol Cell Cardiol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Song, Zhang, Zhang, Mu, Jiang (bb0210) 2015 Aug 4; 10 Alers, Löffler, Wesselborg, Stork (bb0005) 2012; 32 Zhang, Chang, Zhang, Zhang, Li, Chai (bb0225) 2015; 29 Fu, Han, Wang, Jose, Zeng (bb0050) 2016; 10 Egan, Chun, Vamos, Zou, Rong, Miller (bb0045) 2015; 59 Lista, Straface, Brunelleschi, Franconi, Malorni (bb0090) 2011 Jul; 15 Löffler, Müller, Scheuermann, Friebe, Gesing, Bielitz (bb0095) 2015 Apr; 100 Stanton, Dunn (bb0170) 2017; 101 Wang, Zhao, Zhang, Dubielecka, Du, Yano (bb0205) 2017; 232 Sundarrajan, Yeung, Hahn, Weber, Unniappan (bb0175) 2017; 12 Shibata, Ouchi, Ito, Kihara, Shiojima, Pimentel (bb0160) 2004; 10 Zhang, Jiang, Liu, Li, Chen, Xin (bb0220) 2009; 32 Ruwhof, van der Laarse (bb0135) 2000; 47 Schiattarella, Hill (bb0145) 2016; 95 Oka, Hikoso, Yamaguchi, Taneike, Takeda, Tamai (bb0120) 2012; 485 Mizushima, Yoshimori, Levine (bb0100) 2010; 140 Boström, Wu, Jedrychowski, Korde, Ye, Lo (bb0025) 2012; 481 Cingolani, Ennis, Aiello, Pérez (bb0035) 2011; 462 Bosma, Gerling, Pasto, Georgiadi, Graham, Shilkova (bb0020) 2016; 7 Perakakis, Triantafyllou, Fernández-Real, Huh, Park, Seufert (bb0130) 2017; 13 Nakai, Yamaguchi, Takeda, Higuchi, Hikoso, Taniike (bb0105) 2007; 13 Thoreen, Kang, Chang, Liu, Zhang, Gao (bb0185) 2009; 284 Aydin, Kuloglu, Aydin, Eren, Celik, Yilmaz (bb0015) 2014; 52 Zhang, Mu, Zhou, Song, Zhang, Wu (bb0230) 2016; 11 Patten (bb0125) 2007; 4 Nalbandian, Llewellyn, Nguyen, Yazdi, Kimonis (bb0110) 2015; 10 Gu, Hu, Song, Chen, Zhang, Wang (bb0055) 2016; 7 Wang, Wang, Chen, Wu, Chen, Wang (bb0195) 2014; 88 Aydin, Aydin, Kobat, Kalayci, Eren, Yilmaz (bb0010) 2014; 56 Xue, Jiang, Dong, Tan, Sun, Zhao (bb0215) 2017 Nov 1; 633 Colaianni, Cinti, Colucci, Grano (bb0040) 2017; 1402 Song, Wang, Wu (bb0165) 2015; 569 Kim, Guan (bb0070) 2015; 125 Jougasaki, Grantham, Redfield, Burnett (bb0060) 2001; 22 Sciarretta, Maejima, Zablocki, Sadoshima (bb0155) 2018 Feb 10; 80 Wang, Cui (bb0190) 2017; 313 Chen, Wang, Tong, Wu, Wu, Chen (bb0030) 2013; 8 Li, Chen, Yao, Su, Liu, Xue (bb0080) 2014; 558 Schiattarella, Hill (bb0140) 2015; 131 Tan, Wang, Lv, Li (bb0180) 2008; 283 Wang, Wang, Tong, Gan, Chen, Wu (bb0200) 2016; 111 Li, Wang, Ding, Tan, Luo, Criollo (bb0085) 2016; 133 Nishida, Otsu (bb0115) 2016; 95 Kamo, Akazawa, Komuro (bb0065) 2015; 117 Schirone, Forte, Palmerio, Yee, Nocella, Angelini (bb0150) 2017; 2017 Kuloglu, Aydin, Eren, Yilmaz, Sahin, Kalayci (bb0075) 2014; 55 Wang (10.1016/j.yjmcc.2018.07.250_bb0190) 2017; 313 Aydin (10.1016/j.yjmcc.2018.07.250_bb0015) 2014; 52 Nishida (10.1016/j.yjmcc.2018.07.250_bb0115) 2016; 95 Ruwhof (10.1016/j.yjmcc.2018.07.250_bb0135) 2000; 47 Nakai (10.1016/j.yjmcc.2018.07.250_bb0105) 2007; 13 Song (10.1016/j.yjmcc.2018.07.250_bb0165) 2015; 569 Boström (10.1016/j.yjmcc.2018.07.250_bb0025) 2012; 481 Nalbandian (10.1016/j.yjmcc.2018.07.250_bb0110) 2015; 10 Li (10.1016/j.yjmcc.2018.07.250_bb0080) 2014; 558 Schirone (10.1016/j.yjmcc.2018.07.250_bb0150) 2017; 2017 Mizushima (10.1016/j.yjmcc.2018.07.250_bb0100) 2010; 140 Perakakis (10.1016/j.yjmcc.2018.07.250_bb0130) 2017; 13 Li (10.1016/j.yjmcc.2018.07.250_bb0085) 2016; 133 Xue (10.1016/j.yjmcc.2018.07.250_bb0215) 2017; 633 Tan (10.1016/j.yjmcc.2018.07.250_bb0180) 2008; 283 Kuloglu (10.1016/j.yjmcc.2018.07.250_bb0075) 2014; 55 Wang (10.1016/j.yjmcc.2018.07.250_bb0200) 2016; 111 Bosma (10.1016/j.yjmcc.2018.07.250_bb0020) 2016; 7 Stanton (10.1016/j.yjmcc.2018.07.250_bb0170) 2017; 101 Sciarretta (10.1016/j.yjmcc.2018.07.250_bb0155) 2018; 80 Cingolani (10.1016/j.yjmcc.2018.07.250_bb0035) 2011; 462 Schiattarella (10.1016/j.yjmcc.2018.07.250_bb0145) 2016; 95 Oka (10.1016/j.yjmcc.2018.07.250_bb0120) 2012; 485 Patten (10.1016/j.yjmcc.2018.07.250_bb0125) 2007; 4 Löffler (10.1016/j.yjmcc.2018.07.250_bb0095) 2015; 100 Wang (10.1016/j.yjmcc.2018.07.250_bb0205) 2017; 232 Wang (10.1016/j.yjmcc.2018.07.250_bb0195) 2014; 88 Jougasaki (10.1016/j.yjmcc.2018.07.250_bb0060) 2001; 22 Zhang (10.1016/j.yjmcc.2018.07.250_bb0230) 2016; 11 Shibata (10.1016/j.yjmcc.2018.07.250_bb0160) 2004; 10 Thoreen (10.1016/j.yjmcc.2018.07.250_bb0185) 2009; 284 Wu (10.1016/j.yjmcc.2018.07.250_bb0210) 2015; 10 Chen (10.1016/j.yjmcc.2018.07.250_bb0030) 2013; 8 Kamo (10.1016/j.yjmcc.2018.07.250_bb0065) 2015; 117 Zhang (10.1016/j.yjmcc.2018.07.250_bb0225) 2015; 29 Fu (10.1016/j.yjmcc.2018.07.250_bb0050) 2016; 10 Gu (10.1016/j.yjmcc.2018.07.250_bb0055) 2016; 7 Lista (10.1016/j.yjmcc.2018.07.250_bb0090) 2011; 15 Alers (10.1016/j.yjmcc.2018.07.250_bb0005) 2012; 32 Colaianni (10.1016/j.yjmcc.2018.07.250_bb0040) 2017; 1402 Sundarrajan (10.1016/j.yjmcc.2018.07.250_bb0175) 2017; 12 Schiattarella (10.1016/j.yjmcc.2018.07.250_bb0140) 2015; 131 Zhang (10.1016/j.yjmcc.2018.07.250_bb0220) 2009; 32 Egan (10.1016/j.yjmcc.2018.07.250_bb0045) 2015; 59 Kim (10.1016/j.yjmcc.2018.07.250_bb0070) 2015; 125 Aydin (10.1016/j.yjmcc.2018.07.250_bb0010) 2014; 56 |
References_xml | – volume: 558 start-page: 79 year: 2014 end-page: 86 ident: bb0080 article-title: AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1 publication-title: Arch. Biochem. Biophys. – volume: 1402 start-page: 5 year: 2017 end-page: 9 ident: bb0040 article-title: Irisin and musculoskeletal health publication-title: Ann. N. Y. Acad. Sci. – volume: 10 start-page: e4 year: 2016 ident: bb0050 article-title: Irisin lowered blood pressure by augmenting acetylcholine-mediated vasodilation via AMPK-Akt-eNOS-NO signal pathway in the spontaneously hypertensive rat publication-title: J Am Soc Hypertens – volume: 232 start-page: 3775 year: 2017 end-page: 3785 ident: bb0205 article-title: Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury publication-title: J. Cell. Physiol. – volume: 11 year: 2016 ident: bb0230 article-title: Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction publication-title: PLoS One – volume: 7 start-page: 104 year: 2016 ident: bb0055 article-title: Rapamycin inhibits cardiac hypertrophy by promoting autophagy via the MEK/ERK/Beclin-1 pathway publication-title: Front. Physiol. – volume: 284 start-page: 8023 year: 2009 end-page: 8032 ident: bb0185 article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 publication-title: J. Biol. Chem. – volume: 462 start-page: 29 year: 2011 end-page: 38 ident: bb0035 article-title: Role of autocrine/paracrine mechanisms in response to myocardial strain publication-title: Pflugers Arch. – volume: 485 start-page: 251 year: 2012 end-page: 255 ident: bb0120 article-title: Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure publication-title: Nature – volume: 80 start-page: 1 year: 2018 Feb 10 end-page: 26 ident: bb0155 article-title: The role of autophagy in the heart publication-title: Annu. Rev. Physiol. – volume: 133 start-page: 1668 year: 2016 end-page: 1687 ident: bb0085 article-title: Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification publication-title: Circulation – volume: 12 year: 2017 ident: bb0175 article-title: Irisin regulates cardiac physiology in zebrafish publication-title: PLoS One – volume: 15 start-page: 1443 year: 2011 Jul end-page: 1457 ident: bb0090 article-title: On the role of autophagy in human diseases: a gender perspective publication-title: J. Cell. Mol. Med. – volume: 100 start-page: 1289 year: 2015 Apr end-page: 1299 ident: bb0095 article-title: Serum irisin levels are regulated by acute strenuous exercise publication-title: J. Clin. Endocrinol. Metab. – volume: 140 start-page: 313 year: 2010 end-page: 326 ident: bb0100 article-title: Methods in mammalian autophagy research publication-title: Cell – volume: 13 start-page: 619 year: 2007 end-page: 624 ident: bb0105 article-title: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress publication-title: Nat. Med. – volume: 10 year: 2015 Aug 4 ident: bb0210 article-title: Irisin induces angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish embryos in vivo via activation of the ERK signaling pathway publication-title: PLoS One – volume: 95 start-page: 11 year: 2016 end-page: 18 ident: bb0115 article-title: Autophagy during cardiac remodeling publication-title: J. Mol. Cell. Cardiol. – volume: 125 start-page: 25 year: 2015 end-page: 32 ident: bb0070 article-title: mTOR: a pharmacologic target for autophagy regulation publication-title: J. Clin. Invest. – volume: 569 start-page: 1 year: 2015 end-page: 6 ident: bb0165 article-title: Atrial natriuretic peptide in cardiovascular biology and disease (NPPA) publication-title: Gene – volume: 10 start-page: 1384 year: 2004 end-page: 1389 ident: bb0160 article-title: Adiponectin-mediated modulation of hypertrophic signals in the heart publication-title: Nat. Med. – volume: 29 start-page: 121 year: 2015 end-page: 127 ident: bb0225 article-title: Central and peripheral irisin differentially regulate blood pressure publication-title: Cardiovasc. Drugs Ther. – volume: 47 start-page: 23 year: 2000 end-page: 37 ident: bb0135 article-title: Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways publication-title: Cardiovasc. Res. – volume: 52 start-page: 68 year: 2014 end-page: 73 ident: bb0015 article-title: Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle publication-title: Peptides – volume: 56 start-page: 141 year: 2014 end-page: 145 ident: bb0010 article-title: Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology publication-title: Peptides – volume: 13 start-page: 324 year: 2017 end-page: 337 ident: bb0130 article-title: Physiology and role of irisin in glucose homeostasis publication-title: Nat. Rev. Endocrinol. – volume: 7 start-page: 11314 year: 2016 ident: bb0020 article-title: FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice publication-title: Nat. Commun. – volume: 88 start-page: 334 year: 2014 end-page: 350 ident: bb0195 article-title: Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK publication-title: Biochem. Pharmacol. – volume: 633 start-page: 124 year: 2017 Nov 1 end-page: 132 ident: bb0215 article-title: DJ-1 activates autophagy in the repression of cardiac hypertrophy publication-title: Arch. Biochem. Biophys. – volume: 283 start-page: 29730 year: 2008 end-page: 29739 ident: bb0180 article-title: Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase publication-title: J. Biol. Chem. – volume: 32 start-page: 2 year: 2012 end-page: 11 ident: bb0005 article-title: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks publication-title: Mol. Cell. Biol. – volume: 59 start-page: 285 year: 2015 end-page: 297 ident: bb0045 article-title: Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates publication-title: Mol. Cell – volume: 55 start-page: 85 year: 2014 end-page: 91 ident: bb0075 article-title: Irisin: a potentially candidate marker for myocardial infarction publication-title: Peptides – volume: 22 start-page: 1841 year: 2001 end-page: 1850 ident: bb0060 article-title: Regulation of cardiac adrenomedullin in heart failure publication-title: Peptides – volume: 8 year: 2013 ident: bb0030 article-title: Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy publication-title: PLoS One – volume: 95 start-page: 86 year: 2016 end-page: 93 ident: bb0145 article-title: Therapeutic targeting of autophagy in cardiovascular disease publication-title: J. Mol. Cell. Cardiol. – volume: 481 start-page: 463 year: 2012 end-page: 468 ident: bb0025 article-title: A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis publication-title: Nature – volume: 131 start-page: 1435 year: 2015 end-page: 1447 ident: bb0140 article-title: Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload publication-title: Circulation – volume: 101 start-page: 29 year: 2017 end-page: 41 ident: bb0170 article-title: Hypertension, Left Ventricular Hypertrophy, and Myocardial Ischemia publication-title: Med. Clin. North Am. – volume: 32 start-page: 861 year: 2009 end-page: 868 ident: bb0220 article-title: Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model publication-title: Hypertens. Res. – volume: 111 start-page: 13 year: 2016 ident: bb0200 article-title: SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms publication-title: Basic Res. Cardiol. – volume: 117 start-page: 89 year: 2015 end-page: 98 ident: bb0065 article-title: Cardiac nonmyocytes in the hub of cardiac hypertrophy publication-title: Circ. Res. – volume: 4 start-page: 227 year: 2007 end-page: 232 ident: bb0125 article-title: Models of gender differences in cardiovascular disease publication-title: Drug Discov. Today Dis. Model. – volume: 2017 start-page: 3920195 year: 2017 ident: bb0150 article-title: A review of the molecular mechanisms underlying the development and progression of cardiac remodeling publication-title: Oxidative Med. Cell. Longev. – volume: 10 year: 2015 ident: bb0110 article-title: Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy publication-title: PLoS One – volume: 313 start-page: H304 year: 2017 end-page: H319 ident: bb0190 article-title: Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 13 start-page: 324 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0130 article-title: Physiology and role of irisin in glucose homeostasis publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2016.221 – volume: 100 start-page: 1289 issue: 4 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0095 article-title: Serum irisin levels are regulated by acute strenuous exercise publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2014-2932 – volume: 140 start-page: 313 year: 2010 ident: 10.1016/j.yjmcc.2018.07.250_bb0100 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 – volume: 569 start-page: 1 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0165 article-title: Atrial natriuretic peptide in cardiovascular biology and disease (NPPA) publication-title: Gene doi: 10.1016/j.gene.2015.06.029 – volume: 125 start-page: 25 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0070 article-title: mTOR: a pharmacologic target for autophagy regulation publication-title: J. Clin. Invest. doi: 10.1172/JCI73939 – volume: 10 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0110 article-title: Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy publication-title: PLoS One doi: 10.1371/journal.pone.0122888 – volume: 10 start-page: 1384 year: 2004 ident: 10.1016/j.yjmcc.2018.07.250_bb0160 article-title: Adiponectin-mediated modulation of hypertrophic signals in the heart publication-title: Nat. Med. doi: 10.1038/nm1137 – volume: 95 start-page: 11 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0115 article-title: Autophagy during cardiac remodeling publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.12.003 – volume: 88 start-page: 334 year: 2014 ident: 10.1016/j.yjmcc.2018.07.250_bb0195 article-title: Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2014.01.040 – volume: 10 start-page: e4 issue: Suppl. 1 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0050 article-title: Irisin lowered blood pressure by augmenting acetylcholine-mediated vasodilation via AMPK-Akt-eNOS-NO signal pathway in the spontaneously hypertensive rat publication-title: J Am Soc Hypertens doi: 10.1016/j.jash.2016.06.014 – volume: 29 start-page: 121 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0225 article-title: Central and peripheral irisin differentially regulate blood pressure publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-015-6580-y – volume: 232 start-page: 3775 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0205 article-title: Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25857 – volume: 11 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0230 article-title: Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction publication-title: PLoS One – volume: 32 start-page: 2 year: 2012 ident: 10.1016/j.yjmcc.2018.07.250_bb0005 article-title: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.06159-11 – volume: 13 start-page: 619 issue: 5 year: 2007 ident: 10.1016/j.yjmcc.2018.07.250_bb0105 article-title: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress publication-title: Nat. Med. doi: 10.1038/nm1574 – volume: 485 start-page: 251 issue: 7397 year: 2012 ident: 10.1016/j.yjmcc.2018.07.250_bb0120 article-title: Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure publication-title: Nature doi: 10.1038/nature10992 – volume: 558 start-page: 79 year: 2014 ident: 10.1016/j.yjmcc.2018.07.250_bb0080 article-title: AMPK inhibits cardiac hypertrophy by promoting autophagy via mTORC1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2014.06.023 – volume: 10 issue: 8 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0210 article-title: Irisin induces angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish embryos in vivo via activation of the ERK signaling pathway publication-title: PLoS One – volume: 56 start-page: 141 year: 2014 ident: 10.1016/j.yjmcc.2018.07.250_bb0010 article-title: Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology publication-title: Peptides doi: 10.1016/j.peptides.2014.04.002 – volume: 8 issue: 5 year: 2013 ident: 10.1016/j.yjmcc.2018.07.250_bb0030 article-title: Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy publication-title: PLoS One doi: 10.1371/journal.pone.0064757 – volume: 15 start-page: 1443 issue: 7 year: 2011 ident: 10.1016/j.yjmcc.2018.07.250_bb0090 article-title: On the role of autophagy in human diseases: a gender perspective publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2011.01293.x – volume: 95 start-page: 86 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0145 article-title: Therapeutic targeting of autophagy in cardiovascular disease publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2015.11.019 – volume: 101 start-page: 29 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0170 article-title: Hypertension, Left Ventricular Hypertrophy, and Myocardial Ischemia publication-title: Med. Clin. North Am. doi: 10.1016/j.mcna.2016.08.003 – volume: 52 start-page: 68 year: 2014 ident: 10.1016/j.yjmcc.2018.07.250_bb0015 article-title: Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: cardiac muscle produces more irisin than skeletal muscle publication-title: Peptides doi: 10.1016/j.peptides.2013.11.024 – volume: 133 start-page: 1668 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0085 article-title: Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.017443 – volume: 283 start-page: 29730 issue: 44 year: 2008 ident: 10.1016/j.yjmcc.2018.07.250_bb0180 article-title: Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805514200 – volume: 131 start-page: 1435 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0140 article-title: Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.013894 – volume: 32 start-page: 861 issue: 10 year: 2009 ident: 10.1016/j.yjmcc.2018.07.250_bb0220 article-title: Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model publication-title: Hypertens. Res. doi: 10.1038/hr.2009.120 – volume: 55 start-page: 85 year: 2014 ident: 10.1016/j.yjmcc.2018.07.250_bb0075 article-title: Irisin: a potentially candidate marker for myocardial infarction publication-title: Peptides doi: 10.1016/j.peptides.2014.02.008 – volume: 4 start-page: 227 issue: 4 year: 2007 ident: 10.1016/j.yjmcc.2018.07.250_bb0125 article-title: Models of gender differences in cardiovascular disease publication-title: Drug Discov. Today Dis. Model. doi: 10.1016/j.ddmod.2007.11.002 – volume: 1402 start-page: 5 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0040 article-title: Irisin and musculoskeletal health publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.13345 – volume: 2017 start-page: 3920195 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0150 article-title: A review of the molecular mechanisms underlying the development and progression of cardiac remodeling publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2017/3920195 – volume: 481 start-page: 463 year: 2012 ident: 10.1016/j.yjmcc.2018.07.250_bb0025 article-title: A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis publication-title: Nature doi: 10.1038/nature10777 – volume: 284 start-page: 8023 year: 2009 ident: 10.1016/j.yjmcc.2018.07.250_bb0185 article-title: An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M900301200 – volume: 47 start-page: 23 year: 2000 ident: 10.1016/j.yjmcc.2018.07.250_bb0135 article-title: Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(00)00076-6 – volume: 313 start-page: H304 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0190 article-title: Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00145.2017 – volume: 7 start-page: 104 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0055 article-title: Rapamycin inhibits cardiac hypertrophy by promoting autophagy via the MEK/ERK/Beclin-1 pathway publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00104 – volume: 7 start-page: 11314 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0020 article-title: FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice publication-title: Nat. Commun. doi: 10.1038/ncomms11314 – volume: 80 start-page: 1 year: 2018 ident: 10.1016/j.yjmcc.2018.07.250_bb0155 article-title: The role of autophagy in the heart publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021317-121427 – volume: 633 start-page: 124 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0215 article-title: DJ-1 activates autophagy in the repression of cardiac hypertrophy publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2017.09.012 – volume: 12 year: 2017 ident: 10.1016/j.yjmcc.2018.07.250_bb0175 article-title: Irisin regulates cardiac physiology in zebrafish publication-title: PLoS One doi: 10.1371/journal.pone.0181461 – volume: 59 start-page: 285 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0045 article-title: Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.031 – volume: 22 start-page: 1841 year: 2001 ident: 10.1016/j.yjmcc.2018.07.250_bb0060 article-title: Regulation of cardiac adrenomedullin in heart failure publication-title: Peptides doi: 10.1016/S0196-9781(01)00527-7 – volume: 117 start-page: 89 year: 2015 ident: 10.1016/j.yjmcc.2018.07.250_bb0065 article-title: Cardiac nonmyocytes in the hub of cardiac hypertrophy publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.305349 – volume: 462 start-page: 29 year: 2011 ident: 10.1016/j.yjmcc.2018.07.250_bb0035 article-title: Role of autocrine/paracrine mechanisms in response to myocardial strain publication-title: Pflugers Arch. doi: 10.1007/s00424-011-0930-9 – volume: 111 start-page: 13 year: 2016 ident: 10.1016/j.yjmcc.2018.07.250_bb0200 article-title: SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-016-0531-z |
SSID | ssj0009433 |
Score | 2.5824792 |
Snippet | In hypertrophic hearts, autophagic flux insufficiency is recognized as a key pathology leading to maladaptive cardiac remodeling and heart failure. This study... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 242 |
SubjectTerms | AMP-Activated Protein Kinases - antagonists & inhibitors AMP-Activated Protein Kinases - genetics AMPK Angiotensin II - administration & dosage Animals Autophagy - genetics Autophagy flux Autophagy-Related Protein-1 Homolog - antagonists & inhibitors Autophagy-Related Protein-1 Homolog - genetics Benzamides - administration & dosage Cardiac hypertrophy Cardiomegaly - drug therapy Cardiomegaly - genetics Cardiomegaly - pathology Fibronectins - genetics Heart Failure - drug therapy Heart Failure - genetics Heart Failure - pathology Humans Irisin Mice Mice, Transgenic Myocytes, Cardiac - drug effects Phenylephrine - administration & dosage Pressure Pyrimidines - administration & dosage Signal Transduction TOR Serine-Threonine Kinases - genetics Transverse aortic constriction ULK1 |
Title | Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0022282818306965 https://dx.doi.org/10.1016/j.yjmcc.2018.07.250 https://www.ncbi.nlm.nih.gov/pubmed/30053525 https://www.proquest.com/docview/2078599369 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqVkJcEKU8lkc1lTgSmofz8HFVUW1Jt6CqK3qz_ErZqk2qJQvaC_-Df8tM4iyqBK3EKYpjO4lnPJ6xZ75h7G0qrENjRwVhYbKAR8YFioJzssKYwlluK0XBydOTbDLjH8_T8w12MMTCkFull_29TO-ktS_Z96O5fzOfU4wv7V4QmhGqvSKjQHPOc-Ly9z__uHkI3qeTJ691qj0gD3U-XqvLa0M4hlFBCJ4xBd__fXX6l_bZrUKHj9kjrz7CuP_Cbbbh6ifswdQfkO-wX5Qxfl4DZUj5Pic9EjpP1-XCATlrXjXKBmiGI0EtmI47DHxFW3TRLhoccdAr6B7jigYewwHlIaglARCoixVgr3B99umUevEJdFug6Ih-bxeaClCnhPH0cxnMjssIKOfxD7V6ymaHH84OJoHPvhAYnudtYDLuQiMyoROnrajQsIgJXNBZ1Pi4E4ZrHlmdWSsKF1Zo-YjK2dymaVzxQifJM7ZZN7V7wQCNOJNgUZRXiuM8V3QWGFZaR0LHyB4jFg-jLo2HJqcMGVdy8EG7lB2pJJFKhrlEUo3Yu3Wjmx6Z4-7qfCCnHIJOUUxKXDnubpatm93iy_sb7g08I3HG0jGMql2z_IaV8iIVlEhxxJ73zLT-gaTH20lf_u9rX7GHdNe7KL5mm-1i6d6g2tTq3W5e7LKt8VE5OaFrefql_A3W7RvQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJtteQwS3AhNss7DBw4VUG3Z3YLQrtSb8SuwVZtU2yxVLvwPfgd_kJnEWYQERULqNY7z8IzHM_bM9zH2LBHWYbCjgjA3acAj4wJFxTlpbkzuLLeFouLk6UE6mvN3h8nhBvvR18JQWqW3_Z1Nb621v7LjR3PndLGgGl_avSA0I3R7RdpnVo5dc45x29mr_Tco5OdxvPd29noUeGqBwPAsqwOTchcakQo9dNqKAr3mmJDznEV3hjthuOaR1am1IndhgW69KJzNbJLEBc817YKi3b_C0VwQbcLLb7_ySgTv-OspTZ4-r4c6apPKmqMTQ8CJUU6QoTFV-_95Ofybu9sue3s32Q3vr8JuNyS32IYrb7OrU38if4d9J4r6RQlEyfJ1QY4rtKm1q6UDyg49rpQNMO5HDbJgWnU08AWD32W9rFDEoBtom3EJBQ8agQYY1IoQD9TnBvCpcDJ7_5Ge4hl7a6ByjG4zGaoC0ImF3emHcTCfjCMgkuVz1dxl80uRyT22WVale8AAo0YzxEtRViiOhkXR4WNYaB0JHaM-Dljcj7o0HgudKDmOZZ_0diRbUUkSlQwziaIasBfrTqcdFMjFt_NenLKvckW7LHGpurhbuu7220T4d8envc5INBF07qNKV63O8KYsTwQxNw7Y_U6Z1j8w7AB-kq3_fe0Tdm00m07kZP9gvM2uU0uXH_mQbdbLlXuEPlutH7dzBNiny56UPwF0-lZV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Irisin+alleviates+pressure+overload-induced+cardiac+hypertrophy+by+inducing+protective+autophagy+via+mTOR-independent+activation+of+the+AMPK-ULK1+pathway&rft.jtitle=Journal+of+molecular+and+cellular+cardiology&rft.au=Li%2C+Ru-Li&rft.au=Wu%2C+Si-Si&rft.au=Wu%2C+Yao&rft.au=Wang%2C+Xiao-Xiao&rft.date=2018-08-01&rft.pub=Elsevier+Ltd&rft.issn=0022-2828&rft.volume=121&rft.spage=242&rft.epage=255&rft_id=info:doi/10.1016%2Fj.yjmcc.2018.07.250&rft.externalDocID=S0022282818306965 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2828&client=summon |