Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data
The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult fo...
Saved in:
Published in | Geoderma Vol. 274; pp. 28 - 34 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture.
[Display omitted]
•Biochar effect on soil physical properties was quantified using meta-analysis.•Biochar exerted significant improvements on soil physical properties.•Greater effect size was found for Ksat and AWC than on bulk density, porosity and MWD.•Greater effect size was exhibited in coarse-textured soils than in fine-textured soils.•Application rate and bulk density change correlated for crop residue and wood biochar. |
---|---|
AbstractList | The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture. The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture. [Display omitted] •Biochar effect on soil physical properties was quantified using meta-analysis.•Biochar exerted significant improvements on soil physical properties.•Greater effect size was found for Ksat and AWC than on bulk density, porosity and MWD.•Greater effect size was exhibited in coarse-textured soils than in fine-textured soils.•Application rate and bulk density change correlated for crop residue and wood biochar. |
Author | Omondi, Morris Oduor Liu, Xiaoyu Pan, Genxing Nahayo, Alphonse Xia, Xin Korai, Punhoon Khan |
Author_xml | – sequence: 1 givenname: Morris Oduor surname: Omondi fullname: Omondi, Morris Oduor email: morris.o.omondi@gmail.com organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China – sequence: 2 givenname: Xin surname: Xia fullname: Xia, Xin email: 1059307253@qq.com organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China – sequence: 3 givenname: Alphonse surname: Nahayo fullname: Nahayo, Alphonse email: nahonse@gmail.com organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China – sequence: 4 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu email: xiaoyuliu84@gmail.com organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China – sequence: 5 givenname: Punhoon Khan surname: Korai fullname: Korai, Punhoon Khan email: punhoonkorai@gmail.com organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China – sequence: 6 givenname: Genxing orcidid: 0000-0001-9755-0532 surname: Pan fullname: Pan, Genxing email: pangenxing@aliyun.com organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China |
BookMark | eNqNkc2KFDEURoOMYM_oK0iWbqrMT1WqClwog6MDAyLoOqRubrrTpCttkhL67U3bupnNzCrc5Hwfl5xrcrXEBQl5y1nLGVfv9-0Wo8V0MK2oc8tky8T0gmz4OIhGiX66IhtWX5qBKf6KXOe8r-PABNuQ3ffVLMU7D6b4uNDo6Owj7Eyi6BxCybTe5ugD3Z1siiFuKxroMcUjpuIx0zX7ZUsPWExjFhNO2edzTfAFkylrQmpNMa_JS2dCxjf_zhvy8-7zj9uvzcO3L_e3nx4a6IahNCCY7a0dpLLcjgykVXM3gsQZzMx6Jt0sZsFBdqBGwGkCOwA4N_Khn3pu5Q15d-mtG_5aMRd98BkwBLNgXLPmo1RK8bFXz0BF33V95Z-BslENopZWVF1QSDHnhE4fkz-YdNKc6bMwvdf_hemzMM2krsJq8MOjIPjy10pJxoen4x8vcay_-9tj0hk8LoDWp-pR2-ifqvgDoBS6kg |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2023_105088 crossref_primary_10_1016_j_chemosphere_2024_142596 crossref_primary_10_1016_j_soilbio_2017_11_011 crossref_primary_10_3390_su151410909 crossref_primary_10_1007_s42729_021_00662_2 crossref_primary_10_1016_j_geoderma_2021_115301 crossref_primary_10_1016_j_sjbs_2021_09_043 crossref_primary_10_1016_j_scitotenv_2024_173061 crossref_primary_10_1007_s11368_019_02531_z crossref_primary_10_3390_s20092444 crossref_primary_10_1002_vzj2_20301 crossref_primary_10_1111_gcbb_12952 crossref_primary_10_1016_j_jece_2022_108870 crossref_primary_10_1016_j_scitotenv_2021_150339 crossref_primary_10_3389_fenvs_2023_1324533 crossref_primary_10_1016_j_jhydrol_2024_131946 crossref_primary_10_1007_s11356_017_1048_1 crossref_primary_10_1016_j_apsoil_2024_105374 crossref_primary_10_1111_ejss_13442 crossref_primary_10_1007_s40502_025_00855_2 crossref_primary_10_1016_j_apsoil_2025_105870 crossref_primary_10_1007_s12210_023_01221_w crossref_primary_10_1016_j_jenvman_2023_118471 crossref_primary_10_3390_horticulturae8040328 crossref_primary_10_3390_agronomy12081879 crossref_primary_10_1007_s11600_022_00725_7 crossref_primary_10_1016_j_fcr_2025_109757 crossref_primary_10_1111_sum_12650 crossref_primary_10_1016_j_scitotenv_2023_164185 crossref_primary_10_1111_sum_12413 crossref_primary_10_1016_j_scitotenv_2023_168530 crossref_primary_10_3390_w16101347 crossref_primary_10_1007_s11600_023_01061_0 crossref_primary_10_1016_j_jenvman_2023_119359 crossref_primary_10_3390_agronomy12102420 crossref_primary_10_1016_j_geoderma_2019_06_038 crossref_primary_10_3390_atmos13010051 crossref_primary_10_1111_gcbb_12933 crossref_primary_10_1016_j_scp_2023_100999 crossref_primary_10_17221_522_2021_PSE crossref_primary_10_1007_s00374_017_1253_6 crossref_primary_10_1007_s12010_022_03808_9 crossref_primary_10_1016_j_catena_2019_03_033 crossref_primary_10_1016_j_agee_2017_02_034 crossref_primary_10_1007_s11252_023_01382_4 crossref_primary_10_3390_f15071128 crossref_primary_10_1016_j_chemosphere_2021_130978 crossref_primary_10_3390_f13071043 crossref_primary_10_3390_soilsystems7040105 crossref_primary_10_1016_j_geoderma_2021_115317 crossref_primary_10_1016_j_jenvman_2021_114403 crossref_primary_10_1016_j_fmre_2021_03_003 crossref_primary_10_1007_s11600_020_00423_2 crossref_primary_10_3390_agronomy12081857 crossref_primary_10_1016_j_biombioe_2020_105710 crossref_primary_10_1080_03650340_2022_2161092 crossref_primary_10_1016_j_scitotenv_2018_12_381 crossref_primary_10_1016_j_agee_2017_01_006 crossref_primary_10_1016_j_envres_2022_114248 crossref_primary_10_3390_su15129200 crossref_primary_10_1155_2017_4758316 crossref_primary_10_1111_ejss_13497 crossref_primary_10_2136_sssaj2017_01_0017 crossref_primary_10_1007_s11356_018_1245_6 crossref_primary_10_1016_j_jenvman_2020_111097 crossref_primary_10_1111_gcbb_12904 crossref_primary_10_17660_ActaHortic_2024_1411_20 crossref_primary_10_1016_j_scitotenv_2018_11_396 crossref_primary_10_1002_ldr_5550 crossref_primary_10_1016_j_still_2020_104926 crossref_primary_10_1002_ird_3017 crossref_primary_10_1080_23311932_2023_2256136 crossref_primary_10_1016_j_eja_2024_127499 crossref_primary_10_1016_j_jenvman_2021_113143 crossref_primary_10_1371_journal_pone_0288291 crossref_primary_10_1016_j_agee_2018_09_017 crossref_primary_10_1016_j_geoderma_2019_113892 crossref_primary_10_1016_j_scitotenv_2020_144802 crossref_primary_10_3390_app11198914 crossref_primary_10_1016_j_scitotenv_2021_150428 crossref_primary_10_3390_plants9101346 crossref_primary_10_1111_sum_12853 crossref_primary_10_1097_SS_0000000000000235 crossref_primary_10_1080_00103624_2024_2359573 crossref_primary_10_1007_s11738_022_03440_4 crossref_primary_10_3389_fmicb_2021_695447 crossref_primary_10_1007_s11104_022_05365_w crossref_primary_10_1007_s42773_022_00178_7 crossref_primary_10_1016_j_geoderma_2021_115643 crossref_primary_10_1111_ejss_13105 crossref_primary_10_1016_j_fcr_2024_109340 crossref_primary_10_1016_j_scitotenv_2024_170804 crossref_primary_10_33003_fjs_2024_0803_2519 crossref_primary_10_1007_s11676_019_00965_2 crossref_primary_10_3390_agronomy12020247 crossref_primary_10_3390_soilsystems8030072 crossref_primary_10_1016_j_jhydrol_2020_125318 crossref_primary_10_1111_sum_12769 crossref_primary_10_1016_j_still_2022_105345 crossref_primary_10_3390_agronomy12123039 crossref_primary_10_3390_land12122111 crossref_primary_10_1016_j_geoderma_2020_114241 crossref_primary_10_3389_fenrg_2021_710766 crossref_primary_10_1016_j_crsust_2024_100247 crossref_primary_10_3390_soilsystems8030069 crossref_primary_10_1016_j_scitotenv_2022_158225 crossref_primary_10_1016_j_eja_2017_09_003 crossref_primary_10_2139_ssrn_4144164 crossref_primary_10_1080_15567036_2021_1916652 crossref_primary_10_21467_ajgr_7_1_45_63 crossref_primary_10_1016_j_orggeochem_2017_06_012 crossref_primary_10_3390_plants13020166 crossref_primary_10_1007_s10064_020_01846_3 crossref_primary_10_1016_j_catena_2022_106838 crossref_primary_10_1007_s42773_020_00037_3 crossref_primary_10_1016_j_geoderma_2023_116591 crossref_primary_10_1007_s13399_021_01303_5 crossref_primary_10_1016_j_geoderma_2020_114457 crossref_primary_10_3390_agriculture15050458 crossref_primary_10_1016_j_jenvman_2023_117305 crossref_primary_10_1016_j_apsoil_2016_09_006 crossref_primary_10_1016_j_envpol_2019_07_051 crossref_primary_10_1007_s10705_022_10248_8 crossref_primary_10_1080_01904167_2021_1871746 crossref_primary_10_1039_D0EW00027B crossref_primary_10_1007_s42729_023_01201_x crossref_primary_10_1016_j_envres_2023_117794 crossref_primary_10_1016_j_marpolbul_2024_116623 crossref_primary_10_3390_agronomy12010131 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1016_j_ijsrc_2025_01_012 crossref_primary_10_1016_j_geodrs_2021_e00443 crossref_primary_10_1016_j_chemosphere_2022_133586 crossref_primary_10_1111_gcbb_12898 crossref_primary_10_3390_w17010069 crossref_primary_10_1016_j_foreco_2023_120881 crossref_primary_10_1007_s00344_020_10203_3 crossref_primary_10_1016_j_foreco_2018_05_059 crossref_primary_10_1016_j_still_2017_06_007 crossref_primary_10_15243_jdmlm_2024_113_5929 crossref_primary_10_3390_microorganisms11030641 crossref_primary_10_1111_sum_12848 crossref_primary_10_1016_j_rser_2022_113042 crossref_primary_10_1007_s42729_024_01784_z crossref_primary_10_1007_s11368_019_02293_8 crossref_primary_10_1016_j_geoderma_2020_114567 crossref_primary_10_1088_1755_1315_862_1_012077 crossref_primary_10_1111_gcbb_12889 crossref_primary_10_1111_gcbb_12766 crossref_primary_10_1111_gcbb_12885 crossref_primary_10_3390_w13091216 crossref_primary_10_1016_j_scitotenv_2023_162024 crossref_primary_10_2478_agri_2020_0005 crossref_primary_10_1007_s44246_025_00198_5 crossref_primary_10_3390_agronomy9090531 crossref_primary_10_1016_j_scienta_2024_113839 crossref_primary_10_1016_j_geoderma_2020_114209 crossref_primary_10_1016_j_agee_2016_04_010 crossref_primary_10_5194_bg_16_2949_2019 crossref_primary_10_1016_j_jclepro_2019_118435 crossref_primary_10_3390_agronomy11050993 crossref_primary_10_1016_j_still_2024_106282 crossref_primary_10_2478_ats_2024_0016 crossref_primary_10_1002_ldr_4868 crossref_primary_10_2139_ssrn_4175990 crossref_primary_10_1016_j_chemosphere_2024_143760 crossref_primary_10_1016_j_jhazmat_2024_134468 crossref_primary_10_1016_j_agwat_2023_108605 crossref_primary_10_3390_agronomy9030156 crossref_primary_10_1111_gcb_16618 crossref_primary_10_3390_horticulturae6030037 crossref_primary_10_1016_j_agwat_2024_109093 crossref_primary_10_1016_j_cej_2021_131189 crossref_primary_10_1016_j_bgtech_2024_100096 crossref_primary_10_1515_pac_2021_0106 crossref_primary_10_1080_00103624_2023_2296537 crossref_primary_10_1007_s13399_023_04253_2 crossref_primary_10_1186_s40538_023_00435_2 crossref_primary_10_7745_KJSSF_2023_56_4_572 crossref_primary_10_21597_jist_931246 crossref_primary_10_1016_j_geoderma_2022_116291 crossref_primary_10_1016_j_crsust_2023_100239 crossref_primary_10_3390_agronomy13071845 crossref_primary_10_1007_s11270_020_04942_y crossref_primary_10_3934_agrfood_2021024 crossref_primary_10_1016_j_scitotenv_2023_167885 crossref_primary_10_1016_j_jia_2023_12_011 crossref_primary_10_1039_D4GC03071K crossref_primary_10_7831_ras_11_0_271 crossref_primary_10_1016_j_scitotenv_2021_149861 crossref_primary_10_1007_s12517_020_05318_6 crossref_primary_10_1016_j_jenvman_2020_110190 crossref_primary_10_1016_j_biombioe_2024_107416 crossref_primary_10_1016_j_jclepro_2023_140032 crossref_primary_10_1007_s11270_021_05289_8 crossref_primary_10_3390_app14167421 crossref_primary_10_1038_s41598_023_48996_4 crossref_primary_10_3390_land8120179 crossref_primary_10_3390_buildings14092775 crossref_primary_10_1016_j_catena_2021_105460 crossref_primary_10_3390_agronomy10010067 crossref_primary_10_1016_j_ecofro_2024_10_008 crossref_primary_10_1016_j_foreco_2023_120971 crossref_primary_10_3390_agriculture8110171 crossref_primary_10_1007_s12649_021_01358_5 crossref_primary_10_1139_cjss_2021_0006 crossref_primary_10_1016_j_jaap_2022_105770 crossref_primary_10_1016_j_indcrop_2022_115508 crossref_primary_10_5194_soil_9_1_2023 crossref_primary_10_1007_s42729_024_01777_y crossref_primary_10_1016_j_still_2024_106365 crossref_primary_10_1016_j_resconrec_2022_106769 crossref_primary_10_3390_su141711104 crossref_primary_10_3390_su14127026 crossref_primary_10_1016_j_scitotenv_2020_138866 crossref_primary_10_1002_ird_2916 crossref_primary_10_1080_13416979_2024_2420374 crossref_primary_10_3390_su17052214 crossref_primary_10_1007_s11356_017_8633_1 crossref_primary_10_1016_j_geoderma_2021_115097 crossref_primary_10_1016_j_ufug_2018_09_001 crossref_primary_10_1007_s10668_023_04219_4 crossref_primary_10_1016_j_geodrs_2023_e00706 crossref_primary_10_32604_phyton_2025_059997 crossref_primary_10_1007_s11356_019_05604_1 crossref_primary_10_3389_fenvs_2023_1123897 crossref_primary_10_1016_j_scitotenv_2022_154520 crossref_primary_10_1111_gcbb_13102 crossref_primary_10_1155_2023_7531228 crossref_primary_10_1016_j_biortech_2024_130707 crossref_primary_10_3390_land12081580 crossref_primary_10_1016_j_jclepro_2022_135787 crossref_primary_10_3390_su17020642 crossref_primary_10_1007_s10705_019_09971_6 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1002_jsfa_12517 crossref_primary_10_1002_fes3_70009 crossref_primary_10_3390_su14041987 crossref_primary_10_1016_j_scitotenv_2021_145106 crossref_primary_10_1371_journal_pone_0179079 crossref_primary_10_1016_j_jenvman_2024_121032 crossref_primary_10_1039_D3EW00054K crossref_primary_10_2136_sssaj2019_04_0115 crossref_primary_10_3390_f15020304 crossref_primary_10_1080_01904167_2019_1702203 crossref_primary_10_1016_j_scitotenv_2020_138938 crossref_primary_10_1016_j_chemosphere_2017_11_113 crossref_primary_10_1016_j_still_2019_04_023 crossref_primary_10_3390_agronomy12061412 crossref_primary_10_2139_ssrn_3987740 crossref_primary_10_1007_s42452_020_2156_y crossref_primary_10_3390_w13040407 crossref_primary_10_1016_j_scitotenv_2018_01_037 crossref_primary_10_1016_j_scitotenv_2021_145869 crossref_primary_10_1021_acs_est_3c04185 crossref_primary_10_1007_s11270_017_3392_7 crossref_primary_10_1016_j_agwat_2024_108843 crossref_primary_10_3390_agronomy14071529 crossref_primary_10_1016_j_ocsci_2024_01_002 crossref_primary_10_1007_s12517_022_10820_0 crossref_primary_10_1016_j_scitotenv_2020_137852 crossref_primary_10_1016_j_geoderma_2019_03_010 crossref_primary_10_3390_w15152701 crossref_primary_10_1016_j_iswcr_2024_03_001 crossref_primary_10_1016_j_jenvman_2023_117864 crossref_primary_10_1007_s10706_023_02447_z crossref_primary_10_1016_j_scitotenv_2023_162249 crossref_primary_10_1007_s42773_024_00317_2 crossref_primary_10_1016_j_chemosphere_2022_134304 crossref_primary_10_1177_0734242X18790356 crossref_primary_10_1093_hr_uhac108 crossref_primary_10_1111_gcbb_12582 crossref_primary_10_1166_sam_2022_4261 crossref_primary_10_3390_horticulturae10020154 crossref_primary_10_1007_s42729_021_00580_3 crossref_primary_10_1016_j_catena_2021_105607 crossref_primary_10_1002_agg2_20094 crossref_primary_10_1007_s11270_017_3428_z crossref_primary_10_1016_j_geoderma_2019_114055 crossref_primary_10_3390_su15097158 crossref_primary_10_48130_SSE_2023_0009 crossref_primary_10_1016_j_still_2021_104992 crossref_primary_10_2166_wcc_2024_072 crossref_primary_10_5194_gmd_17_4871_2024 crossref_primary_10_1002_hyp_14765 crossref_primary_10_3390_su132413726 crossref_primary_10_1007_s42773_019_00020_7 crossref_primary_10_1007_s11368_020_02616_0 crossref_primary_10_1016_j_fcr_2022_108574 crossref_primary_10_48130_TIA_2023_0013 crossref_primary_10_1007_s11356_021_14119_7 crossref_primary_10_1002_agj2_21714 crossref_primary_10_1155_2022_5747699 crossref_primary_10_1111_ppl_13261 crossref_primary_10_1111_gcbb_12561 crossref_primary_10_1126_science_abe0725 crossref_primary_10_1016_j_jenvman_2021_113076 crossref_primary_10_3390_su13073617 crossref_primary_10_3390_w17030330 crossref_primary_10_1002_agg2_20197 crossref_primary_10_1007_s10311_022_01544_4 crossref_primary_10_1016_j_dwt_2025_101051 crossref_primary_10_24326_asphc_2022_5_6 crossref_primary_10_1016_j_scitotenv_2019_135856 crossref_primary_10_1016_j_catena_2022_106281 crossref_primary_10_1002_jpln_202200297 crossref_primary_10_1007_s44246_022_00032_2 crossref_primary_10_1016_j_advwatres_2020_103638 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_1038_s41598_017_07224_6 crossref_primary_10_3390_agronomy12030564 crossref_primary_10_3390_agronomy13051233 crossref_primary_10_3390_agronomy12112855 crossref_primary_10_3390_agronomy9060327 crossref_primary_10_1007_s42729_020_00253_7 crossref_primary_10_1007_s42729_024_01998_1 crossref_primary_10_1002_ldr_2906 crossref_primary_10_1016_j_jenvman_2019_109891 crossref_primary_10_3389_fpls_2022_1018646 crossref_primary_10_1016_j_scitotenv_2023_169585 crossref_primary_10_1029_2021EF002583 crossref_primary_10_1002_saj2_20683 crossref_primary_10_1007_s12517_022_10141_2 crossref_primary_10_1111_ejss_13157 crossref_primary_10_1016_j_ufug_2021_127063 crossref_primary_10_1016_j_geoderma_2019_114099 crossref_primary_10_1016_j_still_2020_104798 crossref_primary_10_2136_sssaj2019_07_0230 crossref_primary_10_1002_saj2_20207 crossref_primary_10_1007_s11104_022_05359_8 crossref_primary_10_1016_j_spc_2022_12_015 crossref_primary_10_1002_fes3_208 crossref_primary_10_1016_j_seh_2023_100033 crossref_primary_10_1016_j_scitotenv_2023_161860 crossref_primary_10_1007_s11600_020_00492_3 crossref_primary_10_1016_j_geoderma_2021_115276 crossref_primary_10_11118_actaun_2022_002 crossref_primary_10_3390_agriengineering6040215 crossref_primary_10_3390_agronomy11030489 crossref_primary_10_3390_w16030482 crossref_primary_10_1038_s41598_019_45693_z crossref_primary_10_1111_ejss_13138 crossref_primary_10_1007_s42773_021_00114_1 crossref_primary_10_1002_ldr_5285 crossref_primary_10_1016_j_scitotenv_2020_136857 crossref_primary_10_1016_j_still_2019_104525 crossref_primary_10_1016_j_geoderma_2021_115223 crossref_primary_10_1016_j_soilbio_2020_107803 crossref_primary_10_1007_s40093_019_00292_w crossref_primary_10_4236_gep_2021_910003 crossref_primary_10_1016_j_scitotenv_2018_11_316 crossref_primary_10_1155_2021_6000184 crossref_primary_10_1016_j_scitotenv_2018_11_312 crossref_primary_10_1016_j_agwat_2021_106940 crossref_primary_10_1016_j_geoderma_2018_09_027 crossref_primary_10_1186_s12898_020_00304_8 crossref_primary_10_3390_horticulturae11010073 crossref_primary_10_1590_1809_4430_eng_agric_v40n3p344_351_2020 crossref_primary_10_3390_agriculture14010037 crossref_primary_10_3390_soilsystems3020024 crossref_primary_10_1002_agg2_20028 crossref_primary_10_1002_ldr_4055 crossref_primary_10_1016_j_sandf_2024_101470 crossref_primary_10_3390_plants14030401 crossref_primary_10_1007_s12155_018_9940_1 crossref_primary_10_1016_j_geoderma_2018_09_034 crossref_primary_10_1016_j_envint_2019_105172 crossref_primary_10_1007_s42773_023_00244_8 crossref_primary_10_3390_ma14216658 crossref_primary_10_1007_s00344_022_10786_z crossref_primary_10_1016_j_scitotenv_2021_152223 crossref_primary_10_1002_cjce_24099 crossref_primary_10_1111_gcbb_13147 crossref_primary_10_1016_j_jaridenv_2023_105011 crossref_primary_10_1016_j_scitotenv_2018_06_231 crossref_primary_10_1007_s12649_022_01877_9 crossref_primary_10_1016_j_biombioe_2017_06_024 crossref_primary_10_1016_j_still_2019_06_009 crossref_primary_10_3390_molecules26113313 crossref_primary_10_1016_j_indcrop_2023_116702 crossref_primary_10_1016_j_eti_2023_103242 crossref_primary_10_1007_s42773_021_00104_3 crossref_primary_10_3390_agronomy14061137 crossref_primary_10_1016_j_ecoleng_2021_106391 crossref_primary_10_3390_agronomy10101589 crossref_primary_10_1007_s11270_018_3816_z crossref_primary_10_3390_soilsystems4040069 crossref_primary_10_3390_agronomy12030546 crossref_primary_10_1080_03650340_2020_1796981 crossref_primary_10_1177_1056789520974416 crossref_primary_10_1016_j_fcr_2024_109518 crossref_primary_10_1007_s10311_018_0802_z |
Cites_doi | 10.1007/s11104-013-1806-x 10.1111/sum.12181 10.1016/j.geoderma.2010.05.013 10.1007/s11104-010-0464-5 10.1016/j.jhazmat.2014.03.017 10.1007/s11027-005-9006-5 10.1111/ejss.12081 10.1016/j.still.2011.01.002 10.1590/S0100-204X2012000500012 10.1002/jpln.201100172 10.1002/ep.11867 10.1016/j.agsy.2014.05.008 10.2134/agronj2010.0188 10.1016/j.geoderma.2013.06.016 10.1016/j.biombioe.2012.01.033 10.1007/s00374-002-0466-4 10.1021/es903140c 10.1016/j.agee.2014.01.007 10.1016/j.geoderma.2015.03.022 10.1016/j.geoderma.2013.03.003 10.1002/jpln.200625185 10.3390/agronomy3020313 10.1007/s11104-013-1980-x 10.1029/2006GB002798 10.1016/j.agee.2010.12.005 10.1016/j.jenvman.2010.06.013 10.2134/jeq2011.0128 10.1016/j.agee.2010.09.003 10.1111/gcbb.12026 10.1016/j.catena.2013.06.021 10.1007/s11368-013-0738-7 10.1016/j.apgeog.2011.09.008 10.1016/j.still.2004.03.008 10.1111/sum.12102 10.1016/j.soilbio.2011.10.012 10.1002/2014GB005000 10.1097/SS.0b013e3181cb7f46 10.1007/s11104-013-1851-5 10.1111/j.1365-2389.2006.00807.x 10.1016/j.fcr.2008.10.008 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.geoderma.2016.03.029 |
DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 34 |
ExternalDocumentID | 10_1016_j_geoderma_2016_03_029 S0016706116301471 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c477t-c20d5dd736d1d80c3d6b48c3ebcab0503fb2b21c34c68ce99cd7ccff8175951d3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 10:52:57 EDT 2025 Fri Jul 11 02:41:37 EDT 2025 Fri Jul 11 04:06:22 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Tue Jul 01 04:04:41 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Literature data Soil hydrology Soil water capacity Biochar Soil physical properties Meta-analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-c20d5dd736d1d80c3d6b48c3ebcab0503fb2b21c34c68ce99cd7ccff8175951d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9755-0532 |
PQID | 1808672563 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1836661856 proquest_miscellaneous_1825445366 proquest_miscellaneous_1808672563 crossref_primary_10_1016_j_geoderma_2016_03_029 crossref_citationtrail_10_1016_j_geoderma_2016_03_029 elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_03_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-15 |
PublicationDateYYYYMMDD | 2016-07-15 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Ye, Liu, Zhang, Zhang, Li, Pan, Kibue, Zheng, Zheng (bb0170) 2014; 129 Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, van Groenigen (bb0105) 2015; 251-252 Thies, Rillig (bb0230) 2009 Zhang, Cui, Pan, Li, Hussain, Zhang, Zheng, Crowley (bb0250) 2010; 139 Lei, Zhang (bb0155) 2013; 13 Jones, Haynes, Phillips (bb0115) 2010; 91 Brodowski, John, Flessa, Amelung (bb0050) 2006; 57 Laird, Fleming, Davis, Horton, Wang, Karlen (bb0140) 2010; 158 Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bb0225) 2014; 191 Lehmann, Abiven, Kleber, Pan, Singh, Sohi, Zimmerman (bb0150) 2015 Pereira, Heinemann, Madari, Carvalho, Kliemann, dos Santos (bb0205) 2012; 47 Uzoma, Inoue, Andry, Zahoor, Nishihara (bb0240) 2011; 9 Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bb0010) 2009; 111 Basso, Miguez, Laird, Horton, Westgate (bb0025) 2013; 5 (bb0090) 2004 Barrow (bb0020) 2012; 34 Jay, Fitzgerald, Hipps, Atkinson (bb0100) 2015; 31 Herath, Camps-Arbestain, Hedley (bb0085) 2013; 209-210 Koide, Nguyen, Skinner, Dell, Peoples, Adler, Drohan (bb0135) 2014 Bruun, Petersen, Hansen, Holm, Hauggaard-Nielsen (bb0055) 2014; 30 Oguntunde, Abiodun, Ajayi, van de Giesen (bb0190) 2008; 171 Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bb0220) 2014; 374 Shane (bb0210) 2010 Liu, Zhang, Ji, Joseph, Bian, Li, Pan, Paz-Ferreiro (bb0165) 2013; 373 Glaser, Lehmann, Zech (bb0075) 2002; 35 Atkinson, Fitzgerald, Hipps (bb0015) 2010; 337 Ouyang, Wang, Tang, Yu, Zhang (bb0195) 2013; 13 Abel, Peters, Tinks, Schonsky, Facklam, Wessolek (bb0005) 2013; 202-203 Zimmerman (bb0255) 2010; 44 Wang, Moore, Talbot, Riley (bb0245) 2015; 29 Peng, Ye, Wang, Zhou, Sun (bb0200) 2011; 112 Busscher, Novak, Evans, Watts, Niandou, Ahmedna (bb0060) 2010; 175 Lehmann, Gaunt, Rondon (bb0145) 2006; 11 (bb0035) 2009 Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0130) 2012; 41 Hardie, Clothier, Bound, Oliver, Close (bb0080) 2013; 376 Karhu, Mattila, Bergström, Regina (bb0125) 2011; 140 Brady, Weil (bb0040) 2014 Hua, Lu, Ma, Jin (bb0095) 2014; 33 Bian, Joseph, Cui, Pan, Li, Liu, Zhang, Rutlidge, Wong, Chia, Marjo, Gong, Munroe, Donne (bb0030) 2014; 272 Six, Bossuyt, Degryze, Denef (bb0215) 2004; 79 Jien, Wang (bb0110) 2013; 110 Ulyett, Sakrabani, Kibblewhite, Hann (bb0235) 2014; 65 Brockhoff, Christians, Killorn, Horton, Davis (bb0045) 2010; 102 Jones, Rousk, Edwards-Jones, DeLuca., Murphy (bb0120) 2012; 45 Major, Rondon, Molina, Riha, Lehmann (bb0175) 2012; 41 Mukherjee, Lal (bb0180) 2013; 3 Devereux, Sturrock, Mooney (bb0070) 2012; 103 Czimczik, Masiello (bb0065) 2007; 21 Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bb0160) 2012; 175 Tammeorg (10.1016/j.geoderma.2016.03.029_bb0225) 2014; 191 Basso (10.1016/j.geoderma.2016.03.029_bb0025) 2013; 5 Pereira (10.1016/j.geoderma.2016.03.029_bb0205) 2012; 47 Abel (10.1016/j.geoderma.2016.03.029_bb0005) 2013; 202-203 Brockhoff (10.1016/j.geoderma.2016.03.029_bb0045) 2010; 102 Koide (10.1016/j.geoderma.2016.03.029_bb0135) 2014 Peng (10.1016/j.geoderma.2016.03.029_bb0200) 2011; 112 Wang (10.1016/j.geoderma.2016.03.029_bb0245) 2015; 29 Shane (10.1016/j.geoderma.2016.03.029_bb0210) 2010 Lehmann (10.1016/j.geoderma.2016.03.029_bb0145) 2006; 11 Liu (10.1016/j.geoderma.2016.03.029_bb0165) 2013; 373 Uzoma (10.1016/j.geoderma.2016.03.029_bb0240) 2011; 9 Barrow (10.1016/j.geoderma.2016.03.029_bb0020) 2012; 34 Oguntunde (10.1016/j.geoderma.2016.03.029_bb0190) 2008; 171 Zimmerman (10.1016/j.geoderma.2016.03.029_bb0255) 2010; 44 Jay (10.1016/j.geoderma.2016.03.029_bb0100) 2015; 31 Karhu (10.1016/j.geoderma.2016.03.029_bb0125) 2011; 140 Thies (10.1016/j.geoderma.2016.03.029_bb0230) 2009 Glaser (10.1016/j.geoderma.2016.03.029_bb0075) 2002; 35 Herath (10.1016/j.geoderma.2016.03.029_bb0085) 2013; 209-210 Kinney (10.1016/j.geoderma.2016.03.029_bb0130) 2012; 41 Liu (10.1016/j.geoderma.2016.03.029_bb0170) 2014; 129 Czimczik (10.1016/j.geoderma.2016.03.029_bb0065) 2007; 21 (10.1016/j.geoderma.2016.03.029_bb0090) 2004 Brady (10.1016/j.geoderma.2016.03.029_bb0040) 2014 Major (10.1016/j.geoderma.2016.03.029_bb0175) 2012; 41 Jeffery (10.1016/j.geoderma.2016.03.029_bb0105) 2015; 251-252 Six (10.1016/j.geoderma.2016.03.029_bb0215) 2004; 79 Bian (10.1016/j.geoderma.2016.03.029_bb0030) 2014; 272 Busscher (10.1016/j.geoderma.2016.03.029_bb0060) 2010; 175 Lehmann (10.1016/j.geoderma.2016.03.029_bb0150) 2015 Hua (10.1016/j.geoderma.2016.03.029_bb0095) 2014; 33 Liu (10.1016/j.geoderma.2016.03.029_bb0160) 2012; 175 Jones (10.1016/j.geoderma.2016.03.029_bb0120) 2012; 45 Asai (10.1016/j.geoderma.2016.03.029_bb0010) 2009; 111 Zhang (10.1016/j.geoderma.2016.03.029_bb0250) 2010; 139 Bruun (10.1016/j.geoderma.2016.03.029_bb0055) 2014; 30 Ouyang (10.1016/j.geoderma.2016.03.029_bb0195) 2013; 13 Jien (10.1016/j.geoderma.2016.03.029_bb0110) 2013; 110 Tammeorg (10.1016/j.geoderma.2016.03.029_bb0220) 2014; 374 Atkinson (10.1016/j.geoderma.2016.03.029_bb0015) 2010; 337 Laird (10.1016/j.geoderma.2016.03.029_bb0140) 2010; 158 Brodowski (10.1016/j.geoderma.2016.03.029_bb0050) 2006; 57 Ulyett (10.1016/j.geoderma.2016.03.029_bb0235) 2014; 65 Jones (10.1016/j.geoderma.2016.03.029_bb0115) 2010; 91 Mukherjee (10.1016/j.geoderma.2016.03.029_bb0180) 2013; 3 Hardie (10.1016/j.geoderma.2016.03.029_bb0080) 2013; 376 Lei (10.1016/j.geoderma.2016.03.029_bb0155) 2013; 13 (10.1016/j.geoderma.2016.03.029_bb0035) 2009 Devereux (10.1016/j.geoderma.2016.03.029_bb0070) 2012; 103 |
References_xml | – volume: 11 start-page: 403 year: 2006 end-page: 427 ident: bb0145 article-title: Bio-char sequestration in terrestrial ecosystems—a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. – volume: 31 start-page: 241 year: 2015 end-page: 250 ident: bb0100 article-title: Why short-term biochar application has no yield benefits: evidence from three field-grown crops publication-title: Soil Use Manag. – volume: 41 start-page: 1076 year: 2012 end-page: 1086 ident: bb0175 article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar publication-title: J. Environ. Qual. – year: 2004 ident: bb0090 publication-title: Introduction to Environmental Soil Physics – volume: 102 start-page: 1627 year: 2010 ident: bb0045 article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar publication-title: Agron. J. – volume: 139 start-page: 469 year: 2010 end-page: 475 ident: bb0250 article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China publication-title: Agric. Ecosyst. Environ. – volume: 13 start-page: 1561 year: 2013 end-page: 1572 ident: bb0155 article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties publication-title: J. Soils Sediments – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bb0255 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. – year: 2014 ident: bb0040 article-title: The Nature and Properties of Soils – volume: 9 start-page: 1137 year: 2011 end-page: 1143 ident: bb0240 article-title: Influence of biochar application on sandy soil hydraulic properties and nutrient retention publication-title: J. Food Agriculture Environ. – volume: 34 start-page: 21 year: 2012 end-page: 28 ident: bb0020 article-title: Biochar: potential for countering land degradation and for improving agriculture publication-title: Appl. Geogr. – volume: 112 start-page: 159 year: 2011 end-page: 166 ident: bb0200 article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China publication-title: Soil Tillage Res. – volume: 158 start-page: 443 year: 2010 end-page: 449 ident: bb0140 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma – volume: 30 start-page: 109 year: 2014 end-page: 118 ident: bb0055 article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention.pdf publication-title: Soil Use Manag. – volume: 209-210 start-page: 188 year: 2013 end-page: 197 ident: bb0085 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma – volume: 374 start-page: 89 year: 2014 end-page: 107 ident: bb0220 article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean publication-title: Plant Soil – volume: 140 start-page: 309 year: 2011 end-page: 313 ident: bb0125 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: bb0015 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 373 start-page: 583 year: 2013 end-page: 594 ident: bb0165 article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data publication-title: Plant Soil – volume: 5 start-page: 132 year: 2013 end-page: 143 ident: bb0025 article-title: Assessing potential of biochar for increasing water-holding capacity of sandy soils publication-title: GCB Bioenergy – year: 2010 ident: bb0210 article-title: Biochar as a Sand-based Rootzone Amendment – volume: 65 start-page: 96 year: 2014 end-page: 104 ident: bb0235 article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils publication-title: Eur. J. Soil Sci. – volume: 91 start-page: 2281 year: 2010 end-page: 2288 ident: bb0115 article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties publication-title: J. Environ. Manag. – start-page: 235 year: 2015 end-page: 283 ident: bb0150 article-title: Persistence of biochar in soil publication-title: Biochar for Environmental Management—Science, Technology and Implementation – start-page: 1 year: 2014 end-page: 8 ident: bb0135 article-title: Biochar amendment of soil improves resilience to climate change publication-title: GCB Bioenergy – volume: 79 start-page: 7 year: 2004 end-page: 31 ident: bb0215 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. – year: 2009 ident: bb0230 article-title: Characteristics of biochar: biological properties publication-title: Biochar for Environmental Management Science and Technology – volume: 41 start-page: 34 year: 2012 end-page: 43 ident: bb0130 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy – volume: 191 start-page: 108 year: 2014 end-page: 116 ident: bb0225 article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand publication-title: Agric. Ecosyst. Environ. – volume: 57 start-page: 539 year: 2006 end-page: 546 ident: bb0050 article-title: Aggregate-occluded black carbon in soil publication-title: Eur. J. Soil Sci. – volume: 21 start-page: 1 year: 2007 end-page: 8 ident: bb0065 article-title: Controls on black carbon storage in soils publication-title: Glob. Biogeochem. Cycles – volume: 47 start-page: 716 year: 2012 end-page: 721 ident: bb0205 article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar publication-title: Pesq. Agrop. Brasileira – volume: 29 start-page: 1 year: 2015 end-page: 9 ident: bb0245 article-title: The stoichiometry of carbon and nutrients in peat formation publication-title: Glob. Biogeochem. Cycles – volume: 272 start-page: 121 year: 2014 end-page: 128 ident: bb0030 article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment publication-title: J. Hazard. Mater. – volume: 175 start-page: 698 year: 2012 end-page: 707 ident: bb0160 article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions publication-title: J. Plant Nutr. Soil Sci. – volume: 171 start-page: 591 year: 2008 end-page: 596 ident: bb0190 article-title: Effects of charcoal production on soil physical properties in Ghana publication-title: J. Plant Nutr. Soil Sci. – volume: 129 start-page: 22 year: 2014 end-page: 29 ident: bb0170 article-title: Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China publication-title: Agric. Syst. – volume: 35 start-page: 219 year: 2002 end-page: 230 ident: bb0075 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with bio-char—a review publication-title: Biol. Fertil. Soils – volume: 110 start-page: 225 year: 2013 end-page: 233 ident: bb0110 article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil publication-title: Catena – volume: 13 start-page: 991 year: 2013 end-page: 1002 ident: bb0195 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nutr. – volume: 175 start-page: 10 year: 2010 end-page: 14 ident: bb0060 article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand publication-title: Soil Sci. – volume: 33 start-page: 941 year: 2014 end-page: 946 ident: bb0095 article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil publication-title: Environ. Prog. Sustainable Energy – volume: 376 start-page: 347 year: 2013 end-page: 361 ident: bb0080 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil – volume: 103 start-page: 13 year: 2012 end-page: 18 ident: bb0070 article-title: The effects of biochar on soil physical properties and winter wheat growth publication-title: Earth and Environ. Sci. Trans. Roy. Soc. Edin. – volume: 202-203 start-page: 183 year: 2013 end-page: 191 ident: bb0005 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma – volume: 251-252 start-page: 47 year: 2015 end-page: 54 ident: bb0105 article-title: Biochar application does not improve the soil hydrological function of a sandy soil publication-title: Geoderma – volume: 45 start-page: 113 year: 2012 end-page: 124 ident: bb0120 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. – year: 2009 ident: bb0035 publication-title: Introduction to Meta-Analysis – volume: 3 start-page: 313 year: 2013 end-page: 339 ident: bb0180 article-title: Biochar impacts on soil physical properties and greenhouse gas emissions publication-title: Agronomy – volume: 111 start-page: 81 year: 2009 end-page: 84 ident: bb0010 article-title: Biochar amendment techniques for upland rice production in Northern Laos publication-title: Field Crop Res. – volume: 373 start-page: 583 issue: 1-2 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0165 article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data publication-title: Plant Soil doi: 10.1007/s11104-013-1806-x – volume: 31 start-page: 241 year: 2015 ident: 10.1016/j.geoderma.2016.03.029_bb0100 article-title: Why short-term biochar application has no yield benefits: evidence from three field-grown crops publication-title: Soil Use Manag. doi: 10.1111/sum.12181 – volume: 158 start-page: 443 issue: 3-4 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0140 article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.013 – year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0210 – volume: 337 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0015 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 272 start-page: 121 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0030 article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.03.017 – volume: 11 start-page: 403 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2016.03.029_bb0145 article-title: Bio-char sequestration in terrestrial ecosystems—a review publication-title: Mitig. Adapt. Strateg. Glob. Chang. doi: 10.1007/s11027-005-9006-5 – volume: 65 start-page: 96 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0235 article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12081 – volume: 112 start-page: 159 issue: 2 year: 2011 ident: 10.1016/j.geoderma.2016.03.029_bb0200 article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China publication-title: Soil Tillage Res. doi: 10.1016/j.still.2011.01.002 – volume: 47 start-page: 716 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0205 article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar publication-title: Pesq. Agrop. Brasileira doi: 10.1590/S0100-204X2012000500012 – volume: 175 start-page: 698 issue: 5 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0160 article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201100172 – year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0040 – volume: 33 start-page: 941 issue: 3 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0095 article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil publication-title: Environ. Prog. Sustainable Energy doi: 10.1002/ep.11867 – volume: 129 start-page: 22 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0170 article-title: Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China publication-title: Agric. Syst. doi: 10.1016/j.agsy.2014.05.008 – volume: 102 start-page: 1627 issue: 6 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0045 article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar publication-title: Agron. J. doi: 10.2134/agronj2010.0188 – volume: 9 start-page: 1137 issue: 3&4 year: 2011 ident: 10.1016/j.geoderma.2016.03.029_bb0240 article-title: Influence of biochar application on sandy soil hydraulic properties and nutrient retention publication-title: J. Food Agriculture Environ. – volume: 209-210 start-page: 188 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0085 article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.016 – volume: 41 start-page: 34 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0130 article-title: Hydrologic properties of biochars produced at different temperatures publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.01.033 – volume: 35 start-page: 219 year: 2002 ident: 10.1016/j.geoderma.2016.03.029_bb0075 article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with bio-char—a review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-002-0466-4 – volume: 44 start-page: 1295 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0255 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es903140c – volume: 191 start-page: 108 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0225 article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.01.007 – volume: 251-252 start-page: 47 year: 2015 ident: 10.1016/j.geoderma.2016.03.029_bb0105 article-title: Biochar application does not improve the soil hydrological function of a sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.03.022 – volume: 202-203 start-page: 183 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0005 article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.003 – volume: 171 start-page: 591 year: 2008 ident: 10.1016/j.geoderma.2016.03.029_bb0190 article-title: Effects of charcoal production on soil physical properties in Ghana publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200625185 – volume: 3 start-page: 313 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0180 article-title: Biochar impacts on soil physical properties and greenhouse gas emissions publication-title: Agronomy doi: 10.3390/agronomy3020313 – volume: 376 start-page: 347 issue: 1-2 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0080 article-title: Does biochar influence soil physical properties and soil water availability? publication-title: Plant Soil doi: 10.1007/s11104-013-1980-x – volume: 13 start-page: 991 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0195 article-title: Effects of biochar amendment on soil aggregates and hydraulic properties publication-title: J. Soil Sci. Plant Nutr. – volume: 21 start-page: 1 issue: 3 year: 2007 ident: 10.1016/j.geoderma.2016.03.029_bb0065 article-title: Controls on black carbon storage in soils publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2006GB002798 – volume: 103 start-page: 13 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0070 article-title: The effects of biochar on soil physical properties and winter wheat growth publication-title: Earth and Environ. Sci. Trans. Roy. Soc. Edin. – volume: 140 start-page: 309 year: 2011 ident: 10.1016/j.geoderma.2016.03.029_bb0125 article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.12.005 – year: 2004 ident: 10.1016/j.geoderma.2016.03.029_bb0090 – volume: 91 start-page: 2281 issue: 11 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0115 article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2010.06.013 – volume: 41 start-page: 1076 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0175 article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0128 – start-page: 1 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0135 article-title: Biochar amendment of soil improves resilience to climate change publication-title: GCB Bioenergy – volume: 139 start-page: 469 issue: 4 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0250 article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2010.09.003 – volume: 5 start-page: 132 issue: 2 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0025 article-title: Assessing potential of biochar for increasing water-holding capacity of sandy soils publication-title: GCB Bioenergy doi: 10.1111/gcbb.12026 – volume: 110 start-page: 225 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0110 article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil publication-title: Catena doi: 10.1016/j.catena.2013.06.021 – volume: 13 start-page: 1561 issue: 9 year: 2013 ident: 10.1016/j.geoderma.2016.03.029_bb0155 article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0738-7 – volume: 34 start-page: 21 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0020 article-title: Biochar: potential for countering land degradation and for improving agriculture publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2011.09.008 – volume: 79 start-page: 7 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2016.03.029_bb0215 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – volume: 30 start-page: 109 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0055 article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention.pdf> publication-title: Soil Use Manag. doi: 10.1111/sum.12102 – start-page: 235 year: 2015 ident: 10.1016/j.geoderma.2016.03.029_bb0150 article-title: Persistence of biochar in soil – volume: 45 start-page: 113 year: 2012 ident: 10.1016/j.geoderma.2016.03.029_bb0120 article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.10.012 – volume: 29 start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2016.03.029_bb0245 article-title: The stoichiometry of carbon and nutrients in peat formation publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2014GB005000 – year: 2009 ident: 10.1016/j.geoderma.2016.03.029_bb0230 article-title: Characteristics of biochar: biological properties – volume: 175 start-page: 10 year: 2010 ident: 10.1016/j.geoderma.2016.03.029_bb0060 article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181cb7f46 – volume: 374 start-page: 89 year: 2014 ident: 10.1016/j.geoderma.2016.03.029_bb0220 article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean publication-title: Plant Soil doi: 10.1007/s11104-013-1851-5 – volume: 57 start-page: 539 issue: 4 year: 2006 ident: 10.1016/j.geoderma.2016.03.029_bb0050 article-title: Aggregate-occluded black carbon in soil publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00807.x – year: 2009 ident: 10.1016/j.geoderma.2016.03.029_bb0035 – volume: 111 start-page: 81 issue: 1-2 year: 2009 ident: 10.1016/j.geoderma.2016.03.029_bb0010 article-title: Biochar amendment techniques for upland rice production in Northern Laos publication-title: Field Crop Res. doi: 10.1016/j.fcr.2008.10.008 |
SSID | ssj0017020 |
Score | 2.6261303 |
Snippet | The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | aggregate stability Agriculture application rate Biochar Bulk density carbon carbon sequestration coarse-textured soils Correlation crop residues feedstocks fine-textured soils greenhouse gas emissions Hydrology Literature data Meta-analysis Physical properties Porosity pyrolysis saturated hydraulic conductivity semiarid zones Soil (material) soil amendments soil density soil fertility Soil hydrology Soil physical properties soil quality Soil water capacity temperature water holding capacity water use efficiency Wood |
Title | Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data |
URI | https://dx.doi.org/10.1016/j.geoderma.2016.03.029 https://www.proquest.com/docview/1808672563 https://www.proquest.com/docview/1825445366 https://www.proquest.com/docview/1836661856 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxwhFJaQXNJDaZqWJk2DhVzN6ujoeFxCw7aFQKGB3MSfyYbtzrLZPfTSvz0-11naUpJDj-PoIE997xv93idCZzYkaxstCEvKEuG1Iy4HHiIjdVZRBWdbwLa4kpNr8eWmvdlBF0MuDNAqq-_f-PTirWvJqFpztJhOIceXSZXDUUYUGeeXPHIhFMzy819bmgdTtEozMkmg9m9Zwvd5jODCsaI_xGQROy1Q858B6i9XXeLP5Sv0sgJHPN707QDtxPlr9GJ8u6ziGfEQ3X1b2w33p5gb9wm7aQ95VbjSNnAufeinM3z3MywHt4cXsCG_BGVVDDT4W_wjriyxVa4EPjPbii9joJS-QdeXn75fTEi9SYF4odSK-IaGNgTFZWCho54H6UTnOTChHCjCJNe4hnkuvOx81NoH5X1KXQYXGYIF_hbtzvt5fIdwEm3TRdtSp6NImmsBYp_WeU87T3U6Qu1gPuOrzDjcdjEzA5_s3gxmN2B2Q7nJZj9Co227xUZo49kWehgd88eUMTkaPNv24zCcJq8nOCSx89ivHwzr8k-eykCQP1WnCLtxKZ-qk1_LjIbk8X_08z3ahyfYTGbtCdpdLdfxQ0ZBK3dapvkp2ht__jq5egSoPwsG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQONAeEPSh8mpdqVcr3rXXXh8jBAqPRkICiZvlJwSFbBSSA_8ez8YblaqCQ69rz8oae2e-tb_5jNAv46MxpeKkiNIQ7pQlNiUeIgK1RlIJZ1vAthiJ4Q0_v61uN9BxVwsDtMoc-1cxvY3W-Uk_e7M_G4-hxrcQMqWjhCgSzoc68k1Qp6p6aHNwdjEcrQ8TJM3qjIUgYPBHofBDmia4c6yVICpEq3faos1_5qi_onWbgk530HbGjniwGt4u2gjTT-jj4G6e9TPCZ3R_tTQr-k_rcdxEbMcNlFbhzNzA6elTM57g-2c_7yIfnsGe_BzEVTEw4e_wY1gYYrJiCbxmstZfxsAq_YJuTk-uj4ckX6ZAHJdyQVxJfeW9ZMIXvqaOeWF57RiQoSyIwkRb2rJwjDtRu6CU89K5GOuELxIK8-wr6k2bafiGcORVWQdTUasCj4opDnqfxjpHa0dV3ENV5z7tstI4XHgx0R2l7EF3btfgdk2ZTm7fQ_213WyltfGuhepmR79aNTolhHdtf3bTqdMnBeckZhqa5ZMu6vSfJxMWZG_1abXdmBBv9UnNIgEisf8f4_yBtobXvy_15dno4gB9gBbYWy6qQ9RbzJfhKIGihf2eF_0LunINtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+biochar+effects+on+soil+hydrological+properties+using+meta-analysis+of+literature+data&rft.jtitle=Geoderma&rft.au=Omondia%2C+Morris+Oduor&rft.au=Xiaa%2C+Xin&rft.au=Nahayoa%2C+Alphonse&rft.au=Liua%2C+Xiaoyu&rft.date=2016-07-15&rft.issn=0016-7061&rft.volume=274&rft.spage=28&rft.epage=34&rft_id=info:doi/10.1016%2Fj.geoderma.2016.03.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |