Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data

The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult fo...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 274; pp. 28 - 34
Main Authors Omondi, Morris Oduor, Xia, Xin, Nahayo, Alphonse, Liu, Xiaoyu, Korai, Punhoon Khan, Pan, Genxing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture. [Display omitted] •Biochar effect on soil physical properties was quantified using meta-analysis.•Biochar exerted significant improvements on soil physical properties.•Greater effect size was found for Ksat and AWC than on bulk density, porosity and MWD.•Greater effect size was exhibited in coarse-textured soils than in fine-textured soils.•Application rate and bulk density change correlated for crop residue and wood biochar.
AbstractList The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture.
The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture. [Display omitted] •Biochar effect on soil physical properties was quantified using meta-analysis.•Biochar exerted significant improvements on soil physical properties.•Greater effect size was found for Ksat and AWC than on bulk density, porosity and MWD.•Greater effect size was exhibited in coarse-textured soils than in fine-textured soils.•Application rate and bulk density change correlated for crop residue and wood biochar.
Author Omondi, Morris Oduor
Liu, Xiaoyu
Pan, Genxing
Nahayo, Alphonse
Xia, Xin
Korai, Punhoon Khan
Author_xml – sequence: 1
  givenname: Morris Oduor
  surname: Omondi
  fullname: Omondi, Morris Oduor
  email: morris.o.omondi@gmail.com
  organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
– sequence: 2
  givenname: Xin
  surname: Xia
  fullname: Xia, Xin
  email: 1059307253@qq.com
  organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
– sequence: 3
  givenname: Alphonse
  surname: Nahayo
  fullname: Nahayo, Alphonse
  email: nahonse@gmail.com
  organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
– sequence: 4
  givenname: Xiaoyu
  surname: Liu
  fullname: Liu, Xiaoyu
  email: xiaoyuliu84@gmail.com
  organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
– sequence: 5
  givenname: Punhoon Khan
  surname: Korai
  fullname: Korai, Punhoon Khan
  email: punhoonkorai@gmail.com
  organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
– sequence: 6
  givenname: Genxing
  orcidid: 0000-0001-9755-0532
  surname: Pan
  fullname: Pan, Genxing
  email: pangenxing@aliyun.com
  organization: Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
BookMark eNqNkc2KFDEURoOMYM_oK0iWbqrMT1WqClwog6MDAyLoOqRubrrTpCttkhL67U3bupnNzCrc5Hwfl5xrcrXEBQl5y1nLGVfv9-0Wo8V0MK2oc8tky8T0gmz4OIhGiX66IhtWX5qBKf6KXOe8r-PABNuQ3ffVLMU7D6b4uNDo6Owj7Eyi6BxCybTe5ugD3Z1siiFuKxroMcUjpuIx0zX7ZUsPWExjFhNO2edzTfAFkylrQmpNMa_JS2dCxjf_zhvy8-7zj9uvzcO3L_e3nx4a6IahNCCY7a0dpLLcjgykVXM3gsQZzMx6Jt0sZsFBdqBGwGkCOwA4N_Khn3pu5Q15d-mtG_5aMRd98BkwBLNgXLPmo1RK8bFXz0BF33V95Z-BslENopZWVF1QSDHnhE4fkz-YdNKc6bMwvdf_hemzMM2krsJq8MOjIPjy10pJxoen4x8vcay_-9tj0hk8LoDWp-pR2-ifqvgDoBS6kg
CitedBy_id crossref_primary_10_1016_j_apsoil_2023_105088
crossref_primary_10_1016_j_chemosphere_2024_142596
crossref_primary_10_1016_j_soilbio_2017_11_011
crossref_primary_10_3390_su151410909
crossref_primary_10_1007_s42729_021_00662_2
crossref_primary_10_1016_j_geoderma_2021_115301
crossref_primary_10_1016_j_sjbs_2021_09_043
crossref_primary_10_1016_j_scitotenv_2024_173061
crossref_primary_10_1007_s11368_019_02531_z
crossref_primary_10_3390_s20092444
crossref_primary_10_1002_vzj2_20301
crossref_primary_10_1111_gcbb_12952
crossref_primary_10_1016_j_jece_2022_108870
crossref_primary_10_1016_j_scitotenv_2021_150339
crossref_primary_10_3389_fenvs_2023_1324533
crossref_primary_10_1016_j_jhydrol_2024_131946
crossref_primary_10_1007_s11356_017_1048_1
crossref_primary_10_1016_j_apsoil_2024_105374
crossref_primary_10_1111_ejss_13442
crossref_primary_10_1007_s40502_025_00855_2
crossref_primary_10_1016_j_apsoil_2025_105870
crossref_primary_10_1007_s12210_023_01221_w
crossref_primary_10_1016_j_jenvman_2023_118471
crossref_primary_10_3390_horticulturae8040328
crossref_primary_10_3390_agronomy12081879
crossref_primary_10_1007_s11600_022_00725_7
crossref_primary_10_1016_j_fcr_2025_109757
crossref_primary_10_1111_sum_12650
crossref_primary_10_1016_j_scitotenv_2023_164185
crossref_primary_10_1111_sum_12413
crossref_primary_10_1016_j_scitotenv_2023_168530
crossref_primary_10_3390_w16101347
crossref_primary_10_1007_s11600_023_01061_0
crossref_primary_10_1016_j_jenvman_2023_119359
crossref_primary_10_3390_agronomy12102420
crossref_primary_10_1016_j_geoderma_2019_06_038
crossref_primary_10_3390_atmos13010051
crossref_primary_10_1111_gcbb_12933
crossref_primary_10_1016_j_scp_2023_100999
crossref_primary_10_17221_522_2021_PSE
crossref_primary_10_1007_s00374_017_1253_6
crossref_primary_10_1007_s12010_022_03808_9
crossref_primary_10_1016_j_catena_2019_03_033
crossref_primary_10_1016_j_agee_2017_02_034
crossref_primary_10_1007_s11252_023_01382_4
crossref_primary_10_3390_f15071128
crossref_primary_10_1016_j_chemosphere_2021_130978
crossref_primary_10_3390_f13071043
crossref_primary_10_3390_soilsystems7040105
crossref_primary_10_1016_j_geoderma_2021_115317
crossref_primary_10_1016_j_jenvman_2021_114403
crossref_primary_10_1016_j_fmre_2021_03_003
crossref_primary_10_1007_s11600_020_00423_2
crossref_primary_10_3390_agronomy12081857
crossref_primary_10_1016_j_biombioe_2020_105710
crossref_primary_10_1080_03650340_2022_2161092
crossref_primary_10_1016_j_scitotenv_2018_12_381
crossref_primary_10_1016_j_agee_2017_01_006
crossref_primary_10_1016_j_envres_2022_114248
crossref_primary_10_3390_su15129200
crossref_primary_10_1155_2017_4758316
crossref_primary_10_1111_ejss_13497
crossref_primary_10_2136_sssaj2017_01_0017
crossref_primary_10_1007_s11356_018_1245_6
crossref_primary_10_1016_j_jenvman_2020_111097
crossref_primary_10_1111_gcbb_12904
crossref_primary_10_17660_ActaHortic_2024_1411_20
crossref_primary_10_1016_j_scitotenv_2018_11_396
crossref_primary_10_1002_ldr_5550
crossref_primary_10_1016_j_still_2020_104926
crossref_primary_10_1002_ird_3017
crossref_primary_10_1080_23311932_2023_2256136
crossref_primary_10_1016_j_eja_2024_127499
crossref_primary_10_1016_j_jenvman_2021_113143
crossref_primary_10_1371_journal_pone_0288291
crossref_primary_10_1016_j_agee_2018_09_017
crossref_primary_10_1016_j_geoderma_2019_113892
crossref_primary_10_1016_j_scitotenv_2020_144802
crossref_primary_10_3390_app11198914
crossref_primary_10_1016_j_scitotenv_2021_150428
crossref_primary_10_3390_plants9101346
crossref_primary_10_1111_sum_12853
crossref_primary_10_1097_SS_0000000000000235
crossref_primary_10_1080_00103624_2024_2359573
crossref_primary_10_1007_s11738_022_03440_4
crossref_primary_10_3389_fmicb_2021_695447
crossref_primary_10_1007_s11104_022_05365_w
crossref_primary_10_1007_s42773_022_00178_7
crossref_primary_10_1016_j_geoderma_2021_115643
crossref_primary_10_1111_ejss_13105
crossref_primary_10_1016_j_fcr_2024_109340
crossref_primary_10_1016_j_scitotenv_2024_170804
crossref_primary_10_33003_fjs_2024_0803_2519
crossref_primary_10_1007_s11676_019_00965_2
crossref_primary_10_3390_agronomy12020247
crossref_primary_10_3390_soilsystems8030072
crossref_primary_10_1016_j_jhydrol_2020_125318
crossref_primary_10_1111_sum_12769
crossref_primary_10_1016_j_still_2022_105345
crossref_primary_10_3390_agronomy12123039
crossref_primary_10_3390_land12122111
crossref_primary_10_1016_j_geoderma_2020_114241
crossref_primary_10_3389_fenrg_2021_710766
crossref_primary_10_1016_j_crsust_2024_100247
crossref_primary_10_3390_soilsystems8030069
crossref_primary_10_1016_j_scitotenv_2022_158225
crossref_primary_10_1016_j_eja_2017_09_003
crossref_primary_10_2139_ssrn_4144164
crossref_primary_10_1080_15567036_2021_1916652
crossref_primary_10_21467_ajgr_7_1_45_63
crossref_primary_10_1016_j_orggeochem_2017_06_012
crossref_primary_10_3390_plants13020166
crossref_primary_10_1007_s10064_020_01846_3
crossref_primary_10_1016_j_catena_2022_106838
crossref_primary_10_1007_s42773_020_00037_3
crossref_primary_10_1016_j_geoderma_2023_116591
crossref_primary_10_1007_s13399_021_01303_5
crossref_primary_10_1016_j_geoderma_2020_114457
crossref_primary_10_3390_agriculture15050458
crossref_primary_10_1016_j_jenvman_2023_117305
crossref_primary_10_1016_j_apsoil_2016_09_006
crossref_primary_10_1016_j_envpol_2019_07_051
crossref_primary_10_1007_s10705_022_10248_8
crossref_primary_10_1080_01904167_2021_1871746
crossref_primary_10_1039_D0EW00027B
crossref_primary_10_1007_s42729_023_01201_x
crossref_primary_10_1016_j_envres_2023_117794
crossref_primary_10_1016_j_marpolbul_2024_116623
crossref_primary_10_3390_agronomy12010131
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1016_j_ijsrc_2025_01_012
crossref_primary_10_1016_j_geodrs_2021_e00443
crossref_primary_10_1016_j_chemosphere_2022_133586
crossref_primary_10_1111_gcbb_12898
crossref_primary_10_3390_w17010069
crossref_primary_10_1016_j_foreco_2023_120881
crossref_primary_10_1007_s00344_020_10203_3
crossref_primary_10_1016_j_foreco_2018_05_059
crossref_primary_10_1016_j_still_2017_06_007
crossref_primary_10_15243_jdmlm_2024_113_5929
crossref_primary_10_3390_microorganisms11030641
crossref_primary_10_1111_sum_12848
crossref_primary_10_1016_j_rser_2022_113042
crossref_primary_10_1007_s42729_024_01784_z
crossref_primary_10_1007_s11368_019_02293_8
crossref_primary_10_1016_j_geoderma_2020_114567
crossref_primary_10_1088_1755_1315_862_1_012077
crossref_primary_10_1111_gcbb_12889
crossref_primary_10_1111_gcbb_12766
crossref_primary_10_1111_gcbb_12885
crossref_primary_10_3390_w13091216
crossref_primary_10_1016_j_scitotenv_2023_162024
crossref_primary_10_2478_agri_2020_0005
crossref_primary_10_1007_s44246_025_00198_5
crossref_primary_10_3390_agronomy9090531
crossref_primary_10_1016_j_scienta_2024_113839
crossref_primary_10_1016_j_geoderma_2020_114209
crossref_primary_10_1016_j_agee_2016_04_010
crossref_primary_10_5194_bg_16_2949_2019
crossref_primary_10_1016_j_jclepro_2019_118435
crossref_primary_10_3390_agronomy11050993
crossref_primary_10_1016_j_still_2024_106282
crossref_primary_10_2478_ats_2024_0016
crossref_primary_10_1002_ldr_4868
crossref_primary_10_2139_ssrn_4175990
crossref_primary_10_1016_j_chemosphere_2024_143760
crossref_primary_10_1016_j_jhazmat_2024_134468
crossref_primary_10_1016_j_agwat_2023_108605
crossref_primary_10_3390_agronomy9030156
crossref_primary_10_1111_gcb_16618
crossref_primary_10_3390_horticulturae6030037
crossref_primary_10_1016_j_agwat_2024_109093
crossref_primary_10_1016_j_cej_2021_131189
crossref_primary_10_1016_j_bgtech_2024_100096
crossref_primary_10_1515_pac_2021_0106
crossref_primary_10_1080_00103624_2023_2296537
crossref_primary_10_1007_s13399_023_04253_2
crossref_primary_10_1186_s40538_023_00435_2
crossref_primary_10_7745_KJSSF_2023_56_4_572
crossref_primary_10_21597_jist_931246
crossref_primary_10_1016_j_geoderma_2022_116291
crossref_primary_10_1016_j_crsust_2023_100239
crossref_primary_10_3390_agronomy13071845
crossref_primary_10_1007_s11270_020_04942_y
crossref_primary_10_3934_agrfood_2021024
crossref_primary_10_1016_j_scitotenv_2023_167885
crossref_primary_10_1016_j_jia_2023_12_011
crossref_primary_10_1039_D4GC03071K
crossref_primary_10_7831_ras_11_0_271
crossref_primary_10_1016_j_scitotenv_2021_149861
crossref_primary_10_1007_s12517_020_05318_6
crossref_primary_10_1016_j_jenvman_2020_110190
crossref_primary_10_1016_j_biombioe_2024_107416
crossref_primary_10_1016_j_jclepro_2023_140032
crossref_primary_10_1007_s11270_021_05289_8
crossref_primary_10_3390_app14167421
crossref_primary_10_1038_s41598_023_48996_4
crossref_primary_10_3390_land8120179
crossref_primary_10_3390_buildings14092775
crossref_primary_10_1016_j_catena_2021_105460
crossref_primary_10_3390_agronomy10010067
crossref_primary_10_1016_j_ecofro_2024_10_008
crossref_primary_10_1016_j_foreco_2023_120971
crossref_primary_10_3390_agriculture8110171
crossref_primary_10_1007_s12649_021_01358_5
crossref_primary_10_1139_cjss_2021_0006
crossref_primary_10_1016_j_jaap_2022_105770
crossref_primary_10_1016_j_indcrop_2022_115508
crossref_primary_10_5194_soil_9_1_2023
crossref_primary_10_1007_s42729_024_01777_y
crossref_primary_10_1016_j_still_2024_106365
crossref_primary_10_1016_j_resconrec_2022_106769
crossref_primary_10_3390_su141711104
crossref_primary_10_3390_su14127026
crossref_primary_10_1016_j_scitotenv_2020_138866
crossref_primary_10_1002_ird_2916
crossref_primary_10_1080_13416979_2024_2420374
crossref_primary_10_3390_su17052214
crossref_primary_10_1007_s11356_017_8633_1
crossref_primary_10_1016_j_geoderma_2021_115097
crossref_primary_10_1016_j_ufug_2018_09_001
crossref_primary_10_1007_s10668_023_04219_4
crossref_primary_10_1016_j_geodrs_2023_e00706
crossref_primary_10_32604_phyton_2025_059997
crossref_primary_10_1007_s11356_019_05604_1
crossref_primary_10_3389_fenvs_2023_1123897
crossref_primary_10_1016_j_scitotenv_2022_154520
crossref_primary_10_1111_gcbb_13102
crossref_primary_10_1155_2023_7531228
crossref_primary_10_1016_j_biortech_2024_130707
crossref_primary_10_3390_land12081580
crossref_primary_10_1016_j_jclepro_2022_135787
crossref_primary_10_3390_su17020642
crossref_primary_10_1007_s10705_019_09971_6
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_1002_jsfa_12517
crossref_primary_10_1002_fes3_70009
crossref_primary_10_3390_su14041987
crossref_primary_10_1016_j_scitotenv_2021_145106
crossref_primary_10_1371_journal_pone_0179079
crossref_primary_10_1016_j_jenvman_2024_121032
crossref_primary_10_1039_D3EW00054K
crossref_primary_10_2136_sssaj2019_04_0115
crossref_primary_10_3390_f15020304
crossref_primary_10_1080_01904167_2019_1702203
crossref_primary_10_1016_j_scitotenv_2020_138938
crossref_primary_10_1016_j_chemosphere_2017_11_113
crossref_primary_10_1016_j_still_2019_04_023
crossref_primary_10_3390_agronomy12061412
crossref_primary_10_2139_ssrn_3987740
crossref_primary_10_1007_s42452_020_2156_y
crossref_primary_10_3390_w13040407
crossref_primary_10_1016_j_scitotenv_2018_01_037
crossref_primary_10_1016_j_scitotenv_2021_145869
crossref_primary_10_1021_acs_est_3c04185
crossref_primary_10_1007_s11270_017_3392_7
crossref_primary_10_1016_j_agwat_2024_108843
crossref_primary_10_3390_agronomy14071529
crossref_primary_10_1016_j_ocsci_2024_01_002
crossref_primary_10_1007_s12517_022_10820_0
crossref_primary_10_1016_j_scitotenv_2020_137852
crossref_primary_10_1016_j_geoderma_2019_03_010
crossref_primary_10_3390_w15152701
crossref_primary_10_1016_j_iswcr_2024_03_001
crossref_primary_10_1016_j_jenvman_2023_117864
crossref_primary_10_1007_s10706_023_02447_z
crossref_primary_10_1016_j_scitotenv_2023_162249
crossref_primary_10_1007_s42773_024_00317_2
crossref_primary_10_1016_j_chemosphere_2022_134304
crossref_primary_10_1177_0734242X18790356
crossref_primary_10_1093_hr_uhac108
crossref_primary_10_1111_gcbb_12582
crossref_primary_10_1166_sam_2022_4261
crossref_primary_10_3390_horticulturae10020154
crossref_primary_10_1007_s42729_021_00580_3
crossref_primary_10_1016_j_catena_2021_105607
crossref_primary_10_1002_agg2_20094
crossref_primary_10_1007_s11270_017_3428_z
crossref_primary_10_1016_j_geoderma_2019_114055
crossref_primary_10_3390_su15097158
crossref_primary_10_48130_SSE_2023_0009
crossref_primary_10_1016_j_still_2021_104992
crossref_primary_10_2166_wcc_2024_072
crossref_primary_10_5194_gmd_17_4871_2024
crossref_primary_10_1002_hyp_14765
crossref_primary_10_3390_su132413726
crossref_primary_10_1007_s42773_019_00020_7
crossref_primary_10_1007_s11368_020_02616_0
crossref_primary_10_1016_j_fcr_2022_108574
crossref_primary_10_48130_TIA_2023_0013
crossref_primary_10_1007_s11356_021_14119_7
crossref_primary_10_1002_agj2_21714
crossref_primary_10_1155_2022_5747699
crossref_primary_10_1111_ppl_13261
crossref_primary_10_1111_gcbb_12561
crossref_primary_10_1126_science_abe0725
crossref_primary_10_1016_j_jenvman_2021_113076
crossref_primary_10_3390_su13073617
crossref_primary_10_3390_w17030330
crossref_primary_10_1002_agg2_20197
crossref_primary_10_1007_s10311_022_01544_4
crossref_primary_10_1016_j_dwt_2025_101051
crossref_primary_10_24326_asphc_2022_5_6
crossref_primary_10_1016_j_scitotenv_2019_135856
crossref_primary_10_1016_j_catena_2022_106281
crossref_primary_10_1002_jpln_202200297
crossref_primary_10_1007_s44246_022_00032_2
crossref_primary_10_1016_j_advwatres_2020_103638
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_1038_s41598_017_07224_6
crossref_primary_10_3390_agronomy12030564
crossref_primary_10_3390_agronomy13051233
crossref_primary_10_3390_agronomy12112855
crossref_primary_10_3390_agronomy9060327
crossref_primary_10_1007_s42729_020_00253_7
crossref_primary_10_1007_s42729_024_01998_1
crossref_primary_10_1002_ldr_2906
crossref_primary_10_1016_j_jenvman_2019_109891
crossref_primary_10_3389_fpls_2022_1018646
crossref_primary_10_1016_j_scitotenv_2023_169585
crossref_primary_10_1029_2021EF002583
crossref_primary_10_1002_saj2_20683
crossref_primary_10_1007_s12517_022_10141_2
crossref_primary_10_1111_ejss_13157
crossref_primary_10_1016_j_ufug_2021_127063
crossref_primary_10_1016_j_geoderma_2019_114099
crossref_primary_10_1016_j_still_2020_104798
crossref_primary_10_2136_sssaj2019_07_0230
crossref_primary_10_1002_saj2_20207
crossref_primary_10_1007_s11104_022_05359_8
crossref_primary_10_1016_j_spc_2022_12_015
crossref_primary_10_1002_fes3_208
crossref_primary_10_1016_j_seh_2023_100033
crossref_primary_10_1016_j_scitotenv_2023_161860
crossref_primary_10_1007_s11600_020_00492_3
crossref_primary_10_1016_j_geoderma_2021_115276
crossref_primary_10_11118_actaun_2022_002
crossref_primary_10_3390_agriengineering6040215
crossref_primary_10_3390_agronomy11030489
crossref_primary_10_3390_w16030482
crossref_primary_10_1038_s41598_019_45693_z
crossref_primary_10_1111_ejss_13138
crossref_primary_10_1007_s42773_021_00114_1
crossref_primary_10_1002_ldr_5285
crossref_primary_10_1016_j_scitotenv_2020_136857
crossref_primary_10_1016_j_still_2019_104525
crossref_primary_10_1016_j_geoderma_2021_115223
crossref_primary_10_1016_j_soilbio_2020_107803
crossref_primary_10_1007_s40093_019_00292_w
crossref_primary_10_4236_gep_2021_910003
crossref_primary_10_1016_j_scitotenv_2018_11_316
crossref_primary_10_1155_2021_6000184
crossref_primary_10_1016_j_scitotenv_2018_11_312
crossref_primary_10_1016_j_agwat_2021_106940
crossref_primary_10_1016_j_geoderma_2018_09_027
crossref_primary_10_1186_s12898_020_00304_8
crossref_primary_10_3390_horticulturae11010073
crossref_primary_10_1590_1809_4430_eng_agric_v40n3p344_351_2020
crossref_primary_10_3390_agriculture14010037
crossref_primary_10_3390_soilsystems3020024
crossref_primary_10_1002_agg2_20028
crossref_primary_10_1002_ldr_4055
crossref_primary_10_1016_j_sandf_2024_101470
crossref_primary_10_3390_plants14030401
crossref_primary_10_1007_s12155_018_9940_1
crossref_primary_10_1016_j_geoderma_2018_09_034
crossref_primary_10_1016_j_envint_2019_105172
crossref_primary_10_1007_s42773_023_00244_8
crossref_primary_10_3390_ma14216658
crossref_primary_10_1007_s00344_022_10786_z
crossref_primary_10_1016_j_scitotenv_2021_152223
crossref_primary_10_1002_cjce_24099
crossref_primary_10_1111_gcbb_13147
crossref_primary_10_1016_j_jaridenv_2023_105011
crossref_primary_10_1016_j_scitotenv_2018_06_231
crossref_primary_10_1007_s12649_022_01877_9
crossref_primary_10_1016_j_biombioe_2017_06_024
crossref_primary_10_1016_j_still_2019_06_009
crossref_primary_10_3390_molecules26113313
crossref_primary_10_1016_j_indcrop_2023_116702
crossref_primary_10_1016_j_eti_2023_103242
crossref_primary_10_1007_s42773_021_00104_3
crossref_primary_10_3390_agronomy14061137
crossref_primary_10_1016_j_ecoleng_2021_106391
crossref_primary_10_3390_agronomy10101589
crossref_primary_10_1007_s11270_018_3816_z
crossref_primary_10_3390_soilsystems4040069
crossref_primary_10_3390_agronomy12030546
crossref_primary_10_1080_03650340_2020_1796981
crossref_primary_10_1177_1056789520974416
crossref_primary_10_1016_j_fcr_2024_109518
crossref_primary_10_1007_s10311_018_0802_z
Cites_doi 10.1007/s11104-013-1806-x
10.1111/sum.12181
10.1016/j.geoderma.2010.05.013
10.1007/s11104-010-0464-5
10.1016/j.jhazmat.2014.03.017
10.1007/s11027-005-9006-5
10.1111/ejss.12081
10.1016/j.still.2011.01.002
10.1590/S0100-204X2012000500012
10.1002/jpln.201100172
10.1002/ep.11867
10.1016/j.agsy.2014.05.008
10.2134/agronj2010.0188
10.1016/j.geoderma.2013.06.016
10.1016/j.biombioe.2012.01.033
10.1007/s00374-002-0466-4
10.1021/es903140c
10.1016/j.agee.2014.01.007
10.1016/j.geoderma.2015.03.022
10.1016/j.geoderma.2013.03.003
10.1002/jpln.200625185
10.3390/agronomy3020313
10.1007/s11104-013-1980-x
10.1029/2006GB002798
10.1016/j.agee.2010.12.005
10.1016/j.jenvman.2010.06.013
10.2134/jeq2011.0128
10.1016/j.agee.2010.09.003
10.1111/gcbb.12026
10.1016/j.catena.2013.06.021
10.1007/s11368-013-0738-7
10.1016/j.apgeog.2011.09.008
10.1016/j.still.2004.03.008
10.1111/sum.12102
10.1016/j.soilbio.2011.10.012
10.1002/2014GB005000
10.1097/SS.0b013e3181cb7f46
10.1007/s11104-013-1851-5
10.1111/j.1365-2389.2006.00807.x
10.1016/j.fcr.2008.10.008
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.geoderma.2016.03.029
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 34
ExternalDocumentID 10_1016_j_geoderma_2016_03_029
S0016706116301471
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c477t-c20d5dd736d1d80c3d6b48c3ebcab0503fb2b21c34c68ce99cd7ccff8175951d3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 10:52:57 EDT 2025
Fri Jul 11 02:41:37 EDT 2025
Fri Jul 11 04:06:22 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Tue Jul 01 04:04:41 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Literature data
Soil hydrology
Soil water capacity
Biochar
Soil physical properties
Meta-analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-c20d5dd736d1d80c3d6b48c3ebcab0503fb2b21c34c68ce99cd7ccff8175951d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9755-0532
PQID 1808672563
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1836661856
proquest_miscellaneous_1825445366
proquest_miscellaneous_1808672563
crossref_primary_10_1016_j_geoderma_2016_03_029
crossref_citationtrail_10_1016_j_geoderma_2016_03_029
elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_03_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-15
PublicationDateYYYYMMDD 2016-07-15
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Ye, Liu, Zhang, Zhang, Li, Pan, Kibue, Zheng, Zheng (bb0170) 2014; 129
Jeffery, Meinders, Stoof, Bezemer, van de Voorde, Mommer, van Groenigen (bb0105) 2015; 251-252
Thies, Rillig (bb0230) 2009
Zhang, Cui, Pan, Li, Hussain, Zhang, Zheng, Crowley (bb0250) 2010; 139
Lei, Zhang (bb0155) 2013; 13
Jones, Haynes, Phillips (bb0115) 2010; 91
Brodowski, John, Flessa, Amelung (bb0050) 2006; 57
Laird, Fleming, Davis, Horton, Wang, Karlen (bb0140) 2010; 158
Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bb0225) 2014; 191
Lehmann, Abiven, Kleber, Pan, Singh, Sohi, Zimmerman (bb0150) 2015
Pereira, Heinemann, Madari, Carvalho, Kliemann, dos Santos (bb0205) 2012; 47
Uzoma, Inoue, Andry, Zahoor, Nishihara (bb0240) 2011; 9
Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bb0010) 2009; 111
Basso, Miguez, Laird, Horton, Westgate (bb0025) 2013; 5
(bb0090) 2004
Barrow (bb0020) 2012; 34
Jay, Fitzgerald, Hipps, Atkinson (bb0100) 2015; 31
Herath, Camps-Arbestain, Hedley (bb0085) 2013; 209-210
Koide, Nguyen, Skinner, Dell, Peoples, Adler, Drohan (bb0135) 2014
Bruun, Petersen, Hansen, Holm, Hauggaard-Nielsen (bb0055) 2014; 30
Oguntunde, Abiodun, Ajayi, van de Giesen (bb0190) 2008; 171
Tammeorg, Simojoki, Mäkelä, Stoddard, Alakukku, Helenius (bb0220) 2014; 374
Shane (bb0210) 2010
Liu, Zhang, Ji, Joseph, Bian, Li, Pan, Paz-Ferreiro (bb0165) 2013; 373
Glaser, Lehmann, Zech (bb0075) 2002; 35
Atkinson, Fitzgerald, Hipps (bb0015) 2010; 337
Ouyang, Wang, Tang, Yu, Zhang (bb0195) 2013; 13
Abel, Peters, Tinks, Schonsky, Facklam, Wessolek (bb0005) 2013; 202-203
Zimmerman (bb0255) 2010; 44
Wang, Moore, Talbot, Riley (bb0245) 2015; 29
Peng, Ye, Wang, Zhou, Sun (bb0200) 2011; 112
Busscher, Novak, Evans, Watts, Niandou, Ahmedna (bb0060) 2010; 175
Lehmann, Gaunt, Rondon (bb0145) 2006; 11
(bb0035) 2009
Kinney, Masiello, Dugan, Hockaday, Dean, Zygourakis, Barnes (bb0130) 2012; 41
Hardie, Clothier, Bound, Oliver, Close (bb0080) 2013; 376
Karhu, Mattila, Bergström, Regina (bb0125) 2011; 140
Brady, Weil (bb0040) 2014
Hua, Lu, Ma, Jin (bb0095) 2014; 33
Bian, Joseph, Cui, Pan, Li, Liu, Zhang, Rutlidge, Wong, Chia, Marjo, Gong, Munroe, Donne (bb0030) 2014; 272
Six, Bossuyt, Degryze, Denef (bb0215) 2004; 79
Jien, Wang (bb0110) 2013; 110
Ulyett, Sakrabani, Kibblewhite, Hann (bb0235) 2014; 65
Brockhoff, Christians, Killorn, Horton, Davis (bb0045) 2010; 102
Jones, Rousk, Edwards-Jones, DeLuca., Murphy (bb0120) 2012; 45
Major, Rondon, Molina, Riha, Lehmann (bb0175) 2012; 41
Mukherjee, Lal (bb0180) 2013; 3
Devereux, Sturrock, Mooney (bb0070) 2012; 103
Czimczik, Masiello (bb0065) 2007; 21
Liu, Schulz, Brandl, Miehtke, Huwe, Glaser (bb0160) 2012; 175
Tammeorg (10.1016/j.geoderma.2016.03.029_bb0225) 2014; 191
Basso (10.1016/j.geoderma.2016.03.029_bb0025) 2013; 5
Pereira (10.1016/j.geoderma.2016.03.029_bb0205) 2012; 47
Abel (10.1016/j.geoderma.2016.03.029_bb0005) 2013; 202-203
Brockhoff (10.1016/j.geoderma.2016.03.029_bb0045) 2010; 102
Koide (10.1016/j.geoderma.2016.03.029_bb0135) 2014
Peng (10.1016/j.geoderma.2016.03.029_bb0200) 2011; 112
Wang (10.1016/j.geoderma.2016.03.029_bb0245) 2015; 29
Shane (10.1016/j.geoderma.2016.03.029_bb0210) 2010
Lehmann (10.1016/j.geoderma.2016.03.029_bb0145) 2006; 11
Liu (10.1016/j.geoderma.2016.03.029_bb0165) 2013; 373
Uzoma (10.1016/j.geoderma.2016.03.029_bb0240) 2011; 9
Barrow (10.1016/j.geoderma.2016.03.029_bb0020) 2012; 34
Oguntunde (10.1016/j.geoderma.2016.03.029_bb0190) 2008; 171
Zimmerman (10.1016/j.geoderma.2016.03.029_bb0255) 2010; 44
Jay (10.1016/j.geoderma.2016.03.029_bb0100) 2015; 31
Karhu (10.1016/j.geoderma.2016.03.029_bb0125) 2011; 140
Thies (10.1016/j.geoderma.2016.03.029_bb0230) 2009
Glaser (10.1016/j.geoderma.2016.03.029_bb0075) 2002; 35
Herath (10.1016/j.geoderma.2016.03.029_bb0085) 2013; 209-210
Kinney (10.1016/j.geoderma.2016.03.029_bb0130) 2012; 41
Liu (10.1016/j.geoderma.2016.03.029_bb0170) 2014; 129
Czimczik (10.1016/j.geoderma.2016.03.029_bb0065) 2007; 21
(10.1016/j.geoderma.2016.03.029_bb0090) 2004
Brady (10.1016/j.geoderma.2016.03.029_bb0040) 2014
Major (10.1016/j.geoderma.2016.03.029_bb0175) 2012; 41
Jeffery (10.1016/j.geoderma.2016.03.029_bb0105) 2015; 251-252
Six (10.1016/j.geoderma.2016.03.029_bb0215) 2004; 79
Bian (10.1016/j.geoderma.2016.03.029_bb0030) 2014; 272
Busscher (10.1016/j.geoderma.2016.03.029_bb0060) 2010; 175
Lehmann (10.1016/j.geoderma.2016.03.029_bb0150) 2015
Hua (10.1016/j.geoderma.2016.03.029_bb0095) 2014; 33
Liu (10.1016/j.geoderma.2016.03.029_bb0160) 2012; 175
Jones (10.1016/j.geoderma.2016.03.029_bb0120) 2012; 45
Asai (10.1016/j.geoderma.2016.03.029_bb0010) 2009; 111
Zhang (10.1016/j.geoderma.2016.03.029_bb0250) 2010; 139
Bruun (10.1016/j.geoderma.2016.03.029_bb0055) 2014; 30
Ouyang (10.1016/j.geoderma.2016.03.029_bb0195) 2013; 13
Jien (10.1016/j.geoderma.2016.03.029_bb0110) 2013; 110
Tammeorg (10.1016/j.geoderma.2016.03.029_bb0220) 2014; 374
Atkinson (10.1016/j.geoderma.2016.03.029_bb0015) 2010; 337
Laird (10.1016/j.geoderma.2016.03.029_bb0140) 2010; 158
Brodowski (10.1016/j.geoderma.2016.03.029_bb0050) 2006; 57
Ulyett (10.1016/j.geoderma.2016.03.029_bb0235) 2014; 65
Jones (10.1016/j.geoderma.2016.03.029_bb0115) 2010; 91
Mukherjee (10.1016/j.geoderma.2016.03.029_bb0180) 2013; 3
Hardie (10.1016/j.geoderma.2016.03.029_bb0080) 2013; 376
Lei (10.1016/j.geoderma.2016.03.029_bb0155) 2013; 13
(10.1016/j.geoderma.2016.03.029_bb0035) 2009
Devereux (10.1016/j.geoderma.2016.03.029_bb0070) 2012; 103
References_xml – volume: 11
  start-page: 403
  year: 2006
  end-page: 427
  ident: bb0145
  article-title: Bio-char sequestration in terrestrial ecosystems—a review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
– volume: 31
  start-page: 241
  year: 2015
  end-page: 250
  ident: bb0100
  article-title: Why short-term biochar application has no yield benefits: evidence from three field-grown crops
  publication-title: Soil Use Manag.
– volume: 41
  start-page: 1076
  year: 2012
  end-page: 1086
  ident: bb0175
  article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar
  publication-title: J. Environ. Qual.
– year: 2004
  ident: bb0090
  publication-title: Introduction to Environmental Soil Physics
– volume: 102
  start-page: 1627
  year: 2010
  ident: bb0045
  article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar
  publication-title: Agron. J.
– volume: 139
  start-page: 469
  year: 2010
  end-page: 475
  ident: bb0250
  article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China
  publication-title: Agric. Ecosyst. Environ.
– volume: 13
  start-page: 1561
  year: 2013
  end-page: 1572
  ident: bb0155
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: J. Soils Sediments
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  ident: bb0255
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
– year: 2014
  ident: bb0040
  article-title: The Nature and Properties of Soils
– volume: 9
  start-page: 1137
  year: 2011
  end-page: 1143
  ident: bb0240
  article-title: Influence of biochar application on sandy soil hydraulic properties and nutrient retention
  publication-title: J. Food Agriculture Environ.
– volume: 34
  start-page: 21
  year: 2012
  end-page: 28
  ident: bb0020
  article-title: Biochar: potential for countering land degradation and for improving agriculture
  publication-title: Appl. Geogr.
– volume: 112
  start-page: 159
  year: 2011
  end-page: 166
  ident: bb0200
  article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China
  publication-title: Soil Tillage Res.
– volume: 158
  start-page: 443
  year: 2010
  end-page: 449
  ident: bb0140
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
– volume: 30
  start-page: 109
  year: 2014
  end-page: 118
  ident: bb0055
  article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention.pdf
  publication-title: Soil Use Manag.
– volume: 209-210
  start-page: 188
  year: 2013
  end-page: 197
  ident: bb0085
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
– volume: 374
  start-page: 89
  year: 2014
  end-page: 107
  ident: bb0220
  article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean
  publication-title: Plant Soil
– volume: 140
  start-page: 309
  year: 2011
  end-page: 313
  ident: bb0125
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  ident: bb0015
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
– volume: 373
  start-page: 583
  year: 2013
  end-page: 594
  ident: bb0165
  article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data
  publication-title: Plant Soil
– volume: 5
  start-page: 132
  year: 2013
  end-page: 143
  ident: bb0025
  article-title: Assessing potential of biochar for increasing water-holding capacity of sandy soils
  publication-title: GCB Bioenergy
– year: 2010
  ident: bb0210
  article-title: Biochar as a Sand-based Rootzone Amendment
– volume: 65
  start-page: 96
  year: 2014
  end-page: 104
  ident: bb0235
  article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils
  publication-title: Eur. J. Soil Sci.
– volume: 91
  start-page: 2281
  year: 2010
  end-page: 2288
  ident: bb0115
  article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties
  publication-title: J. Environ. Manag.
– start-page: 235
  year: 2015
  end-page: 283
  ident: bb0150
  article-title: Persistence of biochar in soil
  publication-title: Biochar for Environmental Management—Science, Technology and Implementation
– start-page: 1
  year: 2014
  end-page: 8
  ident: bb0135
  article-title: Biochar amendment of soil improves resilience to climate change
  publication-title: GCB Bioenergy
– volume: 79
  start-page: 7
  year: 2004
  end-page: 31
  ident: bb0215
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
– year: 2009
  ident: bb0230
  article-title: Characteristics of biochar: biological properties
  publication-title: Biochar for Environmental Management Science and Technology
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  ident: bb0130
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
– volume: 191
  start-page: 108
  year: 2014
  end-page: 116
  ident: bb0225
  article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand
  publication-title: Agric. Ecosyst. Environ.
– volume: 57
  start-page: 539
  year: 2006
  end-page: 546
  ident: bb0050
  article-title: Aggregate-occluded black carbon in soil
  publication-title: Eur. J. Soil Sci.
– volume: 21
  start-page: 1
  year: 2007
  end-page: 8
  ident: bb0065
  article-title: Controls on black carbon storage in soils
  publication-title: Glob. Biogeochem. Cycles
– volume: 47
  start-page: 716
  year: 2012
  end-page: 721
  ident: bb0205
  article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar
  publication-title: Pesq. Agrop. Brasileira
– volume: 29
  start-page: 1
  year: 2015
  end-page: 9
  ident: bb0245
  article-title: The stoichiometry of carbon and nutrients in peat formation
  publication-title: Glob. Biogeochem. Cycles
– volume: 272
  start-page: 121
  year: 2014
  end-page: 128
  ident: bb0030
  article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment
  publication-title: J. Hazard. Mater.
– volume: 175
  start-page: 698
  year: 2012
  end-page: 707
  ident: bb0160
  article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 171
  start-page: 591
  year: 2008
  end-page: 596
  ident: bb0190
  article-title: Effects of charcoal production on soil physical properties in Ghana
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 129
  start-page: 22
  year: 2014
  end-page: 29
  ident: bb0170
  article-title: Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China
  publication-title: Agric. Syst.
– volume: 35
  start-page: 219
  year: 2002
  end-page: 230
  ident: bb0075
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with bio-char—a review
  publication-title: Biol. Fertil. Soils
– volume: 110
  start-page: 225
  year: 2013
  end-page: 233
  ident: bb0110
  article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil
  publication-title: Catena
– volume: 13
  start-page: 991
  year: 2013
  end-page: 1002
  ident: bb0195
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 175
  start-page: 10
  year: 2010
  end-page: 14
  ident: bb0060
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand
  publication-title: Soil Sci.
– volume: 33
  start-page: 941
  year: 2014
  end-page: 946
  ident: bb0095
  article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil
  publication-title: Environ. Prog. Sustainable Energy
– volume: 376
  start-page: 347
  year: 2013
  end-page: 361
  ident: bb0080
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
– volume: 103
  start-page: 13
  year: 2012
  end-page: 18
  ident: bb0070
  article-title: The effects of biochar on soil physical properties and winter wheat growth
  publication-title: Earth and Environ. Sci. Trans. Roy. Soc. Edin.
– volume: 202-203
  start-page: 183
  year: 2013
  end-page: 191
  ident: bb0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
– volume: 251-252
  start-page: 47
  year: 2015
  end-page: 54
  ident: bb0105
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
– volume: 45
  start-page: 113
  year: 2012
  end-page: 124
  ident: bb0120
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol. Biochem.
– year: 2009
  ident: bb0035
  publication-title: Introduction to Meta-Analysis
– volume: 3
  start-page: 313
  year: 2013
  end-page: 339
  ident: bb0180
  article-title: Biochar impacts on soil physical properties and greenhouse gas emissions
  publication-title: Agronomy
– volume: 111
  start-page: 81
  year: 2009
  end-page: 84
  ident: bb0010
  article-title: Biochar amendment techniques for upland rice production in Northern Laos
  publication-title: Field Crop Res.
– volume: 373
  start-page: 583
  issue: 1-2
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0165
  article-title: Biochar's effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1806-x
– volume: 31
  start-page: 241
  year: 2015
  ident: 10.1016/j.geoderma.2016.03.029_bb0100
  article-title: Why short-term biochar application has no yield benefits: evidence from three field-grown crops
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12181
– volume: 158
  start-page: 443
  issue: 3-4
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0140
  article-title: Impact of biochar amendments on the quality of a typical Midwestern agricultural soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.05.013
– year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0210
– volume: 337
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0015
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 272
  start-page: 121
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0030
  article-title: A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.03.017
– volume: 11
  start-page: 403
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2016.03.029_bb0145
  article-title: Bio-char sequestration in terrestrial ecosystems—a review
  publication-title: Mitig. Adapt. Strateg. Glob. Chang.
  doi: 10.1007/s11027-005-9006-5
– volume: 65
  start-page: 96
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0235
  article-title: Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12081
– volume: 112
  start-page: 159
  issue: 2
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.029_bb0200
  article-title: Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2011.01.002
– volume: 47
  start-page: 716
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0205
  article-title: Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar
  publication-title: Pesq. Agrop. Brasileira
  doi: 10.1590/S0100-204X2012000500012
– volume: 175
  start-page: 698
  issue: 5
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0160
  article-title: Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201100172
– year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0040
– volume: 33
  start-page: 941
  issue: 3
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0095
  article-title: Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil
  publication-title: Environ. Prog. Sustainable Energy
  doi: 10.1002/ep.11867
– volume: 129
  start-page: 22
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0170
  article-title: Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2014.05.008
– volume: 102
  start-page: 1627
  issue: 6
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0045
  article-title: Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar
  publication-title: Agron. J.
  doi: 10.2134/agronj2010.0188
– volume: 9
  start-page: 1137
  issue: 3&4
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.029_bb0240
  article-title: Influence of biochar application on sandy soil hydraulic properties and nutrient retention
  publication-title: J. Food Agriculture Environ.
– volume: 209-210
  start-page: 188
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0085
  article-title: Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.06.016
– volume: 41
  start-page: 34
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0130
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.01.033
– volume: 35
  start-page: 219
  year: 2002
  ident: 10.1016/j.geoderma.2016.03.029_bb0075
  article-title: Ameliorating physical and chemical properties of highly weathered soils in the tropics with bio-char—a review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-002-0466-4
– volume: 44
  start-page: 1295
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0255
  article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903140c
– volume: 191
  start-page: 108
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0225
  article-title: Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.01.007
– volume: 251-252
  start-page: 47
  year: 2015
  ident: 10.1016/j.geoderma.2016.03.029_bb0105
  article-title: Biochar application does not improve the soil hydrological function of a sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.03.022
– volume: 202-203
  start-page: 183
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0005
  article-title: Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.03.003
– volume: 171
  start-page: 591
  year: 2008
  ident: 10.1016/j.geoderma.2016.03.029_bb0190
  article-title: Effects of charcoal production on soil physical properties in Ghana
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200625185
– volume: 3
  start-page: 313
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0180
  article-title: Biochar impacts on soil physical properties and greenhouse gas emissions
  publication-title: Agronomy
  doi: 10.3390/agronomy3020313
– volume: 376
  start-page: 347
  issue: 1-2
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0080
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1980-x
– volume: 13
  start-page: 991
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0195
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: J. Soil Sci. Plant Nutr.
– volume: 21
  start-page: 1
  issue: 3
  year: 2007
  ident: 10.1016/j.geoderma.2016.03.029_bb0065
  article-title: Controls on black carbon storage in soils
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2006GB002798
– volume: 103
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0070
  article-title: The effects of biochar on soil physical properties and winter wheat growth
  publication-title: Earth and Environ. Sci. Trans. Roy. Soc. Edin.
– volume: 140
  start-page: 309
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.029_bb0125
  article-title: Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.12.005
– year: 2004
  ident: 10.1016/j.geoderma.2016.03.029_bb0090
– volume: 91
  start-page: 2281
  issue: 11
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0115
  article-title: Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.06.013
– volume: 41
  start-page: 1076
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0175
  article-title: Nutrient leaching in a Colombian savanna oxisol amended with biochar
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2011.0128
– start-page: 1
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0135
  article-title: Biochar amendment of soil improves resilience to climate change
  publication-title: GCB Bioenergy
– volume: 139
  start-page: 469
  issue: 4
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0250
  article-title: Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2010.09.003
– volume: 5
  start-page: 132
  issue: 2
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0025
  article-title: Assessing potential of biochar for increasing water-holding capacity of sandy soils
  publication-title: GCB Bioenergy
  doi: 10.1111/gcbb.12026
– volume: 110
  start-page: 225
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0110
  article-title: Effects of biochar on soil properties and erosion potential in a highly weathered soil
  publication-title: Catena
  doi: 10.1016/j.catena.2013.06.021
– volume: 13
  start-page: 1561
  issue: 9
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.029_bb0155
  article-title: Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0738-7
– volume: 34
  start-page: 21
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0020
  article-title: Biochar: potential for countering land degradation and for improving agriculture
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2011.09.008
– volume: 79
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2016.03.029_bb0215
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– volume: 30
  start-page: 109
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0055
  article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention.pdf>
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12102
– start-page: 235
  year: 2015
  ident: 10.1016/j.geoderma.2016.03.029_bb0150
  article-title: Persistence of biochar in soil
– volume: 45
  start-page: 113
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.029_bb0120
  article-title: Biochar-mediated changes in soil quality and plant growth in a three year field trial
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.10.012
– volume: 29
  start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2016.03.029_bb0245
  article-title: The stoichiometry of carbon and nutrients in peat formation
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2014GB005000
– year: 2009
  ident: 10.1016/j.geoderma.2016.03.029_bb0230
  article-title: Characteristics of biochar: biological properties
– volume: 175
  start-page: 10
  year: 2010
  ident: 10.1016/j.geoderma.2016.03.029_bb0060
  article-title: Influence of pecan biochar on physical properties of a Norfolk loamy sand
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181cb7f46
– volume: 374
  start-page: 89
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.029_bb0220
  article-title: Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1851-5
– volume: 57
  start-page: 539
  issue: 4
  year: 2006
  ident: 10.1016/j.geoderma.2016.03.029_bb0050
  article-title: Aggregate-occluded black carbon in soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00807.x
– year: 2009
  ident: 10.1016/j.geoderma.2016.03.029_bb0035
– volume: 111
  start-page: 81
  issue: 1-2
  year: 2009
  ident: 10.1016/j.geoderma.2016.03.029_bb0010
  article-title: Biochar amendment techniques for upland rice production in Northern Laos
  publication-title: Field Crop Res.
  doi: 10.1016/j.fcr.2008.10.008
SSID ssj0017020
Score 2.6261303
Snippet The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms aggregate stability
Agriculture
application rate
Biochar
Bulk density
carbon
carbon sequestration
coarse-textured soils
Correlation
crop residues
feedstocks
fine-textured soils
greenhouse gas emissions
Hydrology
Literature data
Meta-analysis
Physical properties
Porosity
pyrolysis
saturated hydraulic conductivity
semiarid zones
Soil (material)
soil amendments
soil density
soil fertility
Soil hydrology
Soil physical properties
soil quality
Soil water capacity
temperature
water holding capacity
water use efficiency
Wood
Title Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data
URI https://dx.doi.org/10.1016/j.geoderma.2016.03.029
https://www.proquest.com/docview/1808672563
https://www.proquest.com/docview/1825445366
https://www.proquest.com/docview/1836661856
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxwhFJaQXNJDaZqWJk2DhVzN6ujoeFxCw7aFQKGB3MSfyYbtzrLZPfTSvz0-11naUpJDj-PoIE997xv93idCZzYkaxstCEvKEuG1Iy4HHiIjdVZRBWdbwLa4kpNr8eWmvdlBF0MuDNAqq-_f-PTirWvJqFpztJhOIceXSZXDUUYUGeeXPHIhFMzy819bmgdTtEozMkmg9m9Zwvd5jODCsaI_xGQROy1Q858B6i9XXeLP5Sv0sgJHPN707QDtxPlr9GJ8u6ziGfEQ3X1b2w33p5gb9wm7aQ95VbjSNnAufeinM3z3MywHt4cXsCG_BGVVDDT4W_wjriyxVa4EPjPbii9joJS-QdeXn75fTEi9SYF4odSK-IaGNgTFZWCho54H6UTnOTChHCjCJNe4hnkuvOx81NoH5X1KXQYXGYIF_hbtzvt5fIdwEm3TRdtSp6NImmsBYp_WeU87T3U6Qu1gPuOrzDjcdjEzA5_s3gxmN2B2Q7nJZj9Co227xUZo49kWehgd88eUMTkaPNv24zCcJq8nOCSx89ivHwzr8k-eykCQP1WnCLtxKZ-qk1_LjIbk8X_08z3ahyfYTGbtCdpdLdfxQ0ZBK3dapvkp2ht__jq5egSoPwsG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQONAeEPSh8mpdqVcr3rXXXh8jBAqPRkICiZvlJwSFbBSSA_8ez8YblaqCQ69rz8oae2e-tb_5jNAv46MxpeKkiNIQ7pQlNiUeIgK1RlIJZ1vAthiJ4Q0_v61uN9BxVwsDtMoc-1cxvY3W-Uk_e7M_G4-hxrcQMqWjhCgSzoc68k1Qp6p6aHNwdjEcrQ8TJM3qjIUgYPBHofBDmia4c6yVICpEq3faos1_5qi_onWbgk530HbGjniwGt4u2gjTT-jj4G6e9TPCZ3R_tTQr-k_rcdxEbMcNlFbhzNzA6elTM57g-2c_7yIfnsGe_BzEVTEw4e_wY1gYYrJiCbxmstZfxsAq_YJuTk-uj4ckX6ZAHJdyQVxJfeW9ZMIXvqaOeWF57RiQoSyIwkRb2rJwjDtRu6CU89K5GOuELxIK8-wr6k2bafiGcORVWQdTUasCj4opDnqfxjpHa0dV3ENV5z7tstI4XHgx0R2l7EF3btfgdk2ZTm7fQ_213WyltfGuhepmR79aNTolhHdtf3bTqdMnBeckZhqa5ZMu6vSfJxMWZG_1abXdmBBv9UnNIgEisf8f4_yBtobXvy_15dno4gB9gBbYWy6qQ9RbzJfhKIGihf2eF_0LunINtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+biochar+effects+on+soil+hydrological+properties+using+meta-analysis+of+literature+data&rft.jtitle=Geoderma&rft.au=Omondia%2C+Morris+Oduor&rft.au=Xiaa%2C+Xin&rft.au=Nahayoa%2C+Alphonse&rft.au=Liua%2C+Xiaoyu&rft.date=2016-07-15&rft.issn=0016-7061&rft.volume=274&rft.spage=28&rft.epage=34&rft_id=info:doi/10.1016%2Fj.geoderma.2016.03.029&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon