Striking effect of carbon nanotubes on adjusting sc-CO2 foaming performance of PS/LLDPE blends and forming semi-open cellular structure
The effect of carbon nanotubes (CNTs) on the phase structure and foaming performance of PS/LLDPE blends during batch foaming of sc-CO2 was studied. It was found that the phase structure of PS/LLDPE = 50/50 blends with CNTs could be transformed from bi-continuous to sea-island morphology, when a suff...
Saved in:
Published in | Polymer (Guilford) Vol. 207; no. C; p. 122896 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
20.10.2020
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of carbon nanotubes (CNTs) on the phase structure and foaming performance of PS/LLDPE blends during batch foaming of sc-CO2 was studied. It was found that the phase structure of PS/LLDPE = 50/50 blends with CNTs could be transformed from bi-continuous to sea-island morphology, when a sufficient quantity of CNTs nanofillers was added. As a result, the foaming ability of PS/LLDPE = 50/50 blends was improved effectively. Meanwhile, the critical value of CNTs for significantly improving the foaming ability of blends decreased slightly with the increase of foaming temperature. In contrast, for the PS/LLDPE blends with sea-island phase structure (such as 20/80), the addition of CNTs did not significantly change the morphology and foaming capacity of the blends. Very interestingly, the foam with semi-open cellular structure (meaning that there were small pores within the large cell wall) was obtained in the foamed PS/LLDPE blends after tetrahydrofuran (THF) etching PS phase. Benefiting from the interfacial channel effect formed by the presence of CNTs, the etching speed and efficiency of PS were significantly improved, and the size for the small pore on the cell wall could be adjusted by the content of PS dispersed phase in the PS/LLDPE/CNTs nanocomposites.
[Display omitted]
•The presence of CNTs changes the morphology of LLDPE/PS blends from bi-continuous structure to sea-island structure.•The presence of enough amount of CNTs can improve the foaming performance of LLDPE/PS blends with bi-continuous structure.•The foam with semi-open cellular structure is obtained in the foamed LLDPE/PS blends after THF etching PS phase. |
---|---|
AbstractList | The effect of carbon nanotubes (CNTs) on the phase structure and foaming performance of PS/LLDPE blends during batch foaming of sc-CO2 was studied. It was found that the phase structure of PS/LLDPE = 50/50 blends with CNTs could be transformed from bi-continuous to sea-island morphology, when a sufficient quantity of CNTs nanofillers was added. As a result, the foaming ability of PS/LLDPE = 50/50 blends was improved effectively. Meanwhile, the critical value of CNTs for significantly improving the foaming ability of blends decreased slightly with the increase of foaming temperature. In contrast, for the PS/LLDPE blends with sea-island phase structure (such as 20/80), the addition of CNTs did not significantly change the morphology and foaming capacity of the blends. Very interestingly, the foam with semi-open cellular structure (meaning that there were small pores within the large cell wall) was obtained in the foamed PS/LLDPE blends after tetrahydrofuran (THF) etching PS phase. Benefiting from the interfacial channel effect formed by the presence of CNTs, the etching speed and efficiency of PS were significantly improved, and the size for the small pore on the cell wall could be adjusted by the content of PS dispersed phase in the PS/LLDPE/CNTs nanocomposites.
[Display omitted]
•The presence of CNTs changes the morphology of LLDPE/PS blends from bi-continuous structure to sea-island structure.•The presence of enough amount of CNTs can improve the foaming performance of LLDPE/PS blends with bi-continuous structure.•The foam with semi-open cellular structure is obtained in the foamed LLDPE/PS blends after THF etching PS phase. The effect of carbon nanotubes (CNTs) on the phase structure and foaming performance of PS/LLDPE blends during batch foaming of sc-CO2 was studied. It was found that the phase structure of PS/LLDPE = 50/50 blends with CNTs could be transformed from bi-continuous to sea-island morphology, when a sufficient quantity of CNTs nanofillers was added. As a result, the foaming ability of PS/LLDPE = 50/50 blends was improved effectively. Meanwhile, the critical value of CNTs for significantly improving the foaming ability of blends decreased slightly with the increase of foaming temperature. In contrast, for the PS/LLDPE blends with sea-island phase structure (such as 20/80), the addition of CNTs did not significantly change the morphology and foaming capacity of the blends. Very interestingly, the foam with semi-open cellular structure (meaning that there were small pores within the large cell wall) was obtained in the foamed PS/LLDPE blends after tetrahydrofuran (THF) etching PS phase. Benefiting from the interfacial channel effect formed by the presence of CNTs, the etching speed and efficiency of PS were significantly improved, and the size for the small pore on the cell wall could be adjusted by the content of PS dispersed phase in the PS/LLDPE/CNTs nanocomposites. |
ArticleNumber | 122896 |
Author | Li, Minggang Qiu, Jian Tang, Tao Shi, Zhiyuan Xing, Haiping Zhang, Shaofeng |
Author_xml | – sequence: 1 givenname: Zhiyuan surname: Shi fullname: Shi, Zhiyuan organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China – sequence: 2 givenname: Shaofeng surname: Zhang fullname: Zhang, Shaofeng organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China – sequence: 3 givenname: Jian surname: Qiu fullname: Qiu, Jian organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China – sequence: 4 givenname: Minggang surname: Li fullname: Li, Minggang organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China – sequence: 5 givenname: Haiping surname: Xing fullname: Xing, Haiping email: hpxing@ciac.ac.cn organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China – sequence: 6 givenname: Tao surname: Tang fullname: Tang, Tao email: ttang@ciac.ac.cn organization: State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China |
BackLink | https://www.osti.gov/biblio/2279694$$D View this record in Osti.gov |
BookMark | eNqFkc1q3TAQhUVJoDdpH6Eg2rVv9ONfuijlJm0KFxJIshayNGrl2pIryYU8QV67cp1VNlmJ0ZxvmDPnDJ047wChD5TsKaH1xbCf_fg4QdgzwvIfY21Xv0E72ja8YKyjJ2hHCGcFb2v6Fp3FOBBCWMXKHXq6S8H-tu4nBmNAJewNVjL03mEnnU9LDxHnQuphiWnVRVUcbhg2Xk5rOUMwPkzSKVjZ27uL4_Hy9gr3IzgdsXQar_3_JEy28DM4rGAcl1EGHFNYVFoCvEOnRo4R3j-_5-jh29X94bo43nz_cfh6LFTZNKlQVGpS1Ybqjrem4w1X3ECvNZF9XynTKEKqnsiyVF3PZKtbaGT2nj9bTivNz9HHba7PbkRUNoH6pbxz2btgrOnqrsyiT5toDv7PAjGJwS_B5b0EK2tWNyUhq6raVCr4GAMYMQc7yfAoKBFrMGIQz8GINRixBZO5zy-4vIVM1rsUpB1fpb9sNOQr_bW5m01Avr62YfWgvX1lwj-oOrDM |
CitedBy_id | crossref_primary_10_1016_j_cej_2022_138071 crossref_primary_10_1016_j_supflu_2021_105498 crossref_primary_10_1021_acs_jpcb_1c03087 crossref_primary_10_1016_j_polymer_2022_124940 crossref_primary_10_3390_polym13101565 crossref_primary_10_1021_acsapm_1c00250 crossref_primary_10_1021_acsapm_0c00976 crossref_primary_10_1002_app_55072 crossref_primary_10_1016_j_eurpolymj_2022_111729 crossref_primary_10_15748_jasse_8_143 crossref_primary_10_3390_sym14050974 crossref_primary_10_1016_j_jcou_2022_102265 crossref_primary_10_1016_j_diamond_2022_109495 |
Cites_doi | 10.1021/acsami.8b02332 10.1016/j.polymer.2020.122406 10.1002/polb.21498 10.1177/0021955X09343632 10.1016/j.polymer.2017.11.054 10.1039/C4RA16084C 10.1016/j.polymer.2017.09.053 10.1016/j.supflu.2015.12.012 10.1016/j.polymer.2008.12.029 10.1016/0032-3861(94)90691-2 10.1016/j.carbon.2017.05.029 10.1002/marc.201100119 10.1016/j.polymer.2011.02.016 10.1016/j.compscitech.2014.09.013 10.1002/app.21930 10.1016/0032-3861(70)90036-4 10.1016/j.supflu.2009.09.007 10.1177/0021955X14525960 10.1016/j.polymer.2014.06.042 10.1016/j.compscitech.2005.06.016 10.1016/j.coco.2017.12.003 10.1016/j.polymer.2018.09.034 10.1002/adma.200305065 10.1002/app.46704 10.1039/b801895b 10.1002/app.39518 10.1177/0021955X14542989 10.1002/polb.10394 10.1021/acs.iecr.0c00369 10.1016/j.supflu.2010.09.032 10.1002/pen.20679 10.1021/ma047991b |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Oct 20, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Oct 20, 2020 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 OTOTI |
DOI | 10.1016/j.polymer.2020.122896 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2291 |
ExternalDocumentID | 2279694 10_1016_j_polymer_2020_122896 S0032386120307229 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSK SSM SSZ T5K TN5 WH7 XPP ZMT ~G- .-4 29O 6TJ 6TU AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SCB SEW SSH T9H WUQ 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c477t-c1ad056f1d938f9373c3febdd0abb5cf7c005b0a44c9b2a8d8e7a00305b8315d3 |
IEDL.DBID | .~1 |
ISSN | 0032-3861 |
IngestDate | Mon Jan 15 05:23:01 EST 2024 Wed Aug 13 02:59:30 EDT 2025 Tue Jul 01 03:36:27 EDT 2025 Thu Apr 24 23:00:11 EDT 2025 Fri Feb 23 02:48:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Polymer blend Semi-open foam Phase structure Foaming behavior Nanotubes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-c1ad056f1d938f9373c3febdd0abb5cf7c005b0a44c9b2a8d8e7a00305b8315d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0032386120307229 |
PQID | 2462674004 |
PQPubID | 2045419 |
ParticipantIDs | osti_scitechconnect_2279694 proquest_journals_2462674004 crossref_primary_10_1016_j_polymer_2020_122896 crossref_citationtrail_10_1016_j_polymer_2020_122896 elsevier_sciencedirect_doi_10_1016_j_polymer_2020_122896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-20 |
PublicationDateYYYYMMDD | 2020-10-20 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United Kingdom |
PublicationTitle | Polymer (Guilford) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Binsbergen (bib34) 1970; 11 Jacobs, Kemmere, Keurentjes (bib1) 2008; 10 Bao, Liu, Zhao, Hu (bib23) 2011; 55 Tang, Huang (bib8) 1994; 35 Ma, Zhang, Yang, Shi, Liu (bib19) 2014; 51 Gong, Wang, Tran, Buahom, Zhai, Li, Park (bib21) 2017; 120 Qiu, Wang, Xing, Li, Liu, Wang, Tang (bib27) 2020; 59 Siripurapu, DeSimone, Khan, Spontak (bib3) 2005; 38 Mosanenzadeh, Naguib, Park, Atalla (bib20) 2014; 131 Fenouillot, Cassagnau, Majesté (bib10) 2009; 50 Zhang, Zhang, Qiu, Jiang, Xing, Li, Tang (bib15) 2017; 129 Zhang, Zhu, Lee (bib26) 2011; 53 Bao, Weng, Zhao, Liu, Chen (bib18) 2014; 50 Chen, Li, Huang, Kong, Lv, Li (bib9) 2014; 105 Liu, Qiu, Shi, Zhang, Xing, Li, Shi, Tang (bib7) 2020; 194 Wang, Lessard, Maric, Favis (bib30) 2014; 55 Gu, Nessim, Macosko (bib31) 2018; 134 Zeng, Han, Lee, Koelling, Tomasko (bib6) 2003; 15 Hu (bib33) 2013 Lee, Lee, Kim, Park, Naguib (bib25) 2009; 45 Fan, Li, Qiu, Xing, Jiang, Tang (bib17) 2018; 10 Li, Fan, Qiu, Xing, Jiang, Tang (bib4) 2017; 12 Zhang, Wang, Xing, Qiu, Gong, Yao, Tan, Jiang, Tang (bib12) 2015; 5 Salerno, Zeppetelli, Di Maio, Iannace, Netti (bib24) 2011; 32 Lee, Zeng, Cao, Han, Shen, Xu (bib2) 2005; 65 Han, Shen, Huang, Tomasko, Lee (bib11) 2007; 47 Liu, Pang, Wang, Zheng (bib22) 2018; 135 Taki, Nitta, Kihara, Ohshima (bib28) 2005; 97 Li, Qiu, Xing, Fan, Wang, Li, Jiang, Tang (bib5) 2018; 155 Zhai, Wang, Yu, Dong, He (bib13) 2008; 46 Goren, Chen, Schadler, Ozisik (bib14) 2010; 51 Zhang, Zhang, Qiu, Jiang, Xing, Li, Tang (bib16) 2018; 7 Wang, Pang, Wu, Zhai, Zheng (bib29) 2016; 110 Assouline, Lustiger, Barber, Cooper, Klein, Wachtel, Wagner (bib32) 2003; 4 Zhang (10.1016/j.polymer.2020.122896_bib16) 2018; 7 Goren (10.1016/j.polymer.2020.122896_bib14) 2010; 51 Siripurapu (10.1016/j.polymer.2020.122896_bib3) 2005; 38 Salerno (10.1016/j.polymer.2020.122896_bib24) 2011; 32 Jacobs (10.1016/j.polymer.2020.122896_bib1) 2008; 10 Fan (10.1016/j.polymer.2020.122896_bib17) 2018; 10 Ma (10.1016/j.polymer.2020.122896_bib19) 2014; 51 Han (10.1016/j.polymer.2020.122896_bib11) 2007; 47 Zhang (10.1016/j.polymer.2020.122896_bib12) 2015; 5 Gu (10.1016/j.polymer.2020.122896_bib31) 2018; 134 Lee (10.1016/j.polymer.2020.122896_bib2) 2005; 65 Hu (10.1016/j.polymer.2020.122896_bib33) 2013 Fenouillot (10.1016/j.polymer.2020.122896_bib10) 2009; 50 Bao (10.1016/j.polymer.2020.122896_bib18) 2014; 50 Li (10.1016/j.polymer.2020.122896_bib5) 2018; 155 Zhang (10.1016/j.polymer.2020.122896_bib15) 2017; 129 Qiu (10.1016/j.polymer.2020.122896_bib27) 2020; 59 Taki (10.1016/j.polymer.2020.122896_bib28) 2005; 97 Bao (10.1016/j.polymer.2020.122896_bib23) 2011; 55 Liu (10.1016/j.polymer.2020.122896_bib22) 2018; 135 Wang (10.1016/j.polymer.2020.122896_bib29) 2016; 110 Binsbergen (10.1016/j.polymer.2020.122896_bib34) 1970; 11 Chen (10.1016/j.polymer.2020.122896_bib9) 2014; 105 Li (10.1016/j.polymer.2020.122896_bib4) 2017; 12 Zhai (10.1016/j.polymer.2020.122896_bib13) 2008; 46 Liu (10.1016/j.polymer.2020.122896_bib7) 2020; 194 Assouline (10.1016/j.polymer.2020.122896_bib32) 2003; 4 Zeng (10.1016/j.polymer.2020.122896_bib6) 2003; 15 Gong (10.1016/j.polymer.2020.122896_bib21) 2017; 120 Zhang (10.1016/j.polymer.2020.122896_bib26) 2011; 53 Tang (10.1016/j.polymer.2020.122896_bib8) 1994; 35 Lee (10.1016/j.polymer.2020.122896_bib25) 2009; 45 Mosanenzadeh (10.1016/j.polymer.2020.122896_bib20) 2014; 131 Wang (10.1016/j.polymer.2020.122896_bib30) 2014; 55 |
References_xml | – volume: 110 start-page: 65 year: 2016 end-page: 74 ident: bib29 article-title: Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO publication-title: J. Supercrit. Fluids – volume: 47 start-page: 103 year: 2007 end-page: 111 ident: bib11 article-title: CO publication-title: Polym. Eng. Sci. – volume: 4 start-page: 520 year: 2003 end-page: 527 ident: bib32 article-title: Nucleation ability of multiwall carbon nanotubes in polypropylene composites publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 15 start-page: 1743 year: 2003 end-page: 1747 ident: bib6 article-title: Polymer–clay nanocomposite foams prepared using carbon dioxide publication-title: Adv. Mater. – volume: 35 start-page: 281 year: 1994 end-page: 285 ident: bib8 article-title: Interfacial behavior of compatibilizers in polymer blends publication-title: Polymer – volume: 55 start-page: 1104 year: 2011 end-page: 1114 ident: bib23 article-title: A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO publication-title: J. Supercrit. Fluids – volume: 7 start-page: 30 year: 2018 end-page: 35 ident: bib16 article-title: The effect of nanosized carbon black on the morphology and sc-CO publication-title: Compos. Commun. – volume: 45 start-page: 539 year: 2009 end-page: 553 ident: bib25 article-title: Bi-cellular foam structure of polystyrene from extrusion foaming process publication-title: J. Cell. Plast. – volume: 10 start-page: 731 year: 2008 end-page: 738 ident: bib1 article-title: Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications publication-title: Green Chem. – volume: 55 start-page: 3461 year: 2014 end-page: 3467 ident: bib30 article-title: Hierarchically porous polymeric materials from ternary polymer blends publication-title: Polymer – year: 2013 ident: bib33 article-title: Principles of Polymer Crystallization – volume: 65 start-page: 2344 year: 2005 end-page: 2363 ident: bib2 article-title: Polymer nanocomposite foams publication-title: Compos. Sci. Technol. – volume: 51 start-page: 420 year: 2010 end-page: 427 ident: bib14 article-title: Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology publication-title: J. Supercrit. Fluids – volume: 120 start-page: 1 year: 2017 end-page: 10 ident: bib21 article-title: Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation publication-title: Carbon – volume: 135 start-page: 46704 year: 2018 end-page: 46715 ident: bib22 article-title: Structure evolution driven by phase separation and the corresponding foaming behavior of polystyrene/poly(methyl methacrylate) blends via a batch foaming process publication-title: J. Appl. Polym. Sci. – volume: 134 start-page: 104 year: 2018 end-page: 116 ident: bib31 article-title: Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid) publication-title: Polymer – volume: 155 start-page: 116 year: 2018 end-page: 128 ident: bib5 article-title: In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO publication-title: Polymer – volume: 194 start-page: 122406 year: 2020 ident: bib7 article-title: Adjusting cell structure of polypropylene composite foams by controlling the size and dispersed state of NaCl particles during CO publication-title: Polymer – volume: 131 start-page: 39518 year: 2014 ident: bib20 article-title: Development of polylactide open-cell foams with bimodal structure for high-acoustic absorption publication-title: J. Appl. Polym. Sci. – volume: 46 start-page: 1641 year: 2008 end-page: 1651 ident: bib13 article-title: Foaming behavior of polypropylene/polystyrene blends enhanced by improved interfacial compatibility publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 97 start-page: 1899 year: 2005 end-page: 1906 ident: bib28 article-title: CO publication-title: J. Appl. Polym. Sci. – volume: 50 start-page: 381 year: 2014 end-page: 393 ident: bib18 article-title: Tensile and impact behavior of polystyrene microcellular foams with bi-modal cell morphology publication-title: J. Cell. Plast. – volume: 5 start-page: 27181 year: 2015 end-page: 27189 ident: bib12 article-title: Interplay between the composition of LLDPE/PS blends and their compatibilization with polyethylene-graft-polystyrene in the foaming behavior publication-title: RSC Adv. – volume: 129 start-page: 169 year: 2017 end-page: 178 ident: bib15 article-title: Insight into the influence of OA-Fe publication-title: Polymer – volume: 12 start-page: 1851 year: 2017 end-page: 1855 ident: bib4 article-title: Controlling cellular structure of polypropylene foams through heat of phase transition of water publication-title: Acta Polym. Sin. – volume: 32 start-page: 1150 year: 2011 end-page: 1156 ident: bib24 article-title: Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO publication-title: Macromol. Rapid Commun. – volume: 59 start-page: 7594 year: 2020 end-page: 7603 ident: bib27 article-title: Preparation of polypropylene foams with bimodal cell structure using a microporous molecular sieve as a nucleating agent publication-title: Ind. Eng. Chem. Res. – volume: 11 start-page: 253 year: 1970 end-page: 267 ident: bib34 article-title: Heterogeneous nucleation in the crystallization of polyolefins: Part 1. Chemical and physical nature of nucleating agents publication-title: Polymer – volume: 105 start-page: 37 year: 2014 end-page: 43 ident: bib9 article-title: Hybrid nanoparticles with different surface chemistries show higher efficiency in compatibilizing immiscible polymer blends publication-title: Compos. Sci. Technol. – volume: 50 start-page: 1333 year: 2009 end-page: 1350 ident: bib10 article-title: Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends publication-title: Polymer – volume: 38 start-page: 2271 year: 2005 end-page: 2280 ident: bib3 article-title: Controlled foaming of polymer films through restricted surface diffusion and the addition of nanosilica particles or CO publication-title: Macromolecules – volume: 10 start-page: 22669 year: 2018 end-page: 22677 ident: bib17 article-title: Novel method for preparing auxetic foam from closed-cell polymer foam based on the steam penetration and condensation process publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 307 year: 2014 end-page: 327 ident: bib19 article-title: Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions publication-title: J. Cell. Plast. – volume: 53 start-page: 1847 year: 2011 end-page: 1855 ident: bib26 article-title: Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents publication-title: Polymer – volume: 10 start-page: 22669 year: 2018 ident: 10.1016/j.polymer.2020.122896_bib17 article-title: Novel method for preparing auxetic foam from closed-cell polymer foam based on the steam penetration and condensation process publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02332 – volume: 194 start-page: 122406 year: 2020 ident: 10.1016/j.polymer.2020.122896_bib7 article-title: Adjusting cell structure of polypropylene composite foams by controlling the size and dispersed state of NaCl particles during CO2 batch foaming process publication-title: Polymer doi: 10.1016/j.polymer.2020.122406 – volume: 46 start-page: 1641 year: 2008 ident: 10.1016/j.polymer.2020.122896_bib13 article-title: Foaming behavior of polypropylene/polystyrene blends enhanced by improved interfacial compatibility publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.21498 – volume: 45 start-page: 539 year: 2009 ident: 10.1016/j.polymer.2020.122896_bib25 article-title: Bi-cellular foam structure of polystyrene from extrusion foaming process publication-title: J. Cell. Plast. doi: 10.1177/0021955X09343632 – volume: 134 start-page: 104 year: 2018 ident: 10.1016/j.polymer.2020.122896_bib31 article-title: Reactive compatibilization of poly(lactic acid)/polystyrene blends and its application to preparation of hierarchically porous poly(lactic acid) publication-title: Polymer doi: 10.1016/j.polymer.2017.11.054 – volume: 5 start-page: 27181 year: 2015 ident: 10.1016/j.polymer.2020.122896_bib12 article-title: Interplay between the composition of LLDPE/PS blends and their compatibilization with polyethylene-graft-polystyrene in the foaming behavior publication-title: RSC Adv. doi: 10.1039/C4RA16084C – volume: 129 start-page: 169 year: 2017 ident: 10.1016/j.polymer.2020.122896_bib15 article-title: Insight into the influence of OA-Fe3O4 nanoparticles on the morphology and scCO2 batch-foaming behavior of cocontinuous LLDPE/PS immiscible blends at semi-solid state publication-title: Polymer doi: 10.1016/j.polymer.2017.09.053 – volume: 110 start-page: 65 year: 2016 ident: 10.1016/j.polymer.2020.122896_bib29 article-title: Cell nucleation in dominating formation of bimodal cell structure in polypropylene/polystyrene blend foams prepared via continuous extrusion with supercritical CO2 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2015.12.012 – volume: 50 start-page: 1333 year: 2009 ident: 10.1016/j.polymer.2020.122896_bib10 article-title: Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends publication-title: Polymer doi: 10.1016/j.polymer.2008.12.029 – volume: 35 start-page: 281 year: 1994 ident: 10.1016/j.polymer.2020.122896_bib8 article-title: Interfacial behavior of compatibilizers in polymer blends publication-title: Polymer doi: 10.1016/0032-3861(94)90691-2 – volume: 120 start-page: 1 year: 2017 ident: 10.1016/j.polymer.2020.122896_bib21 article-title: Advanced bimodal polystyrene/multi-walled carbon nanotube nanocomposite foams for thermal insulation publication-title: Carbon doi: 10.1016/j.carbon.2017.05.029 – volume: 32 start-page: 1150 year: 2011 ident: 10.1016/j.polymer.2020.122896_bib24 article-title: Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO2 foaming publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201100119 – volume: 53 start-page: 1847 year: 2011 ident: 10.1016/j.polymer.2020.122896_bib26 article-title: Extrusion foaming of polystyrene/carbon particles using carbon dioxide and water as co-blowing agents publication-title: Polymer doi: 10.1016/j.polymer.2011.02.016 – volume: 105 start-page: 37 year: 2014 ident: 10.1016/j.polymer.2020.122896_bib9 article-title: Hybrid nanoparticles with different surface chemistries show higher efficiency in compatibilizing immiscible polymer blends publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2014.09.013 – volume: 97 start-page: 1899 year: 2005 ident: 10.1016/j.polymer.2020.122896_bib28 article-title: CO2 foaming of poly(ethylene glycol)/polystyrene blends: relationship of the blend morphology, CO2 mass transfer, and cellular structure publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.21930 – volume: 11 start-page: 253 year: 1970 ident: 10.1016/j.polymer.2020.122896_bib34 article-title: Heterogeneous nucleation in the crystallization of polyolefins: Part 1. Chemical and physical nature of nucleating agents publication-title: Polymer doi: 10.1016/0032-3861(70)90036-4 – volume: 51 start-page: 420 year: 2010 ident: 10.1016/j.polymer.2020.122896_bib14 article-title: Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2009.09.007 – volume: 50 start-page: 381 year: 2014 ident: 10.1016/j.polymer.2020.122896_bib18 article-title: Tensile and impact behavior of polystyrene microcellular foams with bi-modal cell morphology publication-title: J. Cell. Plast. doi: 10.1177/0021955X14525960 – volume: 55 start-page: 3461 year: 2014 ident: 10.1016/j.polymer.2020.122896_bib30 article-title: Hierarchically porous polymeric materials from ternary polymer blends publication-title: Polymer doi: 10.1016/j.polymer.2014.06.042 – volume: 65 start-page: 2344 year: 2005 ident: 10.1016/j.polymer.2020.122896_bib2 article-title: Polymer nanocomposite foams publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2005.06.016 – volume: 7 start-page: 30 year: 2018 ident: 10.1016/j.polymer.2020.122896_bib16 article-title: The effect of nanosized carbon black on the morphology and sc-CO2 foaming behavior of LLDPE/PS blends at semi-solid state publication-title: Compos. Commun. doi: 10.1016/j.coco.2017.12.003 – volume: 12 start-page: 1851 year: 2017 ident: 10.1016/j.polymer.2020.122896_bib4 article-title: Controlling cellular structure of polypropylene foams through heat of phase transition of water publication-title: Acta Polym. Sin. – volume: 155 start-page: 116 year: 2018 ident: 10.1016/j.polymer.2020.122896_bib5 article-title: In-situ cooling of adsorbed water to control cellular structure of polypropylene composite foam during CO2 batch foaming process publication-title: Polymer doi: 10.1016/j.polymer.2018.09.034 – volume: 15 start-page: 1743 year: 2003 ident: 10.1016/j.polymer.2020.122896_bib6 article-title: Polymer–clay nanocomposite foams prepared using carbon dioxide publication-title: Adv. Mater. doi: 10.1002/adma.200305065 – volume: 135 start-page: 46704 year: 2018 ident: 10.1016/j.polymer.2020.122896_bib22 article-title: Structure evolution driven by phase separation and the corresponding foaming behavior of polystyrene/poly(methyl methacrylate) blends via a batch foaming process publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46704 – volume: 10 start-page: 731 year: 2008 ident: 10.1016/j.polymer.2020.122896_bib1 article-title: Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications publication-title: Green Chem. doi: 10.1039/b801895b – volume: 131 start-page: 39518 year: 2014 ident: 10.1016/j.polymer.2020.122896_bib20 article-title: Development of polylactide open-cell foams with bimodal structure for high-acoustic absorption publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.39518 – volume: 51 start-page: 307 year: 2014 ident: 10.1016/j.polymer.2020.122896_bib19 article-title: Mechanical and dielectric properties of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions publication-title: J. Cell. Plast. doi: 10.1177/0021955X14542989 – volume: 4 start-page: 520 year: 2003 ident: 10.1016/j.polymer.2020.122896_bib32 article-title: Nucleation ability of multiwall carbon nanotubes in polypropylene composites publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.10394 – year: 2013 ident: 10.1016/j.polymer.2020.122896_bib33 – volume: 59 start-page: 7594 year: 2020 ident: 10.1016/j.polymer.2020.122896_bib27 article-title: Preparation of polypropylene foams with bimodal cell structure using a microporous molecular sieve as a nucleating agent publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00369 – volume: 55 start-page: 1104 year: 2011 ident: 10.1016/j.polymer.2020.122896_bib23 article-title: A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO2 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2010.09.032 – volume: 47 start-page: 103 year: 2007 ident: 10.1016/j.polymer.2020.122896_bib11 article-title: CO2 foaming based on polystyrene/poly(methyl methacrylate) blend and nanoclay publication-title: Polym. Eng. Sci. doi: 10.1002/pen.20679 – volume: 38 start-page: 2271 year: 2005 ident: 10.1016/j.polymer.2020.122896_bib3 article-title: Controlled foaming of polymer films through restricted surface diffusion and the addition of nanosilica particles or CO2-philic surfactants publication-title: Macromolecules doi: 10.1021/ma047991b |
SSID | ssj0002524 |
Score | 2.4098415 |
Snippet | The effect of carbon nanotubes (CNTs) on the phase structure and foaming performance of PS/LLDPE blends during batch foaming of sc-CO2 was studied. It was... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122896 |
SubjectTerms | Carbon dioxide Carbon nanotubes Cell walls Cellular structure Channel pores Etching Foaming Foaming behavior Mixtures Morphology Nanocomposites Nanotechnology Nanotubes Phase structure Plastic foam Polymer blend Semi-open foam Solid phases Tetrahydrofuran |
Title | Striking effect of carbon nanotubes on adjusting sc-CO2 foaming performance of PS/LLDPE blends and forming semi-open cellular structure |
URI | https://dx.doi.org/10.1016/j.polymer.2020.122896 https://www.proquest.com/docview/2462674004 https://www.osti.gov/biblio/2279694 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqcAAOCAqI0lL5wNVJ1vauN8cqtApQlUqlUm-Wxw8pUbobJemBC9f-7c7sg4AQqsTRux6t1zOex-7MN4x9VEYWkGVBQIoYoMSsFFBEJ5KHiQKIuYpNlu9FMbvWX27ymz027WthKK2y0_2tTm-0dXdl1O3maDWfU42vQnuDFprkVEoq4tPakJQPf-7SPGQuWyRmJQXN3lXxjBbDVb38cRsJFlQSzgIGH8W_7NOgxiP3l8JurNDZS_aicx_5SbvCV2wvVvvs6bTv2rbPnv8GMPia3V9t13P6GM7bvA1eJ-7dGuqKV66qt3cQNxwHLiyoqxfO23gx_SZ5qt0tDVe7ugKivbwanZ9_ujzlsKRUWu6qwOl-Q4lrENSMi9PPAMpu5S047d06vmHXZ6ffpzPRtV4QXhuzFT5zAV2jlIWJKhO6MMqrFCGEsQPIfTIeTy-MndZ-AtKVoYzGNfEIlCrLg3rLBlVdxXeMly5HJ4IcFcDQpTCgEsY4zkeDsVk20QdM9xtufYdLTu0xlrZPQFvYjk-W-GRbPh2w4S-yVQvM8RhB2XPT_iFhFo3HY6SHxH0iI2RdTylISEfgiwW9wFEvFLZTABsrNUaKhhTk-_9_7iF7RiMylXJ8xAbItPgBfaAtHDdCfsyenHz-Ort4AHpIB8o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKA9VC1txat0D70uiXf9PKIUFCBNkQCJ22pflhIFO0rCob-Av90Zew2tKoTEcb0eeb0zOw975huA7zITqYkix03pMUDxUc5N6jUvrSmkMT6RvsnynaSjm_j8NrndgGFXC0NplUH3tzq90dbhSj_sZn8xnVKNr0R7gxaa5FSI4g1sEjpV0oPN47OL0eRRIYtEtGDMUnAieCrk6c-OFvX8950nZFBBUAsYf6TPmahejafuP53dGKLTD_A-eJDsuF3kR9jw1TZsDbvGbdvw7i-MwU_wcLVeTul7OGtTN1hdMquXpq5Ypat6fW_8iuFAuxk19sL7VpYPfwlW1vqOhoun0gKivbzqj8c_Lk-YmVM2LdOVYzTfUOIaOPXjYvQ_gBJcWYtPe7_0n-Hm9OR6OOKh-wK3cZatuY20Q--ojFwh8xK9GGll6Y1zA21MYsvM4gE2Ax3HtjBC5y73mW5CEpPLKHHyC_SquvI7wHKdoB9BvorB6CXNjCwxzNHWZxieRUW8C3G34coGaHLqkDFXXQ7aTAU-KeKTavm0C0ePZIsWm-MlgrzjpvpHyBTaj5dI94n7REbgupaykJCO8BdTeoGDTihU0AErJWIMFjPSkXuvf-432Bpd_xyr8dnkYh_e0gxZTjE4gB4y0H9Fl2htDoPI_wF55wp7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Striking+effect+of+carbon+nanotubes+on+adjusting+sc-CO2+foaming+performance+of+PS%2FLLDPE+blends+and+forming+semi-open+cellular+structure&rft.jtitle=Polymer+%28Guilford%29&rft.au=Shi%2C+Zhiyuan&rft.au=Zhang%2C+Shaofeng&rft.au=Qiu%2C+Jian&rft.au=Li%2C+Minggang&rft.date=2020-10-20&rft.pub=Elsevier+BV&rft.issn=0032-3861&rft.eissn=1873-2291&rft.volume=207&rft.spage=1&rft_id=info:doi/10.1016%2Fj.polymer.2020.122896&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3861&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3861&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3861&client=summon |