Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease

Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacil...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 15; pp. 1 - 12
Main Authors Le Voyer, Tom, Neehus, Anna-Lena, Yang, Rui, Ogishi, Masato, Rosain, Jérémie, Alroqi, Fayhan, Alshalan, Maha, Blumental, Sophie, Ali, Fatima Al, Khan, Taushif, Ata, Manar, Rozen, Laurence, Demulder, Anne, Bastard, Paul, Gruber, Conor, Roynard, Manon, Seeleuthener, Yoann, Rapaport, Franck, Bigio, Benedetta, Chrabieh, Maya, Sng, Danielle, Berteloot, Laureline, Boddaert, Nathalie, Rozenberg, Flore, Al-Muhsen, Saleh, Bertoli-Avella, Aida, Abel, Laurent, Bogunovic, Dusan, Marr, Nico, Mansouri, Davood, Mutairi, Fuad Al, Béziat, Vivien, Weil, Dominique, Mahdaviani, Seyed Alireza, Ferster, Alina, Zhang, Shen-Ying, Reversade, Bruno, Boisson-Dupuis, Stéphanie, Casanova, Jean-Laurent, Bustamante, Jacinta
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette–Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
AbstractList Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette–Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
Mendelian susceptibility to mycobacterial disease (MSMD) is defined by selective vulnerability to weakly virulent mycobacteria. The 32 known inborn errors of IFN-γ immunity account for MSMD in about half of the patients, and for a smaller proportion of cases of tuberculosis (TB). We report homozygous ZNFX1 variants in two families in which the index cases had MSMD or TB with intermittent monocytosis. Upon overexpression, the two variants encode truncated proteins. We show that human ZNFX1 is localized in ribonucleoprotein granules called stress granules. The patients’ production of and response to IFN-γ are apparently intact, and the patients have not experienced severe viral illnesses. Inherited deficiency of stress granule-associated ZNFX1 is a genetic etiology of MSMD or TB with intermittent monocytosis. Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette–Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
Author Gruber, Conor
Ogishi, Masato
Sng, Danielle
Mahdaviani, Seyed Alireza
Rozen, Laurence
Reversade, Bruno
Blumental, Sophie
Rozenberg, Flore
Bertoli-Avella, Aida
Mutairi, Fuad Al
Bastard, Paul
Rosain, Jérémie
Roynard, Manon
Béziat, Vivien
Chrabieh, Maya
Bogunovic, Dusan
Ata, Manar
Weil, Dominique
Boddaert, Nathalie
Marr, Nico
Alshalan, Maha
Bustamante, Jacinta
Mansouri, Davood
Bigio, Benedetta
Zhang, Shen-Ying
Demulder, Anne
Le Voyer, Tom
Al-Muhsen, Saleh
Seeleuthener, Yoann
Ali, Fatima Al
Berteloot, Laureline
Rapaport, Franck
Ferster, Alina
Neehus, Anna-Lena
Abel, Laurent
Casanova, Jean-Laurent
Yang, Rui
Khan, Taushif
Boisson-Dupuis, Stéphanie
Alroqi, Fayhan
Author_xml – sequence: 1
  givenname: Tom
  surname: Le Voyer
  fullname: Le Voyer, Tom
– sequence: 2
  givenname: Anna-Lena
  surname: Neehus
  fullname: Neehus, Anna-Lena
– sequence: 3
  givenname: Rui
  surname: Yang
  fullname: Yang, Rui
– sequence: 4
  givenname: Masato
  surname: Ogishi
  fullname: Ogishi, Masato
– sequence: 5
  givenname: Jérémie
  surname: Rosain
  fullname: Rosain, Jérémie
– sequence: 6
  givenname: Fayhan
  surname: Alroqi
  fullname: Alroqi, Fayhan
– sequence: 7
  givenname: Maha
  surname: Alshalan
  fullname: Alshalan, Maha
– sequence: 8
  givenname: Sophie
  surname: Blumental
  fullname: Blumental, Sophie
– sequence: 9
  givenname: Fatima Al
  surname: Ali
  fullname: Ali, Fatima Al
– sequence: 10
  givenname: Taushif
  surname: Khan
  fullname: Khan, Taushif
– sequence: 11
  givenname: Manar
  surname: Ata
  fullname: Ata, Manar
– sequence: 12
  givenname: Laurence
  surname: Rozen
  fullname: Rozen, Laurence
– sequence: 13
  givenname: Anne
  surname: Demulder
  fullname: Demulder, Anne
– sequence: 14
  givenname: Paul
  surname: Bastard
  fullname: Bastard, Paul
– sequence: 15
  givenname: Conor
  surname: Gruber
  fullname: Gruber, Conor
– sequence: 16
  givenname: Manon
  surname: Roynard
  fullname: Roynard, Manon
– sequence: 17
  givenname: Yoann
  surname: Seeleuthener
  fullname: Seeleuthener, Yoann
– sequence: 18
  givenname: Franck
  surname: Rapaport
  fullname: Rapaport, Franck
– sequence: 19
  givenname: Benedetta
  surname: Bigio
  fullname: Bigio, Benedetta
– sequence: 20
  givenname: Maya
  surname: Chrabieh
  fullname: Chrabieh, Maya
– sequence: 21
  givenname: Danielle
  surname: Sng
  fullname: Sng, Danielle
– sequence: 22
  givenname: Laureline
  surname: Berteloot
  fullname: Berteloot, Laureline
– sequence: 23
  givenname: Nathalie
  surname: Boddaert
  fullname: Boddaert, Nathalie
– sequence: 24
  givenname: Flore
  surname: Rozenberg
  fullname: Rozenberg, Flore
– sequence: 25
  givenname: Saleh
  surname: Al-Muhsen
  fullname: Al-Muhsen, Saleh
– sequence: 26
  givenname: Aida
  surname: Bertoli-Avella
  fullname: Bertoli-Avella, Aida
– sequence: 27
  givenname: Laurent
  surname: Abel
  fullname: Abel, Laurent
– sequence: 28
  givenname: Dusan
  surname: Bogunovic
  fullname: Bogunovic, Dusan
– sequence: 29
  givenname: Nico
  surname: Marr
  fullname: Marr, Nico
– sequence: 30
  givenname: Davood
  surname: Mansouri
  fullname: Mansouri, Davood
– sequence: 31
  givenname: Fuad Al
  surname: Mutairi
  fullname: Mutairi, Fuad Al
– sequence: 32
  givenname: Vivien
  surname: Béziat
  fullname: Béziat, Vivien
– sequence: 33
  givenname: Dominique
  surname: Weil
  fullname: Weil, Dominique
– sequence: 34
  givenname: Seyed Alireza
  surname: Mahdaviani
  fullname: Mahdaviani, Seyed Alireza
– sequence: 35
  givenname: Alina
  surname: Ferster
  fullname: Ferster, Alina
– sequence: 36
  givenname: Shen-Ying
  surname: Zhang
  fullname: Zhang, Shen-Ying
– sequence: 37
  givenname: Bruno
  surname: Reversade
  fullname: Reversade, Bruno
– sequence: 38
  givenname: Stéphanie
  surname: Boisson-Dupuis
  fullname: Boisson-Dupuis, Stéphanie
– sequence: 39
  givenname: Jean-Laurent
  surname: Casanova
  fullname: Casanova, Jean-Laurent
– sequence: 40
  givenname: Jacinta
  surname: Bustamante
  fullname: Bustamante, Jacinta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33876776$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03371686$$DView record in HAL
BookMark eNp9ks1vEzEQxS1URNPCmRPIEhc4pB1_7Nq-IFUVpZUiuICEuFher7dxtLGD7RTlv8erlAA5cLJk_96bN545QychBofQSwIXBAS73ASTLygBKoETIp-gGQFF5i1XcIJmAFTMJaf8FJ3lvAIA1Uh4hk4Zk6IVop0hexeWLvniety7wVvvgt3hOOBckssZ3ycTtqPD3z_dfCPYB7wxpTIl45--LPE6hmh3JWafsQk9Xu9s7Iwt1dKMuPfZmeyeo6eDGbN78Xieo683H75c384Xnz_eXV8t5pYLUeYWnHPKAmW0s71pFOX9oEw7KNkTbsG0qhUdtKpXRvS0c6rjVHaKicFxozp2jt7vfTfbbu16W2MmM-pN8muTdjoar_99CX6p7-ODltAwJXg1eLc3WB7Jbq8WeroDxgRpZftAKvv2sViKP7YuF7322bpxNMHFbda0IU0rJaMT-uYIXcVtCvUrJopRBYw0lXr9d_pD_d-zqsDlHrAp5pzccEAI6Gkb9LQN-s82VEVzpLC-1PnFqX0__kf3aq9b5RLToQwVwKHmZb8AuYXEDQ
CitedBy_id crossref_primary_10_1016_j_coi_2021_11_003
crossref_primary_10_1155_2023_1761283
crossref_primary_10_1007_s10875_022_01419_x
crossref_primary_10_1007_s10875_024_01811_9
crossref_primary_10_1073_pnas_2401968121
crossref_primary_10_1172_jci_insight_171850
crossref_primary_10_1016_j_cell_2022_12_038
crossref_primary_10_1016_j_cmi_2022_03_004
crossref_primary_10_1038_s44318_024_00236_9
crossref_primary_10_1186_s43042_022_00358_x
crossref_primary_10_3389_fimmu_2022_1107609
crossref_primary_10_1016_j_jaci_2024_12_1078
crossref_primary_10_1007_s10875_024_01661_5
crossref_primary_10_1039_D2LC00137C
crossref_primary_10_1038_s41586_024_07866_3
crossref_primary_10_1007_s10875_022_01320_7
crossref_primary_10_1097_INF_0000000000003929
crossref_primary_10_1016_j_cell_2023_09_024
crossref_primary_10_1038_d41586_023_03417_4
crossref_primary_10_3390_ijms24076736
crossref_primary_10_1261_rna_079016_121
crossref_primary_10_1016_j_fsi_2022_01_019
crossref_primary_10_1038_s41586_023_06726_w
crossref_primary_10_1007_s10875_022_01289_3
crossref_primary_10_1186_s12969_021_00623_0
crossref_primary_10_1093_ofid_ofac533
crossref_primary_10_3389_fimmu_2023_1163316
crossref_primary_10_1016_j_rmr_2023_10_009
crossref_primary_10_1172_JCI178263
crossref_primary_10_1111_cge_14081
crossref_primary_10_1038_s41556_022_00940_w
crossref_primary_10_58877_japaj_v1i3_46
crossref_primary_10_3389_fimmu_2025_1564628
crossref_primary_10_1002_jmv_28637
crossref_primary_10_3389_fimmu_2022_926781
crossref_primary_10_32604_biocell_2023_029080
crossref_primary_10_1084_jem_20220094
crossref_primary_10_58838_2075_1230_2025_103_1_94_101
crossref_primary_10_1126_sciimmunol_abq5204
crossref_primary_10_1016_j_jaci_2024_01_021
crossref_primary_10_1016_j_jim_2022_113313
crossref_primary_10_3390_diagnostics13010064
crossref_primary_10_1002_jimd_12721
crossref_primary_10_1371_journal_ppat_1010235
crossref_primary_10_1084_jem_20220484
crossref_primary_10_3390_ijms252312950
crossref_primary_10_1080_1744666X_2021_1956314
crossref_primary_10_3390_pathogens13030203
crossref_primary_10_1007_s10875_023_01529_0
crossref_primary_10_1038_s41596_021_00654_7
crossref_primary_10_1093_cei_uxac106
crossref_primary_10_3389_fgene_2022_969895
crossref_primary_10_1016_j_coi_2021_07_001
Cites_doi 10.1038/nri.2017.63
10.1016/j.sbi.2010.03.011
10.1038/298859a0
10.1126/sciimmunol.aau8714
10.1002/cyto.a.22625
10.4049/jimmunol.2000854
10.1073/pnas.1518646112
10.1093/nar/10.8.2487
10.1007/s10875-020-00930-3
10.1172/JCI135460
10.1038/s41586-018-0132-0
10.1126/science.1224026
10.1016/j.cub.2009.03.013
10.1182/blood-2011-05-356352
10.1242/jcs.01692
10.1038/s41592-019-0619-0
10.1091/mbc.e04-08-0715
10.1093/bioinformatics/btq170
10.1016/j.bcp.2006.12.019
10.1016/j.cell.2020.10.046
10.1084/jem.158.3.670
10.1084/jem.20140280
10.1073/pnas.1903561116
10.1093/hmg/11.24.3007
10.1007/s10875-019-00737-x
10.1111/imcb.12210
10.1038/nature13302
10.1021/cr300354g
10.1007/978-1-60761-753-2_29
10.1126/science.aaw4144
10.1016/j.immuni.2017.06.017
10.1111/imr.12272
10.1038/nri3070
10.1083/jcb.200502088
10.1073/pnas.2001248118
10.1007/s00439-020-02120-y
10.3324/haematol.2017.181909
10.1038/ncomms13992
10.1038/ng1097
10.1074/jbc.TM118.001192
10.1080/10408363.2018.1444580
10.1038/nmeth.3739
10.1038/s41556-019-0416-0
10.1182/blood-2014-11-567917
10.1016/j.ajhg.2021.02.009
10.1007/s00439-020-02126-6
10.1016/j.semcdb.2018.02.020
10.1083/jcb.200212128
10.1111/imr.12219
10.1056/NEJMoa1100066
10.1093/bioinformatics/btp324
10.1182/blood-2011-06-360313
10.1016/j.molcel.2017.09.003
10.1371/journal.pgen.1005492
10.1016/j.smim.2014.09.008
10.1128/JVI.00829-18
10.1002/eji.200425221
10.1093/bioinformatics/btp352
10.1038/ng.3592
10.1126/sciimmunol.aau6759
10.1182/asheducation-2016.1.598
10.1038/s41590-018-0178-z
10.1182/blood-2018-11-844688
10.1016/j.molcel.2018.04.009
10.1111/bjh.13317
10.1126/science.aaa4282
10.1016/j.stemcr.2015.01.005
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 13, 2021
Distributed under a Creative Commons Attribution 4.0 International License
2021
Copyright_xml – notice: Copyright National Academy of Sciences Apr 13, 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.2102804118
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 12
ExternalDocumentID PMC8053974
oai_HAL_hal_03371686v1
33876776
10_1073_pnas_2102804118
27040132
Genre Research Support, Non-U.S. Gov't
Journal Article
Case Reports
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001866
– fundername: NHGRI NIH HHS
  grantid: UM1 HG006504
– fundername: NIAID NIH HHS
  grantid: R37 AI095983
– fundername: NIAID NIH HHS
  grantid: R01 AI088364
– fundername: NIH HHS
  grantid: S10 OD018521
– fundername: NHGRI NIH HHS
  grantid: U24 HG008956
– fundername: NIAID NIH HHS
  grantid: R01 AI095983
– fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID)
  grantid: R37AI095983
– fundername: University of Paris
  grantid: n/a
– fundername: Strategic Positioning Fund for Genetic Orphan Diseases
  grantid: SPF2012/005
– fundername: HHS | NIH | National Center for Research Resources (NCRR)
  grantid: UL1TR001866
– fundername: The Rockefeller University
  grantid: n/a
– fundername: Agency for Science, Technology and Research (A*STAR)
  grantid: n/a
– fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-10-LABX-62-IBEID
– fundername: Imagine Institute
  grantid: n/a
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: EQU201903007798
– fundername: Institut National de la Santé et de la Recherche Médicale (Inserm)
  grantid: n/a
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c477t-c0eee9c0232bcda5924df9a6f98d14c0a6967b069d9a7d2be9b428b937fe4a9b3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:08:10 EDT 2025
Tue Aug 26 06:20:46 EDT 2025
Fri Jul 11 08:39:56 EDT 2025
Mon Jun 30 08:43:37 EDT 2025
Thu Apr 03 06:59:44 EDT 2025
Tue Jul 01 01:02:54 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Thu May 29 08:51:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords inborn error of immunity
ZNFX1
inflammation
monocytosis
mycobacteria
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-c0eee9c0232bcda5924df9a6f98d14c0a6967b069d9a7d2be9b428b937fe4a9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Case Study-2
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
1A.-L.N., R.Y., and M.O. contributed equally to this work.
Reviewers: M.A.B., McGill International TB Centre; and A.S.K., Strasbourg University Hospital.
3J.-L.C. and J.B. contributed equally to this work.
Contributed by Jean-Laurent Casanova, March 5, 2021 (sent for review February 11, 2021; reviewed by Marcel A. Behr and Anne Sophie Korganow)
Author contributions: T.L.V., J.-L.C., and J.B. designed research; T.L.V., A.-L.N., R.Y., J.R., M.O., M. Alshalan, F.A.A., T.K., M. Ata, C.G., D.B., N.M., F.A.M., V.B., and S.B.-D. performed research; M.R., M.C., S.-Y.Z., and S.B.-D. contributed new reagents/analytic tools; M. Alshalan, F.A.A., T.K., M. Ata, P.B., Y.S., F. Rapaport, B.B., L.B., N.B., L.A., N.M., F.A.M., D.W., and S.-Y.Z. analyzed data; T.L.V., J.-L.C., and J.B. wrote the paper; T.L.V., S.B.-D., and J.B. recorded the clinical data and created the figures; F.A., S.B., D.S., S.A.-M., A.B.-A., D.M., F.A.M., S.A.M., A.F., and B.R. provided samples and performed clinical diagnosis and follow-up of the kindreds; L.R. and A.D. recorded the clinical data; and F. Rozenberg performed viral serological analyses.
2F.A.M., V.B., D.W., S.A.M., A.F., S.-Y.Z., B.R., and S.B.-D. contributed equally to this work.
ORCID 0000-0002-4020-824X
0000-0002-5926-8437
0000-0002-7917-8965
0000-0003-0991-7774
0000-0002-2822-161X
0000-0003-4345-7409
0000-0001-6224-4797
0000-0002-5198-8536
0000-0002-1927-7072
0000-0002-8573-6820
0000-0001-9544-1877
0000-0002-4070-7997
0000-0001-9681-3142
0000-0003-4460-3420
0000-0001-7111-5719
0000-0002-3439-2482
0000-0001-7630-1772
0000-0002-9920-8359
0000-0002-9277-3232
0000-0002-9449-3672
0000-0001-7016-6493
0000-0003-4427-2158
0000-0003-2421-7389
0000-0001-7291-5638
0000-0002-5272-8939
0000-0001-6553-2110
0000-0003-0668-002X
0000-0002-7115-116X
0000-0002-7253-3135
OpenAccessLink https://hal.science/hal-03371686
PMID 33876776
PQID 2513290315
PQPubID 42026
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8053974
hal_primary_oai_HAL_hal_03371686v1
proquest_miscellaneous_2515688321
proquest_journals_2513290315
pubmed_primary_33876776
crossref_primary_10_1073_pnas_2102804118
crossref_citationtrail_10_1073_pnas_2102804118
jstor_primary_27040132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-13
PublicationDateYYYYMMDD 2021-04-13
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_58_2
  doi: 10.1038/nri.2017.63
– ident: e_1_3_4_23_2
  doi: 10.1016/j.sbi.2010.03.011
– ident: e_1_3_4_38_2
  doi: 10.1038/298859a0
– ident: e_1_3_4_15_2
  doi: 10.1126/sciimmunol.aau8714
– ident: e_1_3_4_65_2
  doi: 10.1002/cyto.a.22625
– ident: e_1_3_4_63_2
  doi: 10.4049/jimmunol.2000854
– ident: e_1_3_4_27_2
  doi: 10.1073/pnas.1518646112
– ident: e_1_3_4_37_2
  doi: 10.1093/nar/10.8.2487
– ident: e_1_3_4_13_2
  doi: 10.1007/s10875-020-00930-3
– ident: e_1_3_4_4_2
  doi: 10.1172/JCI135460
– ident: e_1_3_4_25_2
  doi: 10.1038/s41586-018-0132-0
– ident: e_1_3_4_6_2
  doi: 10.1126/science.1224026
– ident: e_1_3_4_56_2
  doi: 10.1016/j.cub.2009.03.013
– ident: e_1_3_4_11_2
  doi: 10.1182/blood-2011-05-356352
– ident: e_1_3_4_35_2
  doi: 10.1242/jcs.01692
– ident: e_1_3_4_64_2
  doi: 10.1038/s41592-019-0619-0
– ident: e_1_3_4_34_2
  doi: 10.1091/mbc.e04-08-0715
– ident: e_1_3_4_66_2
  doi: 10.1093/bioinformatics/btq170
– ident: e_1_3_4_67_2
  doi: 10.1016/j.bcp.2006.12.019
– ident: e_1_3_4_3_2
  doi: 10.1016/j.cell.2020.10.046
– ident: e_1_3_4_5_2
  doi: 10.1084/jem.158.3.670
– ident: e_1_3_4_7_2
  doi: 10.1084/jem.20140280
– ident: e_1_3_4_17_2
  doi: 10.1073/pnas.1903561116
– ident: e_1_3_4_32_2
  doi: 10.1093/hmg/11.24.3007
– ident: e_1_3_4_18_2
  doi: 10.1007/s10875-019-00737-x
– ident: e_1_3_4_41_2
  doi: 10.1111/imcb.12210
– ident: e_1_3_4_29_2
  doi: 10.1038/nature13302
– ident: e_1_3_4_30_2
  doi: 10.1021/cr300354g
– ident: e_1_3_4_31_2
  doi: 10.1007/978-1-60761-753-2_29
– ident: e_1_3_4_53_2
  doi: 10.1126/science.aaw4144
– ident: e_1_3_4_40_2
  doi: 10.1016/j.immuni.2017.06.017
– ident: e_1_3_4_14_2
  doi: 10.1111/imr.12272
– ident: e_1_3_4_46_2
  doi: 10.1038/nri3070
– ident: e_1_3_4_55_2
  doi: 10.1083/jcb.200502088
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.2001248118
– ident: e_1_3_4_1_2
  doi: 10.1007/s00439-020-02120-y
– ident: e_1_3_4_51_2
  doi: 10.3324/haematol.2017.181909
– ident: e_1_3_4_9_2
  doi: 10.1038/ncomms13992
– ident: e_1_3_4_10_2
  doi: 10.1038/ng1097
– ident: e_1_3_4_54_2
  doi: 10.1074/jbc.TM118.001192
– ident: e_1_3_4_61_2
  doi: 10.1080/10408363.2018.1444580
– ident: e_1_3_4_22_2
  doi: 10.1038/nmeth.3739
– ident: e_1_3_4_26_2
  doi: 10.1038/s41556-019-0416-0
– ident: e_1_3_4_48_2
  doi: 10.1182/blood-2014-11-567917
– ident: e_1_3_4_16_2
  doi: 10.1016/j.ajhg.2021.02.009
– ident: e_1_3_4_19_2
  doi: 10.1007/s00439-020-02126-6
– ident: e_1_3_4_44_2
  doi: 10.1016/j.semcdb.2018.02.020
– ident: e_1_3_4_33_2
  doi: 10.1083/jcb.200212128
– ident: e_1_3_4_47_2
  doi: 10.1111/imr.12219
– ident: e_1_3_4_42_2
  doi: 10.1056/NEJMoa1100066
– ident: e_1_3_4_59_2
  doi: 10.1093/bioinformatics/btp324
– ident: e_1_3_4_12_2
  doi: 10.1182/blood-2011-06-360313
– ident: e_1_3_4_36_2
  doi: 10.1016/j.molcel.2017.09.003
– ident: e_1_3_4_28_2
  doi: 10.1371/journal.pgen.1005492
– ident: e_1_3_4_2_2
  doi: 10.1016/j.smim.2014.09.008
– ident: e_1_3_4_57_2
  doi: 10.1128/JVI.00829-18
– ident: e_1_3_4_62_2
  doi: 10.1002/eji.200425221
– ident: e_1_3_4_60_2
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_3_4_21_2
  doi: 10.1038/ng.3592
– ident: e_1_3_4_39_2
  doi: 10.1126/sciimmunol.aau6759
– ident: e_1_3_4_50_2
  doi: 10.1182/asheducation-2016.1.598
– ident: e_1_3_4_43_2
  doi: 10.1038/s41590-018-0178-z
– ident: e_1_3_4_49_2
  doi: 10.1182/blood-2018-11-844688
– ident: e_1_3_4_24_2
  doi: 10.1016/j.molcel.2018.04.009
– ident: e_1_3_4_45_2
  doi: 10.1111/bjh.13317
– ident: e_1_3_4_8_2
  doi: 10.1126/science.aaa4282
– ident: e_1_3_4_52_2
  doi: 10.1016/j.stemcr.2015.01.005
SSID ssj0009580
Score 2.5555115
Snippet Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this...
Mendelian susceptibility to mycobacterial disease (MSMD) is defined by selective vulnerability to weakly virulent mycobacteria. The 32 known inborn errors of...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms A549 Cells
Adolescent
Antigens, Neoplasm - genetics
Antigens, Neoplasm - metabolism
Biological Sciences
Biotechnology
Cell lines
Cells, Cultured
Child
Cytokines
Cytoplasmic Granules - metabolism
DNA helicase
Double-stranded RNA
Female
Granular materials
HEK293 Cells
HeLa Cells
Homeostasis
Homozygote
Humans
Infant
Interferon-gamma - metabolism
Leukocytosis - genetics
Leukocytosis - pathology
Life Sciences
Localization
Lymphocytes
Lymphoid cells
Male
Monocytes
Monocytosis
Mutation
Mycobacterium Infections, Nontuberculous - genetics
Mycobacterium Infections, Nontuberculous - pathology
Pedigree
Proteins
THP-1 Cells
Tuberculosis
Young Adult
γ-Interferon
Title Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease
URI https://www.jstor.org/stable/27040132
https://www.ncbi.nlm.nih.gov/pubmed/33876776
https://www.proquest.com/docview/2513290315
https://www.proquest.com/docview/2515688321
https://hal.science/hal-03371686
https://pubmed.ncbi.nlm.nih.gov/PMC8053974
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cILYsAgMJBBPAxVKUmcxMljhVYVVMqEWlR4iWzHWSuNZKIJUvn1nGMnaUuRBi9RZTuulft8Pp993yH02hU8JVEa2STLUttnLLajUEgbjOFMRKkMgppd_-M0HM_9D4tg0evdbN1aqko-EL8OxpX8j1ShDOSqomT_QbJtp1AAv0G-8AQJw_NWMn6fq-g9ZTOmUjFB1GGUYP2ZAJArWIeqa9n_Nh0t3H5Homoi2mCYhdiUhaIkUe7z7xsBk7smb947uTHG62W72K2bqwXTxpc47CJTjLpY9-3-5bTLczyR_S_FxiBEfwzthZbLSqdEznNmT2TeLhRfjS_7c7VqfcFXymemg4zWrCy2nRaeq85fdMyp0bNgptihrzOFDuSBskY5d9q5aiI__9D6oKZUquKcrQdqB6solcxrO_za00_JaD6ZJLOLxewI3fFgY-HVqnybpjnS_BVmKA0ZFCVv97rfsWOOluoWrb7Qemirsn_jdsuEmd1H98zeAw81kE5QT-YP0EkjLnxuKMjfPESiRRbukIWLDGtkYYMsXCMLr3LcIAsrZOEtZGFAFt5BFjbIeoTmo4vZu7Ft0nHYwqe0tIUjpYwFGHkeFykLYOeeZjELszhKXV84LIxDyp0wTmNGU4_LmMPeloP9m0mfxZycouO8yOUThF1GBHeET3ig-CBDLklGM-ZHrghS4kkLDZqPmwjDVa9Splwn9Z0JShIljaSThoXO2xduNE3L35u-Amm1rRS9-ng4SVSZQwh1wyj86VrotBZm28yjjvJEeBY6a6SbGE0AnQdQE6t8KRZ62VaDnlaHbyyXRVW3CcJI5QWz0GMNhrZzQsAmoTS0EN2Byc4gd2vy1bLmgo9gEY2p__QW__sM3e2m4hk6Ln9U8jlY1CV_UU-C31m6zvw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inherited+deficiency+of+stress+granule+ZNFX1+in+patients+with+monocytosis+and+mycobacterial+disease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Le+Voyer%2C+Tom&rft.au=Neehus%2C+Anna-Lena&rft.au=Yang%2C+Rui&rft.au=Ogishi%2C+Masato&rft.date=2021-04-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=15&rft_id=info:doi/10.1073%2Fpnas.2102804118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon