Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease
Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacil...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 15; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette–Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria. |
---|---|
AbstractList | Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette–Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria. Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria. Mendelian susceptibility to mycobacterial disease (MSMD) is defined by selective vulnerability to weakly virulent mycobacteria. The 32 known inborn errors of IFN-γ immunity account for MSMD in about half of the patients, and for a smaller proportion of cases of tuberculosis (TB). We report homozygous ZNFX1 variants in two families in which the index cases had MSMD or TB with intermittent monocytosis. Upon overexpression, the two variants encode truncated proteins. We show that human ZNFX1 is localized in ribonucleoprotein granules called stress granules. The patients’ production of and response to IFN-γ are apparently intact, and the patients have not experienced severe viral illnesses. Inherited deficiency of stress granule-associated ZNFX1 is a genetic etiology of MSMD or TB with intermittent monocytosis. Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette–Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria. Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria. |
Author | Gruber, Conor Ogishi, Masato Sng, Danielle Mahdaviani, Seyed Alireza Rozen, Laurence Reversade, Bruno Blumental, Sophie Rozenberg, Flore Bertoli-Avella, Aida Mutairi, Fuad Al Bastard, Paul Rosain, Jérémie Roynard, Manon Béziat, Vivien Chrabieh, Maya Bogunovic, Dusan Ata, Manar Weil, Dominique Boddaert, Nathalie Marr, Nico Alshalan, Maha Bustamante, Jacinta Mansouri, Davood Bigio, Benedetta Zhang, Shen-Ying Demulder, Anne Le Voyer, Tom Al-Muhsen, Saleh Seeleuthener, Yoann Ali, Fatima Al Berteloot, Laureline Rapaport, Franck Ferster, Alina Neehus, Anna-Lena Abel, Laurent Casanova, Jean-Laurent Yang, Rui Khan, Taushif Boisson-Dupuis, Stéphanie Alroqi, Fayhan |
Author_xml | – sequence: 1 givenname: Tom surname: Le Voyer fullname: Le Voyer, Tom – sequence: 2 givenname: Anna-Lena surname: Neehus fullname: Neehus, Anna-Lena – sequence: 3 givenname: Rui surname: Yang fullname: Yang, Rui – sequence: 4 givenname: Masato surname: Ogishi fullname: Ogishi, Masato – sequence: 5 givenname: Jérémie surname: Rosain fullname: Rosain, Jérémie – sequence: 6 givenname: Fayhan surname: Alroqi fullname: Alroqi, Fayhan – sequence: 7 givenname: Maha surname: Alshalan fullname: Alshalan, Maha – sequence: 8 givenname: Sophie surname: Blumental fullname: Blumental, Sophie – sequence: 9 givenname: Fatima Al surname: Ali fullname: Ali, Fatima Al – sequence: 10 givenname: Taushif surname: Khan fullname: Khan, Taushif – sequence: 11 givenname: Manar surname: Ata fullname: Ata, Manar – sequence: 12 givenname: Laurence surname: Rozen fullname: Rozen, Laurence – sequence: 13 givenname: Anne surname: Demulder fullname: Demulder, Anne – sequence: 14 givenname: Paul surname: Bastard fullname: Bastard, Paul – sequence: 15 givenname: Conor surname: Gruber fullname: Gruber, Conor – sequence: 16 givenname: Manon surname: Roynard fullname: Roynard, Manon – sequence: 17 givenname: Yoann surname: Seeleuthener fullname: Seeleuthener, Yoann – sequence: 18 givenname: Franck surname: Rapaport fullname: Rapaport, Franck – sequence: 19 givenname: Benedetta surname: Bigio fullname: Bigio, Benedetta – sequence: 20 givenname: Maya surname: Chrabieh fullname: Chrabieh, Maya – sequence: 21 givenname: Danielle surname: Sng fullname: Sng, Danielle – sequence: 22 givenname: Laureline surname: Berteloot fullname: Berteloot, Laureline – sequence: 23 givenname: Nathalie surname: Boddaert fullname: Boddaert, Nathalie – sequence: 24 givenname: Flore surname: Rozenberg fullname: Rozenberg, Flore – sequence: 25 givenname: Saleh surname: Al-Muhsen fullname: Al-Muhsen, Saleh – sequence: 26 givenname: Aida surname: Bertoli-Avella fullname: Bertoli-Avella, Aida – sequence: 27 givenname: Laurent surname: Abel fullname: Abel, Laurent – sequence: 28 givenname: Dusan surname: Bogunovic fullname: Bogunovic, Dusan – sequence: 29 givenname: Nico surname: Marr fullname: Marr, Nico – sequence: 30 givenname: Davood surname: Mansouri fullname: Mansouri, Davood – sequence: 31 givenname: Fuad Al surname: Mutairi fullname: Mutairi, Fuad Al – sequence: 32 givenname: Vivien surname: Béziat fullname: Béziat, Vivien – sequence: 33 givenname: Dominique surname: Weil fullname: Weil, Dominique – sequence: 34 givenname: Seyed Alireza surname: Mahdaviani fullname: Mahdaviani, Seyed Alireza – sequence: 35 givenname: Alina surname: Ferster fullname: Ferster, Alina – sequence: 36 givenname: Shen-Ying surname: Zhang fullname: Zhang, Shen-Ying – sequence: 37 givenname: Bruno surname: Reversade fullname: Reversade, Bruno – sequence: 38 givenname: Stéphanie surname: Boisson-Dupuis fullname: Boisson-Dupuis, Stéphanie – sequence: 39 givenname: Jean-Laurent surname: Casanova fullname: Casanova, Jean-Laurent – sequence: 40 givenname: Jacinta surname: Bustamante fullname: Bustamante, Jacinta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33876776$$D View this record in MEDLINE/PubMed https://hal.science/hal-03371686$$DView record in HAL |
BookMark | eNp9ks1vEzEQxS1URNPCmRPIEhc4pB1_7Nq-IFUVpZUiuICEuFher7dxtLGD7RTlv8erlAA5cLJk_96bN545QychBofQSwIXBAS73ASTLygBKoETIp-gGQFF5i1XcIJmAFTMJaf8FJ3lvAIA1Uh4hk4Zk6IVop0hexeWLvniety7wVvvgt3hOOBckssZ3ycTtqPD3z_dfCPYB7wxpTIl45--LPE6hmh3JWafsQk9Xu9s7Iwt1dKMuPfZmeyeo6eDGbN78Xieo683H75c384Xnz_eXV8t5pYLUeYWnHPKAmW0s71pFOX9oEw7KNkTbsG0qhUdtKpXRvS0c6rjVHaKicFxozp2jt7vfTfbbu16W2MmM-pN8muTdjoar_99CX6p7-ODltAwJXg1eLc3WB7Jbq8WeroDxgRpZftAKvv2sViKP7YuF7322bpxNMHFbda0IU0rJaMT-uYIXcVtCvUrJopRBYw0lXr9d_pD_d-zqsDlHrAp5pzccEAI6Gkb9LQN-s82VEVzpLC-1PnFqX0__kf3aq9b5RLToQwVwKHmZb8AuYXEDQ |
CitedBy_id | crossref_primary_10_1016_j_coi_2021_11_003 crossref_primary_10_1155_2023_1761283 crossref_primary_10_1007_s10875_022_01419_x crossref_primary_10_1007_s10875_024_01811_9 crossref_primary_10_1073_pnas_2401968121 crossref_primary_10_1172_jci_insight_171850 crossref_primary_10_1016_j_cell_2022_12_038 crossref_primary_10_1016_j_cmi_2022_03_004 crossref_primary_10_1038_s44318_024_00236_9 crossref_primary_10_1186_s43042_022_00358_x crossref_primary_10_3389_fimmu_2022_1107609 crossref_primary_10_1016_j_jaci_2024_12_1078 crossref_primary_10_1007_s10875_024_01661_5 crossref_primary_10_1039_D2LC00137C crossref_primary_10_1038_s41586_024_07866_3 crossref_primary_10_1007_s10875_022_01320_7 crossref_primary_10_1097_INF_0000000000003929 crossref_primary_10_1016_j_cell_2023_09_024 crossref_primary_10_1038_d41586_023_03417_4 crossref_primary_10_3390_ijms24076736 crossref_primary_10_1261_rna_079016_121 crossref_primary_10_1016_j_fsi_2022_01_019 crossref_primary_10_1038_s41586_023_06726_w crossref_primary_10_1007_s10875_022_01289_3 crossref_primary_10_1186_s12969_021_00623_0 crossref_primary_10_1093_ofid_ofac533 crossref_primary_10_3389_fimmu_2023_1163316 crossref_primary_10_1016_j_rmr_2023_10_009 crossref_primary_10_1172_JCI178263 crossref_primary_10_1111_cge_14081 crossref_primary_10_1038_s41556_022_00940_w crossref_primary_10_58877_japaj_v1i3_46 crossref_primary_10_3389_fimmu_2025_1564628 crossref_primary_10_1002_jmv_28637 crossref_primary_10_3389_fimmu_2022_926781 crossref_primary_10_32604_biocell_2023_029080 crossref_primary_10_1084_jem_20220094 crossref_primary_10_58838_2075_1230_2025_103_1_94_101 crossref_primary_10_1126_sciimmunol_abq5204 crossref_primary_10_1016_j_jaci_2024_01_021 crossref_primary_10_1016_j_jim_2022_113313 crossref_primary_10_3390_diagnostics13010064 crossref_primary_10_1002_jimd_12721 crossref_primary_10_1371_journal_ppat_1010235 crossref_primary_10_1084_jem_20220484 crossref_primary_10_3390_ijms252312950 crossref_primary_10_1080_1744666X_2021_1956314 crossref_primary_10_3390_pathogens13030203 crossref_primary_10_1007_s10875_023_01529_0 crossref_primary_10_1038_s41596_021_00654_7 crossref_primary_10_1093_cei_uxac106 crossref_primary_10_3389_fgene_2022_969895 crossref_primary_10_1016_j_coi_2021_07_001 |
Cites_doi | 10.1038/nri.2017.63 10.1016/j.sbi.2010.03.011 10.1038/298859a0 10.1126/sciimmunol.aau8714 10.1002/cyto.a.22625 10.4049/jimmunol.2000854 10.1073/pnas.1518646112 10.1093/nar/10.8.2487 10.1007/s10875-020-00930-3 10.1172/JCI135460 10.1038/s41586-018-0132-0 10.1126/science.1224026 10.1016/j.cub.2009.03.013 10.1182/blood-2011-05-356352 10.1242/jcs.01692 10.1038/s41592-019-0619-0 10.1091/mbc.e04-08-0715 10.1093/bioinformatics/btq170 10.1016/j.bcp.2006.12.019 10.1016/j.cell.2020.10.046 10.1084/jem.158.3.670 10.1084/jem.20140280 10.1073/pnas.1903561116 10.1093/hmg/11.24.3007 10.1007/s10875-019-00737-x 10.1111/imcb.12210 10.1038/nature13302 10.1021/cr300354g 10.1007/978-1-60761-753-2_29 10.1126/science.aaw4144 10.1016/j.immuni.2017.06.017 10.1111/imr.12272 10.1038/nri3070 10.1083/jcb.200502088 10.1073/pnas.2001248118 10.1007/s00439-020-02120-y 10.3324/haematol.2017.181909 10.1038/ncomms13992 10.1038/ng1097 10.1074/jbc.TM118.001192 10.1080/10408363.2018.1444580 10.1038/nmeth.3739 10.1038/s41556-019-0416-0 10.1182/blood-2014-11-567917 10.1016/j.ajhg.2021.02.009 10.1007/s00439-020-02126-6 10.1016/j.semcdb.2018.02.020 10.1083/jcb.200212128 10.1111/imr.12219 10.1056/NEJMoa1100066 10.1093/bioinformatics/btp324 10.1182/blood-2011-06-360313 10.1016/j.molcel.2017.09.003 10.1371/journal.pgen.1005492 10.1016/j.smim.2014.09.008 10.1128/JVI.00829-18 10.1002/eji.200425221 10.1093/bioinformatics/btp352 10.1038/ng.3592 10.1126/sciimmunol.aau6759 10.1182/asheducation-2016.1.598 10.1038/s41590-018-0178-z 10.1182/blood-2018-11-844688 10.1016/j.molcel.2018.04.009 10.1111/bjh.13317 10.1126/science.aaa4282 10.1016/j.stemcr.2015.01.005 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Apr 13, 2021 Distributed under a Creative Commons Attribution 4.0 International License 2021 |
Copyright_xml | – notice: Copyright National Academy of Sciences Apr 13, 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.1073/pnas.2102804118 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 12 |
ExternalDocumentID | PMC8053974 oai_HAL_hal_03371686v1 33876776 10_1073_pnas_2102804118 27040132 |
Genre | Research Support, Non-U.S. Gov't Journal Article Case Reports Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001866 – fundername: NHGRI NIH HHS grantid: UM1 HG006504 – fundername: NIAID NIH HHS grantid: R37 AI095983 – fundername: NIAID NIH HHS grantid: R01 AI088364 – fundername: NIH HHS grantid: S10 OD018521 – fundername: NHGRI NIH HHS grantid: U24 HG008956 – fundername: NIAID NIH HHS grantid: R01 AI095983 – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID) grantid: R37AI095983 – fundername: University of Paris grantid: n/a – fundername: Strategic Positioning Fund for Genetic Orphan Diseases grantid: SPF2012/005 – fundername: HHS | NIH | National Center for Research Resources (NCRR) grantid: UL1TR001866 – fundername: The Rockefeller University grantid: n/a – fundername: Agency for Science, Technology and Research (A*STAR) grantid: n/a – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR-10-LABX-62-IBEID – fundername: Imagine Institute grantid: n/a – fundername: Fondation pour la Recherche Médicale (FRM) grantid: EQU201903007798 – fundername: Institut National de la Santé et de la Recherche Médicale (Inserm) grantid: n/a |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c477t-c0eee9c0232bcda5924df9a6f98d14c0a6967b069d9a7d2be9b428b937fe4a9b3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:08:10 EDT 2025 Tue Aug 26 06:20:46 EDT 2025 Fri Jul 11 08:39:56 EDT 2025 Mon Jun 30 08:43:37 EDT 2025 Thu Apr 03 06:59:44 EDT 2025 Tue Jul 01 01:02:54 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Thu May 29 08:51:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | inborn error of immunity ZNFX1 inflammation monocytosis mycobacteria |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-c0eee9c0232bcda5924df9a6f98d14c0a6967b069d9a7d2be9b428b937fe4a9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Case Study-2 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 1A.-L.N., R.Y., and M.O. contributed equally to this work. Reviewers: M.A.B., McGill International TB Centre; and A.S.K., Strasbourg University Hospital. 3J.-L.C. and J.B. contributed equally to this work. Contributed by Jean-Laurent Casanova, March 5, 2021 (sent for review February 11, 2021; reviewed by Marcel A. Behr and Anne Sophie Korganow) Author contributions: T.L.V., J.-L.C., and J.B. designed research; T.L.V., A.-L.N., R.Y., J.R., M.O., M. Alshalan, F.A.A., T.K., M. Ata, C.G., D.B., N.M., F.A.M., V.B., and S.B.-D. performed research; M.R., M.C., S.-Y.Z., and S.B.-D. contributed new reagents/analytic tools; M. Alshalan, F.A.A., T.K., M. Ata, P.B., Y.S., F. Rapaport, B.B., L.B., N.B., L.A., N.M., F.A.M., D.W., and S.-Y.Z. analyzed data; T.L.V., J.-L.C., and J.B. wrote the paper; T.L.V., S.B.-D., and J.B. recorded the clinical data and created the figures; F.A., S.B., D.S., S.A.-M., A.B.-A., D.M., F.A.M., S.A.M., A.F., and B.R. provided samples and performed clinical diagnosis and follow-up of the kindreds; L.R. and A.D. recorded the clinical data; and F. Rozenberg performed viral serological analyses. 2F.A.M., V.B., D.W., S.A.M., A.F., S.-Y.Z., B.R., and S.B.-D. contributed equally to this work. |
ORCID | 0000-0002-4020-824X 0000-0002-5926-8437 0000-0002-7917-8965 0000-0003-0991-7774 0000-0002-2822-161X 0000-0003-4345-7409 0000-0001-6224-4797 0000-0002-5198-8536 0000-0002-1927-7072 0000-0002-8573-6820 0000-0001-9544-1877 0000-0002-4070-7997 0000-0001-9681-3142 0000-0003-4460-3420 0000-0001-7111-5719 0000-0002-3439-2482 0000-0001-7630-1772 0000-0002-9920-8359 0000-0002-9277-3232 0000-0002-9449-3672 0000-0001-7016-6493 0000-0003-4427-2158 0000-0003-2421-7389 0000-0001-7291-5638 0000-0002-5272-8939 0000-0001-6553-2110 0000-0003-0668-002X 0000-0002-7115-116X 0000-0002-7253-3135 |
OpenAccessLink | https://hal.science/hal-03371686 |
PMID | 33876776 |
PQID | 2513290315 |
PQPubID | 42026 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8053974 hal_primary_oai_HAL_hal_03371686v1 proquest_miscellaneous_2515688321 proquest_journals_2513290315 pubmed_primary_33876776 crossref_primary_10_1073_pnas_2102804118 crossref_citationtrail_10_1073_pnas_2102804118 jstor_primary_27040132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-13 |
PublicationDateYYYYMMDD | 2021-04-13 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_58_2 doi: 10.1038/nri.2017.63 – ident: e_1_3_4_23_2 doi: 10.1016/j.sbi.2010.03.011 – ident: e_1_3_4_38_2 doi: 10.1038/298859a0 – ident: e_1_3_4_15_2 doi: 10.1126/sciimmunol.aau8714 – ident: e_1_3_4_65_2 doi: 10.1002/cyto.a.22625 – ident: e_1_3_4_63_2 doi: 10.4049/jimmunol.2000854 – ident: e_1_3_4_27_2 doi: 10.1073/pnas.1518646112 – ident: e_1_3_4_37_2 doi: 10.1093/nar/10.8.2487 – ident: e_1_3_4_13_2 doi: 10.1007/s10875-020-00930-3 – ident: e_1_3_4_4_2 doi: 10.1172/JCI135460 – ident: e_1_3_4_25_2 doi: 10.1038/s41586-018-0132-0 – ident: e_1_3_4_6_2 doi: 10.1126/science.1224026 – ident: e_1_3_4_56_2 doi: 10.1016/j.cub.2009.03.013 – ident: e_1_3_4_11_2 doi: 10.1182/blood-2011-05-356352 – ident: e_1_3_4_35_2 doi: 10.1242/jcs.01692 – ident: e_1_3_4_64_2 doi: 10.1038/s41592-019-0619-0 – ident: e_1_3_4_34_2 doi: 10.1091/mbc.e04-08-0715 – ident: e_1_3_4_66_2 doi: 10.1093/bioinformatics/btq170 – ident: e_1_3_4_67_2 doi: 10.1016/j.bcp.2006.12.019 – ident: e_1_3_4_3_2 doi: 10.1016/j.cell.2020.10.046 – ident: e_1_3_4_5_2 doi: 10.1084/jem.158.3.670 – ident: e_1_3_4_7_2 doi: 10.1084/jem.20140280 – ident: e_1_3_4_17_2 doi: 10.1073/pnas.1903561116 – ident: e_1_3_4_32_2 doi: 10.1093/hmg/11.24.3007 – ident: e_1_3_4_18_2 doi: 10.1007/s10875-019-00737-x – ident: e_1_3_4_41_2 doi: 10.1111/imcb.12210 – ident: e_1_3_4_29_2 doi: 10.1038/nature13302 – ident: e_1_3_4_30_2 doi: 10.1021/cr300354g – ident: e_1_3_4_31_2 doi: 10.1007/978-1-60761-753-2_29 – ident: e_1_3_4_53_2 doi: 10.1126/science.aaw4144 – ident: e_1_3_4_40_2 doi: 10.1016/j.immuni.2017.06.017 – ident: e_1_3_4_14_2 doi: 10.1111/imr.12272 – ident: e_1_3_4_46_2 doi: 10.1038/nri3070 – ident: e_1_3_4_55_2 doi: 10.1083/jcb.200502088 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.2001248118 – ident: e_1_3_4_1_2 doi: 10.1007/s00439-020-02120-y – ident: e_1_3_4_51_2 doi: 10.3324/haematol.2017.181909 – ident: e_1_3_4_9_2 doi: 10.1038/ncomms13992 – ident: e_1_3_4_10_2 doi: 10.1038/ng1097 – ident: e_1_3_4_54_2 doi: 10.1074/jbc.TM118.001192 – ident: e_1_3_4_61_2 doi: 10.1080/10408363.2018.1444580 – ident: e_1_3_4_22_2 doi: 10.1038/nmeth.3739 – ident: e_1_3_4_26_2 doi: 10.1038/s41556-019-0416-0 – ident: e_1_3_4_48_2 doi: 10.1182/blood-2014-11-567917 – ident: e_1_3_4_16_2 doi: 10.1016/j.ajhg.2021.02.009 – ident: e_1_3_4_19_2 doi: 10.1007/s00439-020-02126-6 – ident: e_1_3_4_44_2 doi: 10.1016/j.semcdb.2018.02.020 – ident: e_1_3_4_33_2 doi: 10.1083/jcb.200212128 – ident: e_1_3_4_47_2 doi: 10.1111/imr.12219 – ident: e_1_3_4_42_2 doi: 10.1056/NEJMoa1100066 – ident: e_1_3_4_59_2 doi: 10.1093/bioinformatics/btp324 – ident: e_1_3_4_12_2 doi: 10.1182/blood-2011-06-360313 – ident: e_1_3_4_36_2 doi: 10.1016/j.molcel.2017.09.003 – ident: e_1_3_4_28_2 doi: 10.1371/journal.pgen.1005492 – ident: e_1_3_4_2_2 doi: 10.1016/j.smim.2014.09.008 – ident: e_1_3_4_57_2 doi: 10.1128/JVI.00829-18 – ident: e_1_3_4_62_2 doi: 10.1002/eji.200425221 – ident: e_1_3_4_60_2 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_4_21_2 doi: 10.1038/ng.3592 – ident: e_1_3_4_39_2 doi: 10.1126/sciimmunol.aau6759 – ident: e_1_3_4_50_2 doi: 10.1182/asheducation-2016.1.598 – ident: e_1_3_4_43_2 doi: 10.1038/s41590-018-0178-z – ident: e_1_3_4_49_2 doi: 10.1182/blood-2018-11-844688 – ident: e_1_3_4_24_2 doi: 10.1016/j.molcel.2018.04.009 – ident: e_1_3_4_45_2 doi: 10.1111/bjh.13317 – ident: e_1_3_4_8_2 doi: 10.1126/science.aaa4282 – ident: e_1_3_4_52_2 doi: 10.1016/j.stemcr.2015.01.005 |
SSID | ssj0009580 |
Score | 2.5555115 |
Snippet | Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this... Mendelian susceptibility to mycobacterial disease (MSMD) is defined by selective vulnerability to weakly virulent mycobacteria. The 32 known inborn errors of... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | A549 Cells Adolescent Antigens, Neoplasm - genetics Antigens, Neoplasm - metabolism Biological Sciences Biotechnology Cell lines Cells, Cultured Child Cytokines Cytoplasmic Granules - metabolism DNA helicase Double-stranded RNA Female Granular materials HEK293 Cells HeLa Cells Homeostasis Homozygote Humans Infant Interferon-gamma - metabolism Leukocytosis - genetics Leukocytosis - pathology Life Sciences Localization Lymphocytes Lymphoid cells Male Monocytes Monocytosis Mutation Mycobacterium Infections, Nontuberculous - genetics Mycobacterium Infections, Nontuberculous - pathology Pedigree Proteins THP-1 Cells Tuberculosis Young Adult γ-Interferon |
Title | Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease |
URI | https://www.jstor.org/stable/27040132 https://www.ncbi.nlm.nih.gov/pubmed/33876776 https://www.proquest.com/docview/2513290315 https://www.proquest.com/docview/2515688321 https://hal.science/hal-03371686 https://pubmed.ncbi.nlm.nih.gov/PMC8053974 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cILYsAgMJBBPAxVKUmcxMljhVYVVMqEWlR4iWzHWSuNZKIJUvn1nGMnaUuRBi9RZTuulft8Pp993yH02hU8JVEa2STLUttnLLajUEgbjOFMRKkMgppd_-M0HM_9D4tg0evdbN1aqko-EL8OxpX8j1ShDOSqomT_QbJtp1AAv0G-8AQJw_NWMn6fq-g9ZTOmUjFB1GGUYP2ZAJArWIeqa9n_Nh0t3H5Homoi2mCYhdiUhaIkUe7z7xsBk7smb947uTHG62W72K2bqwXTxpc47CJTjLpY9-3-5bTLczyR_S_FxiBEfwzthZbLSqdEznNmT2TeLhRfjS_7c7VqfcFXymemg4zWrCy2nRaeq85fdMyp0bNgptihrzOFDuSBskY5d9q5aiI__9D6oKZUquKcrQdqB6solcxrO_za00_JaD6ZJLOLxewI3fFgY-HVqnybpjnS_BVmKA0ZFCVv97rfsWOOluoWrb7Qemirsn_jdsuEmd1H98zeAw81kE5QT-YP0EkjLnxuKMjfPESiRRbukIWLDGtkYYMsXCMLr3LcIAsrZOEtZGFAFt5BFjbIeoTmo4vZu7Ft0nHYwqe0tIUjpYwFGHkeFykLYOeeZjELszhKXV84LIxDyp0wTmNGU4_LmMPeloP9m0mfxZycouO8yOUThF1GBHeET3ig-CBDLklGM-ZHrghS4kkLDZqPmwjDVa9Splwn9Z0JShIljaSThoXO2xduNE3L35u-Amm1rRS9-ng4SVSZQwh1wyj86VrotBZm28yjjvJEeBY6a6SbGE0AnQdQE6t8KRZ62VaDnlaHbyyXRVW3CcJI5QWz0GMNhrZzQsAmoTS0EN2Byc4gd2vy1bLmgo9gEY2p__QW__sM3e2m4hk6Ln9U8jlY1CV_UU-C31m6zvw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inherited+deficiency+of+stress+granule+ZNFX1+in+patients+with+monocytosis+and+mycobacterial+disease&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Le+Voyer%2C+Tom&rft.au=Neehus%2C+Anna-Lena&rft.au=Yang%2C+Rui&rft.au=Ogishi%2C+Masato&rft.date=2021-04-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=15&rft_id=info:doi/10.1073%2Fpnas.2102804118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |