Preclinical optimization of Ly6E-targeted ADCs for increased durability and efficacy of anti-tumor response

Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in c...

Full description

Saved in:
Bibliographic Details
Published inmAbs Vol. 13; no. 1; p. 1862452
Main Authors Dela Cruz Chuh, Josefa, Go, MaryAnn, Chen, Yvonne, Guo, Jun, Rafidi, Hanine, Mandikian, Danielle, Sun, Yonglian, Lin, Zhonghua, Schneider, Kellen, Zhang, Pamela, Vij, Rajesh, Sharpnack, Danielle, Chan, Pamela, de la Cruz, Cecile, Sadowsky, Jack, Seshasayee, Dhaya, Koerber, James T., Pillow, Thomas H., Phillips, Gail D., Rowntree, Rebecca K, Boswell, C. Andrew, Kozak, Katherine R., Polson, Andrew G., Polakis, Paul, Yu, Shang-Fan, Dragovich, Peter S., Agard, Nicholas J.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2021
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound ) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a -cyclopropyl benzoindol-4-one (CBI)-dimer (compound ) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by -glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both and with multiple cytotoxics. Conjugation of compound to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.
AbstractList Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound ) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a -cyclopropyl benzoindol-4-one (CBI)-dimer (compound ) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by -glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both and with multiple cytotoxics. Conjugation of compound to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.
Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1 ) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco -cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2 ) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P -glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco- CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.
Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.
Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug conjugates (ADCs) into clinical trials. While three MMAE-ADCs have been approved, most of these conjugates are no longer being investigated in clinical trials. Some auristatin conjugates show limited or no efficacy at tolerated doses, but even for drugs driving initial remissions, tumor regrowth and metastasis often rapidly occur. Here we describe the development of second-generation therapeutic ADCs targeting Lymphocyte antigen 6E (Ly6E) where the tubulin polymerization inhibitor MMAE (Compound 1) is replaced with DNA-damaging agents intended to drive increased durability of response. Comparison of a seco-cyclopropyl benzoindol-4-one (CBI)-dimer (compound 2) to MMAE showed increased potency, activity across more cell lines, and resistance to efflux by P-glycoprotein, a drug transporter commonly upregulated in tumors. Both anti-Ly6E-CBI and -MMAE conjugates drove single-dose efficacy in xenograft and patient-derived xenograft models, but seco-CBI-dimer conjugates showed reduced tumor outgrowth following multiple weeks of treatment, suggesting that they are less susceptible to developing resistance. In parallel, we explored approaches to optimize the targeting antibody. In contrast to immunization with recombinant Ly6E or Ly6E DNA, immunization with virus-like particles generated a high-affinity anti-Ly6E antibody. Conjugates to this antibody improve efficacy versus a previous clinical candidate both in vitro and in vivo with multiple cytotoxics. Conjugation of compound 2 to the second-generation antibody results in a substantially improved ADC with promising preclinical efficacy.
Author Dragovich, Peter S.
Boswell, C. Andrew
Agard, Nicholas J.
Go, MaryAnn
Rowntree, Rebecca K
Zhang, Pamela
Mandikian, Danielle
Sadowsky, Jack
Chen, Yvonne
Kozak, Katherine R.
Sharpnack, Danielle
Polson, Andrew G.
Phillips, Gail D.
Dela Cruz Chuh, Josefa
Yu, Shang-Fan
Seshasayee, Dhaya
Chan, Pamela
Lin, Zhonghua
Vij, Rajesh
Sun, Yonglian
Schneider, Kellen
Polakis, Paul
Pillow, Thomas H.
Koerber, James T.
Guo, Jun
de la Cruz, Cecile
Rafidi, Hanine
Author_xml – sequence: 1
  givenname: Josefa
  surname: Dela Cruz Chuh
  fullname: Dela Cruz Chuh, Josefa
  organization: Departments of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
– sequence: 2
  givenname: MaryAnn
  surname: Go
  fullname: Go, MaryAnn
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 3
  givenname: Yvonne
  surname: Chen
  fullname: Chen, Yvonne
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 4
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 5
  givenname: Hanine
  surname: Rafidi
  fullname: Rafidi, Hanine
  organization: Preclinical & Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
– sequence: 6
  givenname: Danielle
  surname: Mandikian
  fullname: Mandikian, Danielle
  organization: Preclinical & Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
– sequence: 7
  givenname: Yonglian
  surname: Sun
  fullname: Sun, Yonglian
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 8
  givenname: Zhonghua
  surname: Lin
  fullname: Lin, Zhonghua
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 9
  givenname: Kellen
  surname: Schneider
  fullname: Schneider, Kellen
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 10
  givenname: Pamela
  surname: Zhang
  fullname: Zhang, Pamela
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 11
  givenname: Rajesh
  surname: Vij
  fullname: Vij, Rajesh
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 12
  givenname: Danielle
  surname: Sharpnack
  fullname: Sharpnack, Danielle
  organization: Departments of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
– sequence: 13
  givenname: Pamela
  surname: Chan
  fullname: Chan, Pamela
  organization: Departments of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
– sequence: 14
  givenname: Cecile
  surname: de la Cruz
  fullname: de la Cruz, Cecile
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 15
  givenname: Jack
  surname: Sadowsky
  fullname: Sadowsky, Jack
  organization: Protein Chemistry, Genentech Inc, South San Francisco, CA, USA
– sequence: 16
  givenname: Dhaya
  surname: Seshasayee
  fullname: Seshasayee, Dhaya
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 17
  givenname: James T.
  surname: Koerber
  fullname: Koerber, James T.
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
– sequence: 18
  givenname: Thomas H.
  orcidid: 0000-0001-7300-1002
  surname: Pillow
  fullname: Pillow, Thomas H.
  organization: Discovery Chemistry, Genentech Inc, South San Francisco, CA, USA
– sequence: 19
  givenname: Gail D.
  surname: Phillips
  fullname: Phillips, Gail D.
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 20
  givenname: Rebecca K
  surname: Rowntree
  fullname: Rowntree, Rebecca K
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 21
  givenname: C. Andrew
  surname: Boswell
  fullname: Boswell, C. Andrew
  organization: Preclinical & Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc, South San Francisco, CA, USA
– sequence: 22
  givenname: Katherine R.
  surname: Kozak
  fullname: Kozak, Katherine R.
  organization: Departments of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
– sequence: 23
  givenname: Andrew G.
  surname: Polson
  fullname: Polson, Andrew G.
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 24
  givenname: Paul
  surname: Polakis
  fullname: Polakis, Paul
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 25
  givenname: Shang-Fan
  surname: Yu
  fullname: Yu, Shang-Fan
  organization: Research biology, Genentech Inc, South San Francisco, CA, USA
– sequence: 26
  givenname: Peter S.
  surname: Dragovich
  fullname: Dragovich, Peter S.
  organization: Discovery Chemistry, Genentech Inc, South San Francisco, CA, USA
– sequence: 27
  givenname: Nicholas J.
  surname: Agard
  fullname: Agard, Nicholas J.
  organization: Antibody Engineering, Genentech Inc, South San Francisco, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33382956$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxSNUREvpRwDlyCXFdvwvQkKqltJWWgkOvVuOPVlcEnuxHaTl0-N0tyvKBV88en7zG0vzXlcnPnioqrcYXWIk0QfcUYIkJ5cEkSKVijLyojpb9AZJgU6ONSen1UVKD2g5AmGBXlWnbdtK0jF-Vv34FsGMzjujxzpss5vcb51d8HUY6vWOXzdZxw1ksPXV51WqhxBr500EnYpk56h7N7q8q7W3NQxD4Zjd0qt9dk2ep-KPkLbBJ3hTvRz0mODicJ9X91-u71e3zfrrzd3qat0YKkRuetNqjS3nfc8AIWoxsJ53psctFYZJa4iVHWtpx6CzsuUW-pZ0i6s3hrTn1d0ea4N-UNvoJh13KminHoUQN0rH7MwIijAwlNsBdbKnlLMOD4KJwVJOBLItFNanPWs79xNYAz5HPT6DPn_x7rvahF9KCEmFlAXw_gCI4ecMKavJJQPjqD2EOSlCBWUIMy6K9d3fs45DnpZVDGxvMDGkFGE4WjBSSy7UUy7Ukgt1yEXp-_hPn3H5ccnly278T_cfViS9xg
CitedBy_id crossref_primary_10_1093_carcin_bgac003
crossref_primary_10_3389_fonc_2022_929012
crossref_primary_10_1021_jacs_4c03529
crossref_primary_10_1155_2022_5164265
crossref_primary_10_1016_j_xphs_2023_07_005
crossref_primary_10_1111_bph_16258
crossref_primary_10_1016_j_jid_2022_07_022
crossref_primary_10_1007_s00262_024_03851_x
crossref_primary_10_1080_19420862_2022_2115213
crossref_primary_10_2174_1871520623666221031105432
crossref_primary_10_1021_acs_oprd_2c00129
crossref_primary_10_3390_ijms23179843
Cites_doi 10.1093/ajhp/zxaa018
10.1182/blood-2006-09-047399
10.1182/blood-2009-02-205500
10.1124/dmd.120.000145
10.1038/nbt.1480
10.1038/s41598-018-25609-z
10.1111/cup.13545
10.1073/pnas.261563198
10.1038/s41598-018-28533-4
10.1093/annonc/mdw368.01
10.1038/nrclinonc.2010.228
10.1002/0471143030.cb0322s30
10.1158/1538-7445/AM2016-1207
10.1634/theoncologist.2015-0276
10.1200/JCO.2018.36.15_suppl.1014
10.1200/JCO.19.01140
10.1158/1541-7786.MCR-19-0582
10.1182/blood.V116.21.283.283
10.1021/acs.bioconjchem.9b00133
10.1158/1535-7163.MCT-16-0233
10.1126/scitranslmed.aat5775
10.1007/978-1-4939-9929-3_4
10.1038/srep21925
10.1016/S2352-3026(19)30026-2
10.3324/haematol.2018.211011
10.1002/sim.6052
10.3390/v11111020
10.1111/j.1365-2141.2009.07701.x
10.1158/1078-0432.CCR-15-0156
10.1038/356152a0
10.1159/000487453
10.1158/1078-0432.CCR-19-1133
10.2967/jnumed.106.037069
10.1002/9780471729259.mc1803s31
10.6004/jadpro.2018.9.6.9
10.1016/S0001-2998(05)80178-3
10.17265/2159-5313/2016.09.003
10.1158/0008-5472.CAN-17-3671
10.1158/0008-5472.CAN-10-2277
10.1073/pnas.63.1.78
10.1158/1078-0432.CCR-14-0012
10.1080/02648725.2013.801235
10.1007/s00280-015-2909-2
10.1080/19420862.2020.1715705
10.1038/s41598-018-22040-2
10.1134/S0026893319030154
10.1124/pr.114.009373
10.1111/cup.12797
10.1158/1078-0432.CCR-20-1067
10.1093/jnci/djv222
10.3390/cancers11030394
10.3389/fphar.2019.00749
10.1038/nbt832
10.1200/JCO.2016.70.8297
10.1016/j.jim.2009.01.005
10.4161/mabs.22189
ContentType Journal Article
Copyright 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. 2020 The Author(s)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1080/19420862.2020.1862452
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate J. DELA CRUZ CHUH ET AL
EISSN 1942-0870
ExternalDocumentID oai_doaj_org_article_25ec46df098b446591f757fd46270d3e
PMC7784788
33382956
10_1080_19420862_2020_1862452
Genre Journal Article
GroupedDBID ---
00X
0YH
53G
AAYXX
ABCCY
ABFIM
ABPEM
ACGFS
ACTIO
ADBBV
ADCVX
AEISY
AENEX
AIJEM
AIYEW
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQRUH
BABNJ
BAWUL
BLEHA
CCCUG
CITATION
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
GROUPED_DOAJ
H13
HYE
KTTOD
KYCEM
LJTGL
M4Z
O9-
OK1
RPM
SV3
TDBHL
TFL
TFW
TR2
4.4
C1A
CGR
CUY
CVF
ECM
EIF
EJD
NPM
OVD
TEORI
TTHFI
7X8
5PM
ID FETCH-LOGICAL-c477t-bc3aa1d66bb5e004d1e5b69cb1347c58dc2d8953495e9d836deb3291e5bbcc23
IEDL.DBID DOA
ISSN 1942-0862
1942-0870
IngestDate Wed Aug 27 01:16:16 EDT 2025
Thu Aug 21 18:18:25 EDT 2025
Fri Jul 11 05:39:10 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 02:37:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ADC resistance
Ly6E
virus-like particles
antibody discovery
Antibody-drug conjugate
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-bc3aa1d66bb5e004d1e5b69cb1347c58dc2d8953495e9d836deb3291e5bbcc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
ORCID 0000-0001-7300-1002
OpenAccessLink https://doaj.org/article/25ec46df098b446591f757fd46270d3e
PMID 33382956
PQID 2474501567
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_25ec46df098b446591f757fd46270d3e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7784788
proquest_miscellaneous_2474501567
pubmed_primary_33382956
crossref_primary_10_1080_19420862_2020_1862452
crossref_citationtrail_10_1080_19420862_2020_1862452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle mAbs
PublicationTitleAlternate MAbs
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0033
cit0034
cit0031
cit0032
Gravanis I (cit0028) 2015; 21
cit0030
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0029
cit0026
cit0027
cit0024
cit0025
cit0011
cit0055
cit0012
cit0056
cit0053
cit0010
cit0054
cit0051
cit0052
cit0050
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0057
cit0014
cit0044
cit0001
cit0045
Wesolowska O (cit0021) 2005; 25
cit0042
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0007
cit0004
cit0048
cit0005
cit0049
cit0002
cit0046
cit0003
cit0047
References_xml – ident: cit0031
  doi: 10.1093/ajhp/zxaa018
– ident: cit0032
  doi: 10.1182/blood-2006-09-047399
– volume: 25
  start-page: 383
  year: 2005
  ident: cit0021
  publication-title: Anticancer Res
– ident: cit0012
  doi: 10.1182/blood-2009-02-205500
– ident: cit0023
  doi: 10.1124/dmd.120.000145
– ident: cit0022
  doi: 10.1038/nbt.1480
– ident: cit0053
  doi: 10.1038/s41598-018-25609-z
– ident: cit0035
  doi: 10.1111/cup.13545
– ident: cit0048
  doi: 10.1073/pnas.261563198
– ident: cit0018
  doi: 10.1038/s41598-018-28533-4
– ident: cit0006
  doi: 10.1093/annonc/mdw368.01
– ident: cit0011
  doi: 10.1038/nrclinonc.2010.228
– ident: cit0049
  doi: 10.1002/0471143030.cb0322s30
– ident: cit0020
  doi: 10.1158/1538-7445/AM2016-1207
– volume: 21
  start-page: 102
  year: 2015
  ident: cit0028
  publication-title: Oncol
  doi: 10.1634/theoncologist.2015-0276
– ident: cit0037
  doi: 10.1200/JCO.2018.36.15_suppl.1014
– ident: cit0039
  doi: 10.1200/JCO.19.01140
– ident: cit0027
  doi: 10.1158/1541-7786.MCR-19-0582
– ident: cit0038
  doi: 10.1182/blood.V116.21.283.283
– ident: cit0019
  doi: 10.1021/acs.bioconjchem.9b00133
– ident: cit0017
  doi: 10.1158/1535-7163.MCT-16-0233
– ident: cit0024
  doi: 10.1126/scitranslmed.aat5775
– ident: cit0055
  doi: 10.1007/978-1-4939-9929-3_4
– ident: cit0051
  doi: 10.1038/srep21925
– ident: cit0040
  doi: 10.1016/S2352-3026(19)30026-2
– ident: cit0042
  doi: 10.3324/haematol.2018.211011
– ident: cit0057
  doi: 10.1002/sim.6052
– ident: cit0003
  doi: 10.3390/v11111020
– ident: cit0033
  doi: 10.1111/j.1365-2141.2009.07701.x
– ident: cit0001
  doi: 10.1158/1078-0432.CCR-15-0156
– ident: cit0050
  doi: 10.1038/356152a0
– ident: cit0004
  doi: 10.1159/000487453
– ident: cit0041
  doi: 10.1158/1078-0432.CCR-19-1133
– ident: cit0044
  doi: 10.2967/jnumed.106.037069
– ident: cit0009
  doi: 10.1002/9780471729259.mc1803s31
– ident: cit0030
  doi: 10.6004/jadpro.2018.9.6.9
– ident: cit0026
  doi: 10.1016/S0001-2998(05)80178-3
– ident: cit0005
  doi: 10.17265/2159-5313/2016.09.003
– ident: cit0014
  doi: 10.1158/0008-5472.CAN-17-3671
– ident: cit0045
  doi: 10.1158/0008-5472.CAN-10-2277
– ident: cit0046
  doi: 10.1073/pnas.63.1.78
– ident: cit0029
  doi: 10.1158/1078-0432.CCR-14-0012
– ident: cit0047
  doi: 10.1080/02648725.2013.801235
– ident: cit0036
  doi: 10.1007/s00280-015-2909-2
– ident: cit0056
  doi: 10.1080/19420862.2020.1715705
– ident: cit0002
  doi: 10.1038/s41598-018-22040-2
– ident: cit0010
  doi: 10.1134/S0026893319030154
– ident: cit0008
  doi: 10.1124/pr.114.009373
– ident: cit0034
  doi: 10.1111/cup.12797
– ident: cit0007
  doi: 10.1158/1078-0432.CCR-20-1067
– ident: cit0016
  doi: 10.1093/jnci/djv222
– ident: cit0013
  doi: 10.3390/cancers11030394
– ident: cit0015
  doi: 10.3389/fphar.2019.00749
– ident: cit0054
  doi: 10.1038/nbt832
– ident: cit0043
  doi: 10.1200/JCO.2016.70.8297
– ident: cit0052
  doi: 10.1016/j.jim.2009.01.005
– ident: cit0025
  doi: 10.4161/mabs.22189
SSID ssj0000070170
Score 2.33924
Snippet Early success with brentuximab vedotin in treating classical Hodgkin lymphoma spurred an influx of at least 20 monomethyl auristatin E (MMAE) antibody-drug...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1862452
SubjectTerms ADC resistance
Animals
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - pharmacokinetics
Antibodies, Monoclonal - pharmacology
antibody discovery
Antibody-drug conjugate
Antigens, Surface - immunology
Antineoplastic Agents - immunology
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
Antineoplastic Agents, Immunological - pharmacokinetics
Antineoplastic Agents, Immunological - pharmacology
Cell Line, Tumor
Cell Survival - drug effects
Cell Survival - immunology
Female
GPI-Linked Proteins - immunology
HEK293 Cells
Humans
Immunoconjugates - immunology
Immunoconjugates - pharmacokinetics
Immunoconjugates - pharmacology
Ly6E
Mice
Mice, SCID
Oligopeptides - immunology
Rats
Rats, Sprague-Dawley
Tumor Burden - drug effects
Tumor Burden - immunology
virus-like particles
Xenograft Model Antitumor Assays - methods
Title Preclinical optimization of Ly6E-targeted ADCs for increased durability and efficacy of anti-tumor response
URI https://www.ncbi.nlm.nih.gov/pubmed/33382956
https://www.proquest.com/docview/2474501567
https://pubmed.ncbi.nlm.nih.gov/PMC7784788
https://doaj.org/article/25ec46df098b446591f757fd46270d3e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6I8gyPykiop4Ym42eOpbRaIUB7WKRyiuJHxKo0i_Zx2H_fmTi73UVIvXCd2LLlGdsz8XzfMPahEL4tWhFz6zBWlTpWuWsE5A5MkE0JEBVhh79916Mf8suVutop9UU5YYkeOC3cKajopQ5tUVlH5F5V2Rpl2iA1mCKISKcv3nk7wVRyfA0Rw_RPyhJy8ts38B1bnJKMRBgeAooII6Fg72Lq-fv_5XT-nTu5cxldPmGPBy-Sn6XZH7IHsXvKjseJhnp9wid3qKrFCT_m4zuC6vUzdj3GY25ARPIZnhk3AxiTz1r-da0v8pQfHgM_-3y-4OjX8mlH7uUCRWE1T9zea950gUfioMBBqS9qaZovVzfYfp5yb-NzNrm8mJyP8qHoQu6lMcvcedE0ZdDaORVxB4UyKqcr7whz6pUNHoKtlMDAKlbBCh0wHIeKWjnvQbxgB92si68Yr2wDAVooomiktsZpb2n5PXhvXKEzJjcLXvuBkJzqYvyuy4G3dKOnmvRUD3rK2Mdttz-JkeO-Dp9Im9vGRKjdC9DM6sHM6vvMLGPvN7ZQ4wakV5Wmi7PVogZppCJAusnYy2Qb26GEEBYwAs2Y2bOavbnsf-mmv3qSb2MsVTZ4_T8m_4Y9AkrF6f8cvWUHy_kqvkNfaumO2MPi5-io3zy3encY4A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preclinical+optimization+of+Ly6E-targeted+ADCs+for+increased+durability+and+efficacy+of+anti-tumor+response&rft.jtitle=mAbs&rft.au=Dela+Cruz+Chuh%2C+Josefa&rft.au=Go%2C+MaryAnn&rft.au=Chen%2C+Yvonne&rft.au=Guo%2C+Jun&rft.date=2021-01-01&rft.issn=1942-0870&rft.eissn=1942-0870&rft.volume=13&rft.issue=1&rft.spage=1862452&rft_id=info:doi/10.1080%2F19420862.2020.1862452&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-0862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-0862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-0862&client=summon