AutoDock CrankPep : combining folding and docking to predict protein–peptide complexes

Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials....

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 35; no. 24; pp. 5121 - 5127
Main Authors Zhang, Yuqi, Sanner, Michel F
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs. Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins. ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. Supplementary data are available at Bioinformatics online.
AbstractList Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.MOTIVATIONProtein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins.RESULTSHere we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins.ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP.AVAILABILITY AND IMPLEMENTATIONADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs. Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins. ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. Supplementary data are available at Bioinformatics online.
Author Zhang, Yuqi
Sanner, Michel F
AuthorAffiliation Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, CA, USA
AuthorAffiliation_xml – name: Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, CA, USA
Author_xml – sequence: 1
  givenname: Yuqi
  orcidid: 0000-0001-7532-5369
  surname: Zhang
  fullname: Zhang, Yuqi
– sequence: 2
  givenname: Michel F
  orcidid: 0000-0001-9342-327X
  surname: Sanner
  fullname: Sanner, Michel F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31161213$$D View this record in MEDLINE/PubMed
BookMark eNp9UdtKHTEUDaLUS_sJyjz6cjSZTDIzFQqHo7UFoX1ooW8hlx1NnUnGJEfUJ__BP-yXOMNR0T4IG9aGvS6w1zZa98EDQrsEHxDc0kPlgvM2xF5mp9OhyncVa9fQFqG8nlUNIesvO6abaDulvxhjhhn_gDYpIZyUhG6hP_NlDsdBXxaLKP3lTxiKz4UOvXLe-fPChs5MKL0pzMia9hyKIYJxOo8YMjj_7_5hgCE7A5N06OAG0ke0YWWX4NMT7qDfX09-Lb7Nzn6cfl_Mz2a6qus8Uy3UtsTU6nHaEoNpaltRqRlveEmJxqzCjWo0w5ZTBlIaMLZRuLWqVRboDvqy8h2WqgejwecoOzFE18t4K4J04u3FuwtxHq4Fb1nFWT0a7D8ZxHC1hJRF75KGrpMewjKJsqQM85KXE3XvddZLyPM7R8LRiqBjSCmCFdrlsaAwRbtOECym8sTb8sSqvFHN_lM_B7yvewSi6qo3
CitedBy_id crossref_primary_10_2174_0115680266281358240206112605
crossref_primary_10_62347_MZGO7330
crossref_primary_10_1155_2022_7313864
crossref_primary_10_3389_fphar_2024_1363415
crossref_primary_10_1016_j_humimm_2024_110804
crossref_primary_10_1016_j_bbrc_2022_08_007
crossref_primary_10_2139_ssrn_4157323
crossref_primary_10_1371_journal_pcbi_1008855
crossref_primary_10_1016_j_compbiomed_2023_107727
crossref_primary_10_1016_j_bpc_2023_106987
crossref_primary_10_1007_s00894_022_05413_3
crossref_primary_10_1038_s41467_021_25772_4
crossref_primary_10_3389_fphar_2024_1417372
crossref_primary_10_1021_acs_jctc_2c00743
crossref_primary_10_1038_s41431_024_01721_9
crossref_primary_10_1021_acs_biochem_1c00191
crossref_primary_10_3390_ijms241814135
crossref_primary_10_1186_s13018_025_05459_y
crossref_primary_10_1021_acs_jcim_9b00905
crossref_primary_10_1039_D4SC02656J
crossref_primary_10_2147_DDDT_S436359
crossref_primary_10_1016_j_jep_2024_119020
crossref_primary_10_1016_j_sbi_2020_05_017
crossref_primary_10_1155_2022_1994575
crossref_primary_10_1016_j_foodres_2022_111576
crossref_primary_10_1021_acs_jctc_2c00075
crossref_primary_10_1016_j_jafr_2023_100949
crossref_primary_10_3389_fphar_2024_1460053
crossref_primary_10_1016_j_biopha_2023_115210
crossref_primary_10_1111_imcb_12851
crossref_primary_10_3390_molecules25040808
crossref_primary_10_1155_2023_7186747
crossref_primary_10_1002_pro_3934
crossref_primary_10_1038_s41419_024_07258_5
crossref_primary_10_1111_cbdd_13607
crossref_primary_10_1021_acschemneuro_4c00661
crossref_primary_10_1186_s12915_023_01765_1
crossref_primary_10_1016_j_heliyon_2023_e19546
crossref_primary_10_2174_0109298673263447230920151524
crossref_primary_10_1021_acs_jcim_4c00975
crossref_primary_10_1042_BST20220782
crossref_primary_10_1080_17460441_2023_2171396
crossref_primary_10_1021_acs_jctc_9b00557
crossref_primary_10_3390_molecules26216576
crossref_primary_10_2174_0115701786267754231114064015
crossref_primary_10_1016_j_bioorg_2022_106200
crossref_primary_10_3390_ijms23126691
crossref_primary_10_1016_j_bmc_2023_117498
crossref_primary_10_1021_acs_bioconjchem_3c00558
crossref_primary_10_1039_D1SC03628A
crossref_primary_10_1016_j_ejmech_2021_113712
crossref_primary_10_1016_j_isci_2024_110850
crossref_primary_10_1007_s10822_023_00518_0
crossref_primary_10_3390_ijms221910705
crossref_primary_10_1016_j_ejphar_2024_177141
crossref_primary_10_1021_acsabm_3c00302
crossref_primary_10_1016_j_pupt_2022_102185
crossref_primary_10_3390_biom13111633
crossref_primary_10_3389_fmolb_2019_00094
crossref_primary_10_1016_j_fochms_2023_100168
crossref_primary_10_1007_s10822_022_00468_z
crossref_primary_10_1016_j_ecoenv_2021_112512
crossref_primary_10_1016_j_compbiomed_2021_104896
crossref_primary_10_1039_D3CB00128H
crossref_primary_10_1016_j_bmc_2021_116130
crossref_primary_10_1021_acs_jcim_1c00836
crossref_primary_10_3390_ijms241512144
crossref_primary_10_3390_life14030334
crossref_primary_10_3389_fmolb_2021_681617
crossref_primary_10_1038_s41467_023_41488_z
crossref_primary_10_1093_bib_bbac097
crossref_primary_10_1021_acs_jcim_3c00602
crossref_primary_10_3390_molecules27093041
crossref_primary_10_1016_j_fbio_2025_106263
crossref_primary_10_1080_07391102_2021_1996462
crossref_primary_10_1093_bioinformatics_btaa292
crossref_primary_10_3390_biomedicines10071626
crossref_primary_10_3390_ph17111545
crossref_primary_10_1016_j_gendis_2022_07_002
crossref_primary_10_1080_07391102_2020_1773317
crossref_primary_10_1002_wcms_1693
crossref_primary_10_3390_toxics12040281
crossref_primary_10_1039_D1CP02536H
crossref_primary_10_1080_10799893_2022_2058016
crossref_primary_10_1021_acs_jcim_1c00573
crossref_primary_10_1017_qrd_2022_14
crossref_primary_10_3390_ijms26052119
crossref_primary_10_3390_molecules26010198
crossref_primary_10_3390_ijms241713257
crossref_primary_10_1093_bib_bbae215
crossref_primary_10_1093_bioinformatics_btac486
crossref_primary_10_1016_j_ijbiomac_2024_131840
crossref_primary_10_1021_acs_jctc_9b01208
crossref_primary_10_1016_j_fbio_2024_104250
crossref_primary_10_3390_ijms25031798
crossref_primary_10_1021_acs_jcim_1c00320
crossref_primary_10_1002_adhm_202300791
crossref_primary_10_1039_D1CP02098F
crossref_primary_10_3390_ph16081170
crossref_primary_10_1016_j_abb_2024_110085
crossref_primary_10_1021_acsami_4c02633
crossref_primary_10_1002_jsfa_12961
Cites_doi 10.1016/j.drudis.2014.10.003
10.1021/acs.jcim.8b00142
10.1016/j.str.2009.11.012
10.1002/pro.5560060807
10.1016/j.drudis.2018.05.006
10.1093/nar/gkv456
10.3389/fmolb.2016.00046
10.1093/bioinformatics/btw367
10.1038/nrm3920
10.1016/j.sbi.2013.07.006
10.1371/journal.pcbi.1004586
10.1016/j.str.2015.03.010
10.1016/j.bpj.2011.12.053
10.1093/bib/bbv008
10.1186/s13321-017-0246-7
10.1093/nar/28.1.235
10.1021/ct400628h
10.1002/1097-0134(20010215)42:3<378::AID-PROT70>3.0.CO;2-3
10.1016/j.copbio.2008.06.004
10.1002/prot.10393
10.1371/journal.pcbi.1005485
10.1073/pnas.96.21.11698
10.1021/ci400128m
10.1021/acs.jcim.5b00234
10.1093/nar/gkv495
10.1371/journal.pcbi.1005905
10.1002/jcc.21256
10.1002/prot.21949
10.1371/journal.pone.0002524
10.1093/nar/gky357
10.1016/j.bmc.2017.06.052
10.1186/1751-0473-3-12
10.1002/jcc.20634
10.1002/prot.10286
10.1016/j.str.2015.05.021
10.1111/j.1399-3011.1975.tb02465.x
10.1371/journal.pone.0058769
10.1371/journal.pone.0018934
10.1002/prot.21214
10.1002/prot.20513
10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btz459
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 5127
ExternalDocumentID PMC6954657
31161213
10_1093_bioinformatics_btz459
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM096888
– fundername: ; ; ;
– fundername: ; ;
  grantid: R01GM096888
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
EJD
ID FETCH-LOGICAL-c477t-b9e7f203fc3fc920ed87f43ac5686231c05408b8c50f635eaadedf8b09fb9bfe3
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 14:02:10 EDT 2025
Fri Jul 11 09:36:19 EDT 2025
Thu Apr 03 07:05:21 EDT 2025
Tue Jul 01 02:33:49 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-b9e7f203fc3fc920ed87f43ac5686231c05408b8c50f635eaadedf8b09fb9bfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9342-327X
0000-0001-7532-5369
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6954657
PMID 31161213
PQID 2235062627
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954657
proquest_miscellaneous_2235062627
pubmed_primary_31161213
crossref_citationtrail_10_1093_bioinformatics_btz459
crossref_primary_10_1093_bioinformatics_btz459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References (2023013108381037900_btz459-B38) 2019; 46
London (2023013108381037900_btz459-B16) 2013; 23
Várnai (2023013108381037900_btz459-B39) 2013; 9
Takada (2023013108381037900_btz459-B34) 1999; 96
Zhou (2023013108381037900_btz459-B43) 2018; 58
Lau (2023013108381037900_btz459-B14) 2018; 26
Podtelezhnikov (2023013108381037900_btz459-B24) 2005; 61
Peterson (2023013108381037900_btz459-B21) 2017; 13
Taketomi (2023013108381037900_btz459-B35) 2009; 7
Alam (2023013108381037900_btz459-B1) 2017; 13
Raveh (2023013108381037900_btz459-B25) 2011; 6
Huang (2023013108381037900_btz459-B10) 2006; 66
Morris (2023013108381037900_btz459-B20) 2009; 30
Hauser (2023013108381037900_btz459-B8) 2016; 56
Yan (2023013108381037900_btz459-B41) 2016
Trellet (2023013108381037900_btz459-B36) 2013; 8
Petsalaki (2023013108381037900_btz459-B22) 2008; 19
Irving (2023013108381037900_btz459-B12) 2001; 42
Spiliotopoulos (2023013108381037900_btz459-B32) 2016; 3
Burkoff (2023013108381037900_btz459-B4) 2012; 102
Fosgerau (2023013108381037900_btz459-B7) 2015; 20
Rentzsch (2023013108381037900_btz459-B28) 2015; 16
Ravindranath (2023013108381037900_btz459-B26) 2015; 11
Podtelezhnikov (2023013108381037900_btz459-B23) 2008; 3
Sanner (2023013108381037900_btz459-B30) 1996; 38
Schindler (2023013108381037900_btz459-B31) 2015; 23
Wright (2023013108381037900_btz459-B40) 2015; 16
London (2023013108381037900_btz459-B17) 2010; 18
Méndez (2023013108381037900_btz459-B19) 2003; 52
Huey (2023013108381037900_btz459-B11) 2007; 28
Kurcinski (2023013108381037900_btz459-B13) 2015; 43
Lovell (2023013108381037900_btz459-B18) 2003; 50
Huang (2023013108381037900_btz459-B9) 2008; 72
Ben-Shimon (2023013108381037900_btz459-B2) 2015; 23
Dunbrack (2023013108381037900_btz459-B6) 1997; 6
Lee (2023013108381037900_btz459-B15) 2015; 43
Zhou (2023013108381037900_btz459-B44) 2018; 46
Berman (2023013108381037900_btz459-B3) 2000; 28
Sanner (2023013108381037900_btz459-B29) 1999; 17
Stein (2023013108381037900_btz459-B33) 2008; 3
Ciemny (2023013108381037900_btz459-B5) 2018; 23
Ravindranath (2023013108381037900_btz459-B27) 2016; 32
Tubert-Brohman (2023013108381037900_btz459-B37) 2013; 53
Yan (2023013108381037900_btz459-B42) 2017; 9
References_xml – volume: 20
  start-page: 122
  year: 2015
  ident: 2023013108381037900_btz459-B7
  article-title: Peptide therapeutics: current status and future directions
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.10.003
– volume: 58
  start-page: 1292
  year: 2018
  ident: 2023013108381037900_btz459-B43
  article-title: Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.8b00142
– volume: 18
  start-page: 188
  year: 2010
  ident: 2023013108381037900_btz459-B17
  article-title: The structural basis of peptide–protein binding strategies
  publication-title: Structure
  doi: 10.1016/j.str.2009.11.012
– volume: 6
  start-page: 1661
  year: 1997
  ident: 2023013108381037900_btz459-B6
  article-title: Bayesian statistical analysis of protein side-chain rotamer preferences
  publication-title: Protein Sci
  doi: 10.1002/pro.5560060807
– volume: 23
  start-page: 1530
  year: 2018
  ident: 2023013108381037900_btz459-B5
  article-title: Protein–peptide docking: opportunities and challenges
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.05.006
– volume: 43
  start-page: W419
  year: 2015
  ident: 2023013108381037900_btz459-B13
  article-title: CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv456
– volume: 3
  start-page: 46
  year: 2016
  ident: 2023013108381037900_btz459-B32
  article-title: dMM-PBSA: a new HADDOCK scoring function for protein–peptide docking
  publication-title: Front. Mol. Biosci
  doi: 10.3389/fmolb.2016.00046
– volume: 32
  start-page: 3142
  year: 2016
  ident: 2023013108381037900_btz459-B27
  article-title: AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw367
– volume: 16
  start-page: 18.
  year: 2015
  ident: 2023013108381037900_btz459-B40
  article-title: Intrinsically disordered proteins in cellular signalling and regulation
  publication-title: Nat. Rev. Mol. Cell Biol
  doi: 10.1038/nrm3920
– volume: 46
  start-page: 506
  year: 2019
  ident: 2023013108381037900_btz459-B38
  article-title: UniProt: a worldwide hub of protein knowledge
  publication-title: Nucleic Acids Res
– volume: 23
  start-page: 894
  year: 2013
  ident: 2023013108381037900_btz459-B16
  article-title: Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how
  publication-title: Curr. Opin. Struct. Biol
  doi: 10.1016/j.sbi.2013.07.006
– volume: 11
  start-page: e1004586
  year: 2015
  ident: 2023013108381037900_btz459-B26
  article-title: AutoDockFR: advances in protein–ligand docking with explicitly specified binding site flexibility
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1004586
– volume: 23
  start-page: 929
  year: 2015
  ident: 2023013108381037900_btz459-B2
  article-title: AnchorDock: blind and flexible anchor-driven peptide docking
  publication-title: Structure
  doi: 10.1016/j.str.2015.03.010
– volume: 102
  start-page: 878
  year: 2012
  ident: 2023013108381037900_btz459-B4
  article-title: Exploring the energy landscapes of protein folding simulations with bayesian computation
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2011.12.053
– volume: 16
  start-page: 1045
  year: 2015
  ident: 2023013108381037900_btz459-B28
  article-title: Docking small peptides remains a great challenge: an assessment using AutoDock Vina
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbv008
– volume: 9
  start-page: 59
  year: 2017
  ident: 2023013108381037900_btz459-B42
  article-title: Efficient conformational ensemble generation of protein-bound peptides
  publication-title: J. Cheminform
  doi: 10.1186/s13321-017-0246-7
– volume: 28
  start-page: 235
  year: 2000
  ident: 2023013108381037900_btz459-B3
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.235
– volume: 9
  start-page: 5718
  year: 2013
  ident: 2023013108381037900_btz459-B39
  article-title: Efficient parameter estimation of generalizable coarse-grained protein force fields using contrastive divergence: a maximum likelihood approach
  publication-title: J. Chem. Theory Comput
  doi: 10.1021/ct400628h
– volume: 42
  start-page: 378
  year: 2001
  ident: 2023013108381037900_btz459-B12
  article-title: Protein structural alignments and functional genomics
  publication-title: Proteins Struct. Funct. Bioinform
  doi: 10.1002/1097-0134(20010215)42:3<378::AID-PROT70>3.0.CO;2-3
– volume: 19
  start-page: 344
  year: 2008
  ident: 2023013108381037900_btz459-B22
  article-title: Peptide-mediated interactions in biological systems: new discoveries and applications
  publication-title: Curr. Opin. Biotechnol
  doi: 10.1016/j.copbio.2008.06.004
– volume: 52
  start-page: 51
  year: 2003
  ident: 2023013108381037900_btz459-B19
  article-title: Assessment of blind predictions of protein–protein interactions: current status of docking methods
  publication-title: Proteins Struct. Funct. Bioinform
  doi: 10.1002/prot.10393
– volume: 13
  start-page: e1005485.
  year: 2017
  ident: 2023013108381037900_btz459-B21
  article-title: Modeling disordered protein interactions from biophysical principles
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005485
– volume: 96
  start-page: 11698
  year: 1999
  ident: 2023013108381037900_btz459-B34
  article-title: Go-ing for the prediction of protein folding mechanisms
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.21.11698
– volume: 53
  start-page: 1689
  year: 2013
  ident: 2023013108381037900_btz459-B37
  article-title: Improved Docking of Polypeptides with Glide
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci400128m
– volume: 56
  start-page: 188
  year: 2016
  ident: 2023013108381037900_btz459-B8
  article-title: LEADS-PEP: a benchmark data set for assessment of peptide docking performance
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.5b00234
– volume: 43
  start-page: W431
  year: 2015
  ident: 2023013108381037900_btz459-B15
  article-title: GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv495
– volume: 17
  start-page: 57
  year: 1999
  ident: 2023013108381037900_btz459-B29
  article-title: Python: a programming language for software integration and development
  publication-title: J. Mol. Graph. Model
– volume: 13
  start-page: e1005905.
  year: 2017
  ident: 2023013108381037900_btz459-B1
  article-title: High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1005905
– volume: 30
  start-page: 2785
  year: 2009
  ident: 2023013108381037900_btz459-B20
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.21256
– volume: 72
  start-page: 557
  year: 2008
  ident: 2023013108381037900_btz459-B9
  article-title: An iterative knowledge-based scoring function for protein–protein recognition
  publication-title: Proteins Struct. Funct. Bioinform
  doi: 10.1002/prot.21949
– volume: 3
  start-page: 1
  year: 2008
  ident: 2023013108381037900_btz459-B33
  article-title: Contextual specificity in peptide-mediated protein interactions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002524
– volume: 46
  start-page: W443
  year: 2018
  ident: 2023013108381037900_btz459-B44
  article-title: HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky357
– volume: 26
  start-page: 2700
  year: 2018
  ident: 2023013108381037900_btz459-B14
  article-title: Therapeutic peptides: historical perspectives, current development trends, and future directions
  publication-title: Bioorg. Med. Chem
  doi: 10.1016/j.bmc.2017.06.052
– volume: 3
  start-page: 12
  year: 2008
  ident: 2023013108381037900_btz459-B23
  article-title: CRANKITE: a fast polypeptide backbone conformation sampler
  publication-title: Source Code Biol. Med
  doi: 10.1186/1751-0473-3-12
– volume: 28
  start-page: 1145
  year: 2007
  ident: 2023013108381037900_btz459-B11
  article-title: A semiempirical free energy force field with charge-based desolvation
  publication-title: J. Comput. Chem
  doi: 10.1002/jcc.20634
– volume: 50
  start-page: 437
  year: 2003
  ident: 2023013108381037900_btz459-B18
  article-title: Structure validation by Cα geometry: ϕ,ψ and Cβ deviation
  publication-title: Proteins Struct. Funct. Bioinform
  doi: 10.1002/prot.10286
– volume: 23
  start-page: 1507
  year: 2015
  ident: 2023013108381037900_btz459-B31
  article-title: Fully blind peptide–protein docking with pepATTRACT
  publication-title: Structure
  doi: 10.1016/j.str.2015.05.021
– volume: 7
  start-page: 445
  year: 2009
  ident: 2023013108381037900_btz459-B35
  article-title: Studies on protein folding, unfolding and fluctuations by computer simulations
  publication-title: Int. J. Pept. Protein Res
  doi: 10.1111/j.1399-3011.1975.tb02465.x
– start-page: 1842
  year: 2016
  ident: 2023013108381037900_btz459-B41
  article-title: Fully blind docking at the atomic level for protein–peptide complex structure prediction. Structure
– volume: 8
  start-page: e58769.
  year: 2013
  ident: 2023013108381037900_btz459-B36
  article-title: A unified conformational selection and induced fit approach to protein–peptide docking
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058769
– volume: 6
  start-page: e18934
  year: 2011
  ident: 2023013108381037900_btz459-B25
  article-title: Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018934
– volume: 66
  start-page: 399
  year: 2006
  ident: 2023013108381037900_btz459-B10
  article-title: Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking
  publication-title: Proteins Struct. Funct. Bioinform
  doi: 10.1002/prot.21214
– volume: 61
  start-page: 94
  year: 2005
  ident: 2023013108381037900_btz459-B24
  article-title: Exhaustive Metropolis Monte Carlo sampling and analysis of polyalanine conformations adopted under the influence of hydrogen bonds
  publication-title: Proteins Struct. Funct. Bioinform
  doi: 10.1002/prot.20513
– volume: 38
  start-page: 305
  year: 1996
  ident: 2023013108381037900_btz459-B30
  article-title: Reduced surface: an efficient way to compute molecular surfaces
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y
SSID ssj0005056
Score 2.6102748
Snippet Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5121
SubjectTerms Molecular Docking Simulation
Original Papers
Peptides
Proteins
Software
Title AutoDock CrankPep : combining folding and docking to predict protein–peptide complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/31161213
https://www.proquest.com/docview/2235062627
https://pubmed.ncbi.nlm.nih.gov/PMC6954657
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY99L94EGeytuZUu27L2V0lJG1-7BgezJWB9mZsPOVge6_vW7s2Qn7gLrBsEYxbIc3eV8J939foS8j0JrbKxUAJEODwRPWKCqVATSwNs_YrIsGVYjfzpPTufi4yJerGkV--qSTu3r6611Jf8jVWgDuWKV7D9IdrwpNMA5yBeOIGE43krGh6uuhbfEt70jpF7_bJcY38NAqmd92KvczlK_P2Dgsr4yqkVYAFMjYjFCNNRNsMTEFmNddrm98kmFw0Zv3Xps1R7PGcFJr4Z8eE8AsrGYMC4_f1n9qMfFm3Kg93J5pz6Z2C81hD1Pgiu29NaRI0h66q2j3dLmTSqPN1QnEhsGEvyLcKvldqhWavKjsKG7Fh4yfIKVfX5RnMzPzor8eJHfJfciCBKQvyK_WKwTfFjP3Ts-4FC_lfGD6TAHbpCpZ_JHuHEza3bDDckfkYc-fqCHThkekzu2eULuO0bRX0_JfFAJOqjEBzoqBPUKQUFo1CsE7VrqFYLeUAg6KsQzMj85zo9OA8-cEWghZReozMoqYrzS8MkiZk0qK8FLHWNBEA81OuqpSnXMKvA4bVkaa6pUsaxSmaosf052mraxLwmFiFXpsEyhrxbMKIUVplJkKZwmKjQzIoZZK7SHlUd2k--FS2_gxXSyCzfZM7I_dls6XJW_dXg3iKQAC4jbWmVj29VlAQ5uzCAuj-SMvHAiGm_JwxAh8viMyInwxgsQXX36TVN_7VHWkywWSSx3bzHuK_Jg_Xd5TXa6nyv7BnzVTr3tVfI3AvyfdQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoDock+CrankPep%3A+combining+folding+and+docking+to+predict+protein-peptide+complexes&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Zhang%2C+Yuqi&rft.au=Sanner%2C+Michel+F&rft.date=2019-12-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=35&rft.issue=24&rft.spage=5121&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon