AutoDock CrankPep : combining folding and docking to predict protein–peptide complexes
Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials....
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 35; no. 24; pp. 5121 - 5127 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.
Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins.
ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP.
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.MOTIVATIONProtein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs.Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins.RESULTSHere we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins.ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP.AVAILABILITY AND IMPLEMENTATIONADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of interest over the past few years, as witnessed by the rapidly growing number of peptide-based therapeutic molecules currently in clinical trials. The size and flexibility of peptides has shown to be challenging for existing automated docking software programs. Here we present AutoDock CrankPep or ADCP in short, a novel approach to dock flexible peptides into rigid receptors. ADCP folds a peptide in the potential field created by the protein to predict the protein-peptide complex. We show that it outperforms leading peptide docking methods on two protein-peptide datasets commonly used for benchmarking docking methods: LEADS-PEP and peptiDB, comprised of peptides with up to 15 amino acids in length. Beyond these datasets, ADCP reliably docked a set of protein-peptide complexes containing peptides ranging in lengths from 16 to 20 amino acids. The robust performance of ADCP on these longer peptides enables accurate modeling of peptide-mediated protein-protein interactions and interactions with disordered proteins. ADCP is distributed under the LGPL 2.0 open source license and is available at http://adcp.scripps.edu. The source code is available at https://github.com/ccsb-scripps/ADCP. Supplementary data are available at Bioinformatics online. |
Author | Zhang, Yuqi Sanner, Michel F |
AuthorAffiliation | Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, CA, USA |
AuthorAffiliation_xml | – name: Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, CA, USA |
Author_xml | – sequence: 1 givenname: Yuqi orcidid: 0000-0001-7532-5369 surname: Zhang fullname: Zhang, Yuqi – sequence: 2 givenname: Michel F orcidid: 0000-0001-9342-327X surname: Sanner fullname: Sanner, Michel F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31161213$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UdtKHTEUDaLUS_sJyjz6cjSZTDIzFQqHo7UFoX1ooW8hlx1NnUnGJEfUJ__BP-yXOMNR0T4IG9aGvS6w1zZa98EDQrsEHxDc0kPlgvM2xF5mp9OhyncVa9fQFqG8nlUNIesvO6abaDulvxhjhhn_gDYpIZyUhG6hP_NlDsdBXxaLKP3lTxiKz4UOvXLe-fPChs5MKL0pzMia9hyKIYJxOo8YMjj_7_5hgCE7A5N06OAG0ke0YWWX4NMT7qDfX09-Lb7Nzn6cfl_Mz2a6qus8Uy3UtsTU6nHaEoNpaltRqRlveEmJxqzCjWo0w5ZTBlIaMLZRuLWqVRboDvqy8h2WqgejwecoOzFE18t4K4J04u3FuwtxHq4Fb1nFWT0a7D8ZxHC1hJRF75KGrpMewjKJsqQM85KXE3XvddZLyPM7R8LRiqBjSCmCFdrlsaAwRbtOECym8sTb8sSqvFHN_lM_B7yvewSi6qo3 |
CitedBy_id | crossref_primary_10_2174_0115680266281358240206112605 crossref_primary_10_62347_MZGO7330 crossref_primary_10_1155_2022_7313864 crossref_primary_10_3389_fphar_2024_1363415 crossref_primary_10_1016_j_humimm_2024_110804 crossref_primary_10_1016_j_bbrc_2022_08_007 crossref_primary_10_2139_ssrn_4157323 crossref_primary_10_1371_journal_pcbi_1008855 crossref_primary_10_1016_j_compbiomed_2023_107727 crossref_primary_10_1016_j_bpc_2023_106987 crossref_primary_10_1007_s00894_022_05413_3 crossref_primary_10_1038_s41467_021_25772_4 crossref_primary_10_3389_fphar_2024_1417372 crossref_primary_10_1021_acs_jctc_2c00743 crossref_primary_10_1038_s41431_024_01721_9 crossref_primary_10_1021_acs_biochem_1c00191 crossref_primary_10_3390_ijms241814135 crossref_primary_10_1186_s13018_025_05459_y crossref_primary_10_1021_acs_jcim_9b00905 crossref_primary_10_1039_D4SC02656J crossref_primary_10_2147_DDDT_S436359 crossref_primary_10_1016_j_jep_2024_119020 crossref_primary_10_1016_j_sbi_2020_05_017 crossref_primary_10_1155_2022_1994575 crossref_primary_10_1016_j_foodres_2022_111576 crossref_primary_10_1021_acs_jctc_2c00075 crossref_primary_10_1016_j_jafr_2023_100949 crossref_primary_10_3389_fphar_2024_1460053 crossref_primary_10_1016_j_biopha_2023_115210 crossref_primary_10_1111_imcb_12851 crossref_primary_10_3390_molecules25040808 crossref_primary_10_1155_2023_7186747 crossref_primary_10_1002_pro_3934 crossref_primary_10_1038_s41419_024_07258_5 crossref_primary_10_1111_cbdd_13607 crossref_primary_10_1021_acschemneuro_4c00661 crossref_primary_10_1186_s12915_023_01765_1 crossref_primary_10_1016_j_heliyon_2023_e19546 crossref_primary_10_2174_0109298673263447230920151524 crossref_primary_10_1021_acs_jcim_4c00975 crossref_primary_10_1042_BST20220782 crossref_primary_10_1080_17460441_2023_2171396 crossref_primary_10_1021_acs_jctc_9b00557 crossref_primary_10_3390_molecules26216576 crossref_primary_10_2174_0115701786267754231114064015 crossref_primary_10_1016_j_bioorg_2022_106200 crossref_primary_10_3390_ijms23126691 crossref_primary_10_1016_j_bmc_2023_117498 crossref_primary_10_1021_acs_bioconjchem_3c00558 crossref_primary_10_1039_D1SC03628A crossref_primary_10_1016_j_ejmech_2021_113712 crossref_primary_10_1016_j_isci_2024_110850 crossref_primary_10_1007_s10822_023_00518_0 crossref_primary_10_3390_ijms221910705 crossref_primary_10_1016_j_ejphar_2024_177141 crossref_primary_10_1021_acsabm_3c00302 crossref_primary_10_1016_j_pupt_2022_102185 crossref_primary_10_3390_biom13111633 crossref_primary_10_3389_fmolb_2019_00094 crossref_primary_10_1016_j_fochms_2023_100168 crossref_primary_10_1007_s10822_022_00468_z crossref_primary_10_1016_j_ecoenv_2021_112512 crossref_primary_10_1016_j_compbiomed_2021_104896 crossref_primary_10_1039_D3CB00128H crossref_primary_10_1016_j_bmc_2021_116130 crossref_primary_10_1021_acs_jcim_1c00836 crossref_primary_10_3390_ijms241512144 crossref_primary_10_3390_life14030334 crossref_primary_10_3389_fmolb_2021_681617 crossref_primary_10_1038_s41467_023_41488_z crossref_primary_10_1093_bib_bbac097 crossref_primary_10_1021_acs_jcim_3c00602 crossref_primary_10_3390_molecules27093041 crossref_primary_10_1016_j_fbio_2025_106263 crossref_primary_10_1080_07391102_2021_1996462 crossref_primary_10_1093_bioinformatics_btaa292 crossref_primary_10_3390_biomedicines10071626 crossref_primary_10_3390_ph17111545 crossref_primary_10_1016_j_gendis_2022_07_002 crossref_primary_10_1080_07391102_2020_1773317 crossref_primary_10_1002_wcms_1693 crossref_primary_10_3390_toxics12040281 crossref_primary_10_1039_D1CP02536H crossref_primary_10_1080_10799893_2022_2058016 crossref_primary_10_1021_acs_jcim_1c00573 crossref_primary_10_1017_qrd_2022_14 crossref_primary_10_3390_ijms26052119 crossref_primary_10_3390_molecules26010198 crossref_primary_10_3390_ijms241713257 crossref_primary_10_1093_bib_bbae215 crossref_primary_10_1093_bioinformatics_btac486 crossref_primary_10_1016_j_ijbiomac_2024_131840 crossref_primary_10_1021_acs_jctc_9b01208 crossref_primary_10_1016_j_fbio_2024_104250 crossref_primary_10_3390_ijms25031798 crossref_primary_10_1021_acs_jcim_1c00320 crossref_primary_10_1002_adhm_202300791 crossref_primary_10_1039_D1CP02098F crossref_primary_10_3390_ph16081170 crossref_primary_10_1016_j_abb_2024_110085 crossref_primary_10_1021_acsami_4c02633 crossref_primary_10_1002_jsfa_12961 |
Cites_doi | 10.1016/j.drudis.2014.10.003 10.1021/acs.jcim.8b00142 10.1016/j.str.2009.11.012 10.1002/pro.5560060807 10.1016/j.drudis.2018.05.006 10.1093/nar/gkv456 10.3389/fmolb.2016.00046 10.1093/bioinformatics/btw367 10.1038/nrm3920 10.1016/j.sbi.2013.07.006 10.1371/journal.pcbi.1004586 10.1016/j.str.2015.03.010 10.1016/j.bpj.2011.12.053 10.1093/bib/bbv008 10.1186/s13321-017-0246-7 10.1093/nar/28.1.235 10.1021/ct400628h 10.1002/1097-0134(20010215)42:3<378::AID-PROT70>3.0.CO;2-3 10.1016/j.copbio.2008.06.004 10.1002/prot.10393 10.1371/journal.pcbi.1005485 10.1073/pnas.96.21.11698 10.1021/ci400128m 10.1021/acs.jcim.5b00234 10.1093/nar/gkv495 10.1371/journal.pcbi.1005905 10.1002/jcc.21256 10.1002/prot.21949 10.1371/journal.pone.0002524 10.1093/nar/gky357 10.1016/j.bmc.2017.06.052 10.1186/1751-0473-3-12 10.1002/jcc.20634 10.1002/prot.10286 10.1016/j.str.2015.05.021 10.1111/j.1399-3011.1975.tb02465.x 10.1371/journal.pone.0058769 10.1371/journal.pone.0018934 10.1002/prot.21214 10.1002/prot.20513 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019 |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/bioinformatics/btz459 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 5127 |
ExternalDocumentID | PMC6954657 31161213 10_1093_bioinformatics_btz459 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM096888 – fundername: ; ; ; – fundername: ; ; grantid: R01GM096888 |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM CGR CUY CVF ECM EIF M49 NPM 7X8 5PM EJD |
ID | FETCH-LOGICAL-c477t-b9e7f203fc3fc920ed87f43ac5686231c05408b8c50f635eaadedf8b09fb9bfe3 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 14:02:10 EDT 2025 Fri Jul 11 09:36:19 EDT 2025 Thu Apr 03 07:05:21 EDT 2025 Tue Jul 01 02:33:49 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-b9e7f203fc3fc920ed87f43ac5686231c05408b8c50f635eaadedf8b09fb9bfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9342-327X 0000-0001-7532-5369 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6954657 |
PMID | 31161213 |
PQID | 2235062627 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6954657 proquest_miscellaneous_2235062627 pubmed_primary_31161213 crossref_citationtrail_10_1093_bioinformatics_btz459 crossref_primary_10_1093_bioinformatics_btz459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | (2023013108381037900_btz459-B38) 2019; 46 London (2023013108381037900_btz459-B16) 2013; 23 Várnai (2023013108381037900_btz459-B39) 2013; 9 Takada (2023013108381037900_btz459-B34) 1999; 96 Zhou (2023013108381037900_btz459-B43) 2018; 58 Lau (2023013108381037900_btz459-B14) 2018; 26 Podtelezhnikov (2023013108381037900_btz459-B24) 2005; 61 Peterson (2023013108381037900_btz459-B21) 2017; 13 Taketomi (2023013108381037900_btz459-B35) 2009; 7 Alam (2023013108381037900_btz459-B1) 2017; 13 Raveh (2023013108381037900_btz459-B25) 2011; 6 Huang (2023013108381037900_btz459-B10) 2006; 66 Morris (2023013108381037900_btz459-B20) 2009; 30 Hauser (2023013108381037900_btz459-B8) 2016; 56 Yan (2023013108381037900_btz459-B41) 2016 Trellet (2023013108381037900_btz459-B36) 2013; 8 Petsalaki (2023013108381037900_btz459-B22) 2008; 19 Irving (2023013108381037900_btz459-B12) 2001; 42 Spiliotopoulos (2023013108381037900_btz459-B32) 2016; 3 Burkoff (2023013108381037900_btz459-B4) 2012; 102 Fosgerau (2023013108381037900_btz459-B7) 2015; 20 Rentzsch (2023013108381037900_btz459-B28) 2015; 16 Ravindranath (2023013108381037900_btz459-B26) 2015; 11 Podtelezhnikov (2023013108381037900_btz459-B23) 2008; 3 Sanner (2023013108381037900_btz459-B30) 1996; 38 Schindler (2023013108381037900_btz459-B31) 2015; 23 Wright (2023013108381037900_btz459-B40) 2015; 16 London (2023013108381037900_btz459-B17) 2010; 18 Méndez (2023013108381037900_btz459-B19) 2003; 52 Huey (2023013108381037900_btz459-B11) 2007; 28 Kurcinski (2023013108381037900_btz459-B13) 2015; 43 Lovell (2023013108381037900_btz459-B18) 2003; 50 Huang (2023013108381037900_btz459-B9) 2008; 72 Ben-Shimon (2023013108381037900_btz459-B2) 2015; 23 Dunbrack (2023013108381037900_btz459-B6) 1997; 6 Lee (2023013108381037900_btz459-B15) 2015; 43 Zhou (2023013108381037900_btz459-B44) 2018; 46 Berman (2023013108381037900_btz459-B3) 2000; 28 Sanner (2023013108381037900_btz459-B29) 1999; 17 Stein (2023013108381037900_btz459-B33) 2008; 3 Ciemny (2023013108381037900_btz459-B5) 2018; 23 Ravindranath (2023013108381037900_btz459-B27) 2016; 32 Tubert-Brohman (2023013108381037900_btz459-B37) 2013; 53 Yan (2023013108381037900_btz459-B42) 2017; 9 |
References_xml | – volume: 20 start-page: 122 year: 2015 ident: 2023013108381037900_btz459-B7 article-title: Peptide therapeutics: current status and future directions publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2014.10.003 – volume: 58 start-page: 1292 year: 2018 ident: 2023013108381037900_btz459-B43 article-title: Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides publication-title: J. Chem. Inf. Model doi: 10.1021/acs.jcim.8b00142 – volume: 18 start-page: 188 year: 2010 ident: 2023013108381037900_btz459-B17 article-title: The structural basis of peptide–protein binding strategies publication-title: Structure doi: 10.1016/j.str.2009.11.012 – volume: 6 start-page: 1661 year: 1997 ident: 2023013108381037900_btz459-B6 article-title: Bayesian statistical analysis of protein side-chain rotamer preferences publication-title: Protein Sci doi: 10.1002/pro.5560060807 – volume: 23 start-page: 1530 year: 2018 ident: 2023013108381037900_btz459-B5 article-title: Protein–peptide docking: opportunities and challenges publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.05.006 – volume: 43 start-page: W419 year: 2015 ident: 2023013108381037900_btz459-B13 article-title: CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv456 – volume: 3 start-page: 46 year: 2016 ident: 2023013108381037900_btz459-B32 article-title: dMM-PBSA: a new HADDOCK scoring function for protein–peptide docking publication-title: Front. Mol. Biosci doi: 10.3389/fmolb.2016.00046 – volume: 32 start-page: 3142 year: 2016 ident: 2023013108381037900_btz459-B27 article-title: AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw367 – volume: 16 start-page: 18. year: 2015 ident: 2023013108381037900_btz459-B40 article-title: Intrinsically disordered proteins in cellular signalling and regulation publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm3920 – volume: 46 start-page: 506 year: 2019 ident: 2023013108381037900_btz459-B38 article-title: UniProt: a worldwide hub of protein knowledge publication-title: Nucleic Acids Res – volume: 23 start-page: 894 year: 2013 ident: 2023013108381037900_btz459-B16 article-title: Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how publication-title: Curr. Opin. Struct. Biol doi: 10.1016/j.sbi.2013.07.006 – volume: 11 start-page: e1004586 year: 2015 ident: 2023013108381037900_btz459-B26 article-title: AutoDockFR: advances in protein–ligand docking with explicitly specified binding site flexibility publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1004586 – volume: 23 start-page: 929 year: 2015 ident: 2023013108381037900_btz459-B2 article-title: AnchorDock: blind and flexible anchor-driven peptide docking publication-title: Structure doi: 10.1016/j.str.2015.03.010 – volume: 102 start-page: 878 year: 2012 ident: 2023013108381037900_btz459-B4 article-title: Exploring the energy landscapes of protein folding simulations with bayesian computation publication-title: Biophys. J doi: 10.1016/j.bpj.2011.12.053 – volume: 16 start-page: 1045 year: 2015 ident: 2023013108381037900_btz459-B28 article-title: Docking small peptides remains a great challenge: an assessment using AutoDock Vina publication-title: Brief. Bioinform doi: 10.1093/bib/bbv008 – volume: 9 start-page: 59 year: 2017 ident: 2023013108381037900_btz459-B42 article-title: Efficient conformational ensemble generation of protein-bound peptides publication-title: J. Cheminform doi: 10.1186/s13321-017-0246-7 – volume: 28 start-page: 235 year: 2000 ident: 2023013108381037900_btz459-B3 article-title: The Protein Data Bank publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.235 – volume: 9 start-page: 5718 year: 2013 ident: 2023013108381037900_btz459-B39 article-title: Efficient parameter estimation of generalizable coarse-grained protein force fields using contrastive divergence: a maximum likelihood approach publication-title: J. Chem. Theory Comput doi: 10.1021/ct400628h – volume: 42 start-page: 378 year: 2001 ident: 2023013108381037900_btz459-B12 article-title: Protein structural alignments and functional genomics publication-title: Proteins Struct. Funct. Bioinform doi: 10.1002/1097-0134(20010215)42:3<378::AID-PROT70>3.0.CO;2-3 – volume: 19 start-page: 344 year: 2008 ident: 2023013108381037900_btz459-B22 article-title: Peptide-mediated interactions in biological systems: new discoveries and applications publication-title: Curr. Opin. Biotechnol doi: 10.1016/j.copbio.2008.06.004 – volume: 52 start-page: 51 year: 2003 ident: 2023013108381037900_btz459-B19 article-title: Assessment of blind predictions of protein–protein interactions: current status of docking methods publication-title: Proteins Struct. Funct. Bioinform doi: 10.1002/prot.10393 – volume: 13 start-page: e1005485. year: 2017 ident: 2023013108381037900_btz459-B21 article-title: Modeling disordered protein interactions from biophysical principles publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005485 – volume: 96 start-page: 11698 year: 1999 ident: 2023013108381037900_btz459-B34 article-title: Go-ing for the prediction of protein folding mechanisms publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.21.11698 – volume: 53 start-page: 1689 year: 2013 ident: 2023013108381037900_btz459-B37 article-title: Improved Docking of Polypeptides with Glide publication-title: J. Chem. Inf. Model doi: 10.1021/ci400128m – volume: 56 start-page: 188 year: 2016 ident: 2023013108381037900_btz459-B8 article-title: LEADS-PEP: a benchmark data set for assessment of peptide docking performance publication-title: J. Chem. Inf. Model doi: 10.1021/acs.jcim.5b00234 – volume: 43 start-page: W431 year: 2015 ident: 2023013108381037900_btz459-B15 article-title: GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv495 – volume: 17 start-page: 57 year: 1999 ident: 2023013108381037900_btz459-B29 article-title: Python: a programming language for software integration and development publication-title: J. Mol. Graph. Model – volume: 13 start-page: e1005905. year: 2017 ident: 2023013108381037900_btz459-B1 article-title: High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1005905 – volume: 30 start-page: 2785 year: 2009 ident: 2023013108381037900_btz459-B20 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J. Comput. Chem doi: 10.1002/jcc.21256 – volume: 72 start-page: 557 year: 2008 ident: 2023013108381037900_btz459-B9 article-title: An iterative knowledge-based scoring function for protein–protein recognition publication-title: Proteins Struct. Funct. Bioinform doi: 10.1002/prot.21949 – volume: 3 start-page: 1 year: 2008 ident: 2023013108381037900_btz459-B33 article-title: Contextual specificity in peptide-mediated protein interactions publication-title: PLoS One doi: 10.1371/journal.pone.0002524 – volume: 46 start-page: W443 year: 2018 ident: 2023013108381037900_btz459-B44 article-title: HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm publication-title: Nucleic Acids Res doi: 10.1093/nar/gky357 – volume: 26 start-page: 2700 year: 2018 ident: 2023013108381037900_btz459-B14 article-title: Therapeutic peptides: historical perspectives, current development trends, and future directions publication-title: Bioorg. Med. Chem doi: 10.1016/j.bmc.2017.06.052 – volume: 3 start-page: 12 year: 2008 ident: 2023013108381037900_btz459-B23 article-title: CRANKITE: a fast polypeptide backbone conformation sampler publication-title: Source Code Biol. Med doi: 10.1186/1751-0473-3-12 – volume: 28 start-page: 1145 year: 2007 ident: 2023013108381037900_btz459-B11 article-title: A semiempirical free energy force field with charge-based desolvation publication-title: J. Comput. Chem doi: 10.1002/jcc.20634 – volume: 50 start-page: 437 year: 2003 ident: 2023013108381037900_btz459-B18 article-title: Structure validation by Cα geometry: ϕ,ψ and Cβ deviation publication-title: Proteins Struct. Funct. Bioinform doi: 10.1002/prot.10286 – volume: 23 start-page: 1507 year: 2015 ident: 2023013108381037900_btz459-B31 article-title: Fully blind peptide–protein docking with pepATTRACT publication-title: Structure doi: 10.1016/j.str.2015.05.021 – volume: 7 start-page: 445 year: 2009 ident: 2023013108381037900_btz459-B35 article-title: Studies on protein folding, unfolding and fluctuations by computer simulations publication-title: Int. J. Pept. Protein Res doi: 10.1111/j.1399-3011.1975.tb02465.x – start-page: 1842 year: 2016 ident: 2023013108381037900_btz459-B41 article-title: Fully blind docking at the atomic level for protein–peptide complex structure prediction. Structure – volume: 8 start-page: e58769. year: 2013 ident: 2023013108381037900_btz459-B36 article-title: A unified conformational selection and induced fit approach to protein–peptide docking publication-title: PLoS One doi: 10.1371/journal.pone.0058769 – volume: 6 start-page: e18934 year: 2011 ident: 2023013108381037900_btz459-B25 article-title: Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors publication-title: PLoS One doi: 10.1371/journal.pone.0018934 – volume: 66 start-page: 399 year: 2006 ident: 2023013108381037900_btz459-B10 article-title: Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking publication-title: Proteins Struct. Funct. Bioinform doi: 10.1002/prot.21214 – volume: 61 start-page: 94 year: 2005 ident: 2023013108381037900_btz459-B24 article-title: Exhaustive Metropolis Monte Carlo sampling and analysis of polyalanine conformations adopted under the influence of hydrogen bonds publication-title: Proteins Struct. Funct. Bioinform doi: 10.1002/prot.20513 – volume: 38 start-page: 305 year: 1996 ident: 2023013108381037900_btz459-B30 article-title: Reduced surface: an efficient way to compute molecular surfaces publication-title: Biopolymers doi: 10.1002/(SICI)1097-0282(199603)38:3<305::AID-BIP4>3.0.CO;2-Y |
SSID | ssj0005056 |
Score | 2.6102748 |
Snippet | Protein-peptide interactions mediate a wide variety of cellular and biological functions. Methods for predicting these interactions have garnered a lot of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5121 |
SubjectTerms | Molecular Docking Simulation Original Papers Peptides Proteins Software |
Title | AutoDock CrankPep : combining folding and docking to predict protein–peptide complexes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31161213 https://www.proquest.com/docview/2235062627 https://pubmed.ncbi.nlm.nih.gov/PMC6954657 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY99L94EGeytuZUu27L2V0lJG1-7BgezJWB9mZsPOVge6_vW7s2Qn7gLrBsEYxbIc3eV8J939foS8j0JrbKxUAJEODwRPWKCqVATSwNs_YrIsGVYjfzpPTufi4yJerGkV--qSTu3r6611Jf8jVWgDuWKV7D9IdrwpNMA5yBeOIGE43krGh6uuhbfEt70jpF7_bJcY38NAqmd92KvczlK_P2Dgsr4yqkVYAFMjYjFCNNRNsMTEFmNddrm98kmFw0Zv3Xps1R7PGcFJr4Z8eE8AsrGYMC4_f1n9qMfFm3Kg93J5pz6Z2C81hD1Pgiu29NaRI0h66q2j3dLmTSqPN1QnEhsGEvyLcKvldqhWavKjsKG7Fh4yfIKVfX5RnMzPzor8eJHfJfciCBKQvyK_WKwTfFjP3Ts-4FC_lfGD6TAHbpCpZ_JHuHEza3bDDckfkYc-fqCHThkekzu2eULuO0bRX0_JfFAJOqjEBzoqBPUKQUFo1CsE7VrqFYLeUAg6KsQzMj85zo9OA8-cEWghZReozMoqYrzS8MkiZk0qK8FLHWNBEA81OuqpSnXMKvA4bVkaa6pUsaxSmaosf052mraxLwmFiFXpsEyhrxbMKIUVplJkKZwmKjQzIoZZK7SHlUd2k--FS2_gxXSyCzfZM7I_dls6XJW_dXg3iKQAC4jbWmVj29VlAQ5uzCAuj-SMvHAiGm_JwxAh8viMyInwxgsQXX36TVN_7VHWkywWSSx3bzHuK_Jg_Xd5TXa6nyv7BnzVTr3tVfI3AvyfdQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoDock+CrankPep%3A+combining+folding+and+docking+to+predict+protein-peptide+complexes&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Zhang%2C+Yuqi&rft.au=Sanner%2C+Michel+F&rft.date=2019-12-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=35&rft.issue=24&rft.spage=5121&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz459&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |