Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation
X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the...
Saved in:
Published in | Human molecular genetics Vol. 24; no. 6; pp. 1528 - 1539 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
15.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. |
---|---|
AbstractList | X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately
cis
-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of 30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease. |
Author | Jones, Meaghan J. Cotton, Allison M. Price, E. Magda Balaton, Bradley P. Kobor, Michael S. Brown, Carolyn J. |
Author_xml | – sequence: 1 givenname: Allison M. surname: Cotton fullname: Cotton, Allison M. – sequence: 2 givenname: E. Magda surname: Price fullname: Price, E. Magda – sequence: 3 givenname: Meaghan J. surname: Jones fullname: Jones, Meaghan J. – sequence: 4 givenname: Bradley P. surname: Balaton fullname: Balaton, Bradley P. – sequence: 5 givenname: Michael S. surname: Kobor fullname: Kobor, Michael S. – sequence: 6 givenname: Carolyn J. surname: Brown fullname: Brown, Carolyn J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25381334$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1r3DAQhkVJaDZpL_0BQccQ4kSyZMm-BJZtPgpLe2khNyHL41jFlraWHNhT_nq12WxJQyAgGNA87zuj0RyiPecdIPSFknNKKnbRDfcXTTMVgn9AM8oFyXJSsj00I5XgmaiIOECHIfwmhArO5Ed0kBespIzxGXpcatcEo1eAfYu_fp_jAWK37nW03uF0Ygf4Dptu9IMPfgA8QtuDiQEvVje4ARdsXJ_hdnJmI9H9lk16h0PUEXAqgO-yFw7W6cQ-PJX4hPZb3Qf4_ByP0K_rq5-L22z54-bbYr7MDJcyZrVsBQVZQ9mwgteE1Yw1Jr211LItq6IA1hBiKtFKUdSlNumuqrWoWJnnKbIjdLn1XU31AI0BF0fdq9VoBz2ulddW_Z9xtlP3_kHxNClZsGRw8mww-j8ThKgGGwz0vXbgp6CoJJSXNE8l30VFIVnO8lwm9PhlW__62X1QAsgWMKMPIc1eGRufJpe6tL2iRG12QKUdUNsdSJLTV5Kd6xvwX5QntjU |
CitedBy_id | crossref_primary_10_1016_j_gene_2019_05_042 crossref_primary_10_1002_ajmg_b_32706 crossref_primary_10_1002_ajmg_a_62669 crossref_primary_10_1038_s41598_023_33002_8 crossref_primary_10_1073_pnas_1806811115 crossref_primary_10_1073_pnas_2024624118 crossref_primary_10_1146_annurev_genet_120116_024611 crossref_primary_10_3389_fphys_2023_1070241 crossref_primary_10_1038_s41597_019_0109_3 crossref_primary_10_1101_gr_275677_121 crossref_primary_10_1186_s13072_021_00428_1 crossref_primary_10_1016_j_ajhg_2015_07_004 crossref_primary_10_1038_s41598_019_40482_0 crossref_primary_10_1002_gepi_22091 crossref_primary_10_1111_cge_13667 crossref_primary_10_3390_cancers16061131 crossref_primary_10_1016_j_molcel_2022_04_022 crossref_primary_10_1016_j_ygeno_2022_110450 crossref_primary_10_1038_s41598_017_11517_1 crossref_primary_10_1186_s12864_017_3866_4 crossref_primary_10_3389_fgene_2020_00101 crossref_primary_10_1080_10715762_2022_2038789 crossref_primary_10_1186_s12864_019_5507_6 crossref_primary_10_2174_0115701786277281231228093405 crossref_primary_10_1038_s41467_018_05714_3 crossref_primary_10_1126_science_abj5089 crossref_primary_10_3389_fnmol_2022_886729 crossref_primary_10_1016_j_ajhg_2015_12_015 crossref_primary_10_1093_nar_gkz1214 crossref_primary_10_1002_ajmg_c_31799 crossref_primary_10_1186_s13293_021_00381_4 crossref_primary_10_1002_ajmg_c_31672 crossref_primary_10_1016_j_nbd_2018_05_004 crossref_primary_10_3390_genes9050230 crossref_primary_10_1016_j_canlet_2024_217297 crossref_primary_10_1016_j_tig_2016_03_007 crossref_primary_10_1021_acs_jpcb_8b07830 crossref_primary_10_3390_bios14120608 crossref_primary_10_1007_s12041_015_0574_1 crossref_primary_10_1016_j_cell_2023_04_014 crossref_primary_10_3390_ijms23169480 crossref_primary_10_1371_journal_pgen_1010556 crossref_primary_10_1038_ejhg_2015_123 crossref_primary_10_1038_s41568_021_00348_y crossref_primary_10_1186_s40246_018_0141_y crossref_primary_10_1016_j_livsci_2020_104116 crossref_primary_10_1038_ncomms11021 crossref_primary_10_1261_rna_078926_121 crossref_primary_10_3390_cancers13194807 crossref_primary_10_1002_humu_23373 crossref_primary_10_1038_s41467_024_49847_0 crossref_primary_10_1093_bioinformatics_btac436 crossref_primary_10_18632_oncotarget_22754 crossref_primary_10_1089_thy_2021_0361 crossref_primary_10_1186_s13148_022_01236_4 crossref_primary_10_3389_fped_2020_00303 crossref_primary_10_1002_ajmg_c_31800 crossref_primary_10_1155_2021_6683460 crossref_primary_10_1038_srep37324 crossref_primary_10_1093_gigascience_gix123 crossref_primary_10_1186_s13293_015_0053_7 crossref_primary_10_1016_j_isci_2021_102841 crossref_primary_10_1016_j_cell_2024_07_038 crossref_primary_10_1093_molbev_msv225 crossref_primary_10_1146_annurev_psych_122414_033653 crossref_primary_10_1186_s13072_021_00386_8 crossref_primary_10_1186_s13148_021_01019_3 crossref_primary_10_3390_epigenomes7040029 crossref_primary_10_1038_s41598_017_14650_z crossref_primary_10_1186_s12915_022_01270_x crossref_primary_10_1186_s13293_018_0165_y crossref_primary_10_1186_s13039_015_0176_x crossref_primary_10_1186_s13072_022_00477_0 crossref_primary_10_1289_EHP3441 crossref_primary_10_1186_s40246_023_00484_6 crossref_primary_10_1016_j_xhgg_2022_100121 crossref_primary_10_1186_s13293_019_0272_4 crossref_primary_10_1016_j_bbr_2017_12_004 crossref_primary_10_1038_s41598_024_58530_9 crossref_primary_10_1093_bfgp_elx041 crossref_primary_10_1093_gbe_evx083 crossref_primary_10_3389_fgene_2016_00183 crossref_primary_10_1186_s13072_021_00404_9 crossref_primary_10_1371_journal_pone_0230524 crossref_primary_10_1111_cge_12729 crossref_primary_10_26508_lsa_201900386 crossref_primary_10_9758_cpn_23_1099 crossref_primary_10_1111_evj_13320 crossref_primary_10_3389_fgene_2022_999442 crossref_primary_10_1038_s41587_022_01289_z crossref_primary_10_1002_ccr3_2051 crossref_primary_10_3389_fnmol_2017_00158 crossref_primary_10_1016_j_ijbiomac_2024_129330 crossref_primary_10_18632_aging_206220 crossref_primary_10_1097_IN9_0000000000000004 crossref_primary_10_1007_s10048_020_00616_3 crossref_primary_10_3389_fgene_2017_00207 crossref_primary_10_1093_eep_dvx013 crossref_primary_10_1002_humu_23670 crossref_primary_10_3389_fphar_2024_1381168 crossref_primary_10_1371_journal_pone_0134155 crossref_primary_10_1111_cge_13908 crossref_primary_10_1038_s41439_024_00277_w crossref_primary_10_1186_s13073_020_00736_3 crossref_primary_10_3389_fgene_2019_01178 crossref_primary_10_1016_j_celrep_2021_109215 crossref_primary_10_1016_j_earlhumdev_2021_105519 crossref_primary_10_1155_2019_7076513 crossref_primary_10_1093_hmg_ddy444 crossref_primary_10_1111_cge_13507 crossref_primary_10_1038_ejhg_2017_97 crossref_primary_10_1242_dmm_022780 crossref_primary_10_1038_s41598_020_66847_4 crossref_primary_10_1101_gr_277080_122 crossref_primary_10_1098_rstb_2016_0355 crossref_primary_10_1186_s13072_017_0130_8 crossref_primary_10_1093_nargab_lqac096 crossref_primary_10_3390_genes13020172 crossref_primary_10_1080_15592294_2024_2305082 crossref_primary_10_1038_s41467_022_34264_y crossref_primary_10_1136_jmedgenet_2019_106508 crossref_primary_10_1038_nature24265 crossref_primary_10_1093_hmg_ddy039 crossref_primary_10_1038_ejhg_2017_29 crossref_primary_10_1371_journal_ppat_1010014 crossref_primary_10_1042_EBC20190034 crossref_primary_10_1016_j_psj_2024_103977 crossref_primary_10_1186_s13072_021_00407_6 crossref_primary_10_1186_s12882_019_1517_5 crossref_primary_10_1371_journal_pone_0173472 crossref_primary_10_1016_j_xgen_2024_100628 crossref_primary_10_1098_rspb_2020_2244 crossref_primary_10_1073_pnas_1611905114 crossref_primary_10_1186_s13293_025_00696_6 crossref_primary_10_1016_j_celrep_2022_111945 crossref_primary_10_1093_nar_gkac123 crossref_primary_10_3389_fcell_2019_00241 crossref_primary_10_1002_slct_202200835 crossref_primary_10_3390_jcm10133000 crossref_primary_10_1038_s41592_020_01000_7 crossref_primary_10_2217_epi_2016_0132 crossref_primary_10_1007_s11596_015_1532_0 crossref_primary_10_1080_15592294_2018_1429857 crossref_primary_10_1038_s41598_018_28356_3 crossref_primary_10_1186_s13148_016_0269_3 crossref_primary_10_1016_j_gde_2020_06_012 crossref_primary_10_1016_j_envint_2022_107183 crossref_primary_10_1186_s13148_017_0370_2 crossref_primary_10_2139_ssrn_4127731 crossref_primary_10_1016_j_cca_2017_03_008 crossref_primary_10_1080_15592294_2015_1069461 crossref_primary_10_1186_s12864_015_2034_y crossref_primary_10_1507_endocrj_EJ24_0249 crossref_primary_10_1016_j_jaut_2023_102992 crossref_primary_10_3389_fcell_2019_00219 crossref_primary_10_3389_fcell_2022_1033684 crossref_primary_10_1101_gr_248641_119 crossref_primary_10_1186_s13148_023_01549_y crossref_primary_10_3389_fgene_2018_00083 crossref_primary_10_1002_cbic_201800310 crossref_primary_10_1126_science_aba3066 crossref_primary_10_1007_s12041_018_0937_5 crossref_primary_10_1038_srep26765 crossref_primary_10_3389_fnmol_2020_602559 crossref_primary_10_1016_j_cels_2022_10_002 crossref_primary_10_1093_hmg_ddaa131 crossref_primary_10_1016_j_gde_2022_101927 crossref_primary_10_1016_j_ejmg_2019_103735 crossref_primary_10_1128_MCB_00382_20 crossref_primary_10_1002_ajmg_a_63051 crossref_primary_10_3390_genes11060620 crossref_primary_10_1038_s41577_024_00996_9 crossref_primary_10_1002_ski2_410 crossref_primary_10_1016_j_gep_2018_04_001 crossref_primary_10_1016_j_arabjc_2022_103956 |
Cites_doi | 10.1186/gb-2013-14-11-r122 10.1371/journal.pone.0014821 10.1038/nature03479 10.1080/00031305.1998.10480559 10.1038/ng1705 10.1038/ng1990 10.1038/ng1567 10.1016/j.devcel.2012.06.011 10.1007/s00439-011-1007-8 10.1093/nar/30.1.207 10.1038/ng.298 10.1093/nar/10.8.2709 10.1210/jc.2011-2916 10.1111/acel.12180 10.1038/nature13206 10.1186/s13059-014-0408-0 10.1038/ng0398-212 10.1186/1756-8935-6-19 10.1093/hmg/ddt513 10.1186/gb-2012-13-6-r44 10.1186/gb-2014-15-2-r37 10.1038/nrg3687 10.1101/gr.112680.110 10.1073/pnas.85.20.7657 10.1093/nar/gkr120 10.1038/ejhg.2014.34 10.1038/ng.471 10.1101/gr.125187.111 10.1007/BF01737285 10.1038/nsmb.2764 10.1016/0092-8674(87)90353-9 10.1126/science.1136352 10.1186/1471-2105-7-446 10.1371/journal.pgen.0030181 10.1186/1756-8935-6-9 10.1016/j.bbagrm.2014.03.001 10.1093/bioinformatics/btn224 10.1007/978-0-387-21706-2 10.1002/bies.201400032 10.1038/nmeth.2632 10.1101/gr.152140.112 10.1038/nature09906 10.1093/nar/26.12.2935 10.1186/gb-2014-15-4-r54 10.1038/ng1598 10.1186/1756-8935-6-4 10.1159/000131782 10.4161/epi.20117 10.1038/nature11233 10.1371/journal.pone.0002553 10.1073/pnas.0510310103 10.1016/j.ygeno.2006.07.016 10.1128/MCB.19.11.7327 |
ContentType | Journal Article |
Copyright | The Author 2014. Published by Oxford University Press. The Author 2014. Published by Oxford University Press. 2014 |
Copyright_xml | – notice: The Author 2014. Published by Oxford University Press. – notice: The Author 2014. Published by Oxford University Press. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1093/hmg/ddu564 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | 1539 |
ExternalDocumentID | PMC4381753 25381334 10_1093_hmg_ddu564 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP-13690 |
GroupedDBID | --- -DZ -E4 .2P .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SJN TEORI TJX TLC TMA TR2 W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c477t-b7f61e7be8d354b03b33dc1468a7f8955e3d00c96f765b8ac8959ba693822ba63 |
ISSN | 0964-6906 1460-2083 |
IngestDate | Thu Aug 21 14:10:25 EDT 2025 Thu Jul 10 22:57:23 EDT 2025 Fri Jul 11 00:14:29 EDT 2025 Mon Jul 21 05:57:42 EDT 2025 Tue Jul 01 04:52:49 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | The Author 2014. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-b7f61e7be8d354b03b33dc1468a7f8955e3d00c96f765b8ac8959ba693822ba63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4381753 |
PMID | 25381334 |
PQID | 1657323227 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4381753 proquest_miscellaneous_1701481269 proquest_miscellaneous_1657323227 pubmed_primary_25381334 crossref_citationtrail_10_1093_hmg_ddu564 crossref_primary_10_1093_hmg_ddu564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-15 |
PublicationDateYYYYMMDD | 2015-03-15 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Miller ( key 20170503080608_DDU564C31) 1982; 33 Hacisuleyman ( key 20170503080608_DDU564C48) 2014; 21 Talebizadeh ( key 20170503080608_DDU564C38) 2006; 88 Joo ( key 20170503080608_DDU564C27) 2014; 22 Djebali ( key 20170503080608_DDU564C50) 2012; 489 Zykovich ( key 20170503080608_DDU564C25) 2014; 13 Alisch ( key 20170503080608_DDU564C36) 2012; 22 Hackenberg ( key 20170503080608_DDU564C15) 2006; 7 Shen ( key 20170503080608_DDU564C42) 2007; 3 Cotton ( key 20170503080608_DDU564C21) 2014; 23 Lock ( key 20170503080608_DDU564C41) 1987; 48 Venables ( key 20170503080608_DDU564C54) 2002 Bocklandt ( key 20170503080608_DDU564C37) 2011; 6 Edgar ( key 20170503080608_DDU564C32) 2002; 30 Viegas-Pequignot ( key 20170503080608_DDU564C29) 1988; 85 Michels ( key 20170503080608_DDU564C10) 2013; 10 Lepage ( key 20170503080608_DDU564C46) 2012; 97 Saxonov ( key 20170503080608_DDU564C11) 2006; 103 Weber ( key 20170503080608_DDU564C26) 2007; 39 Nguyen ( key 20170503080608_DDU564C8) 2006; 38 Carrel ( key 20170503080608_DDU564C1) 2005; 434 Huh ( key 20170503080608_DDU564C17) 2013; 6 Ernst ( key 20170503080608_DDU564C20) 2011; 473 Prantera ( key 20170503080608_DDU564C30) 1990; 99 Ehrlich ( key 20170503080608_DDU564C14) 1982; 10 Lokk ( key 20170503080608_DDU564C16) 2014; 15 De Smet ( key 20170503080608_DDU564C33) 1999; 19 Hellman ( key 20170503080608_DDU564C28) 2007; 315 Rothbart ( key 20170503080608_DDU564C19) 2014; 839 Peeters ( key 20170503080608_DDU564C6) 2014; 36 Bellott ( key 20170503080608_DDU564C3) 2014; 508 Bondy ( key 20170503080608_DDU564C45) 2012; 9 Wagner ( key 20170503080608_DDU564C13) 2014; 15 Hintze ( key 20170503080608_DDU564C53) 1998; 52 Maksimovic ( key 20170503080608_DDU564C52) 2012; 13 Price ( key 20170503080608_DDU564C22) 2013; 6 Tinker ( key 20170503080608_DDU564C34) 1998; 26 Irizarry ( key 20170503080608_DDU564C23) 2009; 41 Mould ( key 20170503080608_DDU564C43) 2013; 6 Deng ( key 20170503080608_DDU564C4) 2014; 15 Cotton ( key 20170503080608_DDU564C7) 2011; 130 Doi ( key 20170503080608_DDU564C24) 2009; 41 Jin ( key 20170503080608_DDU564C39) 2011; 39 Raefski ( key 20170503080608_DDU564C47) 2005; 37 Wang ( key 20170503080608_DDU564C35) 2012; 7 Lingenfelter ( key 20170503080608_DDU564C40) 1998; 18 Xu ( key 20170503080608_DDU564C5) 2008; 3 Sheffield ( key 20170503080608_DDU564C49) 2013; 23 Weber ( key 20170503080608_DDU564C12) 2005; 37 Sharp ( key 20170503080608_DDU564C9) 2011; 21 Cotton ( key 20170503080608_DDU564C2) 2013; 14 Du ( key 20170503080608_DDU564C51) 2008; 24 Lou ( key 20170503080608_DDU564C18) 2014; 15 Gendrel ( key 20170503080608_DDU564C44) 2012; 23 24759411 - Nature. 2014 Apr 24;508(7497):494-9 24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206 24076989 - Nat Methods. 2013 Oct;10(10):949-55 23452981 - Epigenetics Chromatin. 2013 Mar 03;6(1):4 17322062 - Science. 2007 Feb 23;315(5815):1141-3 18467348 - Bioinformatics. 2008 Jul 1;24(13):1547-8 17038168 - BMC Bioinformatics. 2006;7:446 18596936 - PLoS One. 2008;3(7):e2553 21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24 22522910 - Epigenetics. 2012 Jun 1;7(6):594-605 24304487 - Aging Cell. 2014 Apr;13(2):360-6 16007088 - Nat Genet. 2005 Aug;37(8):853-62 24690455 - Genome Biol. 2014;15(4):r54 21731603 - PLoS One. 2011;6(6):e14821 24913292 - Bioessays. 2014 Aug;36(8):746-56 22946286 - Pediatr Endocrinol Rev. 2012 May;9 Suppl 2:728-32 24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78 22300631 - Genome Res. 2012 Apr;22(4):623-32 6756802 - Cytogenet Cell Genet. 1982;33(4):345-9 24631868 - Biochim Biophys Acta. 2014 Aug;1839(8):627-43 21597963 - Hum Genet. 2011 Aug;130(2):187-201 3791414 - Cell. 1987 Jan 16;48(1):39-46 7079182 - Nucleic Acids Res. 1982 Apr 24;10(8):2709-21 24555846 - Genome Biol. 2014;15(2):R37 19881528 - Nat Genet. 2009 Dec;41(12):1350-3 21441907 - Nature. 2011 May 5;473(7345):43-9 23482648 - Genome Res. 2013 May;23(5):777-88 16432200 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7 19151715 - Nat Genet. 2009 Feb;41(2):178-86 23618007 - Epigenetics Chromatin. 2013 Apr 26;6(1):9 15908953 - Nat Genet. 2005 Jun;37(6):620-4 16949791 - Genomics. 2006 Dec;88(6):675-81 10523621 - Mol Cell Biol. 1999 Nov;19(11):7327-35 25074712 - Genome Biol. 2014;15(7):408 9611238 - Nucleic Acids Res. 1998 Jun 15;26(12):2935-40 3262875 - Proc Natl Acad Sci U S A. 1988 Oct;85(20):7657-60 22238395 - J Clin Endocrinol Metab. 2012 Mar;97(3):E460-4 16341221 - Nat Genet. 2006 Jan;38(1):47-53 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10 15772666 - Nature. 2005 Mar 17;434(7031):400-4 21862626 - Genome Res. 2011 Oct;21(10):1592-600 22841499 - Dev Cell. 2012 Aug 14;23(2):265-79 24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23 1692783 - Chromosoma. 1990 Apr;99(1):18-23 17334365 - Nat Genet. 2007 Apr;39(4):457-66 22703947 - Genome Biol. 2012;13(6):R44 24176135 - Genome Biol. 2013;14(11):R122 17967063 - PLoS Genet. 2007 Oct;3(10):2023-36 24713664 - Eur J Hum Genet. 2014 Dec;22(12):1376-81 9500539 - Nat Genet. 1998 Mar;18(3):212-3 23819640 - Epigenetics Chromatin. 2013 Jul 02;6(1):19 22955620 - Nature. 2012 Sep 6;489(7414):101-8 |
References_xml | – volume: 14 start-page: R122 year: 2013 ident: key 20170503080608_DDU564C2 article-title: Analysis of expressed SNPs identifies variable extents of expression from the human inactive X chromosome publication-title: Genome Biol. doi: 10.1186/gb-2013-14-11-r122 – volume: 6 start-page: e14821 year: 2011 ident: key 20170503080608_DDU564C37 article-title: Epigenetic predictor of age publication-title: PLoS ONE doi: 10.1371/journal.pone.0014821 – volume: 434 start-page: 400 year: 2005 ident: key 20170503080608_DDU564C1 article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females publication-title: Nature doi: 10.1038/nature03479 – volume: 52 start-page: 181 year: 1998 ident: key 20170503080608_DDU564C53 article-title: Violin plots: a box plot-density trace synergism publication-title: Amer. Stat. doi: 10.1080/00031305.1998.10480559 – volume: 38 start-page: 47 year: 2006 ident: key 20170503080608_DDU564C8 article-title: Dosage compensation of the active X chromosome in mammals publication-title: Nat. Genet. doi: 10.1038/ng1705 – volume: 39 start-page: 457 year: 2007 ident: key 20170503080608_DDU564C26 article-title: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome publication-title: Nat. Genet. doi: 10.1038/ng1990 – volume: 37 start-page: 620 year: 2005 ident: key 20170503080608_DDU564C47 article-title: Identification of a cluster of X-linked imprinted genes in mice publication-title: Nat. Genet. doi: 10.1038/ng1567 – volume: 23 start-page: 265 year: 2012 ident: key 20170503080608_DDU564C44 article-title: Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.06.011 – volume: 130 start-page: 187 year: 2011 ident: key 20170503080608_DDU564C7 article-title: Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation publication-title: Hum. Genet. doi: 10.1007/s00439-011-1007-8 – volume: 9 start-page: 728 year: 2012 ident: key 20170503080608_DDU564C45 article-title: Genomic imprinting and Turner syndrome publication-title: Ped. Endocrin. Rev. – volume: 30 start-page: 207 year: 2002 ident: key 20170503080608_DDU564C32 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucl. Acids Res. doi: 10.1093/nar/30.1.207 – volume: 41 start-page: 178 year: 2009 ident: key 20170503080608_DDU564C23 article-title: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores publication-title: Nat. Genet. doi: 10.1038/ng.298 – volume: 10 start-page: 2709 year: 1982 ident: key 20170503080608_DDU564C14 article-title: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells publication-title: Nucl. Acids Res. doi: 10.1093/nar/10.8.2709 – volume: 97 start-page: E460 year: 2012 ident: key 20170503080608_DDU564C46 article-title: Genomic imprinting effects on cognitive and social abilities in prepubertal girls with Turner syndrome publication-title: J. Clin. Endocrin. Metab. doi: 10.1210/jc.2011-2916 – volume: 13 start-page: 360 year: 2014 ident: key 20170503080608_DDU564C25 article-title: Genome-wide DNA methylation changes with age in disease-free human skeletal muscle publication-title: Aging Cell doi: 10.1111/acel.12180 – volume: 508 start-page: 494 year: 2014 ident: key 20170503080608_DDU564C3 article-title: Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators publication-title: Nature doi: 10.1038/nature13206 – volume: 15 start-page: 408 year: 2014 ident: key 20170503080608_DDU564C18 article-title: Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation publication-title: Genome Biol. doi: 10.1186/s13059-014-0408-0 – volume: 18 start-page: 212 year: 1998 ident: key 20170503080608_DDU564C40 article-title: Escape from X inactivation of Smcx is preceded by silencing during mouse development publication-title: Nat. Genet. doi: 10.1038/ng0398-212 – volume: 6 start-page: 19 year: 2013 ident: key 20170503080608_DDU564C43 article-title: Smchd1 regulates a subset of autosomal genes subject to monoallelic expression in addition to being critical for X inactivation publication-title: Epigenet. Chrom. doi: 10.1186/1756-8935-6-19 – volume: 23 start-page: 1211 year: 2014 ident: key 20170503080608_DDU564C21 article-title: Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt513 – volume: 13 start-page: R44 year: 2012 ident: key 20170503080608_DDU564C52 article-title: SWAN: subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips publication-title: Genome Biol. doi: 10.1186/gb-2012-13-6-r44 – volume: 15 start-page: R37 year: 2014 ident: key 20170503080608_DDU564C13 article-title: The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts publication-title: Genome Biol. doi: 10.1186/gb-2014-15-2-r37 – volume: 15 start-page: 367 year: 2014 ident: key 20170503080608_DDU564C4 article-title: X chromosome regulation: diverse patterns in development, tissues and disease publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3687 – volume: 21 start-page: 1592 year: 2011 ident: key 20170503080608_DDU564C9 article-title: DNA methylation profiles of human active and inactive X chromosomes publication-title: Genome Res. doi: 10.1101/gr.112680.110 – volume: 85 start-page: 7657 year: 1988 ident: key 20170503080608_DDU564C29 article-title: Inactive X chromosome has the highest concentration of unmethylated Hha I sites publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.85.20.7657 – volume: 39 start-page: 5015 year: 2011 ident: key 20170503080608_DDU564C39 article-title: Genomic mapping of 5-hydroxymethylcytosine in the human brain publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkr120 – volume: 22 start-page: 1376 year: 2014 ident: key 20170503080608_DDU564C27 article-title: Human active X-specific DNA methylation events showing stability across time and tissues publication-title: Eur. J. Hum. Genet. doi: 10.1038/ejhg.2014.34 – volume: 41 start-page: 1350 year: 2009 ident: key 20170503080608_DDU564C24 article-title: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts publication-title: Nat. Genet. doi: 10.1038/ng.471 – volume: 22 start-page: 623 year: 2012 ident: key 20170503080608_DDU564C36 article-title: Age-associated DNA methylation in pediatric populations publication-title: Genome Res. doi: 10.1101/gr.125187.111 – volume: 99 start-page: 18 year: 1990 ident: key 20170503080608_DDU564C30 article-title: Analysis of methylation and distribution of CpG sequences on human active and inactive X chromosomes by in situ nick translation publication-title: Chromosoma doi: 10.1007/BF01737285 – volume: 21 start-page: 198 year: 2014 ident: key 20170503080608_DDU564C48 article-title: Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2764 – volume: 48 start-page: 39 year: 1987 ident: key 20170503080608_DDU564C41 article-title: Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation publication-title: Cell doi: 10.1016/0092-8674(87)90353-9 – volume: 315 start-page: 1141 year: 2007 ident: key 20170503080608_DDU564C28 article-title: Gene body-specific methylation on the active X chromosome publication-title: Science doi: 10.1126/science.1136352 – volume: 7 start-page: 446 year: 2006 ident: key 20170503080608_DDU564C15 article-title: CpGcluster: a distance-based algorithm for CpG-island detection publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-446 – volume: 3 start-page: 2023 year: 2007 ident: key 20170503080608_DDU564C42 article-title: Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030181 – volume: 6 start-page: 9 year: 2013 ident: key 20170503080608_DDU564C17 article-title: DNA methylation and transcriptional noise publication-title: Epigenet. Chrom. doi: 10.1186/1756-8935-6-9 – volume: 839 start-page: 627 year: 2014 ident: key 20170503080608_DDU564C19 article-title: Interpreting the language of histone and DNA modifications publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.03.001 – volume: 24 start-page: 1547 year: 2008 ident: key 20170503080608_DDU564C51 article-title: lumi: a pipeline for processing Illumina microarray publication-title: Bioinf. doi: 10.1093/bioinformatics/btn224 – volume-title: Modern Applied Statistics with S year: 2002 ident: key 20170503080608_DDU564C54 doi: 10.1007/978-0-387-21706-2 – volume: 36 start-page: 746 year: 2014 ident: key 20170503080608_DDU564C6 article-title: Variable escape from X-chromosome inactivation: identifying factors that tip the scales towards expression publication-title: BioEssays doi: 10.1002/bies.201400032 – volume: 10 start-page: 949 year: 2013 ident: key 20170503080608_DDU564C10 article-title: Recommendations for the design and analysis of epigenome-wide association studies publication-title: Nat. Methods doi: 10.1038/nmeth.2632 – volume: 23 start-page: 777 year: 2013 ident: key 20170503080608_DDU564C49 article-title: Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions publication-title: Genome Res. doi: 10.1101/gr.152140.112 – volume: 473 start-page: 43 year: 2011 ident: key 20170503080608_DDU564C20 article-title: Mapping and analysis of chromatin state dynamics in nine human cell types publication-title: Nature doi: 10.1038/nature09906 – volume: 26 start-page: 2935 year: 1998 ident: key 20170503080608_DDU564C34 article-title: Induction of XIST expression from the human active X chromosome in mouse/human somatic cell hybrids by DNA demethylation publication-title: Nucl. Acids Res. doi: 10.1093/nar/26.12.2935 – volume: 15 start-page: R54 year: 2014 ident: key 20170503080608_DDU564C16 article-title: DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns publication-title: Genome Biol. doi: 10.1186/gb-2014-15-4-r54 – volume: 37 start-page: 853 year: 2005 ident: key 20170503080608_DDU564C12 article-title: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells publication-title: Nat. Genet. doi: 10.1038/ng1598 – volume: 6 start-page: 4 year: 2013 ident: key 20170503080608_DDU564C22 article-title: Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array publication-title: Epigenet. Chrom. doi: 10.1186/1756-8935-6-4 – volume: 33 start-page: 345 year: 1982 ident: key 20170503080608_DDU564C31 article-title: Is DNA methylation responsible for mammalian X chromosome inactivation? publication-title: Cytogenet. Cell Genet. doi: 10.1159/000131782 – volume: 7 start-page: 594 year: 2012 ident: key 20170503080608_DDU564C35 article-title: Individual variation and longitudinal pattern of genome-wide DNA methylation from birth to the first two years of life publication-title: Epigenet. doi: 10.4161/epi.20117 – volume: 489 start-page: 101 year: 2012 ident: key 20170503080608_DDU564C50 article-title: Landscape of transcription in human cells publication-title: Nature doi: 10.1038/nature11233 – volume: 3 start-page: e2553 year: 2008 ident: key 20170503080608_DDU564C5 article-title: Sex-specific expression of the X-linked histone demethylase gene Jarid1c in brain publication-title: PLoS ONE doi: 10.1371/journal.pone.0002553 – volume: 103 start-page: 1412 year: 2006 ident: key 20170503080608_DDU564C11 article-title: A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510310103 – volume: 88 start-page: 675 year: 2006 ident: key 20170503080608_DDU564C38 article-title: X chromosome gene expression in human tissues: male and female comparisons publication-title: Genomics doi: 10.1016/j.ygeno.2006.07.016 – volume: 19 start-page: 7327 year: 1999 ident: key 20170503080608_DDU564C33 article-title: DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.11.7327 – reference: 22522910 - Epigenetics. 2012 Jun 1;7(6):594-605 – reference: 24631868 - Biochim Biophys Acta. 2014 Aug;1839(8):627-43 – reference: 19151715 - Nat Genet. 2009 Feb;41(2):178-86 – reference: 16949791 - Genomics. 2006 Dec;88(6):675-81 – reference: 22238395 - J Clin Endocrinol Metab. 2012 Mar;97(3):E460-4 – reference: 19881528 - Nat Genet. 2009 Dec;41(12):1350-3 – reference: 3791414 - Cell. 1987 Jan 16;48(1):39-46 – reference: 21441907 - Nature. 2011 May 5;473(7345):43-9 – reference: 17322062 - Science. 2007 Feb 23;315(5815):1141-3 – reference: 16341221 - Nat Genet. 2006 Jan;38(1):47-53 – reference: 22955620 - Nature. 2012 Sep 6;489(7414):101-8 – reference: 23452981 - Epigenetics Chromatin. 2013 Mar 03;6(1):4 – reference: 23618007 - Epigenetics Chromatin. 2013 Apr 26;6(1):9 – reference: 23482648 - Genome Res. 2013 May;23(5):777-88 – reference: 18467348 - Bioinformatics. 2008 Jul 1;24(13):1547-8 – reference: 18596936 - PLoS One. 2008;3(7):e2553 – reference: 1692783 - Chromosoma. 1990 Apr;99(1):18-23 – reference: 16432200 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1412-7 – reference: 17334365 - Nat Genet. 2007 Apr;39(4):457-66 – reference: 9611238 - Nucleic Acids Res. 1998 Jun 15;26(12):2935-40 – reference: 22703947 - Genome Biol. 2012;13(6):R44 – reference: 24733023 - Nat Rev Genet. 2014 Jun;15(6):367-78 – reference: 16007088 - Nat Genet. 2005 Aug;37(8):853-62 – reference: 24913292 - Bioessays. 2014 Aug;36(8):746-56 – reference: 24463464 - Nat Struct Mol Biol. 2014 Feb;21(2):198-206 – reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10 – reference: 24690455 - Genome Biol. 2014;15(4):r54 – reference: 24304487 - Aging Cell. 2014 Apr;13(2):360-6 – reference: 6756802 - Cytogenet Cell Genet. 1982;33(4):345-9 – reference: 22300631 - Genome Res. 2012 Apr;22(4):623-32 – reference: 24158853 - Hum Mol Genet. 2014 Mar 1;23(5):1211-23 – reference: 24176135 - Genome Biol. 2013;14(11):R122 – reference: 21731603 - PLoS One. 2011;6(6):e14821 – reference: 24076989 - Nat Methods. 2013 Oct;10(10):949-55 – reference: 17038168 - BMC Bioinformatics. 2006;7:446 – reference: 10523621 - Mol Cell Biol. 1999 Nov;19(11):7327-35 – reference: 15908953 - Nat Genet. 2005 Jun;37(6):620-4 – reference: 15772666 - Nature. 2005 Mar 17;434(7031):400-4 – reference: 24555846 - Genome Biol. 2014;15(2):R37 – reference: 22946286 - Pediatr Endocrinol Rev. 2012 May;9 Suppl 2:728-32 – reference: 21862626 - Genome Res. 2011 Oct;21(10):1592-600 – reference: 9500539 - Nat Genet. 1998 Mar;18(3):212-3 – reference: 21378125 - Nucleic Acids Res. 2011 Jul;39(12):5015-24 – reference: 22841499 - Dev Cell. 2012 Aug 14;23(2):265-79 – reference: 3262875 - Proc Natl Acad Sci U S A. 1988 Oct;85(20):7657-60 – reference: 17967063 - PLoS Genet. 2007 Oct;3(10):2023-36 – reference: 24713664 - Eur J Hum Genet. 2014 Dec;22(12):1376-81 – reference: 25074712 - Genome Biol. 2014;15(7):408 – reference: 7079182 - Nucleic Acids Res. 1982 Apr 24;10(8):2709-21 – reference: 23819640 - Epigenetics Chromatin. 2013 Jul 02;6(1):19 – reference: 21597963 - Hum Genet. 2011 Aug;130(2):187-201 – reference: 24759411 - Nature. 2014 Apr 24;508(7497):494-9 |
SSID | ssj0016437 |
Score | 2.5570276 |
Snippet | X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1528 |
SubjectTerms | Chromatin - metabolism Chromosomes, Human, X CpG Islands DNA Methylation DNA, Intergenic Female Gene Expression Regulation Humans Oligonucleotide Array Sequence Analysis Organ Specificity Promoter Regions, Genetic Transcription, Genetic X Chromosome Inactivation |
Title | Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25381334 https://www.proquest.com/docview/1657323227 https://www.proquest.com/docview/1701481269 https://pubmed.ncbi.nlm.nih.gov/PMC4381753 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBMurvGQEF1TCJnYSJ8dVaVmgLRxaKbcoceLtSm26YlOk5cKv4P8yEydOChVakKq0Sq1x2-_reDyeByGvAmkrliWpxRLBLFdJZqVMOlZiKzcJA9ezFSYKT2f-ycL9GHlRr_ezE7W0LdO38vvevJL_QRXuAa6YJfsPyBqhcANeA75wBYTheiWMJ5inixFMaPK9mx1X_aAvV7UVqAMYo4FcYsjdxWaNHVLUqgrfGJ6_H2QYu657AuDqVjsFq9EgoRhUuUbV4UJkdWScFZgL8a1FtDZt9XHAumm3i72ZMUHS2OzDTdk0sF6tqsaHxuljes-PBtPktPURmEYC0zw5XWKiVet4hW-ppWE0AGq2L10HhuNhBJdO4Ww8kb5rYb1kvSRpPez6NkCte9w0ilonW9eE7GpdsEGCzgoOSjzcuzroylnLNSjRcZZtPV0_fbcI9-xzPF5MJvF8FM2vkesMdh_VTv3DJ3M4hWedVQnH-nM3VW9DfgSyj7TkXTvnj83L7zG4HaNmfofcrncj9FhT6y7p5cUhuaH7k14ekpvTOvLiHvlhuEY3igLXaIdrFB7ANRrRlie04RoFrtGaa29oyzRqmEYrplGYgHaZRrtMu08W49F8eGLVzTss6QpRWqlQvpOLNA8y7rmpzVPOM4mJfolQQeh5Oc9sW4a-Er6XBomEe2Ga-CEHkxWe-QNyUADLHhGqsiCQuQhAmnTdhAfKgX04U2D8My6V3Sevm586lnVle2ywsop1hAWPAZZYw9InL83Yc13PZe-oFw1iMahbPENLinyzvYgd3xMcdiFM_GWMQDe9w_ywTx5qlM1cDAwMh3OYQezgbwZguffdd4qzZVX2HYvxCY8_vsK8T8it9p_2lByUX7f5MzCey_R5ReVfInvOjg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Landscape+of+DNA+methylation+on+the+X+chromosome+reflects+CpG+density%2C+functional+chromatin+state+and+X-chromosome+inactivation&rft.jtitle=Human+molecular+genetics&rft.au=Cotton%2C+Allison+M&rft.au=Price%2C+E+Magda&rft.au=Jones%2C+Meaghan+J&rft.au=Balaton%2C+Bradley+P&rft.date=2015-03-15&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=24&rft.issue=6&rft.spage=1528&rft.epage=1539&rft_id=info:doi/10.1093%2Fhmg%2Fddu564&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |