Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway
Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-t...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 80; no. 21; pp. 4655 - 4667 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg. |
---|---|
AbstractList | Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg. Development of resistance remains the key obstacle to the clinical efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the NSCLC cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827 and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the pro-apoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small molecular inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg. |
Author | Liu, Yanfeng Glazer, Peter M. Zhang, Gary J. Lu, Yuhong Oeck, Sebastian Schramm, Alexander |
AuthorAffiliation | 4. Department of Biology, Tufts University, Medford, MA 02155, USA 1. Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510, USA 2. Department of Genetics, Yale University School of Medicine. New Haven, CT 06510, USA 3. Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany |
AuthorAffiliation_xml | – name: 1. Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510, USA – name: 2. Department of Genetics, Yale University School of Medicine. New Haven, CT 06510, USA – name: 3. Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany – name: 4. Department of Biology, Tufts University, Medford, MA 02155, USA |
Author_xml | – sequence: 1 givenname: Yuhong surname: Lu fullname: Lu, Yuhong – sequence: 2 givenname: Yanfeng surname: Liu fullname: Liu, Yanfeng – sequence: 3 givenname: Sebastian orcidid: 0000-0001-9695-8771 surname: Oeck fullname: Oeck, Sebastian – sequence: 4 givenname: Gary J. surname: Zhang fullname: Zhang, Gary J. – sequence: 5 givenname: Alexander surname: Schramm fullname: Schramm, Alexander – sequence: 6 givenname: Peter M. orcidid: 0000-0003-4525-5560 surname: Glazer fullname: Glazer, Peter M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32873635$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9P2zAUxa2JaRTYR9jkx70E_DeONWlSFVFAdBtC8Gw5idN6Su1iO2z99jjAqm0ve7Ls-zvn3utzBA6cdwaADxidYsyrM4RQVXAmyGk9_1YQVGAsyRsww5xWhWCMH4DZnjkERzH-yFeOEX8HDimpBC0pn4GHy93W_7IaXrlubE2EtybamLRrDUwenl8sbnNpbRubfIjQOrgc3QrWExBgbYYhwscsv98GsxoHnax30PdwkYUYatfBtDbw6_zmGt7otP6pdyfgba-HaN6_nsfgfnF-V18Wy-8XV_V8WbRMiFRI3JdVnl9oY6TWDSeMIYNkVXVN3qIhWjSY8N4g0ZeUdIS1kkpBEeqlkbKlx-DLi-92bDama41LQQ9qG-xGh53y2qq_K86u1co_KlEyggjLBp9eDYJ_GE1MamNjmzfWzvgxqozIkiJSkox-_LPXvsnvf84AfwHa4GMMpt8jGKkpTzVlpaasVM5TkelVTsaf_9G1Nj1_ch7ZDv9RPwHP_KTU |
CitedBy_id | crossref_primary_10_1186_s12935_024_03382_6 crossref_primary_10_3389_fphar_2024_1438067 crossref_primary_10_1016_j_bbcan_2023_188967 crossref_primary_10_1016_j_ejphar_2022_174907 crossref_primary_10_1155_2022_5482148 crossref_primary_10_1038_s41598_024_75770_x crossref_primary_10_2147_LCTT_S293902 crossref_primary_10_1016_j_carbpol_2021_118655 crossref_primary_10_1038_s41420_022_01096_0 crossref_primary_10_3892_ol_2022_13528 crossref_primary_10_3389_fgene_2021_764869 crossref_primary_10_1016_j_bmc_2023_117384 crossref_primary_10_3390_ijms26072957 crossref_primary_10_1038_s41420_024_02251_5 crossref_primary_10_4155_fmc_2021_0326 crossref_primary_10_1038_s41392_024_01778_4 crossref_primary_10_1016_j_tice_2025_102756 crossref_primary_10_15188_kjopp_2021_08_35_4_117 crossref_primary_10_18632_aging_205517 crossref_primary_10_3389_fonc_2022_882372 crossref_primary_10_1002_ptr_7923 crossref_primary_10_1038_s41598_024_52616_0 crossref_primary_10_1007_s11684_024_1107_1 crossref_primary_10_1016_j_heliyon_2023_e22515 crossref_primary_10_3390_cancers13143421 crossref_primary_10_1186_s12967_023_04450_7 crossref_primary_10_1186_s13045_025_01684_4 crossref_primary_10_2139_ssrn_4104378 crossref_primary_10_3390_genes13122183 crossref_primary_10_1093_bib_bbac366 crossref_primary_10_1155_2022_7529923 crossref_primary_10_1186_s13046_022_02460_9 crossref_primary_10_3390_cancers17010136 crossref_primary_10_1021_acs_jmedchem_5c00267 crossref_primary_10_3390_cancers16030491 crossref_primary_10_1038_s41392_022_01168_8 crossref_primary_10_1186_s13046_023_02724_y crossref_primary_10_1002_mco2_367 crossref_primary_10_3390_ijms242316887 crossref_primary_10_1002_jcp_30751 crossref_primary_10_1016_j_drup_2023_100929 crossref_primary_10_2174_1386207326666230314112238 crossref_primary_10_1016_j_apmt_2022_101660 crossref_primary_10_1002_ctm2_1101 crossref_primary_10_1038_s41416_023_02404_w crossref_primary_10_3389_fphar_2023_1090500 crossref_primary_10_3390_ijms23148025 crossref_primary_10_1002_adhm_202002214 crossref_primary_10_1021_acsnano_3c07763 crossref_primary_10_3390_biomedicines11051364 crossref_primary_10_3390_cancers14112711 crossref_primary_10_1016_j_biopha_2022_113959 crossref_primary_10_1186_s13046_023_02753_7 crossref_primary_10_3389_fcell_2022_814621 crossref_primary_10_3390_pharmaceutics14081606 crossref_primary_10_12677_HJBM_2022_121002 |
Cites_doi | 10.1038/s41416-019-0573-8 10.1002/wdev.176 10.1158/2159-8290.CD-12-0103 10.1158/1078-0432.CCR-12-2246 10.21037/tlcr.2019.06.01 10.1111/brv.12416 10.1126/scitranslmed.3002003 10.1016/j.apsb.2015.05.007 10.1002/cncr.32655 10.1007/s11523-018-0573-2 10.1038/nm.3854 10.1038/s41388-018-0311-3 10.1016/j.ejca.2018.07.005 10.1016/j.critrevonc.2017.02.018 10.18632/oncotarget.19411 10.1158/2159-8290.CD-15-0063 10.18632/oncotarget.13117 10.1111/cas.14260 10.1371/journal.pmed.0040315 10.1016/j.pharmthera.2017.05.013 10.1056/NEJMoa0810699 10.1038/nrd2792 10.1038/oncsis.2013.4 10.1634/theoncologist.9-90005-10 10.1038/s41419-018-0651-5 10.1259/0007-1285-26-312-638 10.1097/PPO.0000000000000131 10.1056/NEJMoa044238 10.1126/science.1099314 10.1038/s41388-018-0482-y 10.1007/s11899-019-00543-7 10.1002/med.21288 10.1158/1541-7786.MCR-17-0637 10.1158/1078-0432.CCR-17-1577 10.3390/cells7110212 10.1158/1078-0432.CCR-12-1558 10.1016/j.cllc.2018.02.007 10.1016/j.dnarep.2015.04.030 10.1158/1535-7163.MCT-07-0138 10.1016/j.cytogfr.2005.01.003 10.1056/NEJMoa040938 10.1038/s41571-018-0115-y 10.1016/j.ccr.2007.11.004 10.1158/0008-5472.CAN-19-0024 |
ContentType | Journal Article |
Copyright | 2020 American Association for Cancer Research. |
Copyright_xml | – notice: 2020 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-20-1192 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 4667 |
ExternalDocumentID | PMC7642024 32873635 10_1158_0008_5472_CAN_20_1192 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R35 CA197574 – fundername: NIEHS NIH HHS grantid: R01 ES005775 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-c477t-91f680087aee9aab52440e0988db510b2a7b125fe07f632d24c9397300f9e99c3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 18:36:54 EDT 2025 Mon Jul 21 09:42:54 EDT 2025 Wed Feb 19 02:26:28 EST 2025 Tue Jul 01 01:27:40 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | 2020 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-91f680087aee9aab52440e0988db510b2a7b125fe07f632d24c9397300f9e99c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9695-8771 0000-0003-4525-5560 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/80/21/4655.full.pdf |
PMID | 32873635 |
PQID | 2439630262 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642024 proquest_miscellaneous_2439630262 pubmed_primary_32873635 crossref_primary_10_1158_0008_5472_CAN_20_1192 crossref_citationtrail_10_1158_0008_5472_CAN_20_1192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2020 |
References | Ornitz (2022061706333810400_bib18) 2015; 4 Lu (2022061706333810400_bib22) 2018; 16 Costa (2022061706333810400_bib27) 2007; 4 Paez (2022061706333810400_bib2) 2004; 304 Presta (2022061706333810400_bib34) 2017; 179 Thress (2022061706333810400_bib9) 2015; 21 Yuan (2022061706333810400_bib28) 2018; 19 Beenken (2022061706333810400_bib17) 2009; 8 Takeuchi (2022061706333810400_bib30) 2020; 111 Nagano (2022061706333810400_bib11) 2018; 7 Andrews Wright (2022061706333810400_bib8) 2019; 8 Bronte (2022061706333810400_bib37) 2018; 93 Byers (2022061706333810400_bib35) 2013; 19 Yu (2022061706333810400_bib7) 2013; 19 Acevedo (2022061706333810400_bib39) 2007; 12 Frederick (2022061706333810400_bib36) 2007; 6 Yochum (2022061706333810400_bib38) 2019; 38 Kobayashi (2022061706333810400_bib6) 2005; 352 Tricker (2022061706333810400_bib40) 2015; 5 Tan (2022061706333810400_bib14) 2015; 21 Li (2022061706333810400_bib32) 2020; 126 Porta (2022061706333810400_bib19) 2017; 113 Masoud (2022061706333810400_bib16) 2015; 5 Wang (2022061706333810400_bib26) 2018; 37 Cho (2022061706333810400_bib42) 2018; 9 Becker (2022061706333810400_bib41) 2019; 79 Li (2022061706333810400_bib43) 2018; 13 Sequist (2022061706333810400_bib5) 2011; 3 Vaupel (2022061706333810400_bib13) 2004; 9 Grose (2022061706333810400_bib33) 2005; 16 Gray (2022061706333810400_bib15) 1953; 26 Brown (2022061706333810400_bib24) 2016; 7 Ware (2022061706333810400_bib25) 2013; 2 Yaghmaie (2022061706333810400_bib23) 2019; 14 Ferlay (2022061706333810400_bib1) 2018; 103 Xia (2022061706333810400_bib44) 2017; 8 Katoh (2022061706333810400_bib21) 2019; 16 Song (2022061706333810400_bib29) 2018; 24 Scanlon (2022061706333810400_bib12) 2015; 32 Mok (2022061706333810400_bib4) 2009; 361 Leonetti (2022061706333810400_bib10) 2019; 121 Lynch (2022061706333810400_bib3) 2004; 350 Ercan (2022061706333810400_bib31) 2012; 2 Katoh (2022061706333810400_bib20) 2014; 34 |
References_xml | – volume: 121 start-page: 725 year: 2019 ident: 2022061706333810400_bib10 article-title: Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer publication-title: Br J Cancer doi: 10.1038/s41416-019-0573-8 – volume: 4 start-page: 215 year: 2015 ident: 2022061706333810400_bib18 article-title: The fibroblast growth factor signaling pathway publication-title: Wiley Interdiscip Rev Dev Biol doi: 10.1002/wdev.176 – volume: 2 start-page: 934 year: 2012 ident: 2022061706333810400_bib31 article-title: Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0103 – volume: 19 start-page: 2240 year: 2013 ident: 2022061706333810400_bib7 article-title: Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-2246 – volume: 8 start-page: S247 year: 2019 ident: 2022061706333810400_bib8 article-title: Third-generation epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer publication-title: Transl Lung Cancer Res doi: 10.21037/tlcr.2019.06.01 – volume: 93 start-page: 1735 year: 2018 ident: 2022061706333810400_bib37 article-title: Epithelial-to-mesenchymal transition in the context of epidermal growth factor receptor inhibition in non-small-cell lung cancer publication-title: Biol Rev Camb Philos Soc doi: 10.1111/brv.12416 – volume: 3 start-page: 75ra26 year: 2011 ident: 2022061706333810400_bib5 article-title: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002003 – volume: 5 start-page: 378 year: 2015 ident: 2022061706333810400_bib16 article-title: HIF-1α pathway: role, regulation and intervention for cancer therapy publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2015.05.007 – volume: 126 start-page: 1339 year: 2020 ident: 2022061706333810400_bib32 article-title: ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non–small-cell lung cancer cells to osimertinib publication-title: Cancer doi: 10.1002/cncr.32655 – volume: 13 start-page: 517 year: 2018 ident: 2022061706333810400_bib43 article-title: BIM deletion polymorphism confers resistance to osimertinib in EGFR T790M lung cancer: a case report and literature review publication-title: Target Oncol doi: 10.1007/s11523-018-0573-2 – volume: 21 start-page: 560 year: 2015 ident: 2022061706333810400_bib9 article-title: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M publication-title: Nat Med doi: 10.1038/nm.3854 – volume: 37 start-page: 5340 year: 2018 ident: 2022061706333810400_bib26 article-title: FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial–mesenchymal transition, and metastasis in FGFR1-amplified lung cancer publication-title: Oncogene doi: 10.1038/s41388-018-0311-3 – volume: 103 start-page: 356 year: 2018 ident: 2022061706333810400_bib1 article-title: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2018.07.005 – volume: 113 start-page: 256 year: 2017 ident: 2022061706333810400_bib19 article-title: FGFR a promising druggable target in cancer: Molecular biology and new drugs publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2017.02.018 – volume: 8 start-page: 108522 year: 2017 ident: 2022061706333810400_bib44 article-title: Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer publication-title: Oncotarget doi: 10.18632/oncotarget.19411 – volume: 5 start-page: 960 year: 2015 ident: 2022061706333810400_bib40 article-title: Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR mutant lung cancer publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-15-0063 – volume: 7 start-page: 83424 year: 2016 ident: 2022061706333810400_bib24 article-title: FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition publication-title: Oncotarget doi: 10.18632/oncotarget.13117 – volume: 111 start-page: 561 year: 2020 ident: 2022061706333810400_bib30 article-title: Phase I study of vorinostat with gefitinib in BIM deletion polymorphism/epidermal growth factor receptor mutation double-positive lung cancer publication-title: Cancer Sci doi: 10.1111/cas.14260 – volume: 4 start-page: e315 year: 2007 ident: 2022061706333810400_bib27 article-title: BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations publication-title: PLoS Med doi: 10.1371/journal.pmed.0040315 – volume: 179 start-page: 171 year: 2017 ident: 2022061706333810400_bib34 article-title: Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2017.05.013 – volume: 361 start-page: 947 year: 2009 ident: 2022061706333810400_bib4 article-title: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma publication-title: N Engl J Med doi: 10.1056/NEJMoa0810699 – volume: 8 start-page: 235 year: 2009 ident: 2022061706333810400_bib17 article-title: The FGF family: biology, pathophysiology and therapy publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2792 – volume: 2 start-page: e39 year: 2013 ident: 2022061706333810400_bib25 article-title: A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop publication-title: Oncogenesis doi: 10.1038/oncsis.2013.4 – volume: 9 start-page: 10 year: 2004 ident: 2022061706333810400_bib13 article-title: The role of hypoxia-induced factors in tumor progression publication-title: Oncologist doi: 10.1634/theoncologist.9-90005-10 – volume: 9 start-page: 587 year: 2018 ident: 2022061706333810400_bib42 article-title: RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by inducing NF-κB-mediated ERK reactivation publication-title: Cell Death Dis doi: 10.1038/s41419-018-0651-5 – volume: 26 start-page: 638 year: 1953 ident: 2022061706333810400_bib15 article-title: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy publication-title: Br J Radiol doi: 10.1259/0007-1285-26-312-638 – volume: 21 start-page: 254 year: 2015 ident: 2022061706333810400_bib14 article-title: Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them publication-title: Cancer J doi: 10.1097/PPO.0000000000000131 – volume: 352 start-page: 786 year: 2005 ident: 2022061706333810400_bib6 article-title: EGFR mutation and resistance of non–small-cell lung cancer to gefitinib publication-title: N Engl J Med doi: 10.1056/NEJMoa044238 – volume: 304 start-page: 1497 year: 2004 ident: 2022061706333810400_bib2 article-title: EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy publication-title: Science doi: 10.1126/science.1099314 – volume: 38 start-page: 656 year: 2019 ident: 2022061706333810400_bib38 article-title: Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer publication-title: Oncogene doi: 10.1038/s41388-018-0482-y – volume: 14 start-page: 395 year: 2019 ident: 2022061706333810400_bib23 article-title: Molecular mechanisms of resistance to tyrosine kinase inhibitors publication-title: Curr Hematol Malig Rep doi: 10.1007/s11899-019-00543-7 – volume: 34 start-page: 280 year: 2014 ident: 2022061706333810400_bib20 article-title: FGF receptors: cancer biology and therapeutics publication-title: Med Res Rev doi: 10.1002/med.21288 – volume: 16 start-page: 1458 year: 2018 ident: 2022061706333810400_bib22 article-title: Hypoxia promotes resistance to EGFR inhibition in NSCLC cells via the histone demethylases, LSD1 and PLU-1 publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-17-0637 – volume: 24 start-page: 197 year: 2018 ident: 2022061706333810400_bib29 article-title: Epithelial-to-mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-1577 – volume: 7; start-page: 212 year: 2018 ident: 2022061706333810400_bib11 article-title: Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy publication-title: Cells doi: 10.3390/cells7110212 – volume: 19 start-page: 279 year: 2013 ident: 2022061706333810400_bib35 article-title: An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-1558 – volume: 19 start-page: e431 year: 2018 ident: 2022061706333810400_bib28 article-title: Clinical implications of the BIM deletion polymorphism in advanced lung adenocarcinoma treated with gefitinib publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2018.02.007 – volume: 32 start-page: 180 year: 2015 ident: 2022061706333810400_bib12 article-title: Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2015.04.030 – volume: 6 start-page: 1683 year: 2007 ident: 2022061706333810400_bib36 article-title: Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non–small cell lung carcinoma publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-07-0138 – volume: 16 start-page: 179 year: 2005 ident: 2022061706333810400_bib33 article-title: Fibroblast growth factor signaling in tumorigenesis publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2005.01.003 – volume: 350 start-page: 2129 year: 2004 ident: 2022061706333810400_bib3 article-title: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib publication-title: N Engl J Med doi: 10.1056/NEJMoa040938 – volume: 16 start-page: 105 year: 2019 ident: 2022061706333810400_bib21 article-title: Fibroblast growth factor receptors as treatment targets in clinical oncology publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-018-0115-y – volume: 12 start-page: 559 year: 2007 ident: 2022061706333810400_bib39 article-title: Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.11.004 – volume: 79 start-page: 4439 year: 2019 ident: 2022061706333810400_bib41 article-title: CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-19-0024 |
SSID | ssj0005105 |
Score | 2.5579402 |
Snippet | Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental... Development of resistance remains the key obstacle to the clinical efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI).... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4655 |
SubjectTerms | Acrylamides - pharmacology Aniline Compounds - pharmacology Animals Antineoplastic Agents - pharmacology Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Cell Hypoxia - physiology Cell Line, Tumor Drug Resistance, Neoplasm - physiology Humans Lung Neoplasms - metabolism Lung Neoplasms - pathology MAP Kinase Signaling System - physiology Mice Protein Kinase Inhibitors - pharmacology Receptor, Fibroblast Growth Factor, Type 1 - metabolism Up-Regulation Xenograft Model Antitumor Assays |
Title | Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32873635 https://www.proquest.com/docview/2439630262 https://pubmed.ncbi.nlm.nih.gov/PMC7642024 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJSNxq1LyjnOsqnYrtu3C0kq9RbbjqJGqpLQprwO_nfFjkxQqsXCJookdR5kvk2_s8QxCb7nHbZE6niVCHoKD4jCLCsItnhEgrwDrTO2Qm83DydJ_vwpWnc7P9u6SivX5j5P7Sv5HqyADvcpdsv-g2fqmIIBz0C8cQcNwvJGOJ9-35bec9mT9DRlZdSX2kg7KbxUo5eh8fAWX1jnLVUmdvOhND3KVXzbY9YZis9n3vkD35XanK9Ib8jiGjk4dWjkbfLiQmfzXX-nRErC5jckWtFbLwTquQ9mdzabfmmWYHpStP6xL86eUslwLaZGJRnoptIH-JOAHW7XAW09tn6tAv_Z0BfimTj1d0VjYyNc5JPvihMyYZV3gycBP76I2RlamfDtt_QOiwyWJFfiR2x8O5pZ6Al1u7zjb9vwyGS-n02QxWi1uodsuuBmyAsbFxybbfKBDYOvHMzvAYJh3Jwc55jZ_OCy_x922iMziPrpnPBA80HB6gDqieIjuzEyMxSP02aAKG1ThBlW4KrFEFW5QhfMCS1RhDQesUIUBVbiNKlxmWKEKA6owoApLVGGDqsdoOR4thhPLFOawuB9FFfwgs5DIZIZUiJhSFgBHtIUdE5IyeGfMpRED4pwJO8pCz01dn8fAez3bzmIRx9x7gs6KshDPEM6clDvEZh4RzE8Ji0VIhR-nlAeeb3PRRf71K024yVovi6dsEuW9BkRGT5BEaiIBTSSulMZuF_XrbludtuVvHd5c6ysBAytXzWghysM-cYGyh57thtDmqdZffUvPJZEHlL2LoiPN1g1k8vbjK0W-VkncI3D8gR8_v8G4L9Dd5kt6ic6q3UG8AipcsdcKr78A3JOt8Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia+Induces+Resistance+to+EGFR+Inhibitors+in+Lung+Cancer+Cells+via+Upregulation+of+FGFR1+and+the+MAPK+Pathway&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Lu%2C+Yuhong&rft.au=Liu%2C+Yanfeng&rft.au=Oeck%2C+Sebastian&rft.au=Zhang%2C+Gary+J&rft.date=2020-11-01&rft.issn=1538-7445&rft.eissn=1538-7445&rft.volume=80&rft.issue=21&rft.spage=4655&rft_id=info:doi/10.1158%2F0008-5472.CAN-20-1192&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |