Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway

Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-t...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 80; no. 21; pp. 4655 - 4667
Main Authors Lu, Yuhong, Liu, Yanfeng, Oeck, Sebastian, Zhang, Gary J., Schramm, Alexander, Glazer, Peter M.
Format Journal Article
LanguageEnglish
Published United States 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.
AbstractList Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.
Development of resistance remains the key obstacle to the clinical efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the NSCLC cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827 and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the pro-apoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small molecular inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC.
Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental stress in solid tumors associated with acquired resistance to conventional therapy. Consistent with our previous studies, we show here that long-term, moderate hypoxia promotes resistance to the EGFR TKI osimertinib (AZD9291) in the non-small cell lung cancer (NSCLC) cell line H1975, which harbors two EGFR mutations including T790M. Hypoxia-induced resistance was associated with development of epithelial-mesenchymal transition (EMT) coordinated by increased expression of ZEB-1, an EMT activator. Hypoxia induced increased fibroblast growth factor receptor 1 (FGFR1) expression in NSCLC cell lines H1975, HCC827, and YLR086, and knockdown of FGFR1 attenuated hypoxia-induced EGFR TKI resistance in each line. Upregulated expression of FGFR1 by hypoxia was mediated through the MAPK pathway and attenuated induction of the proapoptotic factor BIM. Consistent with this, inhibition of FGFR1 function by the selective small-molecule inhibitor BGJ398 enhanced EGFR TKI sensitivity and promoted upregulation of BIM levels. Furthermore, inhibition of MEK activity by trametinib showed similar effects. In tumor xenografts in mice, treatment with either BGJ398 or trametinib enhanced response to AZD9291 and improved survival. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through increased expression of FGFR1. The combination of EGFR TKI and FGFR1 or MEK inhibitors may offer an attractive therapeutic strategy for NSCLC. SIGNIFICANCE: Hypoxia-induced resistance to EGFR TKI is driven by overexpression of FGFR1 to sustain ERK signaling, where a subsequent combination of EGFR TKI with FGFR1 inhibitors or MEK inhibitors reverses this resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/21/4655/F1.large.jpg.
Author Liu, Yanfeng
Glazer, Peter M.
Zhang, Gary J.
Lu, Yuhong
Oeck, Sebastian
Schramm, Alexander
AuthorAffiliation 4. Department of Biology, Tufts University, Medford, MA 02155, USA
1. Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510, USA
2. Department of Genetics, Yale University School of Medicine. New Haven, CT 06510, USA
3. Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
AuthorAffiliation_xml – name: 1. Department of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510, USA
– name: 2. Department of Genetics, Yale University School of Medicine. New Haven, CT 06510, USA
– name: 3. Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
– name: 4. Department of Biology, Tufts University, Medford, MA 02155, USA
Author_xml – sequence: 1
  givenname: Yuhong
  surname: Lu
  fullname: Lu, Yuhong
– sequence: 2
  givenname: Yanfeng
  surname: Liu
  fullname: Liu, Yanfeng
– sequence: 3
  givenname: Sebastian
  orcidid: 0000-0001-9695-8771
  surname: Oeck
  fullname: Oeck, Sebastian
– sequence: 4
  givenname: Gary J.
  surname: Zhang
  fullname: Zhang, Gary J.
– sequence: 5
  givenname: Alexander
  surname: Schramm
  fullname: Schramm, Alexander
– sequence: 6
  givenname: Peter M.
  orcidid: 0000-0003-4525-5560
  surname: Glazer
  fullname: Glazer, Peter M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32873635$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9P2zAUxa2JaRTYR9jkx70E_DeONWlSFVFAdBtC8Gw5idN6Su1iO2z99jjAqm0ve7Ls-zvn3utzBA6cdwaADxidYsyrM4RQVXAmyGk9_1YQVGAsyRsww5xWhWCMH4DZnjkERzH-yFeOEX8HDimpBC0pn4GHy93W_7IaXrlubE2EtybamLRrDUwenl8sbnNpbRubfIjQOrgc3QrWExBgbYYhwscsv98GsxoHnax30PdwkYUYatfBtDbw6_zmGt7otP6pdyfgba-HaN6_nsfgfnF-V18Wy-8XV_V8WbRMiFRI3JdVnl9oY6TWDSeMIYNkVXVN3qIhWjSY8N4g0ZeUdIS1kkpBEeqlkbKlx-DLi-92bDama41LQQ9qG-xGh53y2qq_K86u1co_KlEyggjLBp9eDYJ_GE1MamNjmzfWzvgxqozIkiJSkox-_LPXvsnvf84AfwHa4GMMpt8jGKkpTzVlpaasVM5TkelVTsaf_9G1Nj1_ch7ZDv9RPwHP_KTU
CitedBy_id crossref_primary_10_1186_s12935_024_03382_6
crossref_primary_10_3389_fphar_2024_1438067
crossref_primary_10_1016_j_bbcan_2023_188967
crossref_primary_10_1016_j_ejphar_2022_174907
crossref_primary_10_1155_2022_5482148
crossref_primary_10_1038_s41598_024_75770_x
crossref_primary_10_2147_LCTT_S293902
crossref_primary_10_1016_j_carbpol_2021_118655
crossref_primary_10_1038_s41420_022_01096_0
crossref_primary_10_3892_ol_2022_13528
crossref_primary_10_3389_fgene_2021_764869
crossref_primary_10_1016_j_bmc_2023_117384
crossref_primary_10_3390_ijms26072957
crossref_primary_10_1038_s41420_024_02251_5
crossref_primary_10_4155_fmc_2021_0326
crossref_primary_10_1038_s41392_024_01778_4
crossref_primary_10_1016_j_tice_2025_102756
crossref_primary_10_15188_kjopp_2021_08_35_4_117
crossref_primary_10_18632_aging_205517
crossref_primary_10_3389_fonc_2022_882372
crossref_primary_10_1002_ptr_7923
crossref_primary_10_1038_s41598_024_52616_0
crossref_primary_10_1007_s11684_024_1107_1
crossref_primary_10_1016_j_heliyon_2023_e22515
crossref_primary_10_3390_cancers13143421
crossref_primary_10_1186_s12967_023_04450_7
crossref_primary_10_1186_s13045_025_01684_4
crossref_primary_10_2139_ssrn_4104378
crossref_primary_10_3390_genes13122183
crossref_primary_10_1093_bib_bbac366
crossref_primary_10_1155_2022_7529923
crossref_primary_10_1186_s13046_022_02460_9
crossref_primary_10_3390_cancers17010136
crossref_primary_10_1021_acs_jmedchem_5c00267
crossref_primary_10_3390_cancers16030491
crossref_primary_10_1038_s41392_022_01168_8
crossref_primary_10_1186_s13046_023_02724_y
crossref_primary_10_1002_mco2_367
crossref_primary_10_3390_ijms242316887
crossref_primary_10_1002_jcp_30751
crossref_primary_10_1016_j_drup_2023_100929
crossref_primary_10_2174_1386207326666230314112238
crossref_primary_10_1016_j_apmt_2022_101660
crossref_primary_10_1002_ctm2_1101
crossref_primary_10_1038_s41416_023_02404_w
crossref_primary_10_3389_fphar_2023_1090500
crossref_primary_10_3390_ijms23148025
crossref_primary_10_1002_adhm_202002214
crossref_primary_10_1021_acsnano_3c07763
crossref_primary_10_3390_biomedicines11051364
crossref_primary_10_3390_cancers14112711
crossref_primary_10_1016_j_biopha_2022_113959
crossref_primary_10_1186_s13046_023_02753_7
crossref_primary_10_3389_fcell_2022_814621
crossref_primary_10_3390_pharmaceutics14081606
crossref_primary_10_12677_HJBM_2022_121002
Cites_doi 10.1038/s41416-019-0573-8
10.1002/wdev.176
10.1158/2159-8290.CD-12-0103
10.1158/1078-0432.CCR-12-2246
10.21037/tlcr.2019.06.01
10.1111/brv.12416
10.1126/scitranslmed.3002003
10.1016/j.apsb.2015.05.007
10.1002/cncr.32655
10.1007/s11523-018-0573-2
10.1038/nm.3854
10.1038/s41388-018-0311-3
10.1016/j.ejca.2018.07.005
10.1016/j.critrevonc.2017.02.018
10.18632/oncotarget.19411
10.1158/2159-8290.CD-15-0063
10.18632/oncotarget.13117
10.1111/cas.14260
10.1371/journal.pmed.0040315
10.1016/j.pharmthera.2017.05.013
10.1056/NEJMoa0810699
10.1038/nrd2792
10.1038/oncsis.2013.4
10.1634/theoncologist.9-90005-10
10.1038/s41419-018-0651-5
10.1259/0007-1285-26-312-638
10.1097/PPO.0000000000000131
10.1056/NEJMoa044238
10.1126/science.1099314
10.1038/s41388-018-0482-y
10.1007/s11899-019-00543-7
10.1002/med.21288
10.1158/1541-7786.MCR-17-0637
10.1158/1078-0432.CCR-17-1577
10.3390/cells7110212
10.1158/1078-0432.CCR-12-1558
10.1016/j.cllc.2018.02.007
10.1016/j.dnarep.2015.04.030
10.1158/1535-7163.MCT-07-0138
10.1016/j.cytogfr.2005.01.003
10.1056/NEJMoa040938
10.1038/s41571-018-0115-y
10.1016/j.ccr.2007.11.004
10.1158/0008-5472.CAN-19-0024
ContentType Journal Article
Copyright 2020 American Association for Cancer Research.
Copyright_xml – notice: 2020 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/0008-5472.CAN-20-1192
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 4667
ExternalDocumentID PMC7642024
32873635
10_1158_0008_5472_CAN_20_1192
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R35 CA197574
– fundername: NIEHS NIH HHS
  grantid: R01 ES005775
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-c477t-91f680087aee9aab52440e0988db510b2a7b125fe07f632d24c9397300f9e99c3
ISSN 0008-5472
1538-7445
IngestDate Thu Aug 21 18:36:54 EDT 2025
Mon Jul 21 09:42:54 EDT 2025
Wed Feb 19 02:26:28 EST 2025
Tue Jul 01 01:27:40 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License 2020 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-91f680087aee9aab52440e0988db510b2a7b125fe07f632d24c9397300f9e99c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9695-8771
0000-0003-4525-5560
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/80/21/4655.full.pdf
PMID 32873635
PQID 2439630262
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7642024
proquest_miscellaneous_2439630262
pubmed_primary_32873635
crossref_primary_10_1158_0008_5472_CAN_20_1192
crossref_citationtrail_10_1158_0008_5472_CAN_20_1192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2020
References Ornitz (2022061706333810400_bib18) 2015; 4
Lu (2022061706333810400_bib22) 2018; 16
Costa (2022061706333810400_bib27) 2007; 4
Paez (2022061706333810400_bib2) 2004; 304
Presta (2022061706333810400_bib34) 2017; 179
Thress (2022061706333810400_bib9) 2015; 21
Yuan (2022061706333810400_bib28) 2018; 19
Beenken (2022061706333810400_bib17) 2009; 8
Takeuchi (2022061706333810400_bib30) 2020; 111
Nagano (2022061706333810400_bib11) 2018; 7
Andrews Wright (2022061706333810400_bib8) 2019; 8
Bronte (2022061706333810400_bib37) 2018; 93
Byers (2022061706333810400_bib35) 2013; 19
Yu (2022061706333810400_bib7) 2013; 19
Acevedo (2022061706333810400_bib39) 2007; 12
Frederick (2022061706333810400_bib36) 2007; 6
Yochum (2022061706333810400_bib38) 2019; 38
Kobayashi (2022061706333810400_bib6) 2005; 352
Tricker (2022061706333810400_bib40) 2015; 5
Tan (2022061706333810400_bib14) 2015; 21
Li (2022061706333810400_bib32) 2020; 126
Porta (2022061706333810400_bib19) 2017; 113
Masoud (2022061706333810400_bib16) 2015; 5
Wang (2022061706333810400_bib26) 2018; 37
Cho (2022061706333810400_bib42) 2018; 9
Becker (2022061706333810400_bib41) 2019; 79
Li (2022061706333810400_bib43) 2018; 13
Sequist (2022061706333810400_bib5) 2011; 3
Vaupel (2022061706333810400_bib13) 2004; 9
Grose (2022061706333810400_bib33) 2005; 16
Gray (2022061706333810400_bib15) 1953; 26
Brown (2022061706333810400_bib24) 2016; 7
Ware (2022061706333810400_bib25) 2013; 2
Yaghmaie (2022061706333810400_bib23) 2019; 14
Ferlay (2022061706333810400_bib1) 2018; 103
Xia (2022061706333810400_bib44) 2017; 8
Katoh (2022061706333810400_bib21) 2019; 16
Song (2022061706333810400_bib29) 2018; 24
Scanlon (2022061706333810400_bib12) 2015; 32
Mok (2022061706333810400_bib4) 2009; 361
Leonetti (2022061706333810400_bib10) 2019; 121
Lynch (2022061706333810400_bib3) 2004; 350
Ercan (2022061706333810400_bib31) 2012; 2
Katoh (2022061706333810400_bib20) 2014; 34
References_xml – volume: 121
  start-page: 725
  year: 2019
  ident: 2022061706333810400_bib10
  article-title: Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer
  publication-title: Br J Cancer
  doi: 10.1038/s41416-019-0573-8
– volume: 4
  start-page: 215
  year: 2015
  ident: 2022061706333810400_bib18
  article-title: The fibroblast growth factor signaling pathway
  publication-title: Wiley Interdiscip Rev Dev Biol
  doi: 10.1002/wdev.176
– volume: 2
  start-page: 934
  year: 2012
  ident: 2022061706333810400_bib31
  article-title: Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0103
– volume: 19
  start-page: 2240
  year: 2013
  ident: 2022061706333810400_bib7
  article-title: Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-2246
– volume: 8
  start-page: S247
  year: 2019
  ident: 2022061706333810400_bib8
  article-title: Third-generation epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer
  publication-title: Transl Lung Cancer Res
  doi: 10.21037/tlcr.2019.06.01
– volume: 93
  start-page: 1735
  year: 2018
  ident: 2022061706333810400_bib37
  article-title: Epithelial-to-mesenchymal transition in the context of epidermal growth factor receptor inhibition in non-small-cell lung cancer
  publication-title: Biol Rev Camb Philos Soc
  doi: 10.1111/brv.12416
– volume: 3
  start-page: 75ra26
  year: 2011
  ident: 2022061706333810400_bib5
  article-title: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002003
– volume: 5
  start-page: 378
  year: 2015
  ident: 2022061706333810400_bib16
  article-title: HIF-1α pathway: role, regulation and intervention for cancer therapy
  publication-title: Acta Pharm Sin B
  doi: 10.1016/j.apsb.2015.05.007
– volume: 126
  start-page: 1339
  year: 2020
  ident: 2022061706333810400_bib32
  article-title: ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptor-mutant non–small-cell lung cancer cells to osimertinib
  publication-title: Cancer
  doi: 10.1002/cncr.32655
– volume: 13
  start-page: 517
  year: 2018
  ident: 2022061706333810400_bib43
  article-title: BIM deletion polymorphism confers resistance to osimertinib in EGFR T790M lung cancer: a case report and literature review
  publication-title: Target Oncol
  doi: 10.1007/s11523-018-0573-2
– volume: 21
  start-page: 560
  year: 2015
  ident: 2022061706333810400_bib9
  article-title: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M
  publication-title: Nat Med
  doi: 10.1038/nm.3854
– volume: 37
  start-page: 5340
  year: 2018
  ident: 2022061706333810400_bib26
  article-title: FGFR1-ERK1/2-SOX2 axis promotes cell proliferation, epithelial–mesenchymal transition, and metastasis in FGFR1-amplified lung cancer
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0311-3
– volume: 103
  start-page: 356
  year: 2018
  ident: 2022061706333810400_bib1
  article-title: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2018.07.005
– volume: 113
  start-page: 256
  year: 2017
  ident: 2022061706333810400_bib19
  article-title: FGFR a promising druggable target in cancer: Molecular biology and new drugs
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2017.02.018
– volume: 8
  start-page: 108522
  year: 2017
  ident: 2022061706333810400_bib44
  article-title: Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19411
– volume: 5
  start-page: 960
  year: 2015
  ident: 2022061706333810400_bib40
  article-title: Combined EGFR/MEK inhibition prevents the emergence of resistance in EGFR mutant lung cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0063
– volume: 7
  start-page: 83424
  year: 2016
  ident: 2022061706333810400_bib24
  article-title: FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13117
– volume: 111
  start-page: 561
  year: 2020
  ident: 2022061706333810400_bib30
  article-title: Phase I study of vorinostat with gefitinib in BIM deletion polymorphism/epidermal growth factor receptor mutation double-positive lung cancer
  publication-title: Cancer Sci
  doi: 10.1111/cas.14260
– volume: 4
  start-page: e315
  year: 2007
  ident: 2022061706333810400_bib27
  article-title: BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0040315
– volume: 179
  start-page: 171
  year: 2017
  ident: 2022061706333810400_bib34
  article-title: Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2017.05.013
– volume: 361
  start-page: 947
  year: 2009
  ident: 2022061706333810400_bib4
  article-title: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0810699
– volume: 8
  start-page: 235
  year: 2009
  ident: 2022061706333810400_bib17
  article-title: The FGF family: biology, pathophysiology and therapy
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2792
– volume: 2
  start-page: e39
  year: 2013
  ident: 2022061706333810400_bib25
  article-title: A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2013.4
– volume: 9
  start-page: 10
  year: 2004
  ident: 2022061706333810400_bib13
  article-title: The role of hypoxia-induced factors in tumor progression
  publication-title: Oncologist
  doi: 10.1634/theoncologist.9-90005-10
– volume: 9
  start-page: 587
  year: 2018
  ident: 2022061706333810400_bib42
  article-title: RNF25 promotes gefitinib resistance in EGFR-mutant NSCLC cells by inducing NF-κB-mediated ERK reactivation
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-0651-5
– volume: 26
  start-page: 638
  year: 1953
  ident: 2022061706333810400_bib15
  article-title: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-26-312-638
– volume: 21
  start-page: 254
  year: 2015
  ident: 2022061706333810400_bib14
  article-title: Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them
  publication-title: Cancer J
  doi: 10.1097/PPO.0000000000000131
– volume: 352
  start-page: 786
  year: 2005
  ident: 2022061706333810400_bib6
  article-title: EGFR mutation and resistance of non–small-cell lung cancer to gefitinib
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa044238
– volume: 304
  start-page: 1497
  year: 2004
  ident: 2022061706333810400_bib2
  article-title: EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy
  publication-title: Science
  doi: 10.1126/science.1099314
– volume: 38
  start-page: 656
  year: 2019
  ident: 2022061706333810400_bib38
  article-title: Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0482-y
– volume: 14
  start-page: 395
  year: 2019
  ident: 2022061706333810400_bib23
  article-title: Molecular mechanisms of resistance to tyrosine kinase inhibitors
  publication-title: Curr Hematol Malig Rep
  doi: 10.1007/s11899-019-00543-7
– volume: 34
  start-page: 280
  year: 2014
  ident: 2022061706333810400_bib20
  article-title: FGF receptors: cancer biology and therapeutics
  publication-title: Med Res Rev
  doi: 10.1002/med.21288
– volume: 16
  start-page: 1458
  year: 2018
  ident: 2022061706333810400_bib22
  article-title: Hypoxia promotes resistance to EGFR inhibition in NSCLC cells via the histone demethylases, LSD1 and PLU-1
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-17-0637
– volume: 24
  start-page: 197
  year: 2018
  ident: 2022061706333810400_bib29
  article-title: Epithelial-to-mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-1577
– volume: 7;
  start-page: 212
  year: 2018
  ident: 2022061706333810400_bib11
  article-title: Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy
  publication-title: Cells
  doi: 10.3390/cells7110212
– volume: 19
  start-page: 279
  year: 2013
  ident: 2022061706333810400_bib35
  article-title: An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-1558
– volume: 19
  start-page: e431
  year: 2018
  ident: 2022061706333810400_bib28
  article-title: Clinical implications of the BIM deletion polymorphism in advanced lung adenocarcinoma treated with gefitinib
  publication-title: Clin Lung Cancer
  doi: 10.1016/j.cllc.2018.02.007
– volume: 32
  start-page: 180
  year: 2015
  ident: 2022061706333810400_bib12
  article-title: Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2015.04.030
– volume: 6
  start-page: 1683
  year: 2007
  ident: 2022061706333810400_bib36
  article-title: Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non–small cell lung carcinoma
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-07-0138
– volume: 16
  start-page: 179
  year: 2005
  ident: 2022061706333810400_bib33
  article-title: Fibroblast growth factor signaling in tumorigenesis
  publication-title: Cytokine Growth Factor Rev
  doi: 10.1016/j.cytogfr.2005.01.003
– volume: 350
  start-page: 2129
  year: 2004
  ident: 2022061706333810400_bib3
  article-title: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa040938
– volume: 16
  start-page: 105
  year: 2019
  ident: 2022061706333810400_bib21
  article-title: Fibroblast growth factor receptors as treatment targets in clinical oncology
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/s41571-018-0115-y
– volume: 12
  start-page: 559
  year: 2007
  ident: 2022061706333810400_bib39
  article-title: Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.11.004
– volume: 79
  start-page: 4439
  year: 2019
  ident: 2022061706333810400_bib41
  article-title: CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-19-0024
SSID ssj0005105
Score 2.5579402
Snippet Development of resistance remains the key obstacle to the clinical efficacy of EGFR tyrosine kinase inhibitors (TKI). Hypoxia is a key microenvironmental...
Development of resistance remains the key obstacle to the clinical efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI)....
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4655
SubjectTerms Acrylamides - pharmacology
Aniline Compounds - pharmacology
Animals
Antineoplastic Agents - pharmacology
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Cell Hypoxia - physiology
Cell Line, Tumor
Drug Resistance, Neoplasm - physiology
Humans
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
MAP Kinase Signaling System - physiology
Mice
Protein Kinase Inhibitors - pharmacology
Receptor, Fibroblast Growth Factor, Type 1 - metabolism
Up-Regulation
Xenograft Model Antitumor Assays
Title Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway
URI https://www.ncbi.nlm.nih.gov/pubmed/32873635
https://www.proquest.com/docview/2439630262
https://pubmed.ncbi.nlm.nih.gov/PMC7642024
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJSNxq1LyjnOsqnYrtu3C0kq9RbbjqJGqpLQprwO_nfFjkxQqsXCJookdR5kvk2_s8QxCb7nHbZE6niVCHoKD4jCLCsItnhEgrwDrTO2Qm83DydJ_vwpWnc7P9u6SivX5j5P7Sv5HqyADvcpdsv-g2fqmIIBz0C8cQcNwvJGOJ9-35bec9mT9DRlZdSX2kg7KbxUo5eh8fAWX1jnLVUmdvOhND3KVXzbY9YZis9n3vkD35XanK9Ib8jiGjk4dWjkbfLiQmfzXX-nRErC5jckWtFbLwTquQ9mdzabfmmWYHpStP6xL86eUslwLaZGJRnoptIH-JOAHW7XAW09tn6tAv_Z0BfimTj1d0VjYyNc5JPvihMyYZV3gycBP76I2RlamfDtt_QOiwyWJFfiR2x8O5pZ6Al1u7zjb9vwyGS-n02QxWi1uodsuuBmyAsbFxybbfKBDYOvHMzvAYJh3Jwc55jZ_OCy_x922iMziPrpnPBA80HB6gDqieIjuzEyMxSP02aAKG1ThBlW4KrFEFW5QhfMCS1RhDQesUIUBVbiNKlxmWKEKA6owoApLVGGDqsdoOR4thhPLFOawuB9FFfwgs5DIZIZUiJhSFgBHtIUdE5IyeGfMpRED4pwJO8pCz01dn8fAez3bzmIRx9x7gs6KshDPEM6clDvEZh4RzE8Ji0VIhR-nlAeeb3PRRf71K024yVovi6dsEuW9BkRGT5BEaiIBTSSulMZuF_XrbludtuVvHd5c6ysBAytXzWghysM-cYGyh57thtDmqdZffUvPJZEHlL2LoiPN1g1k8vbjK0W-VkncI3D8gR8_v8G4L9Dd5kt6ic6q3UG8AipcsdcKr78A3JOt8Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia+Induces+Resistance+to+EGFR+Inhibitors+in+Lung+Cancer+Cells+via+Upregulation+of+FGFR1+and+the+MAPK+Pathway&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Lu%2C+Yuhong&rft.au=Liu%2C+Yanfeng&rft.au=Oeck%2C+Sebastian&rft.au=Zhang%2C+Gary+J&rft.date=2020-11-01&rft.issn=1538-7445&rft.eissn=1538-7445&rft.volume=80&rft.issue=21&rft.spage=4655&rft_id=info:doi/10.1158%2F0008-5472.CAN-20-1192&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon