Isotopic diffusion in ice enhanced by vein-water flow

Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins...

Full description

Saved in:
Bibliographic Details
Published inThe cryosphere Vol. 17; no. 7; pp. 3063 - 3082
Main Author Ng, Felix S. L
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 26.07.2023
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins “short-circuits” the slow diffusion within crystal grains to cause “excess diffusion”, enhancing the rate of signal smoothing above that implied by self-diffusion in ice monocrystals. But the controls of excess diffusion are far from fully understood. Here, modelling shows that water flow in the veins amplifies excess diffusion by altering the three-dimensional field of isotope concentration and isotope transfer between veins and crystals. The rate of signal smoothing depends not only on temperature, the vein and grain sizes, and signal wavelength, but also on vein-water flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal smoothing at ice-core sites in Greenland and Antarctica, as shown by simulations for the GRIP (Greenland Ice Core Project) and EPICA (European Project for Ice Coring in Antarctica) Dome C sites, which reveal sensitive modulation of their diffusion-length profiles when vein-flow velocities reach ∼ 101–102 m yr−1. Velocities of this magnitude also produce the levels of excess diffusion inferred by previous studies for Holocene ice at GRIP and ice of Marine Isotope Stage 19 at EPICA Dome C. Thus, vein-flow-mediated excess diffusion may help explain the mismatch between modelled and spectrally derived diffusion lengths in other ice cores. We also show that excess diffusion biases the spectral estimation of diffusion lengths from isotopic signals (by making them dependent on signal wavelength) and the reconstruction of surface temperature from diffusion-length profiles (by increasing the ice contribution to diffusion length below the firn). Our findings caution against using the monocrystal isotopic diffusivity to represent the bulk-ice diffusivity. The need to predict the pattern of excess diffusion in ice cores calls for systematic study of isotope records for its occurrence and improved understanding of vein-scale hydrology in ice sheets.
AbstractList Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins “short-circuits” the slow diffusion within crystal grains to cause “excess diffusion”, enhancing the rate of signal smoothing above that implied by self-diffusion in ice monocrystals. But the controls of excess diffusion are far from fully understood. Here, modelling shows that water flow in the veins amplifies excess diffusion by altering the three-dimensional field of isotope concentration and isotope transfer between veins and crystals. The rate of signal smoothing depends not only on temperature, the vein and grain sizes, and signal wavelength, but also on vein-water flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal smoothing at ice-core sites in Greenland and Antarctica, as shown by simulations for the GRIP (Greenland Ice Core Project) and EPICA (European Project for Ice Coring in Antarctica) Dome C sites, which reveal sensitive modulation of their diffusion-length profiles when vein-flow velocities reach ∼ 101–102 m yr-1. Velocities of this magnitude also produce the levels of excess diffusion inferred by previous studies for Holocene ice at GRIP and ice of Marine Isotope Stage 19 at EPICA Dome C. Thus, vein-flow-mediated excess diffusion may help explain the mismatch between modelled and spectrally derived diffusion lengths in other ice cores. We also show that excess diffusion biases the spectral estimation of diffusion lengths from isotopic signals (by making them dependent on signal wavelength) and the reconstruction of surface temperature from diffusion-length profiles (by increasing the ice contribution to diffusion length below the firn). Our findings caution against using the monocrystal isotopic diffusivity to represent the bulk-ice diffusivity. The need to predict the pattern of excess diffusion in ice cores calls for systematic study of isotope records for its occurrence and improved understanding of vein-scale hydrology in ice sheets.
Diffusive smoothing of signals on the water stable isotopes ( 18 O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins “short-circuits” the slow diffusion within crystal grains to cause “excess diffusion”, enhancing the rate of signal smoothing above that implied by self-diffusion in ice monocrystals. But the controls of excess diffusion are far from fully understood. Here, modelling shows that water flow in the veins amplifies excess diffusion by altering the three-dimensional field of isotope concentration and isotope transfer between veins and crystals. The rate of signal smoothing depends not only on temperature, the vein and grain sizes, and signal wavelength, but also on vein-water flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal smoothing at ice-core sites in Greenland and Antarctica, as shown by simulations for the GRIP (Greenland Ice Core Project) and EPICA (European Project for Ice Coring in Antarctica) Dome C sites, which reveal sensitive modulation of their diffusion-length profiles when vein-flow velocities reach ∼  10 1 –10 2  m yr −1 . Velocities of this magnitude also produce the levels of excess diffusion inferred by previous studies for Holocene ice at GRIP and ice of Marine Isotope Stage 19 at EPICA Dome C. Thus, vein-flow-mediated excess diffusion may help explain the mismatch between modelled and spectrally derived diffusion lengths in other ice cores. We also show that excess diffusion biases the spectral estimation of diffusion lengths from isotopic signals (by making them dependent on signal wavelength) and the reconstruction of surface temperature from diffusion-length profiles (by increasing the ice contribution to diffusion length below the firn). Our findings caution against using the monocrystal isotopic diffusivity to represent the bulk-ice diffusivity. The need to predict the pattern of excess diffusion in ice cores calls for systematic study of isotope records for its occurrence and improved understanding of vein-scale hydrology in ice sheets.
Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins “short-circuits” the slow diffusion within crystal grains to cause “excess diffusion”, enhancing the rate of signal smoothing above that implied by self-diffusion in ice monocrystals. But the controls of excess diffusion are far from fully understood. Here, modelling shows that water flow in the veins amplifies excess diffusion by altering the three-dimensional field of isotope concentration and isotope transfer between veins and crystals. The rate of signal smoothing depends not only on temperature, the vein and grain sizes, and signal wavelength, but also on vein-water flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal smoothing at ice-core sites in Greenland and Antarctica, as shown by simulations for the GRIP (Greenland Ice Core Project) and EPICA (European Project for Ice Coring in Antarctica) Dome C sites, which reveal sensitive modulation of their diffusion-length profiles when vein-flow velocities reach ∼ 101–102 m yr−1. Velocities of this magnitude also produce the levels of excess diffusion inferred by previous studies for Holocene ice at GRIP and ice of Marine Isotope Stage 19 at EPICA Dome C. Thus, vein-flow-mediated excess diffusion may help explain the mismatch between modelled and spectrally derived diffusion lengths in other ice cores. We also show that excess diffusion biases the spectral estimation of diffusion lengths from isotopic signals (by making them dependent on signal wavelength) and the reconstruction of surface temperature from diffusion-length profiles (by increasing the ice contribution to diffusion length below the firn). Our findings caution against using the monocrystal isotopic diffusivity to represent the bulk-ice diffusivity. The need to predict the pattern of excess diffusion in ice cores calls for systematic study of isotope records for its occurrence and improved understanding of vein-scale hydrology in ice sheets.
Diffusive smoothing of signals on the water stable isotopes (.sup.18 O and D) in ice sheets fundamentally limits the climatic information retrievable from these ice-core proxies. Past theories explained how, in polycrystalline ice below the firn, fast diffusion in the network of intergranular water veins "short-circuits" the slow diffusion within crystal grains to cause "excess diffusion", enhancing the rate of signal smoothing above that implied by self-diffusion in ice monocrystals. But the controls of excess diffusion are far from fully understood. Here, modelling shows that water flow in the veins amplifies excess diffusion by altering the three-dimensional field of isotope concentration and isotope transfer between veins and crystals. The rate of signal smoothing depends not only on temperature, the vein and grain sizes, and signal wavelength, but also on vein-water flow velocity, which can increase the rate by 1 to 2 orders of magnitude. This modulation can significantly impact signal smoothing at ice-core sites in Greenland and Antarctica, as shown by simulations for the GRIP (Greenland Ice Core Project) and EPICA (European Project for Ice Coring in Antarctica) Dome C sites, which reveal sensitive modulation of their diffusion-length profiles when vein-flow velocities reach â¼ 10.sup.1 -10.sup.2 m yr.sup.-1 . Velocities of this magnitude also produce the levels of excess diffusion inferred by previous studies for Holocene ice at GRIP and ice of Marine Isotope Stage 19 at EPICA Dome C. Thus, vein-flow-mediated excess diffusion may help explain the mismatch between modelled and spectrally derived diffusion lengths in other ice cores. We also show that excess diffusion biases the spectral estimation of diffusion lengths from isotopic signals (by making them dependent on signal wavelength) and the reconstruction of surface temperature from diffusion-length profiles (by increasing the ice contribution to diffusion length below the firn). Our findings caution against using the monocrystal isotopic diffusivity to represent the bulk-ice diffusivity. The need to predict the pattern of excess diffusion in ice cores calls for systematic study of isotope records for its occurrence and improved understanding of vein-scale hydrology in ice sheets.
Audience Academic
Author Ng, Felix S. L
Author_xml – sequence: 1
  fullname: Ng, Felix S. L
BookMark eNptkc1rGzEQxUVJoUnac68LOfWwiT5X2mMIaWsIFPpxFrPSyJWxV64kJ81_XzkOTQ1FAxKP37zR8M7IyZxmJOQ9o5eKjfKqup7pXtBB9Jxy8YqcsnGUPZVcnvzzfkPOSllROvCRylOiFiXVtI2u8zGEXYlp7mIrhx3OP2F26LvpsbvHOPcPUDF3YZ0e3pLXAdYF3z3f5-THx9vvN5_7uy-fFjfXd72TWtdeSzdNWstBgaGKBaDOeONBOQZGU-kNDxgGDOhh5MJTprwe9AgojJkoinOyOPj6BCu7zXED-dEmiPZJSHlpIdfo1mgVogAIjA7TKAGG0XEJTlEq9cSFDs3r4uC1zenXDku1q7TLc_u-5UYyrVgb_UItoZnGOaSawW1icfZaK6O4kIY26vI_VDseN9G1XEJs-lHDh6OGxlT8XZewK8Uuvn09Zq8OrMuplIzh7-KM2n3UtjrLtN1HbfdRiz9wrpov
CitedBy_id crossref_primary_10_1017_jog_2023_91
Cites_doi 10.1017/S0022143000002616
10.1016/j.gca.2018.01.015
10.1029/97JC00167
10.3189/172756405781813564
10.1002/bbpc.198800282
10.5194/cp-7-1327-2011
10.1016/j.epsl.2014.08.022
10.1103/RevModPhys.88.011002
10.5194/tc-15-1787-2021
10.1002/essoar.10503447.2
10.1017/S0022143000021183
10.5194/cp-14-1067-2018
10.1029/JD090iD02p03910
10.5194/tc-2023-6
10.3189/S0022143000005839
10.1007/s00382-012-1460-7
10.1017/jog.2021.1
10.3189/S0022143000001982
10.1063/1.1678198
10.5194/tc-12-169-2018
10.1016/j.epsl.2012.04.009
10.1029/97JC00161
10.1029/2005JD006921
10.3189/172756503781830638
10.3189/S0022143000002240
10.1017/S002214300001354X
10.5194/cp-18-2289-2022
10.1080/14786440009463908
10.1063/1.5046687
10.5194/cp-16-1581-2020
10.1002/2016JF003938
10.3189/002214389793701437
10.1017/S0022143000002227
10.1029/2018JF004764
10.1063/1.1709948
10.1016/j.epsl.2010.07.030
10.1021/j100844a062
10.1021/j100856a060
10.3389/feart.2021.640292
10.1073/pnas.1611395114
10.1073/pnas.1700103114
10.1038/331247a0
10.5194/tc-15-3523-2021
10.3189/S0022143000042751
10.5194/cp-7-437-2011
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
H96
HCIFZ
KL.
L.G
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.5194/tc-17-3063-2023
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Continental Europe Database
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Continental Europe Database
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
EISSN 1994-0424
1994-0416
EndPage 3082
ExternalDocumentID oai_doaj_org_article_5ee3aaf106b94aa69c24ac50047b237f
A758523480
10_5194_tc_17_3063_2023
GeographicLocations Antarctica
Greenland
GeographicLocations_xml – name: Antarctica
– name: Greenland
GroupedDBID 29F
2WC
3V.
5GY
5VS
7XC
8CJ
8FE
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
AENEX
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBORY
BCNDV
BENPR
BFMQW
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
MM-
M~E
OK1
P2P
PATMY
PCBAR
PIMPY
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
TUS
ZBA
~02
7QH
7TG
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H95
H96
KL.
L.G
PQEST
PQUKI
PRINS
ID FETCH-LOGICAL-c477t-74cbb77465a8051fa0c8d8da5c1a8704d82fef6efeda923d015d7679ae388b0e3
IEDL.DBID DOA
ISSN 1994-0424
1994-0416
IngestDate Thu Jul 04 21:02:26 EDT 2024
Fri Sep 13 06:38:26 EDT 2024
Fri Feb 23 00:07:52 EST 2024
Fri Feb 02 04:41:53 EST 2024
Wed Sep 25 21:22:43 EDT 2024
Fri Aug 23 02:44:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-74cbb77465a8051fa0c8d8da5c1a8704d82fef6efeda923d015d7679ae388b0e3
ORCID 0000-0001-6352-0351
OpenAccessLink https://doaj.org/article/5ee3aaf106b94aa69c24ac50047b237f
PQID 2841751767
PQPubID 105732
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_5ee3aaf106b94aa69c24ac50047b237f
proquest_journals_2841751767
gale_infotracmisc_A758523480
gale_infotracacademiconefile_A758523480
gale_incontextgauss_ISR_A758523480
crossref_primary_10_5194_tc_17_3063_2023
PublicationCentury 2000
PublicationDate 2023-07-26
PublicationDateYYYYMMDD 2023-07-26
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-26
  day: 26
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle The cryosphere
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref37
– ident: ref7
  doi: 10.1017/S0022143000002616
– ident: ref17
  doi: 10.1016/j.gca.2018.01.015
– ident: ref19
  doi: 10.1029/97JC00167
– ident: ref43
  doi: 10.3189/172756405781813564
– ident: ref1
– ident: ref20
– ident: ref41
  doi: 10.1002/bbpc.198800282
– ident: ref45
  doi: 10.5194/cp-7-1327-2011
– ident: ref9
– ident: ref11
  doi: 10.1016/j.epsl.2014.08.022
– ident: ref2
  doi: 10.1103/RevModPhys.88.011002
– ident: ref30
  doi: 10.5194/tc-15-1787-2021
– ident: ref23
  doi: 10.1002/essoar.10503447.2
– ident: ref14
  doi: 10.1017/S0022143000021183
– ident: ref52
  doi: 10.5194/cp-14-1067-2018
– ident: ref49
  doi: 10.1029/JD090iD02p03910
– ident: ref32
  doi: 10.5194/tc-2023-6
– ident: ref35
  doi: 10.3189/S0022143000005839
– ident: ref24
  doi: 10.1007/s00382-012-1460-7
– ident: ref12
  doi: 10.1017/jog.2021.1
– ident: ref36
  doi: 10.3189/S0022143000001982
– ident: ref10
  doi: 10.1063/1.1678198
– ident: ref25
  doi: 10.5194/tc-12-169-2018
– ident: ref8
  doi: 10.1016/j.epsl.2012.04.009
– ident: ref47
  doi: 10.1029/97JC00161
– ident: ref48
  doi: 10.1029/2005JD006921
– ident: ref44
  doi: 10.3189/172756503781830638
– ident: ref28
  doi: 10.3189/S0022143000002240
– ident: ref33
  doi: 10.1017/S002214300001354X
– ident: ref13
  doi: 10.5194/cp-18-2289-2022
– ident: ref50
  doi: 10.1080/14786440009463908
– ident: ref16
  doi: 10.1063/1.5046687
– ident: ref6
  doi: 10.5194/cp-16-1581-2020
– ident: ref21
  doi: 10.1002/2016JF003938
– ident: ref34
  doi: 10.3189/002214389793701437
– ident: ref27
  doi: 10.1017/S0022143000002227
– ident: ref22
  doi: 10.1029/2018JF004764
– ident: ref42
  doi: 10.1063/1.1709948
– ident: ref4
– ident: ref39
  doi: 10.1016/j.epsl.2010.07.030
– ident: ref3
  doi: 10.1021/j100844a062
– ident: ref38
  doi: 10.1021/j100856a060
– ident: ref46
  doi: 10.3389/feart.2021.640292
– ident: ref51
  doi: 10.1073/pnas.1611395114
– ident: ref15
  doi: 10.1073/pnas.1700103114
– ident: ref18
– ident: ref31
  doi: 10.5194/tc-2023-6
– ident: ref29
  doi: 10.1038/331247a0
– ident: ref5
  doi: 10.5194/tc-15-3523-2021
– ident: ref26
  doi: 10.3189/S0022143000042751
– ident: ref40
  doi: 10.5194/cp-7-437-2011
SSID ssj0062904
Score 2.3785033
Snippet Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these...
Diffusive smoothing of signals on the water stable isotopes (.sup.18 O and D) in ice sheets fundamentally limits the climatic information retrievable from...
Diffusive smoothing of signals on the water stable isotopes (18O and D) in ice sheets fundamentally limits the climatic information retrievable from these...
Diffusive smoothing of signals on the water stable isotopes ( 18 O and D) in ice sheets fundamentally limits the climatic information retrievable from these...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 3063
SubjectTerms Analysis
Core sampling
Cores
Coring
Crystals
Diffusion
Diffusion coefficients
Diffusion length
Diffusion rate
Diffusivity
Domes
Firn
Flow velocity
Glaciation
Grain boundaries
Grain size
Holocene
Holocene ice
Hydrology
Ice
Ice cores
Ice sheets
Information processing
Information retrieval
Isotopes
Modulation
Self diffusion
Short circuits
Single crystals
Smoothing
Stable isotopes
Surface temperature
Water flow
Wavelength
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5WH9qXoral29oSpLR9We42ySbZp6KinAWl2Aq-hSSb6IHsnnd7Ff97Z_ayLfegsA_7Y2DJJDP5ZpJ8Q8iXiukQAiC36DmHAAUCVivhrqhLz53F8mF43vnsXE4uxc-r8mqDTIazMLitcvCJvaOuW4858hG4UZjpCiXVyDrMAvhu9GN2l2P9KFxnTcU0XpAtVghcsN06PD7_dTF4Zcmq8WqFGalwBRMrmh_AL2LU-RxcNWBnnmMx8bUZqifyf8pd93PQyTZ5ncAjPVj19g7ZCM0ueZnqmN887JLsDDBwO-9T5fQrPbqdAiDtn96Q8nTRdu1s6ikWRVliloxO4fKBhuam3whA3QP9G6ZNfg8IdE7jbXv_llyeHP85muSpaELuhVJdroR3DjCdLK0Gg4t27HWta1v6woJtilqzGKIMMdQWwF0NcKAGpVY2cK3dOPB3ZLNpm_Ce0ABgylrPuAtKVDJaiGYh4Kp1KaMSjmXk-6AoM1txYxiIKVCnpvOmUAZ1alCnGTlERf4TQ1Lr_kU7vzbJRkwZArc2QpDqKvixrDwT1pdIaOkYVzEj-9gNBmkrGtwXc22Xi4U5_X1hDjDsYVzocUa-JaHY4iix6ZgBNAmZrtYk99Ykwa78-ueht02y64X5Pwo_PP_5I3mF7cYsMJN7ZLObL8MngC-d-5xG5iOMeOvG
  priority: 102
  providerName: ProQuest
Title Isotopic diffusion in ice enhanced by vein-water flow
URI https://www.proquest.com/docview/2841751767/abstract/
https://doaj.org/article/5ee3aaf106b94aa69c24ac50047b237f
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS91AEF-KPbSXYm1L06osUtpegi_ZzxxVtCooxVZ4t2V2s1sfSCLv5Sn-984keaXvUHophJCPPWRnMjO_2Y_fMPapKm2MEZFbCkJggoIJK2i8KmoVhAcqH0b7nS8u9em1PJ-q6R-lvmhN2EAPPAhuX8UoABJmLr6SALoKpYSgiOXQl8Kk3vsWapVMDT5Yl9VkmE8m4lvEHAOpD6IVud-FHB0zImWRU-nwtXjU0_b_zTn3Eedkk70aoSI_GD7xNXsWmy32YqxafvO4xbILRLztvB8Y55_50e0M4Wd_94aps0XbtXezwKkEypLGxPgMjxB5bG76aX_uH_l9nDX5A-LNOU-37cNbdn1y_PPoNB9LJORBGtPlRgbvEcFpBRbNK8Ek2NrWoEIBaImytmWKSccUa0AoV2Pwr402FURhrZ9E8Y5tNG0T3zMeEToBhFL4aGSlE2DuiulVbZVORvoyY19XgnJ3AxOGwwyCZOq64ArjSKaOZJqxQxLk72ZEYd0_QMW6UbHuX4rN2B6pwRFJRUOrYH7BcrFwZz-u3AElOaWQdpKxL2Oj1HZzCDBuKsAuEa_VWsvttZZoRWH99UrbbrTihcPQjeiqQIF9-B89-sheknRoZLjU22yjmy_jDkKazu-y54fHl9-vdvu_GM_fpsUTayvyAA
link.rule.ids 315,786,790,870,2115,21416,27957,27958,33779,43840,74659
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5B9zBeEAwQgQEWQsBLtNZ2nOQJbdOmFtYKjU3am2U79lZpSkqaMu3fc5e6oD6AlIckPinK2Xf-7mx_B_Ch5IX3HpFbcEJggIIBq1F4N6oyJ6yh8mF03nk6U-NL-fUqu4oJt2XcVrnxib2jrhpHOfIDdKM4041ylX9Z_EypahStrsYSGg9hRwoMVQawc3Qy-36-8cWKl8P1ujIR4Eou1-Q-iFrkQedSdNCImEVKJcS35qWevv9fTrqfeU6fwOMIGdnhuo-fwgNf78FurF5-c78HyRSRb9P2CXL2kR3fzhGG9k_PIJssm65ZzB2jUigryo2xOV7OM1_f9Mv_zN6zX35ep3eIO1sWbpu753B5enJxPE5jqYTUyTzv0lw6axHJqcwUaGbBDF1RFZXJ3MigRcqq4MEH5YOvDEK6CkFAhaosjRdFYYdevIBB3dT-JTCPEMoYx4X1uSxVMBjDYphVFZkKubQ8gc8bRenFmhFDYyRBOtWd06Nck0416TSBI1LkHzGisu5fNO21jpahM--FMQFDU1vih1XpuDQuIxpLy0UeEnhP3aCJrKKm3TDXZrVc6smPc31IwQ4Xshgm8CkKhaZrjTPxcAH-EvFbbUnub0miNbnt5k1v62jNS_137L36f_M72B1fTM_02WT27TU8Ih1QHpirfRh07cq_QQDT2bdxlP4GOkzq-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgk4CXCQaIsDEshICXqK3t2MkT2le1AqumwaS9WbZjb5WmpCQp0_773aXuUB9AykMSnxTlfHf-3fl8R8jHguXee0BuwXEODgo4rEbC3ajMHLcG24fheefTqTy5EN8us8uY_9TGtMqVTewNdVk7jJEPwIzCSjdSUg1CTIs4Oxp_nf9OsYMU7rTGdhqPyaYSMgMJ3zw4np6dr-yyZMVwuceMxXAFE8tCP4BgxKBzKRhrQM88xXbia2tUX8r_Xwa7X4XGz8lWhI90fznfL8gjX22Tp7GT-fXdNklOAQXXTR8sp5_o4c0MIGn_9JJkk7bu6vnMUWyLssA4GZ3B5Tz11XWfCkDtHf3jZ1V6Cxi0oeGmvn1FLsbHvw5P0tg2IXVCqS5VwlmrkAcmB5ULZujyMi9N5kYGtFOUOQs-SB98aQDelQAISmBrYTzPczv0_DXZqOrKvyHUA5wyxjFuvRKFDAb8WXC5yjyTQQnLEvJlxSg9X1bH0OBVIE915_RIaeSpRp4m5AAZ-UCGZa37F3VzpaOW6Mx7bkwAN9UW8GFZOCaMy7CkpWVchYR8wGnQWLiiQhG4Mou21ZOf53ofHR_GRT5MyOdIFOquMc7EgwbwS1jrao1yd40SNMutD69mW0fNbvVfOXz7_-H35AkIqP4xmX7fIc-QBRgSZnKXbHTNwr8DLNPZvSik93iW7zY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isotopic+diffusion+in+ice+enhanced+by+vein-water+flow&rft.jtitle=The+cryosphere&rft.au=Ng%2C+Felix+S.+L&rft.date=2023-07-26&rft.pub=Copernicus+GmbH&rft.issn=1994-0416&rft.eissn=1994-0424&rft.volume=17&rft.issue=7&rft.spage=3063&rft_id=info:doi/10.5194%2Ftc-17-3063-2023&rft.externalDocID=A758523480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1994-0424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1994-0424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1994-0424&client=summon