Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies

Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion,...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 29; no. 15; p. 3624
Main Authors Shi, Junwei, Jiang, Kailin, Fan, Yameng, Zhao, Lingfei, Cheng, Zhenxiang, Yu, Peng, Peng, Jian, Wan, Min
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode–electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology’s industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.
AbstractList Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.
Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.
Audience Academic
Author Yu, Peng
Shi, Junwei
Cheng, Zhenxiang
Jiang, Kailin
Fan, Yameng
Wan, Min
Zhao, Lingfei
Peng, Jian
Author_xml – sequence: 1
  givenname: Junwei
  surname: Shi
  fullname: Shi, Junwei
– sequence: 2
  givenname: Kailin
  surname: Jiang
  fullname: Jiang, Kailin
– sequence: 3
  givenname: Yameng
  surname: Fan
  fullname: Fan, Yameng
– sequence: 4
  givenname: Lingfei
  orcidid: 0000-0003-3683-4210
  surname: Zhao
  fullname: Zhao, Lingfei
– sequence: 5
  givenname: Zhenxiang
  surname: Cheng
  fullname: Cheng, Zhenxiang
– sequence: 6
  givenname: Peng
  surname: Yu
  fullname: Yu, Peng
– sequence: 7
  givenname: Jian
  surname: Peng
  fullname: Peng, Jian
– sequence: 8
  givenname: Min
  surname: Wan
  fullname: Wan, Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39125029$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAQxyNURNuFD8AFWeLCgS1-ZZNwW5UFVloE4nGOJs5461Vit7ZT1BNfndluqVCRkA9jjX_zn5dPiyMfPBbFc8HPlGr4mzEMaKYBk2xEqRZSPypOhJZ8rrhujv66HxenKe04l0KL8klxrBohSy6bk-LXsr8Gb5zfsk-YYRicYRuXL9w0sqUPPaa3bMm-4rXDnyxYtvYZowWD7B0mt_Wv2YpqyDEMNxnp1YdryC6QH3zPvhAb4kgJkK38xd6O6DP7liNk3DpMT4vHFoaEz-7srPjxfvX9_ON88_nD-ny5mRtdVXle8b6HWvUlWtHIvusWUlVdA1LrvunEwtQ10BBA1Fwj8AqhFKWoQNrSdFVXq1mxPuj2AXbtZXQjxJs2gGtvHSFuW4jZmQHbSltRdqJStlRaSQN2YQWA0JyrWjZAWq8OWpcxXE2Ycju6ZHAYwGOYUqs4jbeuFPGz4uUDdBem6KnTPcUbWqNuiDo7UFug_M7bQPMxdHocnaGdW0f-JfVGPS1qSQEv7mSnbsT-vp8_eyVAHAATQ0oR7T0ieLv_O-0_f4diqgcxxuXbZVI1bvhP5G_fDsqm
CitedBy_id crossref_primary_10_3390_molecules29184306
crossref_primary_10_1016_j_jallcom_2025_178520
Cites_doi 10.1016/j.ensm.2022.10.006
10.1021/acsami.9b21717
10.1149/1945-7111/ad2594
10.1007/s41918-023-00185-7
10.1039/D2SE00910B
10.1021/acsami.9b09321
10.1038/s41467-022-29596-8
10.1021/acsmaterialslett.3c00152
10.1002/eem2.12257
10.1002/adma.202209074
10.1021/acs.nanolett.3c00783
10.1016/j.electacta.2022.141797
10.1016/j.joule.2022.02.007
10.1016/j.cej.2022.135705
10.1007/s40820-023-01037-1
10.1007/s12274-022-5109-5
10.1002/advs.202300860
10.1002/anie.202201406
10.1039/D2EE00004K
10.1021/acs.chemrev.1c00636
10.1016/j.progpolymsci.2021.101474
10.1021/acs.nanolett.1c04775
10.1002/aenm.202102917
10.1016/j.est.2023.109279
10.1002/eem2.12598
10.1002/cssc.202202216
10.1016/j.jechem.2022.01.008
10.1021/acsaem.1c04035
10.1007/s40820-021-00782-5
10.1016/j.electacta.2014.06.006
10.1021/acs.chemrev.1c00838
10.1021/acsaem.2c03864
10.1016/j.eml.2022.101746
10.1039/D2TA09316B
10.1002/aenm.201703505
10.1021/acsenergylett.2c00232
10.1039/D2SE00151A
10.1016/j.egyr.2022.03.016
10.1002/aenm.202202518
10.1002/adma.202200102
10.1002/adfm.202105776
10.1002/adma.202108400
10.1002/advs.202201823
10.1002/inf2.12292
10.1016/j.ensm.2022.02.010
10.1016/j.scib.2022.01.012
10.1007/s41918-022-00147-5
10.1016/j.jcis.2023.05.101
10.1021/acs.chemrev.1c00108
10.1038/s41565-022-01107-2
10.1039/D1EE02929K
10.1002/adfm.202207969
10.1002/adfm.202206388
10.3390/en16093745
10.1016/j.ensm.2023.01.039
10.1002/eem2.12289
10.1016/j.jssc.2022.123072
10.1126/science.abi8703
10.1021/acsami.1c24755
10.1038/s41563-021-01172-3
10.1002/eem2.12412
10.1021/acsami.1c23356
10.1002/aenm.202103720
10.1016/j.joule.2022.05.005
10.1126/science.abn1818
10.1002/advs.202104689
10.1021/acsami.7b12568
10.1016/j.ensm.2018.12.001
10.1021/acsenergylett.1c02719
10.1016/j.joule.2021.12.018
10.1039/D2QI01973F
10.1016/j.electacta.2022.141722
10.1016/j.jechem.2021.12.020
10.1002/aenm.202103332
10.1038/s41560-019-0503-2
10.1016/j.jpowsour.2023.232779
10.1007/s41918-022-00158-2
10.1002/anie.202200598
10.1039/D2TA02339C
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/molecules29153624
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_74f15b173f53432caf6f1aa14003829a
A804517682
39125029
10_3390_molecules29153624
Genre Journal Article
Review
GrantInformation_xml – fundername: Research Funding of Wuhan Polytechnic University
  grantid: 53210052436
– fundername: Research Funding of Wuhan Polytechnic University
  grantid: 53210052255
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c477t-70dda83d5ef192dbb6237b9a244d9b16c88a291a1804ea07ea51517a2f5cb7b83
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:30:06 EDT 2025
Fri Jul 11 07:18:14 EDT 2025
Sat Jul 26 02:47:09 EDT 2025
Tue Jun 10 21:01:38 EDT 2025
Wed Feb 19 02:06:58 EST 2025
Thu Apr 24 23:08:45 EDT 2025
Tue Jul 01 03:59:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords lithium dendrites
high energy density
interface design modification
metallic lithium anodes
electrochemical properties
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-70dda83d5ef192dbb6237b9a244d9b16c88a291a1804ea07ea51517a2f5cb7b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3683-4210
OpenAccessLink https://doaj.org/article/74f15b173f53432caf6f1aa14003829a
PMID 39125029
PQID 3090933949
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_74f15b173f53432caf6f1aa14003829a
proquest_miscellaneous_3091287300
proquest_journals_3090933949
gale_infotracacademiconefile_A804517682
pubmed_primary_39125029
crossref_primary_10_3390_molecules29153624
crossref_citationtrail_10_3390_molecules29153624
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ruan (ref_3) 2022; 61
Li (ref_23) 2023; 6
Xu (ref_49) 2022; 47
Cao (ref_22) 2023; 439
Qutaish (ref_41) 2023; 5
Fan (ref_29) 2019; 11
Cao (ref_64) 2023; 16
Liu (ref_80) 2022; 12
Liang (ref_13) 2022; 5
ref_10
Zhu (ref_54) 2023; 648
Huang (ref_37) 2022; 10
Kang (ref_69) 2022; 69
Bates (ref_4) 2022; 6
Zhang (ref_21) 2023; 6
Liu (ref_46) 2023; 11
Yuan (ref_6) 2022; 122
Shen (ref_86) 2022; 32
Yang (ref_43) 2023; 441
He (ref_78) 2023; 4
Zhang (ref_18) 2022; 71
Guo (ref_39) 2022; 6
Hao (ref_72) 2022; 122
Zhang (ref_73) 2022; 375
Zheng (ref_40) 2022; 16
Lombardo (ref_5) 2022; 122
Neumann (ref_8) 2022; 12
Peng (ref_38) 2022; 439
Wang (ref_44) 2022; 14
ref_20
Zhang (ref_25) 2017; 9
Zhang (ref_50) 2023; 6
Wang (ref_55) 2022; 6
Hou (ref_57) 2022; 61
Ju (ref_79) 2022; 22
Yang (ref_32) 2022; 14
Liang (ref_16) 2022; 4
Wang (ref_53) 2023; 10
Li (ref_24) 2023; 23
Zhang (ref_81) 2023; 73
Zhang (ref_42) 2022; 5
Ko (ref_19) 2023; 563
Zhang (ref_87) 2022; 12
Wang (ref_12) 2023; 6
Lu (ref_17) 2022; 6
Shin (ref_51) 2023; 56
Ma (ref_68) 2022; 12
Deng (ref_14) 2022; 5
Lin (ref_75) 2022; 32
Yang (ref_76) 2022; 7
Chen (ref_2) 2022; 15
Rohland (ref_9) 2022; 125
Zhang (ref_67) 2022; 310
She (ref_27) 2022; 14
Wang (ref_77) 2022; 6
Liang (ref_15) 2022; 34
Liu (ref_11) 2022; 12
Park (ref_31) 2023; 4
Yanev (ref_36) 2024; 171
Zeng (ref_71) 2022; 13
Cao (ref_82) 2022; 9
Zhu (ref_63) 2022; 7
Wang (ref_65) 2023; 35
Liu (ref_33) 2023; 10
Li (ref_84) 2022; 17
Peng (ref_70) 2022; 32
Chen (ref_35) 2014; 137
Ma (ref_47) 2022; 61
Gross (ref_26) 2022; 54
Yi (ref_66) 2023; 6
Kim (ref_56) 2022; 21
Liu (ref_74) 2022; 375
Chen (ref_45) 2023; 6
Pal (ref_59) 2022; 15
Liu (ref_34) 2022; 53
Liu (ref_1) 2022; 8
Rana (ref_7) 2023; 3
Sun (ref_60) 2022; 67
Zhu (ref_28) 2018; 8
Huang (ref_48) 2023; 15
Wang (ref_52) 2022; 9
Hu (ref_85) 2020; 12
Li (ref_61) 2022; 61
Piao (ref_62) 2022; 34
Zhu (ref_30) 2019; 21
Zhao (ref_58) 2022; 61
Zhang (ref_83) 2022; 9
References_xml – volume: 53
  start-page: 621
  year: 2022
  ident: ref_34
  article-title: Expanding the reversibility of graphite-Li metal hybrid anodes by interface and inner-structure modifications
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.10.006
– volume: 12
  start-page: 12793
  year: 2020
  ident: ref_85
  article-title: Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21717
– volume: 171
  start-page: 020512
  year: 2024
  ident: ref_36
  article-title: Editors’ Choice-alleviating the kinetic limitations of the Li-In alloy anode in all-solid-state batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ad2594
– volume: 6
  start-page: 22
  year: 2023
  ident: ref_12
  article-title: Leap of Li metal anodes from coin cells to pouch cells: Challenges and progress
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-023-00185-7
– volume: 6
  start-page: 4137
  year: 2022
  ident: ref_39
  article-title: A solid-solution-based Li-Mg alloy for highly stable lithium metal anodes
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D2SE00910B
– volume: 11
  start-page: 30902
  year: 2019
  ident: ref_29
  article-title: Encapsulating Metallic Lithium into Carbon Nanocages Which Enables a Low-Volume Effect and a Dendrite-Free Lithium Metal Anode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09321
– volume: 13
  start-page: 13
  year: 2022
  ident: ref_71
  article-title: Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29596-8
– volume: 4
  start-page: 20210255
  year: 2023
  ident: ref_31
  article-title: Toward maximum energy density enabled by anode-free lithium metal batteries: Recent progress and perspective
  publication-title: Explor
– volume: 5
  start-page: 1593
  year: 2023
  ident: ref_41
  article-title: Growth mechanism of lithium clusters on the surface of porous carbon framework for lithium metal batteries
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.3c00152
– volume: 5
  start-page: 777
  year: 2022
  ident: ref_14
  article-title: Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12257
– volume: 35
  start-page: 2209074
  year: 2023
  ident: ref_65
  article-title: Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209074
– volume: 23
  start-page: 4014
  year: 2023
  ident: ref_24
  article-title: Self-Assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c00783
– volume: 441
  start-page: 141797
  year: 2023
  ident: ref_43
  article-title: Electrodeposited 3D lithiophilic Ni microvia host for long cycling Li metal anode at high current density
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.141797
– volume: 6
  start-page: 742
  year: 2022
  ident: ref_4
  article-title: Are solid-state batteries safer than lithium-ion batteries?
  publication-title: Joule
  doi: 10.1016/j.joule.2022.02.007
– volume: 3
  start-page: 20220073
  year: 2023
  ident: ref_7
  article-title: Scientific issues of zinc-bromine flow batteries and mitigation strategies
  publication-title: Explor
– volume: 439
  start-page: 135705
  year: 2022
  ident: ref_38
  article-title: Dual-Conductive Li alloy composite anode constructed by a synergetic Conversion-Alloying reaction with LiMgPO4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135705
– volume: 4
  start-page: 20230114
  year: 2023
  ident: ref_78
  article-title: Insight into uniform filming of LiF-rich interphase via synergistic adsorption for high-performance lithium metal anode
  publication-title: Explor
– volume: 15
  start-page: 67
  year: 2023
  ident: ref_48
  article-title: Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01037-1
– volume: 16
  start-page: 8354
  year: 2022
  ident: ref_40
  article-title: The thermodynamically directed dendrite-free lithium metal batteries on LiZn alloy surface
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5109-5
– volume: 10
  start-page: 2300860
  year: 2023
  ident: ref_53
  article-title: Construction of Co3O4/ZnO heterojunctions in hollow n-doped carbon nanocages as microreactors for lithium-sulfur full batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202300860
– volume: 61
  start-page: 6
  year: 2022
  ident: ref_57
  article-title: Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries
  publication-title: Angew. Chem.-Int. Ed.
  doi: 10.1002/anie.202201406
– volume: 61
  start-page: 8
  year: 2022
  ident: ref_58
  article-title: Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries
  publication-title: Angew. Chem.-Int. Ed.
– volume: 15
  start-page: 1805
  year: 2022
  ident: ref_2
  article-title: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00004K
– volume: 122
  start-page: 957
  year: 2022
  ident: ref_6
  article-title: Atomically thin materials for next-generation rechargeable batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00636
– volume: 125
  start-page: 101474
  year: 2022
  ident: ref_9
  article-title: Redox-active polymers: The magic key towards energy storage—A polymer design guideline progress in polymer science
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2021.101474
– volume: 22
  start-page: 1374
  year: 2022
  ident: ref_79
  article-title: Soybean protein fiber enabled controllable Li deposition and a Lif-nanocrystal-enriched interface for stable Li metal batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04775
– volume: 12
  start-page: 2102917
  year: 2022
  ident: ref_8
  article-title: Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102917
– volume: 73
  start-page: 109279
  year: 2023
  ident: ref_81
  article-title: Phase field modeling of lithium deposition in porous lithium metal anodes
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109279
– volume: 6
  start-page: e12598
  year: 2023
  ident: ref_50
  article-title: A 10-μm ultrathin lithium metal composite anodes with superior electrochemical kinetics and cycling stability
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12598
– volume: 16
  start-page: e202202216
  year: 2023
  ident: ref_64
  article-title: Natural pyranosyl materials: Potential applications in solid-state batteries
  publication-title: Chemsuschem
  doi: 10.1002/cssc.202202216
– volume: 69
  start-page: 194
  year: 2022
  ident: ref_69
  article-title: Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.01.008
– volume: 5
  start-page: 2514
  year: 2022
  ident: ref_42
  article-title: Lithiophilic Ti3C2Tx-modified Cu foam by electrophoretic deposition for dendrite-free lithium metal anodes
  publication-title: Acs Appl. Energy Mater.
  doi: 10.1021/acsaem.1c04035
– volume: 14
  start-page: 47
  year: 2022
  ident: ref_32
  article-title: Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00782-5
– volume: 137
  start-page: 476
  year: 2014
  ident: ref_35
  article-title: Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.06.006
– volume: 122
  start-page: 8053
  year: 2022
  ident: ref_72
  article-title: Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00838
– volume: 6
  start-page: 1933
  year: 2023
  ident: ref_21
  article-title: Important role of atom diffusion in dendrite growth and the thermal self-healing mechanism
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c03864
– volume: 54
  start-page: 101746
  year: 2022
  ident: ref_26
  article-title: Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2022.101746
– volume: 11
  start-page: 12910
  year: 2023
  ident: ref_46
  article-title: A 3D lithiophilic ZIF-8@RGO free-standing scaffold with dendrite-free behavior enabling high-performance Li metal batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA09316B
– volume: 8
  start-page: 1703505
  year: 2018
  ident: ref_28
  article-title: Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703505
– volume: 7
  start-page: 1338
  year: 2022
  ident: ref_63
  article-title: Anion-diluent pairing for stable high-energy Li metal batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00232
– volume: 6
  start-page: 3989
  year: 2022
  ident: ref_77
  article-title: MOF-derived MoP nanorods decorated with a N-doped thin carbon layer as a robust lithiophilic and sulfiphilic nanoreactor for high-performance Li-S batteries
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/D2SE00151A
– volume: 61
  start-page: 6
  year: 2022
  ident: ref_61
  article-title: Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis
  publication-title: Angew. Chem.-Int. Ed.
– volume: 8
  start-page: 4058
  year: 2022
  ident: ref_1
  article-title: Overview of batteries and battery management for electric vehicles
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.03.016
– volume: 12
  start-page: 2202518
  year: 2022
  ident: ref_11
  article-title: Working principles of lithium metal anode in pouch cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202518
– volume: 34
  start-page: 2200102
  year: 2022
  ident: ref_15
  article-title: Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200102
– volume: 32
  start-page: 14
  year: 2022
  ident: ref_70
  article-title: High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105776
– volume: 34
  start-page: 10
  year: 2022
  ident: ref_62
  article-title: Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108400
– volume: 9
  start-page: 2201823
  year: 2022
  ident: ref_52
  article-title: Selective nitridation crafted a high-density, carbon-free heterostructure host with built-in electric field for enhanced energy density Li-S batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201823
– volume: 4
  start-page: e12292
  year: 2022
  ident: ref_16
  article-title: Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries
  publication-title: InfoMat
  doi: 10.1002/inf2.12292
– volume: 47
  start-page: 223
  year: 2022
  ident: ref_49
  article-title: Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium-sulfur full batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.02.010
– volume: 67
  start-page: 725
  year: 2022
  ident: ref_60
  article-title: Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.01.012
– volume: 6
  start-page: 7
  year: 2023
  ident: ref_23
  article-title: A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-022-00147-5
– volume: 648
  start-page: 299
  year: 2023
  ident: ref_54
  article-title: A Highly-Lithiophilic Mn3O4/ZnO-Modified Carbon Nanotube Film for Dendrite-Free Lithium Metal Anodes
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.05.101
– volume: 122
  start-page: 10899
  year: 2022
  ident: ref_5
  article-title: Artificial intelligence applied to battery research: Hype or reality?
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00108
– volume: 17
  start-page: 613
  year: 2022
  ident: ref_84
  article-title: A robust all-organic protective layer towards ultrahigh-rate and large-capacity li metal anodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01107-2
– volume: 15
  start-page: 1907
  year: 2022
  ident: ref_59
  article-title: Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02929K
– volume: 32
  start-page: 2207969
  year: 2022
  ident: ref_75
  article-title: Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207969
– volume: 32
  start-page: 2206388
  year: 2022
  ident: ref_86
  article-title: Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206388
– ident: ref_20
  doi: 10.3390/en16093745
– volume: 56
  start-page: 515
  year: 2023
  ident: ref_51
  article-title: Electrode-level strategies enabling kinetics-controlled metallic Li confinement by the heterogeneity of interfacial activity and porosity
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.01.039
– volume: 6
  start-page: 8
  year: 2023
  ident: ref_66
  article-title: A high-performance lithium metal battery with a multilayer hybrid electrolyte
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12289
– volume: 310
  start-page: 8
  year: 2022
  ident: ref_67
  article-title: Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2022.123072
– volume: 12
  start-page: 8
  year: 2022
  ident: ref_80
  article-title: Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes
  publication-title: Adv. Energy Mater.
– volume: 375
  start-page: 66
  year: 2022
  ident: ref_73
  article-title: Capturing the swelling of solid-electrolyte interphase in lithium metal batteries
  publication-title: Science
  doi: 10.1126/science.abi8703
– volume: 14
  start-page: 10457
  year: 2022
  ident: ref_44
  article-title: Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c24755
– volume: 21
  start-page: 445
  year: 2022
  ident: ref_56
  article-title: Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01172-3
– volume: 6
  start-page: e12412
  year: 2023
  ident: ref_45
  article-title: Targeted deposition in a lithiophilic silver-modified 3D Cu host for lithium-metal anodes
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12412
– volume: 9
  start-page: 11
  year: 2022
  ident: ref_83
  article-title: In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries
  publication-title: Adv. Sci.
– volume: 14
  start-page: 10363
  year: 2022
  ident: ref_27
  article-title: Encapsulating a responsive hydrogel core for void space modulation in high-stability graphene-wrapped silicon anodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23356
– volume: 12
  start-page: 9
  year: 2022
  ident: ref_68
  article-title: Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103720
– volume: 6
  start-page: 1172
  year: 2022
  ident: ref_17
  article-title: The timescale identification decoupling complicated kinetic processes in lithium batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2022.05.005
– volume: 375
  start-page: 739
  year: 2022
  ident: ref_74
  article-title: Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries
  publication-title: Science
  doi: 10.1126/science.abn1818
– volume: 9
  start-page: 10
  year: 2022
  ident: ref_82
  article-title: Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-Enriched SEI
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104689
– volume: 9
  start-page: 40265
  year: 2017
  ident: ref_25
  article-title: Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12568
– volume: 21
  start-page: 107
  year: 2019
  ident: ref_30
  article-title: Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.12.001
– volume: 7
  start-page: 885
  year: 2022
  ident: ref_76
  article-title: A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02719
– volume: 6
  start-page: 588
  year: 2022
  ident: ref_55
  article-title: Liquid electrolyte: The nexus of practical lithium metal batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.018
– volume: 10
  start-page: 699
  year: 2023
  ident: ref_33
  article-title: Novel Ni-Ge-P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI01973F
– volume: 439
  start-page: 141722
  year: 2023
  ident: ref_22
  article-title: Perspective of unstable solid electrolyte interphase induced lithium dendrite growth: Role of thermal effect
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.141722
– volume: 71
  start-page: 29
  year: 2022
  ident: ref_18
  article-title: Dead lithium formation in lithium metal batteries: A phase field model
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.12.020
– volume: 12
  start-page: 2103332
  year: 2022
  ident: ref_87
  article-title: A valence gradient protective layer for dendrite-free and highly stable lithium metal anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103332
– ident: ref_10
  doi: 10.1038/s41560-019-0503-2
– volume: 61
  start-page: 10
  year: 2022
  ident: ref_47
  article-title: A “blockchain” synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high coulombic efficiency
  publication-title: Angew. Chem.-Int. Ed.
– volume: 563
  start-page: 232779
  year: 2023
  ident: ref_19
  article-title: Influence of inhomogeneity of lithium-ion transport within the anode/electrolyte interface on mossy lithium formation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232779
– volume: 5
  start-page: 23
  year: 2022
  ident: ref_13
  article-title: Focus on the electroplating chemistry of li ions in nonaqueous liquid electrolytes: Toward stable lithium metal batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-022-00158-2
– volume: 61
  start-page: e202200598
  year: 2022
  ident: ref_3
  article-title: Design strategies for high-energy-density aqueous zinc batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200598
– volume: 10
  start-page: 12350
  year: 2022
  ident: ref_37
  article-title: Li alloy anodes for high-rate and high-areal-capacity solid-state batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02339C
SSID ssj0021415
Score 2.4409573
SecondaryResourceType review_article
Snippet Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 3624
SubjectTerms Alloys
Analysis
Batteries
Carbon
Clean technology
Electric properties
electrochemical properties
Electrochemical reactions
Electrodes
Electrolytes
Energy
high energy density
Innovations
interface design modification
Lithium
lithium dendrites
Machine learning
Mechanical properties
metallic lithium anodes
Pressure distribution
Quantum dots
Solid solutions
Zinc oxides
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCKM9Ai4yEhIQaNQ8njrmgbdmqQhRxoNLeovGLrrRNSpM9cOKvM-Mku6KVetmV1k6UzYw933js72PsfZbnDrRJ4wycjYWl-m4J-IEZkPMWPAS1hrPv5em5-LooFuOCWzduq5zmxDBR29bQGvlhnihKvpVQn69-x6QaRdXVUULjPntA1GXk1XKxTbhSjE5DJRMvTA4vB8FZ12UKx3mZif9iUaDsvz0x34CbIeycPGGPR7zIZ4OBd9k91zxlD48nmbZn7G_QRTYYgfiZQyS9Whr-bdlfLNeXHHN767pPfMaHEgBvPQ9LgB6M41_C5o0DPh-UcFZ_eoetk0jqAYfG8h_bcwV83lzQNy0n8onU1nXP2fnJ_OfxaTyqKsRGSNnHMrEWqtwWziO6s1ojAJJaAcZ5q3RamqoCfEGQVolwkEgHCHlSCZkvjJa6yl-wnaZt3CvGicpHg5DCaiHACbyrUtqDKpVXiAMjlkzvtzYj5TgpX6xqTD3IJPUtk0Ts4-aSq4Fv467OR2S0TUeiyg4_tNe_6nHk1VL4tNCpzH1Bh2gN-NKnAJhYJnmVKYjYBzJ5TQMaH87AeC4B_yJRY9Wziih4MCvLIrY3eUU9jvSu3vplxN5tmtEHqPACjWvXoQ_CAFIGiNjLwZs2z5xjU5Fk6vXdN3_DHmUIp4ath3tsp79eu32EQ71-G3z-H_V8C88
  priority: 102
  providerName: ProQuest
Title Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies
URI https://www.ncbi.nlm.nih.gov/pubmed/39125029
https://www.proquest.com/docview/3090933949
https://www.proquest.com/docview/3091287300
https://doaj.org/article/74f15b173f53432caf6f1aa14003829a
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9RAFH7oeNCLuBsdmxIEQSZMlkoq5a1n7HYQZxjEgb6FVxvT0JMWO33w5F_3VVXSLgN68ZJAqhJqeZX3vVq-D-BVUZYWlc7TAq1JufHruzXShSIg6ww6DGoNp2f1yQX_sKgWv0h9-T1hkR44Ntyh4C6vVC5KV_kzkBpd7XJEiguysilkgEbk88Zgagi1cvJLcQ2zpKD-8CpKzdpNIWmE1wX_zQsFsv7rv-Q_gGZwOPN7cHdAimwaS3gfbtjuAdw-HgXaHsL3oIisyfewU0sYerXU7OOyv1xurxhF9cZu3rIpi5P_bO1YmPxzqC17F7ZtHLBZ1MBZfestpY7yqAcMO8POf54oYLPu0t_9RCIb6Wzt5hFczGefj0_SQU8h1VyIPhWZMdiUprKOcJ1RiqCPUBLJwxup8lo3DVIDYd5k3GImLBLYyQUWrtJKqKZ8DHvdurNPgXkSH4VccKM4R8vpq1Iqh7KWThICTCAb27fVA9m417xYtRR0-C5pr3VJAm92r3yJTBt_y3zkO22X0ZNkhwdkOu1gOu2_TCeB177LWz-UqXAahxMJVEVPitVOG0--Q_FYkcD-aBXtMMY3bZlJPx0kuUzg5S6ZbMAvuWBn19uQhwCA1wRI4Em0pl2ZS0qqskI--x91eQ53CoJbcWviPuz1X7f2BcGlXk3gplgIujbz9xO4dTQ7O_80CaPlB2P4Ftg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k2ggJFASKhR83AeRkJoaXfZ0t2KQyv1FsYvutI2Kd2sUE_8I34jM3lsBZV66yWRYsdyMmPPNx57PsbeRHFsQenQj8AaXxiK76aAF_SArDPgoGFrmB6k4yPx9Tg5XmN_-rMwtK2ynxObidpUmtbIt-NAkvMthfx09tMn1iiKrvYUGq1a7NuLX-iyLT7u7aJ830bRaHi4M_Y7VgFfiyyr_SwwBvLYJNYhujFKIQDIlAS0c0aqMNV5DpEMIcwDYSHILKDJDzOIXKJVpvIY273FbgvsCzl7-ejLysEL0Rq2kVMsDLZPW4Jbu8DmEjQU4h_b11AEXDUE_8HbxsyN7rG7HT7lg1ah7rM1Wz5gGzs9LdxD9rvhYdZo8fjUInKfzzSfzOqT2fKUD8rK2MUHPuBtyIFXjjdLjg605bvNZpEtPmyZd-YXtcXSnpR1i0Np-LfLcwx8WJ7QnZYveZ9E1y4esaMb-d-P2XpZlfYp45Q6SIHIhFFCgBXYqpTKgUylk4g7PRb0_7fQXYpzYtqYF-jqkEiKKyLx2PvVK2dtfo_rKn8moa0qUmru5kF1_qPoRnqRCRcmKsxil9ChXQ0udSEAOrJBnEcSPPaORF7QBIKd09Cdg8BPpFRcxSCnlD_oBUYe2-y1ouhmlkVxOQ489npVjDpAgR4obbVs6iDsICYCjz1ptWnV5xiLkiCSz65v_BXbGB9OJ8Vk72D_ObsTIZRrtz1usvX6fGlfIBSr1ctG_zn7ftMD7i8AAkjL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCuqL-O3VqisogvTIfexlbwWRtElobRuCWOjbOXu72wbSu9okSJ_8v_zrnL2PFC30rS8JZDfL3s3Mzm92ducH8C6KY4MqD_0Ijfa5dvndHtIHRUDGarRYsTUcjnu7R_zrcXK8Bn_auzDuWGW7JlYLtS5zt0fejQPpgm_JZdc2xyImg9GX85--Y5BymdaWTqNWkX1z-YvCt_nnvQHJ-n0UjYbfd3b9hmHAz7kQC18EWmMa68RYQjpaKQIDQkkkn6elCnt5mmIkQwzTgBsMhEFy_6HAyCa5EiqNadw7sC5cVNSB9e3hePJtFe6F5BvrPCpNO-ie1XS3Zk4DJuQ2-D-esCIMuO4W_gO7ldMbPYQHDVpl_Vq9HsGaKR7DvZ2WJO4J_K5YmXPyf-zQEI6fTXN2MF2cTpdnrF-U2sw_sT6rExCstKzagLSYGzaojo5ssWHNwzO7XBhqbSlatxgWmk2ubjWwYXHqvt1mJmtL6pr5Uzi6lTf-DDpFWZgXwFwhIYVccK04R8NpVCmVRdmTVhIK9SBo32-WNwXPHe_GLKPAx4kkuyYSDz6u_nJeV_u4qfO2E9qqoyvUXf1QXpxkjd1ngtswUaGIbeKu8OZoezZEpLA2iNNIogcfnMgzt5zQ5HJsbkXQI7rCXFk_dQWAKCaMPNhstSJr1pl5dmUVHrxdNZMOuLQPFqZcVn0IhDheAg-e19q0mnNMTUkQyY2bB38Dd8nYsoO98f5LuB8RrqvPQG5CZ3GxNK8Ily3U68YAGPy4bZv7C6NuTl0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Metallic+Lithium+Anodes%3A+A+Review+of+Interface+Design%2C+Electrolyte+Innovation%2C+and+Performance+Enhancement+Strategies&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Junwei&rft.au=Jiang%2C+Kailin&rft.au=Fan%2C+Yameng&rft.au=Zhao%2C+Lingfei&rft.date=2024-08-01&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=29&rft.issue=15&rft_id=info:doi/10.3390%2Fmolecules29153624&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon