Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies
Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion,...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 29; no. 15; p. 3624 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode–electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology’s industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement. |
---|---|
AbstractList | Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement. Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement. |
Audience | Academic |
Author | Yu, Peng Shi, Junwei Cheng, Zhenxiang Jiang, Kailin Fan, Yameng Wan, Min Zhao, Lingfei Peng, Jian |
Author_xml | – sequence: 1 givenname: Junwei surname: Shi fullname: Shi, Junwei – sequence: 2 givenname: Kailin surname: Jiang fullname: Jiang, Kailin – sequence: 3 givenname: Yameng surname: Fan fullname: Fan, Yameng – sequence: 4 givenname: Lingfei orcidid: 0000-0003-3683-4210 surname: Zhao fullname: Zhao, Lingfei – sequence: 5 givenname: Zhenxiang surname: Cheng fullname: Cheng, Zhenxiang – sequence: 6 givenname: Peng surname: Yu fullname: Yu, Peng – sequence: 7 givenname: Jian surname: Peng fullname: Peng, Jian – sequence: 8 givenname: Min surname: Wan fullname: Wan, Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39125029$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAQxyNURNuFD8AFWeLCgS1-ZZNwW5UFVloE4nGOJs5461Vit7ZT1BNfndluqVCRkA9jjX_zn5dPiyMfPBbFc8HPlGr4mzEMaKYBk2xEqRZSPypOhJZ8rrhujv66HxenKe04l0KL8klxrBohSy6bk-LXsr8Gb5zfsk-YYRicYRuXL9w0sqUPPaa3bMm-4rXDnyxYtvYZowWD7B0mt_Wv2YpqyDEMNxnp1YdryC6QH3zPvhAb4kgJkK38xd6O6DP7liNk3DpMT4vHFoaEz-7srPjxfvX9_ON88_nD-ny5mRtdVXle8b6HWvUlWtHIvusWUlVdA1LrvunEwtQ10BBA1Fwj8AqhFKWoQNrSdFVXq1mxPuj2AXbtZXQjxJs2gGtvHSFuW4jZmQHbSltRdqJStlRaSQN2YQWA0JyrWjZAWq8OWpcxXE2Ycju6ZHAYwGOYUqs4jbeuFPGz4uUDdBem6KnTPcUbWqNuiDo7UFug_M7bQPMxdHocnaGdW0f-JfVGPS1qSQEv7mSnbsT-vp8_eyVAHAATQ0oR7T0ieLv_O-0_f4diqgcxxuXbZVI1bvhP5G_fDsqm |
CitedBy_id | crossref_primary_10_3390_molecules29184306 crossref_primary_10_1016_j_jallcom_2025_178520 |
Cites_doi | 10.1016/j.ensm.2022.10.006 10.1021/acsami.9b21717 10.1149/1945-7111/ad2594 10.1007/s41918-023-00185-7 10.1039/D2SE00910B 10.1021/acsami.9b09321 10.1038/s41467-022-29596-8 10.1021/acsmaterialslett.3c00152 10.1002/eem2.12257 10.1002/adma.202209074 10.1021/acs.nanolett.3c00783 10.1016/j.electacta.2022.141797 10.1016/j.joule.2022.02.007 10.1016/j.cej.2022.135705 10.1007/s40820-023-01037-1 10.1007/s12274-022-5109-5 10.1002/advs.202300860 10.1002/anie.202201406 10.1039/D2EE00004K 10.1021/acs.chemrev.1c00636 10.1016/j.progpolymsci.2021.101474 10.1021/acs.nanolett.1c04775 10.1002/aenm.202102917 10.1016/j.est.2023.109279 10.1002/eem2.12598 10.1002/cssc.202202216 10.1016/j.jechem.2022.01.008 10.1021/acsaem.1c04035 10.1007/s40820-021-00782-5 10.1016/j.electacta.2014.06.006 10.1021/acs.chemrev.1c00838 10.1021/acsaem.2c03864 10.1016/j.eml.2022.101746 10.1039/D2TA09316B 10.1002/aenm.201703505 10.1021/acsenergylett.2c00232 10.1039/D2SE00151A 10.1016/j.egyr.2022.03.016 10.1002/aenm.202202518 10.1002/adma.202200102 10.1002/adfm.202105776 10.1002/adma.202108400 10.1002/advs.202201823 10.1002/inf2.12292 10.1016/j.ensm.2022.02.010 10.1016/j.scib.2022.01.012 10.1007/s41918-022-00147-5 10.1016/j.jcis.2023.05.101 10.1021/acs.chemrev.1c00108 10.1038/s41565-022-01107-2 10.1039/D1EE02929K 10.1002/adfm.202207969 10.1002/adfm.202206388 10.3390/en16093745 10.1016/j.ensm.2023.01.039 10.1002/eem2.12289 10.1016/j.jssc.2022.123072 10.1126/science.abi8703 10.1021/acsami.1c24755 10.1038/s41563-021-01172-3 10.1002/eem2.12412 10.1021/acsami.1c23356 10.1002/aenm.202103720 10.1016/j.joule.2022.05.005 10.1126/science.abn1818 10.1002/advs.202104689 10.1021/acsami.7b12568 10.1016/j.ensm.2018.12.001 10.1021/acsenergylett.1c02719 10.1016/j.joule.2021.12.018 10.1039/D2QI01973F 10.1016/j.electacta.2022.141722 10.1016/j.jechem.2021.12.020 10.1002/aenm.202103332 10.1038/s41560-019-0503-2 10.1016/j.jpowsour.2023.232779 10.1007/s41918-022-00158-2 10.1002/anie.202200598 10.1039/D2TA02339C |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/molecules29153624 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_74f15b173f53432caf6f1aa14003829a A804517682 39125029 10_3390_molecules29153624 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Research Funding of Wuhan Polytechnic University grantid: 53210052436 – fundername: Research Funding of Wuhan Polytechnic University grantid: 53210052255 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c477t-70dda83d5ef192dbb6237b9a244d9b16c88a291a1804ea07ea51517a2f5cb7b83 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:30:06 EDT 2025 Fri Jul 11 07:18:14 EDT 2025 Sat Jul 26 02:47:09 EDT 2025 Tue Jun 10 21:01:38 EDT 2025 Wed Feb 19 02:06:58 EST 2025 Thu Apr 24 23:08:45 EDT 2025 Tue Jul 01 03:59:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | lithium dendrites high energy density interface design modification metallic lithium anodes electrochemical properties |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-70dda83d5ef192dbb6237b9a244d9b16c88a291a1804ea07ea51517a2f5cb7b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3683-4210 |
OpenAccessLink | https://doaj.org/article/74f15b173f53432caf6f1aa14003829a |
PMID | 39125029 |
PQID | 3090933949 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74f15b173f53432caf6f1aa14003829a proquest_miscellaneous_3091287300 proquest_journals_3090933949 gale_infotracacademiconefile_A804517682 pubmed_primary_39125029 crossref_primary_10_3390_molecules29153624 crossref_citationtrail_10_3390_molecules29153624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Ruan (ref_3) 2022; 61 Li (ref_23) 2023; 6 Xu (ref_49) 2022; 47 Cao (ref_22) 2023; 439 Qutaish (ref_41) 2023; 5 Fan (ref_29) 2019; 11 Cao (ref_64) 2023; 16 Liu (ref_80) 2022; 12 Liang (ref_13) 2022; 5 ref_10 Zhu (ref_54) 2023; 648 Huang (ref_37) 2022; 10 Kang (ref_69) 2022; 69 Bates (ref_4) 2022; 6 Zhang (ref_21) 2023; 6 Liu (ref_46) 2023; 11 Yuan (ref_6) 2022; 122 Shen (ref_86) 2022; 32 Yang (ref_43) 2023; 441 He (ref_78) 2023; 4 Zhang (ref_18) 2022; 71 Guo (ref_39) 2022; 6 Hao (ref_72) 2022; 122 Zhang (ref_73) 2022; 375 Zheng (ref_40) 2022; 16 Lombardo (ref_5) 2022; 122 Neumann (ref_8) 2022; 12 Peng (ref_38) 2022; 439 Wang (ref_44) 2022; 14 ref_20 Zhang (ref_25) 2017; 9 Zhang (ref_50) 2023; 6 Wang (ref_55) 2022; 6 Hou (ref_57) 2022; 61 Ju (ref_79) 2022; 22 Yang (ref_32) 2022; 14 Liang (ref_16) 2022; 4 Wang (ref_53) 2023; 10 Li (ref_24) 2023; 23 Zhang (ref_81) 2023; 73 Zhang (ref_42) 2022; 5 Ko (ref_19) 2023; 563 Zhang (ref_87) 2022; 12 Wang (ref_12) 2023; 6 Lu (ref_17) 2022; 6 Shin (ref_51) 2023; 56 Ma (ref_68) 2022; 12 Deng (ref_14) 2022; 5 Lin (ref_75) 2022; 32 Yang (ref_76) 2022; 7 Chen (ref_2) 2022; 15 Rohland (ref_9) 2022; 125 Zhang (ref_67) 2022; 310 She (ref_27) 2022; 14 Wang (ref_77) 2022; 6 Liang (ref_15) 2022; 34 Liu (ref_11) 2022; 12 Park (ref_31) 2023; 4 Yanev (ref_36) 2024; 171 Zeng (ref_71) 2022; 13 Cao (ref_82) 2022; 9 Zhu (ref_63) 2022; 7 Wang (ref_65) 2023; 35 Liu (ref_33) 2023; 10 Li (ref_84) 2022; 17 Peng (ref_70) 2022; 32 Chen (ref_35) 2014; 137 Ma (ref_47) 2022; 61 Gross (ref_26) 2022; 54 Yi (ref_66) 2023; 6 Kim (ref_56) 2022; 21 Liu (ref_74) 2022; 375 Chen (ref_45) 2023; 6 Pal (ref_59) 2022; 15 Liu (ref_34) 2022; 53 Liu (ref_1) 2022; 8 Rana (ref_7) 2023; 3 Sun (ref_60) 2022; 67 Zhu (ref_28) 2018; 8 Huang (ref_48) 2023; 15 Wang (ref_52) 2022; 9 Hu (ref_85) 2020; 12 Li (ref_61) 2022; 61 Piao (ref_62) 2022; 34 Zhu (ref_30) 2019; 21 Zhao (ref_58) 2022; 61 Zhang (ref_83) 2022; 9 |
References_xml | – volume: 53 start-page: 621 year: 2022 ident: ref_34 article-title: Expanding the reversibility of graphite-Li metal hybrid anodes by interface and inner-structure modifications publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.10.006 – volume: 12 start-page: 12793 year: 2020 ident: ref_85 article-title: Construct an ultrathin bismuth buffer for stable solid-state lithium metal batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21717 – volume: 171 start-page: 020512 year: 2024 ident: ref_36 article-title: Editors’ Choice-alleviating the kinetic limitations of the Li-In alloy anode in all-solid-state batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ad2594 – volume: 6 start-page: 22 year: 2023 ident: ref_12 article-title: Leap of Li metal anodes from coin cells to pouch cells: Challenges and progress publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-023-00185-7 – volume: 6 start-page: 4137 year: 2022 ident: ref_39 article-title: A solid-solution-based Li-Mg alloy for highly stable lithium metal anodes publication-title: Sustain. Energy Fuels doi: 10.1039/D2SE00910B – volume: 11 start-page: 30902 year: 2019 ident: ref_29 article-title: Encapsulating Metallic Lithium into Carbon Nanocages Which Enables a Low-Volume Effect and a Dendrite-Free Lithium Metal Anode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09321 – volume: 13 start-page: 13 year: 2022 ident: ref_71 article-title: Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes publication-title: Nat. Commun. doi: 10.1038/s41467-022-29596-8 – volume: 4 start-page: 20210255 year: 2023 ident: ref_31 article-title: Toward maximum energy density enabled by anode-free lithium metal batteries: Recent progress and perspective publication-title: Explor – volume: 5 start-page: 1593 year: 2023 ident: ref_41 article-title: Growth mechanism of lithium clusters on the surface of porous carbon framework for lithium metal batteries publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.3c00152 – volume: 5 start-page: 777 year: 2022 ident: ref_14 article-title: Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12257 – volume: 35 start-page: 2209074 year: 2023 ident: ref_65 article-title: Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells publication-title: Adv. Mater. doi: 10.1002/adma.202209074 – volume: 23 start-page: 4014 year: 2023 ident: ref_24 article-title: Self-Assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c00783 – volume: 441 start-page: 141797 year: 2023 ident: ref_43 article-title: Electrodeposited 3D lithiophilic Ni microvia host for long cycling Li metal anode at high current density publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141797 – volume: 6 start-page: 742 year: 2022 ident: ref_4 article-title: Are solid-state batteries safer than lithium-ion batteries? publication-title: Joule doi: 10.1016/j.joule.2022.02.007 – volume: 3 start-page: 20220073 year: 2023 ident: ref_7 article-title: Scientific issues of zinc-bromine flow batteries and mitigation strategies publication-title: Explor – volume: 439 start-page: 135705 year: 2022 ident: ref_38 article-title: Dual-Conductive Li alloy composite anode constructed by a synergetic Conversion-Alloying reaction with LiMgPO4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135705 – volume: 4 start-page: 20230114 year: 2023 ident: ref_78 article-title: Insight into uniform filming of LiF-rich interphase via synergistic adsorption for high-performance lithium metal anode publication-title: Explor – volume: 15 start-page: 67 year: 2023 ident: ref_48 article-title: Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01037-1 – volume: 16 start-page: 8354 year: 2022 ident: ref_40 article-title: The thermodynamically directed dendrite-free lithium metal batteries on LiZn alloy surface publication-title: Nano Res. doi: 10.1007/s12274-022-5109-5 – volume: 10 start-page: 2300860 year: 2023 ident: ref_53 article-title: Construction of Co3O4/ZnO heterojunctions in hollow n-doped carbon nanocages as microreactors for lithium-sulfur full batteries publication-title: Adv. Sci. doi: 10.1002/advs.202300860 – volume: 61 start-page: 6 year: 2022 ident: ref_57 article-title: Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries publication-title: Angew. Chem.-Int. Ed. doi: 10.1002/anie.202201406 – volume: 61 start-page: 8 year: 2022 ident: ref_58 article-title: Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries publication-title: Angew. Chem.-Int. Ed. – volume: 15 start-page: 1805 year: 2022 ident: ref_2 article-title: Historical development and novel concepts on electrolytes for aqueous rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00004K – volume: 122 start-page: 957 year: 2022 ident: ref_6 article-title: Atomically thin materials for next-generation rechargeable batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00636 – volume: 125 start-page: 101474 year: 2022 ident: ref_9 article-title: Redox-active polymers: The magic key towards energy storage—A polymer design guideline progress in polymer science publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2021.101474 – volume: 22 start-page: 1374 year: 2022 ident: ref_79 article-title: Soybean protein fiber enabled controllable Li deposition and a Lif-nanocrystal-enriched interface for stable Li metal batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04775 – volume: 12 start-page: 2102917 year: 2022 ident: ref_8 article-title: Recycling of Lithium-Ion Batteries-Current State of the Art, Circular Economy, and Next Generation Recycling publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102917 – volume: 73 start-page: 109279 year: 2023 ident: ref_81 article-title: Phase field modeling of lithium deposition in porous lithium metal anodes publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109279 – volume: 6 start-page: e12598 year: 2023 ident: ref_50 article-title: A 10-μm ultrathin lithium metal composite anodes with superior electrochemical kinetics and cycling stability publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12598 – volume: 16 start-page: e202202216 year: 2023 ident: ref_64 article-title: Natural pyranosyl materials: Potential applications in solid-state batteries publication-title: Chemsuschem doi: 10.1002/cssc.202202216 – volume: 69 start-page: 194 year: 2022 ident: ref_69 article-title: Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.01.008 – volume: 5 start-page: 2514 year: 2022 ident: ref_42 article-title: Lithiophilic Ti3C2Tx-modified Cu foam by electrophoretic deposition for dendrite-free lithium metal anodes publication-title: Acs Appl. Energy Mater. doi: 10.1021/acsaem.1c04035 – volume: 14 start-page: 47 year: 2022 ident: ref_32 article-title: Zinc anode for mild aqueous zinc-ion batteries: Challenges, strategies, and perspectives publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00782-5 – volume: 137 start-page: 476 year: 2014 ident: ref_35 article-title: Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.06.006 – volume: 122 start-page: 8053 year: 2022 ident: ref_72 article-title: Review of multifunctional separators: Stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00838 – volume: 6 start-page: 1933 year: 2023 ident: ref_21 article-title: Important role of atom diffusion in dendrite growth and the thermal self-healing mechanism publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c03864 – volume: 54 start-page: 101746 year: 2022 ident: ref_26 article-title: Alleviating expansion-induced mechanical degradation in lithium-ion battery silicon anodes via morphological design publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2022.101746 – volume: 11 start-page: 12910 year: 2023 ident: ref_46 article-title: A 3D lithiophilic ZIF-8@RGO free-standing scaffold with dendrite-free behavior enabling high-performance Li metal batteries publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09316B – volume: 8 start-page: 1703505 year: 2018 ident: ref_28 article-title: Dendrite-free metallic lithium in lithiophilic carbonized metal-organic frameworks publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703505 – volume: 7 start-page: 1338 year: 2022 ident: ref_63 article-title: Anion-diluent pairing for stable high-energy Li metal batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00232 – volume: 6 start-page: 3989 year: 2022 ident: ref_77 article-title: MOF-derived MoP nanorods decorated with a N-doped thin carbon layer as a robust lithiophilic and sulfiphilic nanoreactor for high-performance Li-S batteries publication-title: Sustain. Energy Fuels doi: 10.1039/D2SE00151A – volume: 61 start-page: 6 year: 2022 ident: ref_61 article-title: Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis publication-title: Angew. Chem.-Int. Ed. – volume: 8 start-page: 4058 year: 2022 ident: ref_1 article-title: Overview of batteries and battery management for electric vehicles publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.03.016 – volume: 12 start-page: 2202518 year: 2022 ident: ref_11 article-title: Working principles of lithium metal anode in pouch cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202518 – volume: 34 start-page: 2200102 year: 2022 ident: ref_15 article-title: Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.202200102 – volume: 32 start-page: 14 year: 2022 ident: ref_70 article-title: High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105776 – volume: 34 start-page: 10 year: 2022 ident: ref_62 article-title: Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries publication-title: Adv. Mater. doi: 10.1002/adma.202108400 – volume: 9 start-page: 2201823 year: 2022 ident: ref_52 article-title: Selective nitridation crafted a high-density, carbon-free heterostructure host with built-in electric field for enhanced energy density Li-S batteries publication-title: Adv. Sci. doi: 10.1002/advs.202201823 – volume: 4 start-page: e12292 year: 2022 ident: ref_16 article-title: Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries publication-title: InfoMat doi: 10.1002/inf2.12292 – volume: 47 start-page: 223 year: 2022 ident: ref_49 article-title: Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium-sulfur full batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.02.010 – volume: 67 start-page: 725 year: 2022 ident: ref_60 article-title: Stabilizing the cycling stability of rechargeable lithium metal batteries with tris(hexafluoroisopropyl)phosphate additive publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.01.012 – volume: 6 start-page: 7 year: 2023 ident: ref_23 article-title: A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00147-5 – volume: 648 start-page: 299 year: 2023 ident: ref_54 article-title: A Highly-Lithiophilic Mn3O4/ZnO-Modified Carbon Nanotube Film for Dendrite-Free Lithium Metal Anodes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.05.101 – volume: 122 start-page: 10899 year: 2022 ident: ref_5 article-title: Artificial intelligence applied to battery research: Hype or reality? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00108 – volume: 17 start-page: 613 year: 2022 ident: ref_84 article-title: A robust all-organic protective layer towards ultrahigh-rate and large-capacity li metal anodes publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01107-2 – volume: 15 start-page: 1907 year: 2022 ident: ref_59 article-title: Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02929K – volume: 32 start-page: 2207969 year: 2022 ident: ref_75 article-title: Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207969 – volume: 32 start-page: 2206388 year: 2022 ident: ref_86 article-title: Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206388 – ident: ref_20 doi: 10.3390/en16093745 – volume: 56 start-page: 515 year: 2023 ident: ref_51 article-title: Electrode-level strategies enabling kinetics-controlled metallic Li confinement by the heterogeneity of interfacial activity and porosity publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.01.039 – volume: 6 start-page: 8 year: 2023 ident: ref_66 article-title: A high-performance lithium metal battery with a multilayer hybrid electrolyte publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12289 – volume: 310 start-page: 8 year: 2022 ident: ref_67 article-title: Hybrid lithium salts regulated solid polymer electrolyte for high-temperature lithium metal battery publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2022.123072 – volume: 12 start-page: 8 year: 2022 ident: ref_80 article-title: Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes publication-title: Adv. Energy Mater. – volume: 375 start-page: 66 year: 2022 ident: ref_73 article-title: Capturing the swelling of solid-electrolyte interphase in lithium metal batteries publication-title: Science doi: 10.1126/science.abi8703 – volume: 14 start-page: 10457 year: 2022 ident: ref_44 article-title: Employing Ni-embedded porous graphitic carbon fibers for high-efficiency lithium-sulfur batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c24755 – volume: 21 start-page: 445 year: 2022 ident: ref_56 article-title: Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries publication-title: Nat. Mater. doi: 10.1038/s41563-021-01172-3 – volume: 6 start-page: e12412 year: 2023 ident: ref_45 article-title: Targeted deposition in a lithiophilic silver-modified 3D Cu host for lithium-metal anodes publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12412 – volume: 9 start-page: 11 year: 2022 ident: ref_83 article-title: In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries publication-title: Adv. Sci. – volume: 14 start-page: 10363 year: 2022 ident: ref_27 article-title: Encapsulating a responsive hydrogel core for void space modulation in high-stability graphene-wrapped silicon anodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23356 – volume: 12 start-page: 9 year: 2022 ident: ref_68 article-title: Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103720 – volume: 6 start-page: 1172 year: 2022 ident: ref_17 article-title: The timescale identification decoupling complicated kinetic processes in lithium batteries publication-title: Joule doi: 10.1016/j.joule.2022.05.005 – volume: 375 start-page: 739 year: 2022 ident: ref_74 article-title: Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries publication-title: Science doi: 10.1126/science.abn1818 – volume: 9 start-page: 10 year: 2022 ident: ref_82 article-title: Achieving uniform Li plating/stripping at ultrahigh currents and capacities by optimizing 3D nucleation sites and Li2Se-Enriched SEI publication-title: Adv. Sci. doi: 10.1002/advs.202104689 – volume: 9 start-page: 40265 year: 2017 ident: ref_25 article-title: Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12568 – volume: 21 start-page: 107 year: 2019 ident: ref_30 article-title: Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.001 – volume: 7 start-page: 885 year: 2022 ident: ref_76 article-title: A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02719 – volume: 6 start-page: 588 year: 2022 ident: ref_55 article-title: Liquid electrolyte: The nexus of practical lithium metal batteries publication-title: Joule doi: 10.1016/j.joule.2021.12.018 – volume: 10 start-page: 699 year: 2023 ident: ref_33 article-title: Novel Ni-Ge-P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI01973F – volume: 439 start-page: 141722 year: 2023 ident: ref_22 article-title: Perspective of unstable solid electrolyte interphase induced lithium dendrite growth: Role of thermal effect publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141722 – volume: 71 start-page: 29 year: 2022 ident: ref_18 article-title: Dead lithium formation in lithium metal batteries: A phase field model publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.12.020 – volume: 12 start-page: 2103332 year: 2022 ident: ref_87 article-title: A valence gradient protective layer for dendrite-free and highly stable lithium metal anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103332 – ident: ref_10 doi: 10.1038/s41560-019-0503-2 – volume: 61 start-page: 10 year: 2022 ident: ref_47 article-title: A “blockchain” synergy in conductive polymer-filled metal-organic frameworks for dendrite-free Li plating/stripping with high coulombic efficiency publication-title: Angew. Chem.-Int. Ed. – volume: 563 start-page: 232779 year: 2023 ident: ref_19 article-title: Influence of inhomogeneity of lithium-ion transport within the anode/electrolyte interface on mossy lithium formation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232779 – volume: 5 start-page: 23 year: 2022 ident: ref_13 article-title: Focus on the electroplating chemistry of li ions in nonaqueous liquid electrolytes: Toward stable lithium metal batteries publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-022-00158-2 – volume: 61 start-page: e202200598 year: 2022 ident: ref_3 article-title: Design strategies for high-energy-density aqueous zinc batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200598 – volume: 10 start-page: 12350 year: 2022 ident: ref_37 article-title: Li alloy anodes for high-rate and high-areal-capacity solid-state batteries publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02339C |
SSID | ssj0021415 |
Score | 2.4409573 |
SecondaryResourceType | review_article |
Snippet | Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 3624 |
SubjectTerms | Alloys Analysis Batteries Carbon Clean technology Electric properties electrochemical properties Electrochemical reactions Electrodes Electrolytes Energy high energy density Innovations interface design modification Lithium lithium dendrites Machine learning Mechanical properties metallic lithium anodes Pressure distribution Quantum dots Solid solutions Zinc oxides |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagHOCCKM9Ai4yEhIQaNQ8njrmgbdmqQhRxoNLeovGLrrRNSpM9cOKvM-Mku6KVetmV1k6UzYw933js72PsfZbnDrRJ4wycjYWl-m4J-IEZkPMWPAS1hrPv5em5-LooFuOCWzduq5zmxDBR29bQGvlhnihKvpVQn69-x6QaRdXVUULjPntA1GXk1XKxTbhSjE5DJRMvTA4vB8FZ12UKx3mZif9iUaDsvz0x34CbIeycPGGPR7zIZ4OBd9k91zxlD48nmbZn7G_QRTYYgfiZQyS9Whr-bdlfLNeXHHN767pPfMaHEgBvPQ9LgB6M41_C5o0DPh-UcFZ_eoetk0jqAYfG8h_bcwV83lzQNy0n8onU1nXP2fnJ_OfxaTyqKsRGSNnHMrEWqtwWziO6s1ojAJJaAcZ5q3RamqoCfEGQVolwkEgHCHlSCZkvjJa6yl-wnaZt3CvGicpHg5DCaiHACbyrUtqDKpVXiAMjlkzvtzYj5TgpX6xqTD3IJPUtk0Ts4-aSq4Fv467OR2S0TUeiyg4_tNe_6nHk1VL4tNCpzH1Bh2gN-NKnAJhYJnmVKYjYBzJ5TQMaH87AeC4B_yJRY9Wziih4MCvLIrY3eUU9jvSu3vplxN5tmtEHqPACjWvXoQ_CAFIGiNjLwZs2z5xjU5Fk6vXdN3_DHmUIp4ath3tsp79eu32EQ71-G3z-H_V8C88 priority: 102 providerName: ProQuest |
Title | Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39125029 https://www.proquest.com/docview/3090933949 https://www.proquest.com/docview/3091287300 https://doaj.org/article/74f15b173f53432caf6f1aa14003829a |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9RAFH7oeNCLuBsdmxIEQSZMlkoq5a1n7HYQZxjEgb6FVxvT0JMWO33w5F_3VVXSLgN68ZJAqhJqeZX3vVq-D-BVUZYWlc7TAq1JufHruzXShSIg6ww6DGoNp2f1yQX_sKgWv0h9-T1hkR44Ntyh4C6vVC5KV_kzkBpd7XJEiguysilkgEbk88Zgagi1cvJLcQ2zpKD-8CpKzdpNIWmE1wX_zQsFsv7rv-Q_gGZwOPN7cHdAimwaS3gfbtjuAdw-HgXaHsL3oIisyfewU0sYerXU7OOyv1xurxhF9cZu3rIpi5P_bO1YmPxzqC17F7ZtHLBZ1MBZfestpY7yqAcMO8POf54oYLPu0t_9RCIb6Wzt5hFczGefj0_SQU8h1VyIPhWZMdiUprKOcJ1RiqCPUBLJwxup8lo3DVIDYd5k3GImLBLYyQUWrtJKqKZ8DHvdurNPgXkSH4VccKM4R8vpq1Iqh7KWThICTCAb27fVA9m417xYtRR0-C5pr3VJAm92r3yJTBt_y3zkO22X0ZNkhwdkOu1gOu2_TCeB177LWz-UqXAahxMJVEVPitVOG0--Q_FYkcD-aBXtMMY3bZlJPx0kuUzg5S6ZbMAvuWBn19uQhwCA1wRI4Em0pl2ZS0qqskI--x91eQ53CoJbcWviPuz1X7f2BcGlXk3gplgIujbz9xO4dTQ7O_80CaPlB2P4Ftg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k2ggJFASKhR83AeRkJoaXfZ0t2KQyv1FsYvutI2Kd2sUE_8I34jM3lsBZV66yWRYsdyMmPPNx57PsbeRHFsQenQj8AaXxiK76aAF_SArDPgoGFrmB6k4yPx9Tg5XmN_-rMwtK2ynxObidpUmtbIt-NAkvMthfx09tMn1iiKrvYUGq1a7NuLX-iyLT7u7aJ830bRaHi4M_Y7VgFfiyyr_SwwBvLYJNYhujFKIQDIlAS0c0aqMNV5DpEMIcwDYSHILKDJDzOIXKJVpvIY273FbgvsCzl7-ejLysEL0Rq2kVMsDLZPW4Jbu8DmEjQU4h_b11AEXDUE_8HbxsyN7rG7HT7lg1ah7rM1Wz5gGzs9LdxD9rvhYdZo8fjUInKfzzSfzOqT2fKUD8rK2MUHPuBtyIFXjjdLjg605bvNZpEtPmyZd-YXtcXSnpR1i0Np-LfLcwx8WJ7QnZYveZ9E1y4esaMb-d-P2XpZlfYp45Q6SIHIhFFCgBXYqpTKgUylk4g7PRb0_7fQXYpzYtqYF-jqkEiKKyLx2PvVK2dtfo_rKn8moa0qUmru5kF1_qPoRnqRCRcmKsxil9ChXQ0udSEAOrJBnEcSPPaORF7QBIKd09Cdg8BPpFRcxSCnlD_oBUYe2-y1ouhmlkVxOQ489npVjDpAgR4obbVs6iDsICYCjz1ptWnV5xiLkiCSz65v_BXbGB9OJ8Vk72D_ObsTIZRrtz1usvX6fGlfIBSr1ctG_zn7ftMD7i8AAkjL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxNBEB9qCuqL-O3VqisogvTIfexlbwWRtElobRuCWOjbOXu72wbSu9okSJ_8v_zrnL2PFC30rS8JZDfL3s3Mzm92ducH8C6KY4MqD_0Ijfa5dvndHtIHRUDGarRYsTUcjnu7R_zrcXK8Bn_auzDuWGW7JlYLtS5zt0fejQPpgm_JZdc2xyImg9GX85--Y5BymdaWTqNWkX1z-YvCt_nnvQHJ-n0UjYbfd3b9hmHAz7kQC18EWmMa68RYQjpaKQIDQkkkn6elCnt5mmIkQwzTgBsMhEFy_6HAyCa5EiqNadw7sC5cVNSB9e3hePJtFe6F5BvrPCpNO-ie1XS3Zk4DJuQ2-D-esCIMuO4W_gO7ldMbPYQHDVpl_Vq9HsGaKR7DvZ2WJO4J_K5YmXPyf-zQEI6fTXN2MF2cTpdnrF-U2sw_sT6rExCstKzagLSYGzaojo5ssWHNwzO7XBhqbSlatxgWmk2ubjWwYXHqvt1mJmtL6pr5Uzi6lTf-DDpFWZgXwFwhIYVccK04R8NpVCmVRdmTVhIK9SBo32-WNwXPHe_GLKPAx4kkuyYSDz6u_nJeV_u4qfO2E9qqoyvUXf1QXpxkjd1ngtswUaGIbeKu8OZoezZEpLA2iNNIogcfnMgzt5zQ5HJsbkXQI7rCXFk_dQWAKCaMPNhstSJr1pl5dmUVHrxdNZMOuLQPFqZcVn0IhDheAg-e19q0mnNMTUkQyY2bB38Dd8nYsoO98f5LuB8RrqvPQG5CZ3GxNK8Ily3U68YAGPy4bZv7C6NuTl0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Metallic+Lithium+Anodes%3A+A+Review+of+Interface+Design%2C+Electrolyte+Innovation%2C+and+Performance+Enhancement+Strategies&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Shi%2C+Junwei&rft.au=Jiang%2C+Kailin&rft.au=Fan%2C+Yameng&rft.au=Zhao%2C+Lingfei&rft.date=2024-08-01&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=29&rft.issue=15&rft_id=info:doi/10.3390%2Fmolecules29153624&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |