Toxofilin upregulates the host cortical actin cytoskeleton dynamics facilitating Toxoplasma invasion
Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, progressively propels itself through the junction inside a newly formed vacuole that encloses the entering pa...
Saved in:
Published in | Journal of cell science Vol. 125; no. Pt 18; pp. 4333 - 4342 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists
15.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, progressively propels itself through the junction inside a newly formed vacuole that encloses the entering parasite. Litle is known how a few micron-large diameter parasite overcome the host cell cortical actin barrier to support these remarkably rapid process of internalization (< few seconds). Correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis indicate that toxofilin an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy in cells expressing toxofilin indicates that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, are impaired in cortical actin disassembly and exhibit delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that, in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding. |
---|---|
AbstractList | Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, progressively propels itself through the junction inside a newly formed vacuole that encloses the entering parasite. Litle is known how a few micron-large diameter parasite overcome the host cell cortical actin barrier to support these remarkably rapid process of internalization (< few seconds). Correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis indicate that toxofilin an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy in cells expressing toxofilin indicates that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, are impaired in cortical actin disassembly and exhibit delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that, in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding. Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding. Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding. Toxoplasma gondii , a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite–cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding. |
Author | Lagal, Vanessa Tardieux, Isabelle Perazzi, Audrey Delorme-Walker, Violaine Hanein, Dorit Anderson, Karen Gonzalez, Virginie Page, Christopher Ochoa, Wendy Abrivard, Marie Chauvet, Juliette Volkmann, Niels |
AuthorAffiliation | 1 Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA 92037 , USA 2 Institut Cochin, Université Paris Descartes , CNRS (UMR 8104), 75014 Paris , France 4 Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute , La Jolla, CA 92037 , USA 3 INSERM , U1016, 75014 Paris , France |
AuthorAffiliation_xml | – name: 1 Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA 92037 , USA – name: 3 INSERM , U1016, 75014 Paris , France – name: 4 Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute , La Jolla, CA 92037 , USA – name: 2 Institut Cochin, Université Paris Descartes , CNRS (UMR 8104), 75014 Paris , France |
Author_xml | – sequence: 1 givenname: Violaine surname: Delorme-Walker fullname: Delorme-Walker, Violaine – sequence: 2 givenname: Marie surname: Abrivard fullname: Abrivard, Marie – sequence: 3 givenname: Vanessa surname: Lagal fullname: Lagal, Vanessa – sequence: 4 givenname: Karen surname: Anderson fullname: Anderson, Karen – sequence: 5 givenname: Audrey surname: Perazzi fullname: Perazzi, Audrey – sequence: 6 givenname: Virginie surname: Gonzalez fullname: Gonzalez, Virginie – sequence: 7 givenname: Christopher surname: Page fullname: Page, Christopher – sequence: 8 givenname: Juliette surname: Chauvet fullname: Chauvet, Juliette – sequence: 9 givenname: Wendy surname: Ochoa fullname: Ochoa, Wendy – sequence: 10 givenname: Niels surname: Volkmann fullname: Volkmann, Niels – sequence: 11 givenname: Dorit surname: Hanein fullname: Hanein, Dorit – sequence: 12 givenname: Isabelle surname: Tardieux fullname: Tardieux, Isabelle |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22641695$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi3Uim4_LvwAlCNCSvHEjhNfkFAFLVIlLu3ZmvVOdl0ce4mdiv33eNkWAULiNId55tGreU_ZUYiBGHsF_BIa2bx7sOkSuFCyf8EWILuu1iC6I7bgvIFat0KcsNOUHjjnXaO7l-ykaZQEpdsFW93F73Fw3oVq3k60nj1mSlXeULWJKVc2TtlZ9BXaXBi7yzF9JU85hmq1Czg6m6oBbTFkLMS62gu3HtOIlQuPmFwM5-x4QJ_o4mmesftPH--uburbL9efrz7c1raEzrVqSaFtYUmd6DT1vV0O1IOlZUsgcVB8hWrgvIdOyQZIYCsUgraopdSoxRl7f_Bu5-VIK0shT-jNdnIjTjsT0Zk_N8FtzDo-GtGCkmIvePMkmOK3mVI2o0uWvMdAcU4G2gKC5BL-j0JbOil0X9DXv8f6lee5hQLwA2CnmNJEg7E_vxn3KZ03wM2-aFOKNoeiy8nbv06erf-AfwCUeaxN |
CitedBy_id | crossref_primary_10_1016_j_chom_2019_09_008 crossref_primary_10_1016_j_ajpath_2013_12_022 crossref_primary_10_1016_j_febslet_2015_08_038 crossref_primary_10_1128_mBio_01591_21 crossref_primary_10_1186_s12915_014_0108_y crossref_primary_10_1038_srep03199 crossref_primary_10_1016_j_mib_2019_06_007 crossref_primary_10_1126_science_1254211 crossref_primary_10_1371_journal_pone_0091819 crossref_primary_10_1128_CMR_00115_19 crossref_primary_10_1016_j_ijpara_2020_06_012 crossref_primary_10_1186_s12915_016_0316_8 crossref_primary_10_1016_j_mib_2019_07_002 crossref_primary_10_1016_j_neubiorev_2018_11_012 crossref_primary_10_1111_cmi_12145 crossref_primary_10_1371_journal_ppat_1004449 crossref_primary_10_1038_nsmb_2964 crossref_primary_10_1128_mBio_00557_15 crossref_primary_10_1016_j_ijpddr_2020_07_003 crossref_primary_10_1016_j_micinf_2012_09_005 crossref_primary_10_7554_eLife_39887 crossref_primary_10_1016_j_parint_2013_04_006 crossref_primary_10_1111_2049_632X_12057 crossref_primary_10_1242_jcs_232488 crossref_primary_10_1016_j_gene_2019_03_008 crossref_primary_10_1111_1574_6976_12013 crossref_primary_10_1128_mBio_00905_18 crossref_primary_10_1146_annurev_micro_011720_122318 crossref_primary_10_1371_journal_pone_0064693 crossref_primary_10_1016_j_chom_2013_03_002 crossref_primary_10_1016_j_mib_2013_05_002 crossref_primary_10_1128_mSphere_00877_19 crossref_primary_10_1369_0022155416656349 crossref_primary_10_1111_mmi_14634 crossref_primary_10_1371_journal_ppat_1003821 crossref_primary_10_1038_srep19766 crossref_primary_10_1016_j_pt_2012_08_008 crossref_primary_10_1017_S0031182016000524 crossref_primary_10_1128_mBio_00182_20 crossref_primary_10_1016_j_chom_2018_06_003 crossref_primary_10_1128_IAI_02606_14 crossref_primary_10_1371_journal_pone_0116509 crossref_primary_10_1371_journal_ppat_1004273 |
Cites_doi | 10.1042/BJ20061324 10.1073/pnas.96.16.9095 10.1091/mbc.E02-08-0462 10.1074/jbc.M504158200 10.1016/S0076-6879(10)83010-1 10.1083/jcb.200406063 10.1073/pnas.97.16.8799 10.1091/mbc.11.1.355 10.1016/S1047-8477(02)00009-6 10.1016/S0091-679X(08)61845-2 10.1146/annurev.biophys.35.040405.102114 10.1083/jcb.145.6.1251 10.1084/jem.190.12.1783 10.1111/j.1462-5822.2009.01378.x 10.1083/jcb.114.3.503 10.1016/S0960-9822(07)00515-5 10.1016/j.mib.2007.09.013 10.1073/pnas.0705794104 10.1016/S0092-8674(00)81071-5 10.1073/pnas.93.16.8413 10.1046/j.1462-5822.2000.00046.x 10.1111/j.1462-5822.2008.01276.x 10.1021/bi034600x 10.1093/emboj/20.12.3132 10.1016/j.jsb.2006.06.010 10.1371/journal.ppat.1000309 10.1126/science.1074553 10.1016/j.devcel.2007.08.011 10.1083/jcb.200909176 10.1371/journal.ppat.0010017 10.1016/j.chom.2009.01.011 10.1126/science.1100533 |
ContentType | Journal Article |
Copyright | 2012. Published by The Company of Biologists Ltd 2012 |
Copyright_xml | – notice: 2012. Published by The Company of Biologists Ltd 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 M7N 5PM |
DOI | 10.1242/jcs.103648 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-9137 |
EndPage | 4342 |
ExternalDocumentID | PMC3516439 22641695 10_1242_jcs_103648 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U54 GM064346 – fundername: NIGMS NIH HHS grantid: P01 GM098412 |
GroupedDBID | --- -DZ -~X 0R~ 18M 2WC 34G 39C 3O- 4.4 4R4 53G 5GY 5RE 5VS 85S AAYXX ABDNZ ABPPZ ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADCOW ADVGF AEILP AENEX AFFNX AFRAH AGGIJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P F9R GX1 H13 HZ~ IH2 INIJC KQ8 O9- OK1 P2P R.V RCB RHI RNS SJN TN5 TR2 UPT W2D W8F WH7 WOQ YQT ZY4 ~02 ~KM ABTAH CGR CUY CVF ECM EIF NPM RHF 7X8 M7N 5PM |
ID | FETCH-LOGICAL-c477t-65e6ac51be7379e88cbfe81ceb5e14af60da6f008176421e3a536a19ca9449a93 |
ISSN | 0021-9533 1477-9137 |
IngestDate | Thu Aug 21 13:56:49 EDT 2025 Fri Jul 11 14:44:26 EDT 2025 Fri Jul 11 04:26:13 EDT 2025 Wed Feb 19 01:51:16 EST 2025 Tue Jul 01 02:37:50 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-65e6ac51be7379e88cbfe81ceb5e14af60da6f008176421e3a536a19ca9449a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jcs.biologists.org/content/joces/125/18/4333.full.pdf |
PMID | 22641695 |
PQID | 1151031618 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3516439 proquest_miscellaneous_1551614041 proquest_miscellaneous_1151031618 pubmed_primary_22641695 crossref_citationtrail_10_1242_jcs_103648 crossref_primary_10_1242_jcs_103648 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-15 |
PublicationDateYYYYMMDD | 2012-09-15 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bidder Building, 140 Cowley Road, Cambridge, CB4 0DL, UK |
PublicationTitle | Journal of cell science |
PublicationTitleAlternate | J Cell Sci |
PublicationYear | 2012 |
Publisher | The Company of Biologists |
Publisher_xml | – name: The Company of Biologists |
References | Gupton (2021042522350097000_b13) 2005; 168 Håkansson (2021042522350097000_b14) 2001; 20 Alexander (2021042522350097000_b1) 2005; 1 Okreglak (2021042522350097000_b21) 2010; 188 Hanein (2021042522350097000_b15) 2010; 483 Dobrowolski (2021042522350097000_b10) 1996; 84 Ono (2021042522350097000_b22) 2003; 42 Danuser (2021042522350097000_b6) 2006; 35 Ponti (2021042522350097000_b24) 2004; 305 Besteiro (2021042522350097000_b2) 2009; 5 Meissner (2021042522350097000_b19) 2002; 298 Gonzalez (2021042522350097000_b12) 2009; 5 Bradley (2021042522350097000_b3) 2007; 10 Delorme (2021042522350097000_b8) 2007; 13 Suss–Toby (2021042522350097000_b30) 1996; 93 Tran Van Nhieu (2021042522350097000_b32) 2000; 2 Bradley (2021042522350097000_b4) 2005; 280 Poupel (2021042522350097000_b25) 2000; 11 Volkmann (2021042522350097000_b34) 2002; 138 Symons (2021042522350097000_b31) 1991; 114 Delorme (2021042522350097000_b7) 2003; 14 Jan (2021042522350097000_b16) 2007; 401 Mordue (2021042522350097000_b20) 1999; 190 Shaw (2021042522350097000_b28) 1999; 96 Roos (2021042522350097000_b27) 1994; 45 Lodoen (2021042522350097000_b18) 2010; 12 Waterman–Storer (2021042522350097000_b35) 1998; 8 Straub (2021042522350097000_b29) 2009; 11 Lee (2021042522350097000_b17) 2007; 104 Rodal (2021042522350097000_b26) 1999; 145 Vallance (2021042522350097000_b33) 2000; 97 Goddard (2021042522350097000_b11) 2007; 157 20888476 - Methods Enzymol. 2010;483:203-14 17911258 - Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16122-7 9811609 - Curr Biol. 1998 Nov 5;8(22):1227-30 19134112 - Cell Microbiol. 2009 Apr;11(4):590-603 19732057 - Cell Microbiol. 2010 Jan;12(1):55-66 8601316 - Cell. 1996 Mar 22;84(6):933-9 15375270 - Science. 2004 Sep 17;305(5691):1782-6 19247437 - PLoS Pathog. 2009 Feb;5(2):e1000309 10922038 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8799-806 10637313 - Mol Biol Cell. 2000 Jan;11(1):355-68 16963278 - J Struct Biol. 2007 Jan;157(1):281-7 11406590 - EMBO J. 2001 Jun 15;20(12):3132-44 16244709 - PLoS Pathog. 2005 Oct;1(2):e17 11207575 - Cell Microbiol. 2000 Jun;2(3):187-93 8710885 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8413-8 17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7 19286135 - Cell Host Microbe. 2009 Mar 19;5(3):259-72 14621980 - Biochemistry. 2003 Nov 25;42(46):13363-70 12802063 - Mol Biol Cell. 2003 May;14(5):1900-12 10366597 - J Cell Biol. 1999 Jun 14;145(6):1251-64 17981134 - Dev Cell. 2007 Nov;13(5):646-62 17014426 - Biochem J. 2007 Feb 1;401(3):711-9 10601353 - J Exp Med. 1999 Dec 20;190(12):1783-92 16002398 - J Biol Chem. 2005 Oct 7;280(40):34245-58 1860882 - J Cell Biol. 1991 Aug;114(3):503-13 12399593 - Science. 2002 Oct 25;298(5594):837-40 16689641 - Annu Rev Biophys Biomol Struct. 2006;35:361-87 20231387 - J Cell Biol. 2010 Mar 22;188(6):769-77 12160708 - J Struct Biol. 2002 Apr-May;138(1-2):123-9 10430901 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9095-9 15716379 - J Cell Biol. 2005 Feb 14;168(4):619-31 7707991 - Methods Cell Biol. 1994;45:27-63 |
References_xml | – volume: 401 start-page: 711 year: 2007 ident: 2021042522350097000_b16 article-title: The toxofilin-actin-PP2C complex of Toxoplasma: identification of interacting domains. publication-title: Biochem. J. doi: 10.1042/BJ20061324 – volume: 96 start-page: 9095 year: 1999 ident: 2021042522350097000_b28 article-title: Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.16.9095 – volume: 14 start-page: 1900 year: 2003 ident: 2021042522350097000_b7 article-title: Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E02-08-0462 – volume: 280 start-page: 34245 year: 2005 ident: 2021042522350097000_b4 article-title: Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504158200 – volume: 483 start-page: 203 year: 2010 ident: 2021042522350097000_b15 article-title: Tomography of actin cytoskeletal networks. publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(10)83010-1 – volume: 168 start-page: 619 year: 2005 ident: 2021042522350097000_b13 article-title: Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin. publication-title: J. Cell Biol. doi: 10.1083/jcb.200406063 – volume: 97 start-page: 8799 year: 2000 ident: 2021042522350097000_b33 article-title: Exploitation of host cells by enteropathogenic Escherichia coli. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.16.8799 – volume: 11 start-page: 355 year: 2000 ident: 2021042522350097000_b25 article-title: Toxofilin, a novel actin-binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.1.355 – volume: 138 start-page: 123 year: 2002 ident: 2021042522350097000_b34 article-title: A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. publication-title: J. Struct. Biol. doi: 10.1016/S1047-8477(02)00009-6 – volume: 45 start-page: 27 year: 1994 ident: 2021042522350097000_b27 article-title: Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. publication-title: Methods Cell Biol. doi: 10.1016/S0091-679X(08)61845-2 – volume: 35 start-page: 361 year: 2006 ident: 2021042522350097000_b6 article-title: Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.35.040405.102114 – volume: 145 start-page: 1251 year: 1999 ident: 2021042522350097000_b26 article-title: Aip1p interacts with cofilin to disassemble actin filaments. publication-title: J. Cell Biol. doi: 10.1083/jcb.145.6.1251 – volume: 190 start-page: 1783 year: 1999 ident: 2021042522350097000_b20 article-title: Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. publication-title: J. Exp. Med. doi: 10.1084/jem.190.12.1783 – volume: 12 start-page: 55 year: 2010 ident: 2021042522350097000_b18 article-title: A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection. publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2009.01378.x – volume: 114 start-page: 503 year: 1991 ident: 2021042522350097000_b31 article-title: Control of actin polymerization in live and permeabilized fibroblasts. publication-title: J. Cell Biol. doi: 10.1083/jcb.114.3.503 – volume: 8 start-page: 1227 year: 1998 ident: 2021042522350097000_b35 article-title: Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. publication-title: Curr. Biol. doi: 10.1016/S0960-9822(07)00515-5 – volume: 10 start-page: 582 year: 2007 ident: 2021042522350097000_b3 article-title: Rhoptries: an arsenal of secreted virulence factors. publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2007.09.013 – volume: 104 start-page: 16122 year: 2007 ident: 2021042522350097000_b17 article-title: Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0705794104 – volume: 84 start-page: 933 year: 1996 ident: 2021042522350097000_b10 article-title: Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. publication-title: Cell doi: 10.1016/S0092-8674(00)81071-5 – volume: 93 start-page: 8413 year: 1996 ident: 2021042522350097000_b30 article-title: Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.16.8413 – volume: 2 start-page: 187 year: 2000 ident: 2021042522350097000_b32 article-title: Bacterial signals and cell responses during Shigella entry into epithelial cells. publication-title: Cell. Microbiol. doi: 10.1046/j.1462-5822.2000.00046.x – volume: 11 start-page: 590 year: 2009 ident: 2021042522350097000_b29 article-title: Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. publication-title: Cell. Microbiol. doi: 10.1111/j.1462-5822.2008.01276.x – volume: 42 start-page: 13363 year: 2003 ident: 2021042522350097000_b22 article-title: Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments. publication-title: Biochemistry doi: 10.1021/bi034600x – volume: 20 start-page: 3132 year: 2001 ident: 2021042522350097000_b14 article-title: Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. publication-title: EMBO J. doi: 10.1093/emboj/20.12.3132 – volume: 157 start-page: 281 year: 2007 ident: 2021042522350097000_b11 article-title: Visualizing density maps with UCSF Chimera. publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.06.010 – volume: 5 start-page: e1000309 year: 2009 ident: 2021042522350097000_b2 article-title: Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000309 – volume: 298 start-page: 837 year: 2002 ident: 2021042522350097000_b19 article-title: Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. publication-title: Science doi: 10.1126/science.1074553 – volume: 13 start-page: 646 year: 2007 ident: 2021042522350097000_b8 article-title: Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.08.011 – volume: 188 start-page: 769 year: 2010 ident: 2021042522350097000_b21 article-title: Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway. publication-title: J. Cell Biol. doi: 10.1083/jcb.200909176 – volume: 1 start-page: e17 year: 2005 ident: 2021042522350097000_b1 article-title: Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0010017 – volume: 5 start-page: 259 year: 2009 ident: 2021042522350097000_b12 article-title: Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.01.011 – volume: 305 start-page: 1782 year: 2004 ident: 2021042522350097000_b24 article-title: Two distinct actin networks drive the protrusion of migrating cells. publication-title: Science doi: 10.1126/science.1100533 – reference: 17014426 - Biochem J. 2007 Feb 1;401(3):711-9 – reference: 19732057 - Cell Microbiol. 2010 Jan;12(1):55-66 – reference: 10922038 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8799-806 – reference: 12802063 - Mol Biol Cell. 2003 May;14(5):1900-12 – reference: 19134112 - Cell Microbiol. 2009 Apr;11(4):590-603 – reference: 15716379 - J Cell Biol. 2005 Feb 14;168(4):619-31 – reference: 14621980 - Biochemistry. 2003 Nov 25;42(46):13363-70 – reference: 11207575 - Cell Microbiol. 2000 Jun;2(3):187-93 – reference: 16244709 - PLoS Pathog. 2005 Oct;1(2):e17 – reference: 17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7 – reference: 16963278 - J Struct Biol. 2007 Jan;157(1):281-7 – reference: 20888476 - Methods Enzymol. 2010;483:203-14 – reference: 16689641 - Annu Rev Biophys Biomol Struct. 2006;35:361-87 – reference: 20231387 - J Cell Biol. 2010 Mar 22;188(6):769-77 – reference: 19286135 - Cell Host Microbe. 2009 Mar 19;5(3):259-72 – reference: 15375270 - Science. 2004 Sep 17;305(5691):1782-6 – reference: 7707991 - Methods Cell Biol. 1994;45:27-63 – reference: 12399593 - Science. 2002 Oct 25;298(5594):837-40 – reference: 11406590 - EMBO J. 2001 Jun 15;20(12):3132-44 – reference: 10430901 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9095-9 – reference: 12160708 - J Struct Biol. 2002 Apr-May;138(1-2):123-9 – reference: 8710885 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8413-8 – reference: 10637313 - Mol Biol Cell. 2000 Jan;11(1):355-68 – reference: 16002398 - J Biol Chem. 2005 Oct 7;280(40):34245-58 – reference: 8601316 - Cell. 1996 Mar 22;84(6):933-9 – reference: 10366597 - J Cell Biol. 1999 Jun 14;145(6):1251-64 – reference: 17981134 - Dev Cell. 2007 Nov;13(5):646-62 – reference: 1860882 - J Cell Biol. 1991 Aug;114(3):503-13 – reference: 19247437 - PLoS Pathog. 2009 Feb;5(2):e1000309 – reference: 10601353 - J Exp Med. 1999 Dec 20;190(12):1783-92 – reference: 9811609 - Curr Biol. 1998 Nov 5;8(22):1227-30 – reference: 17911258 - Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16122-7 |
SSID | ssj0007297 |
Score | 2.3381913 |
Snippet | Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the... Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the... Toxoplasma gondii , a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4333 |
SubjectTerms | Actin Capping Proteins - metabolism Actin Cytoskeleton - metabolism Actin Cytoskeleton - parasitology Actin Cytoskeleton - ultrastructure Actin Depolymerizing Factors - metabolism Actins - metabolism Animals Biomechanical Phenomena Cell Line Cell Survival Gene Knockout Techniques Host-Parasite Interactions Humans Kinetics Life Cycle Stages Phosphorylation Phosphoserine - metabolism Protein Transport Protozoan Proteins - metabolism Rats Secretory Vesicles - metabolism Secretory Vesicles - parasitology Toxoplasma - growth & development Toxoplasma - physiology Toxoplasma - ultrastructure Toxoplasma gondii Up-Regulation |
Title | Toxofilin upregulates the host cortical actin cytoskeleton dynamics facilitating Toxoplasma invasion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22641695 https://www.proquest.com/docview/1151031618 https://www.proquest.com/docview/1551614041 https://pubmed.ncbi.nlm.nih.gov/PMC3516439 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELayVpP2Mm3dr-xH5Wl7mRBbDMbAYzStqiZ1T22XpyHbmBatJVFCqnV__e4wGNJUU7cXFIENhO_DvsN33xHyXgY8B17Ai2Sk8HkolJ_oeOKnoYLZSOlAckxOPvomDk_411k0G41-DKKW1rX6qH_fmlfyP6jCPsAVs2T_AVl3UtgBvwFf2ALCsL0bxvNfWHG7rLz1YmmLyqNiAyCPuRseOJb2SzUmL1Sevq7nq58wzaCSRm4r0a-w4E4r1F2deXjCBdjTl9Irqyu56kDbtl7xg7_XTp_OGDbg_F8a_7u8aGM1TkvwnAcr91O1LK-kjaY_Qi_dxQPJs6bygHcqcex1c8W0yb2xkQF93lr7lQLDPVLf5mm6rAGGS8V2MDN2sOW4fMys6MvWUA62Aw7leoW6AMLKcW7qZd-Yx1x0Ifo10DuDvpnte4_sBuBGNMngsz4ECByLtqSvvbdWvhb6fuqvu2mwbHkhN4NpB9bJ8SPysAWGTi1HHpORqfbIfVto9PoJyR1T6IApFJhCkSm0YwptmEKHTKEdU-iQKbRnCu2Y8pScHHw5_nzot_U1fA1PvvZFZITUEVMmDuPUJIlWhUmYNioyjMtCTHIpCjQaY0yHNqGMQiFZqmXKeSrT8BnZqeaVeUGokHlcCK3BvAy44JMkVkHBVKATE0_SQI7Jh-4hZroVn8caKBfZNlhj8s61XVjJlVtbve2wyGBERNYDQedrOM5QJRILQfylDa4Po7IUG5PnFj93LUwtZyKNxiTeQNY1QEX2zSNVed4os4dwVrDwX97pH7wiD_o35TXZqZdr8wYs3FrtNzT9AzFYrss |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxofilin+upregulates+the+host+cortical+actin+cytoskeleton+dynamics+facilitating+Toxoplasma+invasion&rft.jtitle=Journal+of+cell+science&rft.au=Delorme-Walker%2C+Violaine&rft.au=Abrivard%2C+Marie&rft.au=Lagal%2C+Vanessa&rft.au=Anderson%2C+Karen&rft.date=2012-09-15&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242%2Fjcs.103648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_jcs_103648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon |