Toxofilin upregulates the host cortical actin cytoskeleton dynamics facilitating Toxoplasma invasion

Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, progressively propels itself through the junction inside a newly formed vacuole that encloses the entering pa...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 125; no. Pt 18; pp. 4333 - 4342
Main Authors Delorme-Walker, Violaine, Abrivard, Marie, Lagal, Vanessa, Anderson, Karen, Perazzi, Audrey, Gonzalez, Virginie, Page, Christopher, Chauvet, Juliette, Ochoa, Wendy, Volkmann, Niels, Hanein, Dorit, Tardieux, Isabelle
Format Journal Article
LanguageEnglish
Published England The Company of Biologists 15.09.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, progressively propels itself through the junction inside a newly formed vacuole that encloses the entering parasite. Litle is known how a few micron-large diameter parasite overcome the host cell cortical actin barrier to support these remarkably rapid process of internalization (< few seconds). Correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis indicate that toxofilin an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy in cells expressing toxofilin indicates that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, are impaired in cortical actin disassembly and exhibit delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that, in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.
AbstractList Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, progressively propels itself through the junction inside a newly formed vacuole that encloses the entering parasite. Litle is known how a few micron-large diameter parasite overcome the host cell cortical actin barrier to support these remarkably rapid process of internalization (< few seconds). Correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis indicate that toxofilin an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy in cells expressing toxofilin indicates that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, are impaired in cortical actin disassembly and exhibit delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that, in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.
Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.
Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite-cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.
Toxoplasma gondii , a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the formation of a parasite–cell junction, and progressively propels itself through the junction, inside a newly formed vacuole that encloses the entering parasite. Little is known about how a parasite that is a few microns in diameter overcomes the host cell cortical actin barrier to achieve the remarkably rapid process of internalization (less than a few seconds). Using correlative light and electron microscopy in conjunction with electron tomography and three-dimensional image analysis we identified that toxofilin, an actin-binding protein, secreted by invading parasites correlates with localized sites of disassembly of the host cell actin meshwork. Moreover, quantitative fluorescence speckle microscopy of cells expressing toxofilin showed that toxofilin regulates actin filament disassembly and turnover. Furthermore, Toxoplasma tachyzoites lacking toxofilin, were found to be impaired in cortical actin disassembly and exhibited delayed invasion kinetics. We propose that toxofilin locally upregulates actin turnover thus increasing depolymerization events at the site of entry that in turn loosens the local host cell actin meshwork, facilitating parasite internalization and vacuole folding.
Author Lagal, Vanessa
Tardieux, Isabelle
Perazzi, Audrey
Delorme-Walker, Violaine
Hanein, Dorit
Anderson, Karen
Gonzalez, Virginie
Page, Christopher
Ochoa, Wendy
Abrivard, Marie
Chauvet, Juliette
Volkmann, Niels
AuthorAffiliation 1 Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA 92037 , USA
2 Institut Cochin, Université Paris Descartes , CNRS (UMR 8104), 75014 Paris , France
4 Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute , La Jolla, CA 92037 , USA
3 INSERM , U1016, 75014 Paris , France
AuthorAffiliation_xml – name: 1 Department of Immunology and Microbial Science, The Scripps Research Institute , La Jolla, CA 92037 , USA
– name: 3 INSERM , U1016, 75014 Paris , France
– name: 4 Bioinformatics and Systems Biology Program, Sanford-Burnham Medical Research Institute , La Jolla, CA 92037 , USA
– name: 2 Institut Cochin, Université Paris Descartes , CNRS (UMR 8104), 75014 Paris , France
Author_xml – sequence: 1
  givenname: Violaine
  surname: Delorme-Walker
  fullname: Delorme-Walker, Violaine
– sequence: 2
  givenname: Marie
  surname: Abrivard
  fullname: Abrivard, Marie
– sequence: 3
  givenname: Vanessa
  surname: Lagal
  fullname: Lagal, Vanessa
– sequence: 4
  givenname: Karen
  surname: Anderson
  fullname: Anderson, Karen
– sequence: 5
  givenname: Audrey
  surname: Perazzi
  fullname: Perazzi, Audrey
– sequence: 6
  givenname: Virginie
  surname: Gonzalez
  fullname: Gonzalez, Virginie
– sequence: 7
  givenname: Christopher
  surname: Page
  fullname: Page, Christopher
– sequence: 8
  givenname: Juliette
  surname: Chauvet
  fullname: Chauvet, Juliette
– sequence: 9
  givenname: Wendy
  surname: Ochoa
  fullname: Ochoa, Wendy
– sequence: 10
  givenname: Niels
  surname: Volkmann
  fullname: Volkmann, Niels
– sequence: 11
  givenname: Dorit
  surname: Hanein
  fullname: Hanein, Dorit
– sequence: 12
  givenname: Isabelle
  surname: Tardieux
  fullname: Tardieux, Isabelle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22641695$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi3Uim4_LvwAlCNCSvHEjhNfkFAFLVIlLu3ZmvVOdl0ce4mdiv33eNkWAULiNId55tGreU_ZUYiBGHsF_BIa2bx7sOkSuFCyf8EWILuu1iC6I7bgvIFat0KcsNOUHjjnXaO7l-ykaZQEpdsFW93F73Fw3oVq3k60nj1mSlXeULWJKVc2TtlZ9BXaXBi7yzF9JU85hmq1Czg6m6oBbTFkLMS62gu3HtOIlQuPmFwM5-x4QJ_o4mmesftPH--uburbL9efrz7c1raEzrVqSaFtYUmd6DT1vV0O1IOlZUsgcVB8hWrgvIdOyQZIYCsUgraopdSoxRl7f_Bu5-VIK0shT-jNdnIjTjsT0Zk_N8FtzDo-GtGCkmIvePMkmOK3mVI2o0uWvMdAcU4G2gKC5BL-j0JbOil0X9DXv8f6lee5hQLwA2CnmNJEg7E_vxn3KZ03wM2-aFOKNoeiy8nbv06erf-AfwCUeaxN
CitedBy_id crossref_primary_10_1016_j_chom_2019_09_008
crossref_primary_10_1016_j_ajpath_2013_12_022
crossref_primary_10_1016_j_febslet_2015_08_038
crossref_primary_10_1128_mBio_01591_21
crossref_primary_10_1186_s12915_014_0108_y
crossref_primary_10_1038_srep03199
crossref_primary_10_1016_j_mib_2019_06_007
crossref_primary_10_1126_science_1254211
crossref_primary_10_1371_journal_pone_0091819
crossref_primary_10_1128_CMR_00115_19
crossref_primary_10_1016_j_ijpara_2020_06_012
crossref_primary_10_1186_s12915_016_0316_8
crossref_primary_10_1016_j_mib_2019_07_002
crossref_primary_10_1016_j_neubiorev_2018_11_012
crossref_primary_10_1111_cmi_12145
crossref_primary_10_1371_journal_ppat_1004449
crossref_primary_10_1038_nsmb_2964
crossref_primary_10_1128_mBio_00557_15
crossref_primary_10_1016_j_ijpddr_2020_07_003
crossref_primary_10_1016_j_micinf_2012_09_005
crossref_primary_10_7554_eLife_39887
crossref_primary_10_1016_j_parint_2013_04_006
crossref_primary_10_1111_2049_632X_12057
crossref_primary_10_1242_jcs_232488
crossref_primary_10_1016_j_gene_2019_03_008
crossref_primary_10_1111_1574_6976_12013
crossref_primary_10_1128_mBio_00905_18
crossref_primary_10_1146_annurev_micro_011720_122318
crossref_primary_10_1371_journal_pone_0064693
crossref_primary_10_1016_j_chom_2013_03_002
crossref_primary_10_1016_j_mib_2013_05_002
crossref_primary_10_1128_mSphere_00877_19
crossref_primary_10_1369_0022155416656349
crossref_primary_10_1111_mmi_14634
crossref_primary_10_1371_journal_ppat_1003821
crossref_primary_10_1038_srep19766
crossref_primary_10_1016_j_pt_2012_08_008
crossref_primary_10_1017_S0031182016000524
crossref_primary_10_1128_mBio_00182_20
crossref_primary_10_1016_j_chom_2018_06_003
crossref_primary_10_1128_IAI_02606_14
crossref_primary_10_1371_journal_pone_0116509
crossref_primary_10_1371_journal_ppat_1004273
Cites_doi 10.1042/BJ20061324
10.1073/pnas.96.16.9095
10.1091/mbc.E02-08-0462
10.1074/jbc.M504158200
10.1016/S0076-6879(10)83010-1
10.1083/jcb.200406063
10.1073/pnas.97.16.8799
10.1091/mbc.11.1.355
10.1016/S1047-8477(02)00009-6
10.1016/S0091-679X(08)61845-2
10.1146/annurev.biophys.35.040405.102114
10.1083/jcb.145.6.1251
10.1084/jem.190.12.1783
10.1111/j.1462-5822.2009.01378.x
10.1083/jcb.114.3.503
10.1016/S0960-9822(07)00515-5
10.1016/j.mib.2007.09.013
10.1073/pnas.0705794104
10.1016/S0092-8674(00)81071-5
10.1073/pnas.93.16.8413
10.1046/j.1462-5822.2000.00046.x
10.1111/j.1462-5822.2008.01276.x
10.1021/bi034600x
10.1093/emboj/20.12.3132
10.1016/j.jsb.2006.06.010
10.1371/journal.ppat.1000309
10.1126/science.1074553
10.1016/j.devcel.2007.08.011
10.1083/jcb.200909176
10.1371/journal.ppat.0010017
10.1016/j.chom.2009.01.011
10.1126/science.1100533
ContentType Journal Article
Copyright 2012. Published by The Company of Biologists Ltd 2012
Copyright_xml – notice: 2012. Published by The Company of Biologists Ltd 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
5PM
DOI 10.1242/jcs.103648
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-9137
EndPage 4342
ExternalDocumentID PMC3516439
22641695
10_1242_jcs_103648
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U54 GM064346
– fundername: NIGMS NIH HHS
  grantid: P01 GM098412
GroupedDBID ---
-DZ
-~X
0R~
18M
2WC
34G
39C
3O-
4.4
4R4
53G
5GY
5RE
5VS
85S
AAYXX
ABDNZ
ABPPZ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADCOW
ADVGF
AEILP
AENEX
AFFNX
AFRAH
AGGIJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
F5P
F9R
GX1
H13
HZ~
IH2
INIJC
KQ8
O9-
OK1
P2P
R.V
RCB
RHI
RNS
SJN
TN5
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
ZY4
~02
~KM
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
M7N
5PM
ID FETCH-LOGICAL-c477t-65e6ac51be7379e88cbfe81ceb5e14af60da6f008176421e3a536a19ca9449a93
ISSN 0021-9533
1477-9137
IngestDate Thu Aug 21 13:56:49 EDT 2025
Fri Jul 11 14:44:26 EDT 2025
Fri Jul 11 04:26:13 EDT 2025
Wed Feb 19 01:51:16 EST 2025
Tue Jul 01 02:37:50 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-65e6ac51be7379e88cbfe81ceb5e14af60da6f008176421e3a536a19ca9449a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://jcs.biologists.org/content/joces/125/18/4333.full.pdf
PMID 22641695
PQID 1151031618
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3516439
proquest_miscellaneous_1551614041
proquest_miscellaneous_1151031618
pubmed_primary_22641695
crossref_citationtrail_10_1242_jcs_103648
crossref_primary_10_1242_jcs_103648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-15
PublicationDateYYYYMMDD 2012-09-15
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bidder Building, 140 Cowley Road, Cambridge, CB4 0DL, UK
PublicationTitle Journal of cell science
PublicationTitleAlternate J Cell Sci
PublicationYear 2012
Publisher The Company of Biologists
Publisher_xml – name: The Company of Biologists
References Gupton (2021042522350097000_b13) 2005; 168
Håkansson (2021042522350097000_b14) 2001; 20
Alexander (2021042522350097000_b1) 2005; 1
Okreglak (2021042522350097000_b21) 2010; 188
Hanein (2021042522350097000_b15) 2010; 483
Dobrowolski (2021042522350097000_b10) 1996; 84
Ono (2021042522350097000_b22) 2003; 42
Danuser (2021042522350097000_b6) 2006; 35
Ponti (2021042522350097000_b24) 2004; 305
Besteiro (2021042522350097000_b2) 2009; 5
Meissner (2021042522350097000_b19) 2002; 298
Gonzalez (2021042522350097000_b12) 2009; 5
Bradley (2021042522350097000_b3) 2007; 10
Delorme (2021042522350097000_b8) 2007; 13
Suss–Toby (2021042522350097000_b30) 1996; 93
Tran Van Nhieu (2021042522350097000_b32) 2000; 2
Bradley (2021042522350097000_b4) 2005; 280
Poupel (2021042522350097000_b25) 2000; 11
Volkmann (2021042522350097000_b34) 2002; 138
Symons (2021042522350097000_b31) 1991; 114
Delorme (2021042522350097000_b7) 2003; 14
Jan (2021042522350097000_b16) 2007; 401
Mordue (2021042522350097000_b20) 1999; 190
Shaw (2021042522350097000_b28) 1999; 96
Roos (2021042522350097000_b27) 1994; 45
Lodoen (2021042522350097000_b18) 2010; 12
Waterman–Storer (2021042522350097000_b35) 1998; 8
Straub (2021042522350097000_b29) 2009; 11
Lee (2021042522350097000_b17) 2007; 104
Rodal (2021042522350097000_b26) 1999; 145
Vallance (2021042522350097000_b33) 2000; 97
Goddard (2021042522350097000_b11) 2007; 157
20888476 - Methods Enzymol. 2010;483:203-14
17911258 - Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16122-7
9811609 - Curr Biol. 1998 Nov 5;8(22):1227-30
19134112 - Cell Microbiol. 2009 Apr;11(4):590-603
19732057 - Cell Microbiol. 2010 Jan;12(1):55-66
8601316 - Cell. 1996 Mar 22;84(6):933-9
15375270 - Science. 2004 Sep 17;305(5691):1782-6
19247437 - PLoS Pathog. 2009 Feb;5(2):e1000309
10922038 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8799-806
10637313 - Mol Biol Cell. 2000 Jan;11(1):355-68
16963278 - J Struct Biol. 2007 Jan;157(1):281-7
11406590 - EMBO J. 2001 Jun 15;20(12):3132-44
16244709 - PLoS Pathog. 2005 Oct;1(2):e17
11207575 - Cell Microbiol. 2000 Jun;2(3):187-93
8710885 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8413-8
17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7
19286135 - Cell Host Microbe. 2009 Mar 19;5(3):259-72
14621980 - Biochemistry. 2003 Nov 25;42(46):13363-70
12802063 - Mol Biol Cell. 2003 May;14(5):1900-12
10366597 - J Cell Biol. 1999 Jun 14;145(6):1251-64
17981134 - Dev Cell. 2007 Nov;13(5):646-62
17014426 - Biochem J. 2007 Feb 1;401(3):711-9
10601353 - J Exp Med. 1999 Dec 20;190(12):1783-92
16002398 - J Biol Chem. 2005 Oct 7;280(40):34245-58
1860882 - J Cell Biol. 1991 Aug;114(3):503-13
12399593 - Science. 2002 Oct 25;298(5594):837-40
16689641 - Annu Rev Biophys Biomol Struct. 2006;35:361-87
20231387 - J Cell Biol. 2010 Mar 22;188(6):769-77
12160708 - J Struct Biol. 2002 Apr-May;138(1-2):123-9
10430901 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9095-9
15716379 - J Cell Biol. 2005 Feb 14;168(4):619-31
7707991 - Methods Cell Biol. 1994;45:27-63
References_xml – volume: 401
  start-page: 711
  year: 2007
  ident: 2021042522350097000_b16
  article-title: The toxofilin-actin-PP2C complex of Toxoplasma: identification of interacting domains.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20061324
– volume: 96
  start-page: 9095
  year: 1999
  ident: 2021042522350097000_b28
  article-title: Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.16.9095
– volume: 14
  start-page: 1900
  year: 2003
  ident: 2021042522350097000_b7
  article-title: Actin dynamics is controlled by a casein kinase II and phosphatase 2C interplay on Toxoplasma gondii Toxofilin.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E02-08-0462
– volume: 280
  start-page: 34245
  year: 2005
  ident: 2021042522350097000_b4
  article-title: Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504158200
– volume: 483
  start-page: 203
  year: 2010
  ident: 2021042522350097000_b15
  article-title: Tomography of actin cytoskeletal networks.
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(10)83010-1
– volume: 168
  start-page: 619
  year: 2005
  ident: 2021042522350097000_b13
  article-title: Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200406063
– volume: 97
  start-page: 8799
  year: 2000
  ident: 2021042522350097000_b33
  article-title: Exploitation of host cells by enteropathogenic Escherichia coli.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.16.8799
– volume: 11
  start-page: 355
  year: 2000
  ident: 2021042522350097000_b25
  article-title: Toxofilin, a novel actin-binding protein from Toxoplasma gondii, sequesters actin monomers and caps actin filaments.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.1.355
– volume: 138
  start-page: 123
  year: 2002
  ident: 2021042522350097000_b34
  article-title: A novel three-dimensional variant of the watershed transform for segmentation of electron density maps.
  publication-title: J. Struct. Biol.
  doi: 10.1016/S1047-8477(02)00009-6
– volume: 45
  start-page: 27
  year: 1994
  ident: 2021042522350097000_b27
  article-title: Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii.
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(08)61845-2
– volume: 35
  start-page: 361
  year: 2006
  ident: 2021042522350097000_b6
  article-title: Quantitative fluorescent speckle microscopy of cytoskeleton dynamics.
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.35.040405.102114
– volume: 145
  start-page: 1251
  year: 1999
  ident: 2021042522350097000_b26
  article-title: Aip1p interacts with cofilin to disassemble actin filaments.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.145.6.1251
– volume: 190
  start-page: 1783
  year: 1999
  ident: 2021042522350097000_b20
  article-title: Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring.
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.190.12.1783
– volume: 12
  start-page: 55
  year: 2010
  ident: 2021042522350097000_b18
  article-title: A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection.
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2009.01378.x
– volume: 114
  start-page: 503
  year: 1991
  ident: 2021042522350097000_b31
  article-title: Control of actin polymerization in live and permeabilized fibroblasts.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.114.3.503
– volume: 8
  start-page: 1227
  year: 1998
  ident: 2021042522350097000_b35
  article-title: Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells.
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(07)00515-5
– volume: 10
  start-page: 582
  year: 2007
  ident: 2021042522350097000_b3
  article-title: Rhoptries: an arsenal of secreted virulence factors.
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2007.09.013
– volume: 104
  start-page: 16122
  year: 2007
  ident: 2021042522350097000_b17
  article-title: Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705794104
– volume: 84
  start-page: 933
  year: 1996
  ident: 2021042522350097000_b10
  article-title: Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81071-5
– volume: 93
  start-page: 8413
  year: 1996
  ident: 2021042522350097000_b30
  article-title: Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.16.8413
– volume: 2
  start-page: 187
  year: 2000
  ident: 2021042522350097000_b32
  article-title: Bacterial signals and cell responses during Shigella entry into epithelial cells.
  publication-title: Cell. Microbiol.
  doi: 10.1046/j.1462-5822.2000.00046.x
– volume: 11
  start-page: 590
  year: 2009
  ident: 2021042522350097000_b29
  article-title: Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements.
  publication-title: Cell. Microbiol.
  doi: 10.1111/j.1462-5822.2008.01276.x
– volume: 42
  start-page: 13363
  year: 2003
  ident: 2021042522350097000_b22
  article-title: Regulation of actin filament dynamics by actin depolymerizing factor/cofilin and actin-interacting protein 1: new blades for twisted filaments.
  publication-title: Biochemistry
  doi: 10.1021/bi034600x
– volume: 20
  start-page: 3132
  year: 2001
  ident: 2021042522350097000_b14
  article-title: Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole.
  publication-title: EMBO J.
  doi: 10.1093/emboj/20.12.3132
– volume: 157
  start-page: 281
  year: 2007
  ident: 2021042522350097000_b11
  article-title: Visualizing density maps with UCSF Chimera.
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2006.06.010
– volume: 5
  start-page: e1000309
  year: 2009
  ident: 2021042522350097000_b2
  article-title: Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000309
– volume: 298
  start-page: 837
  year: 2002
  ident: 2021042522350097000_b19
  article-title: Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion.
  publication-title: Science
  doi: 10.1126/science.1074553
– volume: 13
  start-page: 646
  year: 2007
  ident: 2021042522350097000_b8
  article-title: Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.08.011
– volume: 188
  start-page: 769
  year: 2010
  ident: 2021042522350097000_b21
  article-title: Loss of Aip1 reveals a role in maintaining the actin monomer pool and an in vivo oligomer assembly pathway.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200909176
– volume: 1
  start-page: e17
  year: 2005
  ident: 2021042522350097000_b1
  article-title: Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles.
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0010017
– volume: 5
  start-page: 259
  year: 2009
  ident: 2021042522350097000_b12
  article-title: Host cell entry by apicomplexa parasites requires actin polymerization in the host cell.
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.01.011
– volume: 305
  start-page: 1782
  year: 2004
  ident: 2021042522350097000_b24
  article-title: Two distinct actin networks drive the protrusion of migrating cells.
  publication-title: Science
  doi: 10.1126/science.1100533
– reference: 17014426 - Biochem J. 2007 Feb 1;401(3):711-9
– reference: 19732057 - Cell Microbiol. 2010 Jan;12(1):55-66
– reference: 10922038 - Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8799-806
– reference: 12802063 - Mol Biol Cell. 2003 May;14(5):1900-12
– reference: 19134112 - Cell Microbiol. 2009 Apr;11(4):590-603
– reference: 15716379 - J Cell Biol. 2005 Feb 14;168(4):619-31
– reference: 14621980 - Biochemistry. 2003 Nov 25;42(46):13363-70
– reference: 11207575 - Cell Microbiol. 2000 Jun;2(3):187-93
– reference: 16244709 - PLoS Pathog. 2005 Oct;1(2):e17
– reference: 17997128 - Curr Opin Microbiol. 2007 Dec;10(6):582-7
– reference: 16963278 - J Struct Biol. 2007 Jan;157(1):281-7
– reference: 20888476 - Methods Enzymol. 2010;483:203-14
– reference: 16689641 - Annu Rev Biophys Biomol Struct. 2006;35:361-87
– reference: 20231387 - J Cell Biol. 2010 Mar 22;188(6):769-77
– reference: 19286135 - Cell Host Microbe. 2009 Mar 19;5(3):259-72
– reference: 15375270 - Science. 2004 Sep 17;305(5691):1782-6
– reference: 7707991 - Methods Cell Biol. 1994;45:27-63
– reference: 12399593 - Science. 2002 Oct 25;298(5594):837-40
– reference: 11406590 - EMBO J. 2001 Jun 15;20(12):3132-44
– reference: 10430901 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9095-9
– reference: 12160708 - J Struct Biol. 2002 Apr-May;138(1-2):123-9
– reference: 8710885 - Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8413-8
– reference: 10637313 - Mol Biol Cell. 2000 Jan;11(1):355-68
– reference: 16002398 - J Biol Chem. 2005 Oct 7;280(40):34245-58
– reference: 8601316 - Cell. 1996 Mar 22;84(6):933-9
– reference: 10366597 - J Cell Biol. 1999 Jun 14;145(6):1251-64
– reference: 17981134 - Dev Cell. 2007 Nov;13(5):646-62
– reference: 1860882 - J Cell Biol. 1991 Aug;114(3):503-13
– reference: 19247437 - PLoS Pathog. 2009 Feb;5(2):e1000309
– reference: 10601353 - J Exp Med. 1999 Dec 20;190(12):1783-92
– reference: 9811609 - Curr Biol. 1998 Nov 5;8(22):1227-30
– reference: 17911258 - Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16122-7
SSID ssj0007297
Score 2.3381913
Snippet Toxoplasma, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the...
Toxoplasma gondii, a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the...
Toxoplasma gondii , a human pathogen and a model apicomplexan parasite, actively and rapidly invades host cells. To initiate invasion, the parasite induces the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4333
SubjectTerms Actin Capping Proteins - metabolism
Actin Cytoskeleton - metabolism
Actin Cytoskeleton - parasitology
Actin Cytoskeleton - ultrastructure
Actin Depolymerizing Factors - metabolism
Actins - metabolism
Animals
Biomechanical Phenomena
Cell Line
Cell Survival
Gene Knockout Techniques
Host-Parasite Interactions
Humans
Kinetics
Life Cycle Stages
Phosphorylation
Phosphoserine - metabolism
Protein Transport
Protozoan Proteins - metabolism
Rats
Secretory Vesicles - metabolism
Secretory Vesicles - parasitology
Toxoplasma - growth & development
Toxoplasma - physiology
Toxoplasma - ultrastructure
Toxoplasma gondii
Up-Regulation
Title Toxofilin upregulates the host cortical actin cytoskeleton dynamics facilitating Toxoplasma invasion
URI https://www.ncbi.nlm.nih.gov/pubmed/22641695
https://www.proquest.com/docview/1151031618
https://www.proquest.com/docview/1551614041
https://pubmed.ncbi.nlm.nih.gov/PMC3516439
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELayVpP2Mm3dr-xH5Wl7mRBbDMbAYzStqiZ1T22XpyHbmBatJVFCqnV__e4wGNJUU7cXFIENhO_DvsN33xHyXgY8B17Ai2Sk8HkolJ_oeOKnoYLZSOlAckxOPvomDk_411k0G41-DKKW1rX6qH_fmlfyP6jCPsAVs2T_AVl3UtgBvwFf2ALCsL0bxvNfWHG7rLz1YmmLyqNiAyCPuRseOJb2SzUmL1Sevq7nq58wzaCSRm4r0a-w4E4r1F2deXjCBdjTl9Irqyu56kDbtl7xg7_XTp_OGDbg_F8a_7u8aGM1TkvwnAcr91O1LK-kjaY_Qi_dxQPJs6bygHcqcex1c8W0yb2xkQF93lr7lQLDPVLf5mm6rAGGS8V2MDN2sOW4fMys6MvWUA62Aw7leoW6AMLKcW7qZd-Yx1x0Ifo10DuDvpnte4_sBuBGNMngsz4ECByLtqSvvbdWvhb6fuqvu2mwbHkhN4NpB9bJ8SPysAWGTi1HHpORqfbIfVto9PoJyR1T6IApFJhCkSm0YwptmEKHTKEdU-iQKbRnCu2Y8pScHHw5_nzot_U1fA1PvvZFZITUEVMmDuPUJIlWhUmYNioyjMtCTHIpCjQaY0yHNqGMQiFZqmXKeSrT8BnZqeaVeUGokHlcCK3BvAy44JMkVkHBVKATE0_SQI7Jh-4hZroVn8caKBfZNlhj8s61XVjJlVtbve2wyGBERNYDQedrOM5QJRILQfylDa4Po7IUG5PnFj93LUwtZyKNxiTeQNY1QEX2zSNVed4os4dwVrDwX97pH7wiD_o35TXZqZdr8wYs3FrtNzT9AzFYrss
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxofilin+upregulates+the+host+cortical+actin+cytoskeleton+dynamics+facilitating+Toxoplasma+invasion&rft.jtitle=Journal+of+cell+science&rft.au=Delorme-Walker%2C+Violaine&rft.au=Abrivard%2C+Marie&rft.au=Lagal%2C+Vanessa&rft.au=Anderson%2C+Karen&rft.date=2012-09-15&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242%2Fjcs.103648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1242_jcs_103648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9533&client=summon