Detection of epileptic seizure in EEG signals using linear least squares preprocessing
Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accu...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 133; pp. 95 - 109 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accuracy of an EEG signal in presence of seizures. • They are robust and efficient for detecting epileptic seizures. |
---|---|
AbstractList | Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accuracy of an EEG signal in presence of seizures. • They are robust and efficient for detecting epileptic seizures. •Linear least squares preprocessing models are developed for automatic detection of seizures.•They extract key features of an epileptic EEG signal.•They significantly reduce the dimension of the classification problem and the computational time.•They enhance the classification accuracy of an EEG signal in the presence of seizures.•They are robust and efficient for detecting epileptic seizures. An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these models are robust and efficient for detecting epileptic seizure. An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these models are robust and efficient for detecting epileptic seizure. |
Author | Zamir, Z. Roshan |
Author_xml | – sequence: 1 fullname: Zamir, Z. Roshan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27393803$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFP8AB-cglwR-xHUsICZVti1SJAx_iZjn2bOUlm6SeBKn8ehxt4cAB9WRLfub1aJ45IyfDOAAhLzmrOeP6zb4Oh6mrRbnXTNWMiSdkw1sjKqO0OiGb8mAroZk5JWeIe1YIpfQzciqMtLJlckO-fYAZwpzGgY47ClPqYZpToAjp15KBpoFut1cU0-3ge6QLpuGW9mkAn2kPHmeKd4vPgHTKMOUxAK7Ic_J0V3h48XCek6-X2y8X19XNp6uPF-9vqtAYM1da6dh5YyOXXrOogrdaqMY0kXtporZW6QDQSBVMa7ywohGxEz6Kto2q6-Q5eX3MLV_fLYCzOyQM0Pd-gHFBx1tZRmGUtY9AOW-tbYR6BMok50KIpqDiiIY8ImbYuSmng8_3jjO3WnJ7t1pyqyXHlCsOStGrh_ylO0D8W_JHSwHeHgEos_uZIDsMCYYAMeViy8Ux_T__3T_loShLwfc_4B5wPy55tem4Q-GY-7zuybomXElWevgufwMJgrkD |
CitedBy_id | crossref_primary_10_1016_j_eswa_2019_03_021 crossref_primary_10_1016_j_eswa_2017_08_012 crossref_primary_10_1515_bmt_2017_0233 crossref_primary_10_1038_srep35622 crossref_primary_10_1016_j_amc_2020_125560 crossref_primary_10_1016_j_bspc_2020_101921 crossref_primary_10_1016_j_cmpb_2018_05_007 crossref_primary_10_1007_s12553_019_00363_y crossref_primary_10_1007_s12652_022_03856_3 crossref_primary_10_1142_S0129065717500058 crossref_primary_10_1007_s12652_020_02185_7 crossref_primary_10_1080_03091902_2018_1464075 crossref_primary_10_3233_IDT_190101 crossref_primary_10_3389_frai_2023_1156269 crossref_primary_10_1590_1678_4324_2022210559 crossref_primary_10_1016_j_measurement_2020_108135 crossref_primary_10_1016_j_irbm_2019_01_001 crossref_primary_10_1080_03091902_2018_1513576 |
Cites_doi | 10.3923/jas.2013.207.219 10.1017/S1446181112000016 10.1007/s11517-012-0967-8 10.1016/j.jneumeth.2010.05.020 10.1145/1656274.1656278 10.1109/TBME.2007.891945 10.1016/j.cmpb.2013.11.014 10.1016/j.cmpb.2015.10.001 10.4236/jbise.2010.36078 10.1016/j.eswa.2011.08.088 10.1109/TITB.2009.2017939 10.1142/S0129065714500130 10.1016/j.eswa.2007.12.065 10.1179/016164104773026534 10.1016/j.bspc.2007.07.002 10.1155/2007/80510 10.1016/S1388-2457(03)00035-X 10.1016/S0165-0270(02)00340-0 10.1109/TITB.2011.2181403 10.1109/TBME.2013.2254486 10.1103/PhysRevE.64.061907 10.1109/TNSRE.2013.2243471 10.1016/j.cmpb.2005.06.012 10.1016/j.eswa.2006.02.005 10.1016/j.sigpro.2008.01.026 10.1016/j.yebeh.2011.08.041 10.1016/j.jneumeth.2010.08.030 10.1080/00401706.1974.10489142 10.1007/s10916-005-6133-1 10.1016/j.cmpb.2005.06.005 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ireland Ltd Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Ireland Ltd – notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
DOI | 10.1016/j.cmpb.2016.05.002 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | MEDLINE Engineering Research Database Computer and Information Systems Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-7565 |
EndPage | 109 |
ExternalDocumentID | 10_1016_j_cmpb_2016_05_002 27393803 S016926071530273X 1_s2_0_S016926071530273X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMZM ABTAH ABXDB ACDAQ ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AEVXI AFCTW AFJKZ AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c477t-656dba79d13a60d5ca9625474d1a37d69956cee435c787a29242db2ad288d5bb3 |
IEDL.DBID | .~1 |
ISSN | 0169-2607 |
IngestDate | Fri Oct 25 08:35:36 EDT 2024 Thu Oct 24 20:11:45 EDT 2024 Fri Oct 25 01:32:11 EDT 2024 Thu Sep 26 17:10:20 EDT 2024 Sat Sep 28 07:58:11 EDT 2024 Fri Feb 23 02:25:56 EST 2024 Tue Oct 15 22:54:52 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 92C55 Signal approximation Data analysis 65K05 Biological signal classification EEG Seizure detection 90C25 Feature extraction 65D15 65D07 Linear least squares problems EEG seizure detection |
Language | English |
License | Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-656dba79d13a60d5ca9625474d1a37d69956cee435c787a29242db2ad288d5bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27393803 |
PQID | 1803112224 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1835657599 proquest_miscellaneous_1811899425 proquest_miscellaneous_1803112224 crossref_primary_10_1016_j_cmpb_2016_05_002 pubmed_primary_27393803 elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_05_002 elsevier_clinicalkeyesjournals_1_s2_0_S016926071530273X |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Khan, Gotman (bib0045) 2003; 114 Nigam, Graupe (bib0235) 2004; 26 Rice (bib0145) 1969; vol. 2 Kannathal, Choo, Acharya, Sadasivan (bib0240) 2005; 80 Powell (bib0140) 1967 Dem'janov, Malozemov, Louvish (bib0160) 1974 Zamir, Sukhorukova (bib0130) 2016; 282 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib0100) 2001; 64 Zhang, Zhou, Zhao, Jin, Wang, Cichocki (bib0105) 2013; 21 Boyd, Vandenberghe (bib0180) 2010 Moloney, Sukhorukova, Vamplew, Ugon, Li, Beliakov (bib0135) 2011; 52 Cetin, Cetin, Bozkurt (bib0260) 2015; 114 Cetin, Cetin, Bozkurt (bib0060) 2015; 114 Chebotarev (bib0165) 1943 Epilepsy Australia Ltd. (bib0025) 2014 Srinivasan, Eswaran, Sriraam (bib0055) 2005; 29 Tzallas, Tsipouras, Fotiadis (bib0190) 2007; 2007 Ocak (bib0080) 2008; 88 Guo, Rivero, Seoane, Pazos (bib0255) 2009 Ghosh-Dastidar, Adeli, Dadmehr (bib0075) 2007; 54 Guo, Rivero, Dorado, Rabual, Pazos (bib0210) 2010; 191 Bhardwaj, Tiwari, Krishna, Varma (bib0065) 2016; 124 Song, Lio (bib0225) 2010; 3 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0120) 2009; 11 Zamir, Sukhorukova, Amiel, Ugon, Philippe (bib0115) 2015; 268 Netoff, Park, Parhi (bib0015) 2009 Zamir, Sukhorukova, Amiel, Ugon, Philippe (bib0110) 2014 Wold (bib0150) 1974; 16 Dehuri, Jagadev, Cho (bib0200) 2013 Liang, Wang, Chang (bib0220) 2010; 2010 Polat, Gne (bib0085) 2007; 187 Pachori, Patidar (bib0090) 2014; 113 Guo, Rivero, Pazos (bib0195) 2010; 193 Barlow (bib0175) 1999 Panda, Khobragade, Jambhule, Jengthe, Pal, Gandhi (bib0070) 2010 Bjõrck (bib0170) 1996 Tzallas, Tsipouras, Fotiadis (bib0215) 2009; 13 Ocak (bib0205) 2009; 36 Trefethen, Bau (bib0185) 1997 Xie, Krishnan (bib0050) 2013; 51 Santaniello, Burns, Golby, Singer, Anderson, Sarma (bib0010) 2011; 22 Adeli, Zhou, Dadmehr (bib0040) 2003; 123 Kannathal, Acharya, Lim, Sadasivan (bib0245) 2005; 80 Dorr, Caparos, Wendling, Vignal, Wolf (bib0030) 2007; 2 Zhang, Zhou, Jin, Wang, Cichocki (bib0125) 2014; 24 Zhou, Liu, Yuan, Li (bib0020) 2013; 60 Nürnberger (bib0155) 1989 Ravish, Shenbaga Devi, Krishnamoorthy, Karthikeyan (bib0230) 2013; 13 Bajaj, Pachori (bib0095) 2012; 16 Subasi (bib0250) 2007; 32 Tang, Durand (bib0035) 2012; 39 Ghosh-Dastidar (10.1016/j.cmpb.2016.05.002_bib0075) 2007; 54 Tzallas (10.1016/j.cmpb.2016.05.002_bib0190) 2007; 2007 Pachori (10.1016/j.cmpb.2016.05.002_bib0090) 2014; 113 Powell (10.1016/j.cmpb.2016.05.002_bib0140) 1967 Dehuri (10.1016/j.cmpb.2016.05.002_bib0200) Zhang (10.1016/j.cmpb.2016.05.002_bib0125) 2014; 24 Kannathal (10.1016/j.cmpb.2016.05.002_bib0240) 2005; 80 Hall (10.1016/j.cmpb.2016.05.002_bib0120) 2009; 11 Zhou (10.1016/j.cmpb.2016.05.002_bib0020) 2013; 60 Bhardwaj (10.1016/j.cmpb.2016.05.002_bib0065) 2016; 124 Adeli (10.1016/j.cmpb.2016.05.002_bib0040) 2003; 123 Nürnberger (10.1016/j.cmpb.2016.05.002_bib0155) 1989 Liang (10.1016/j.cmpb.2016.05.002_bib0220) 2010; 2010 Polat (10.1016/j.cmpb.2016.05.002_bib0085) 2007; 187 Ravish (10.1016/j.cmpb.2016.05.002_bib0230) 2013; 13 Santaniello (10.1016/j.cmpb.2016.05.002_bib0010) 2011; 22 Wold (10.1016/j.cmpb.2016.05.002_bib0150) 1974; 16 Panda (10.1016/j.cmpb.2016.05.002_bib0070) Zamir (10.1016/j.cmpb.2016.05.002_bib0130) 2016; 282 Subasi (10.1016/j.cmpb.2016.05.002_bib0250) 2007; 32 Andrzejak (10.1016/j.cmpb.2016.05.002_bib0100) 2001; 64 Nigam (10.1016/j.cmpb.2016.05.002_bib0235) 2004; 26 Ocak (10.1016/j.cmpb.2016.05.002_bib0205) 2009; 36 Barlow (10.1016/j.cmpb.2016.05.002_bib0175) 1999 Dorr (10.1016/j.cmpb.2016.05.002_bib0030) 2007; 2 Bajaj (10.1016/j.cmpb.2016.05.002_bib0095) 2012; 16 Bjõrck (10.1016/j.cmpb.2016.05.002_bib0170) 1996 Netoff (10.1016/j.cmpb.2016.05.002_bib0015) Song (10.1016/j.cmpb.2016.05.002_bib0225) 2010; 3 Cetin (10.1016/j.cmpb.2016.05.002_bib0260) 2015; 114 Guo (10.1016/j.cmpb.2016.05.002_bib0255) Tang (10.1016/j.cmpb.2016.05.002_bib0035) 2012; 39 Kannathal (10.1016/j.cmpb.2016.05.002_bib0245) 2005; 80 Dem'janov (10.1016/j.cmpb.2016.05.002_bib0160) 1974 Tzallas (10.1016/j.cmpb.2016.05.002_bib0215) 2009; 13 Rice (10.1016/j.cmpb.2016.05.002_bib0145) 1969; vol. 2 Epilepsy Australia Ltd. (10.1016/j.cmpb.2016.05.002_bib0025) Boyd (10.1016/j.cmpb.2016.05.002_bib0180) 2010 Zamir (10.1016/j.cmpb.2016.05.002_bib0110) Chebotarev (10.1016/j.cmpb.2016.05.002_bib0165) 1943 Trefethen (10.1016/j.cmpb.2016.05.002_bib0185) 1997 Guo (10.1016/j.cmpb.2016.05.002_bib0195) 2010; 193 Srinivasan (10.1016/j.cmpb.2016.05.002_bib0055) 2005; 29 Moloney (10.1016/j.cmpb.2016.05.002_bib0135) 2011; 52 Zamir (10.1016/j.cmpb.2016.05.002_bib0115) 2015; 268 Ocak (10.1016/j.cmpb.2016.05.002_bib0080) 2008; 88 Xie (10.1016/j.cmpb.2016.05.002_bib0050) 2013; 51 Guo (10.1016/j.cmpb.2016.05.002_bib0210) 2010; 191 Khan (10.1016/j.cmpb.2016.05.002_bib0045) 2003; 114 Zhang (10.1016/j.cmpb.2016.05.002_bib0105) 2013; 21 Cetin (10.1016/j.cmpb.2016.05.002_bib0060) 2015; 114 |
References_xml | – volume: 114 start-page: 45 year: 2015 end-page: 50 ident: bib0060 article-title: Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI publication-title: Int. J. Comput. Appl contributor: fullname: Bozkurt – volume: vol. 2 year: 1969 ident: bib0145 publication-title: The Approximation of Functions contributor: fullname: Rice – year: 2009 ident: bib0015 article-title: Seizure prediction using cost-sensitive support vector machine contributor: fullname: Parhi – volume: 54 start-page: 1545 year: 2007 end-page: 1551 ident: bib0075 article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng contributor: fullname: Dadmehr – year: 1989 ident: bib0155 article-title: Approximation by Spline Functions contributor: fullname: Nürnberger – volume: 80 start-page: 187 year: 2005 end-page: 194 ident: bib0240 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Programs Biomed contributor: fullname: Sadasivan – year: 1943 ident: bib0165 article-title: On a certain minimax criterion contributor: fullname: Chebotarev – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib0120 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explor. Newsl contributor: fullname: Witten – volume: 3 start-page: 556 year: 2010 end-page: 567 ident: bib0225 article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine publication-title: J. Biomed. Sci. Eng contributor: fullname: Lio – volume: 51 start-page: 49 year: 2013 end-page: 60 ident: bib0050 article-title: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis publication-title: Med. Biol. Eng. Comput contributor: fullname: Krishnan – year: 2010 ident: bib0070 article-title: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction contributor: fullname: Gandhi – volume: 24 start-page: 1450013 year: 2014 ident: bib0125 article-title: Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis publication-title: Int. J. Neural Syst contributor: fullname: Cichocki – volume: 26 start-page: 55 year: 2004 end-page: 60 ident: bib0235 article-title: A neural-network-based detection of epilepsy publication-title: Neurol. Res contributor: fullname: Graupe – volume: 29 start-page: 647 year: 2005 end-page: 660 ident: bib0055 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst contributor: fullname: Sriraam – volume: 193 start-page: 156 year: 2010 end-page: 163 ident: bib0195 article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks publication-title: J. Neurosci. Methods contributor: fullname: Pazos – volume: 16 start-page: 1135 year: 2012 end-page: 1142 ident: bib0095 article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition publication-title: IEEE Trans. Inf. Technol. Biomed contributor: fullname: Pachori – year: 1996 ident: bib0170 article-title: Numerical methods for least squares problems publication-title: Handbook of Numerical Analysis contributor: fullname: Bjõrck – volume: 60 start-page: 3375 year: 2013 end-page: 3381 ident: bib0020 article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG publication-title: IEEE Trans. Biomed. Eng contributor: fullname: Li – year: 1997 ident: bib0185 article-title: Numerical Linear Algebra contributor: fullname: Bau – volume: 2 start-page: 154 year: 2007 end-page: 162 ident: bib0030 article-title: Extraction of reproducible seizure patterns based on EEG scalp correlations publication-title: Biomed. Signal Process. Control contributor: fullname: Wolf – volume: 21 start-page: 233 year: 2013 end-page: 243 ident: bib0105 article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehab. Eng contributor: fullname: Cichocki – volume: 268 start-page: 947 year: 2015 end-page: 956 ident: bib0115 article-title: Convex optimisation-based methods for k-complex detection publication-title: Appl. Math. Comput contributor: fullname: Philippe – volume: 52 start-page: 319 year: 2011 end-page: 332 ident: bib0135 article-title: Detecting k-complexes for sleep stage identification using nonsmooth optimization publication-title: ANZIAM J. contributor: fullname: Beliakov – volume: 187 start-page: 1017 year: 2007 end-page: 1026 ident: bib0085 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput contributor: fullname: Gne – volume: 191 start-page: 101 year: 2010 end-page: 109 ident: bib0210 article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks publication-title: J. Neurosci. Methods contributor: fullname: Pazos – year: 1974 ident: bib0160 article-title: Introduction to Minimax contributor: fullname: Louvish – year: 2013 ident: bib0200 article-title: Epileptic seizure identification from electroencephalography signal using DE-RBFNs ensemble contributor: fullname: Cho – volume: 32 start-page: 1084 year: 2007 end-page: 1093 ident: bib0250 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl contributor: fullname: Subasi – volume: 16 start-page: 1 year: 1974 end-page: 11 ident: bib0150 article-title: Spline functions in data analysis publication-title: Technometrics contributor: fullname: Wold – year: 1999 ident: bib0175 article-title: Numerical aspects of solving linear least squares problems contributor: fullname: Barlow – volume: 124 start-page: 2 year: 2016 end-page: 18 ident: bib0065 article-title: A novel genetic programming approach for epileptic seizure detection publication-title: Comput. Methods Programs Biomed contributor: fullname: Varma – volume: 114 start-page: 45 year: 2015 end-page: 50 ident: bib0260 article-title: The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI publication-title: Int. J. Comput. Appl contributor: fullname: Bozkurt – volume: 22 start-page: S49 year: 2011 end-page: S60 ident: bib0010 article-title: Quickest detection of drug-resistant seizures: an optimal control approach publication-title: Epilepsy Behav contributor: fullname: Sarma – volume: 80 start-page: 17 year: 2005 end-page: 23 ident: bib0245 article-title: Characterization of EEG a comparative study publication-title: Comput. Methods Programs Biomed contributor: fullname: Sadasivan – volume: 39 start-page: 3925 year: 2012 end-page: 3938 ident: bib0035 article-title: A tunable support vector machine assembly classifier for epileptic seizure detection publication-title: Expert Syst. Appl contributor: fullname: Durand – volume: 13 start-page: 207 year: 2013 end-page: 219 ident: bib0230 article-title: Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis publication-title: J. Appl. Sci contributor: fullname: Karthikeyan – volume: 2007 start-page: 80510 year: 2007 ident: bib0190 article-title: Automatic seizure detection based on time-frequency analysis and artificial neural networks publication-title: Comput. Intell. Neurosci contributor: fullname: Fotiadis – year: 2014 ident: bib0025 article-title: Epilepsy Australia–Information contributor: fullname: Epilepsy Australia Ltd. – year: 1967 ident: bib0140 article-title: Curve fitting by cubic splines contributor: fullname: Powell – volume: 2010 year: 2010 ident: bib0220 article-title: Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection publication-title: EURASIP J. Adv. Signal Proc contributor: fullname: Chang – volume: 282 start-page: 204 year: 2016 end-page: 215 ident: bib0130 article-title: Linear least squares problems involving fixed knots polynomial splines and their singularity study publication-title: Appl. Math. Comput contributor: fullname: Sukhorukova – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: bib0040 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods contributor: fullname: Dadmehr – volume: 114 start-page: 898 year: 2003 end-page: 908 ident: bib0045 article-title: Wavelet based automatic seizure detection in intracerebral electroencephalogram publication-title: Clin. Neurophysiol contributor: fullname: Gotman – volume: 88 start-page: 1858 year: 2008 end-page: 1867 ident: bib0080 article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm publication-title: Signal Proc contributor: fullname: Ocak – volume: 113 start-page: 494 year: 2014 end-page: 502 ident: bib0090 article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions publication-title: Comput. Methods Programs Biomed contributor: fullname: Patidar – volume: 13 start-page: 703 year: 2009 end-page: 710 ident: bib0215 article-title: Epileptic seizure detection in EEGs using time frequency analysis publication-title: IEEE Trans. Inf. Technol. Biomed contributor: fullname: Fotiadis – year: 2014 ident: bib0110 article-title: Optimization-based features extraction for k-complex detection contributor: fullname: Philippe – year: 2010 ident: bib0180 article-title: Convex Optimization contributor: fullname: Vandenberghe – year: 2009 ident: bib0255 article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks contributor: fullname: Pazos – volume: 64 start-page: 061907 year: 2001 ident: bib0100 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E contributor: fullname: Elger – volume: 36 start-page: 2027 year: 2009 end-page: 2036 ident: bib0205 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Syst. Appl contributor: fullname: Ocak – year: 1974 ident: 10.1016/j.cmpb.2016.05.002_bib0160 contributor: fullname: Dem'janov – volume: 13 start-page: 207 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2016.05.002_bib0230 article-title: Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis publication-title: J. Appl. Sci doi: 10.3923/jas.2013.207.219 contributor: fullname: Ravish – volume: 52 start-page: 319 year: 2011 ident: 10.1016/j.cmpb.2016.05.002_bib0135 article-title: Detecting k-complexes for sleep stage identification using nonsmooth optimization publication-title: ANZIAM J. doi: 10.1017/S1446181112000016 contributor: fullname: Moloney – year: 1996 ident: 10.1016/j.cmpb.2016.05.002_bib0170 article-title: Numerical methods for least squares problems contributor: fullname: Bjõrck – volume: 51 start-page: 49 issue: 1–2 year: 2013 ident: 10.1016/j.cmpb.2016.05.002_bib0050 article-title: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis publication-title: Med. Biol. Eng. Comput doi: 10.1007/s11517-012-0967-8 contributor: fullname: Xie – ident: 10.1016/j.cmpb.2016.05.002_bib0200 contributor: fullname: Dehuri – volume: 191 start-page: 101 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2016.05.002_bib0210 article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.05.020 contributor: fullname: Guo – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.cmpb.2016.05.002_bib0120 article-title: The WEKA data mining software: an update publication-title: SIGKDD Explor. Newsl doi: 10.1145/1656274.1656278 contributor: fullname: Hall – volume: 54 start-page: 1545 issue: 9 year: 2007 ident: 10.1016/j.cmpb.2016.05.002_bib0075 article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2007.891945 contributor: fullname: Ghosh-Dastidar – volume: 113 start-page: 494 issue: 2 year: 2014 ident: 10.1016/j.cmpb.2016.05.002_bib0090 article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2013.11.014 contributor: fullname: Pachori – volume: 124 start-page: 2 year: 2016 ident: 10.1016/j.cmpb.2016.05.002_bib0065 article-title: A novel genetic programming approach for epileptic seizure detection publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2015.10.001 contributor: fullname: Bhardwaj – ident: 10.1016/j.cmpb.2016.05.002_bib0255 contributor: fullname: Guo – volume: 3 start-page: 556 issue: 6 year: 2010 ident: 10.1016/j.cmpb.2016.05.002_bib0225 article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine publication-title: J. Biomed. Sci. Eng doi: 10.4236/jbise.2010.36078 contributor: fullname: Song – ident: 10.1016/j.cmpb.2016.05.002_bib0110 contributor: fullname: Zamir – ident: 10.1016/j.cmpb.2016.05.002_bib0015 contributor: fullname: Netoff – volume: 39 start-page: 3925 issue: 4 year: 2012 ident: 10.1016/j.cmpb.2016.05.002_bib0035 article-title: A tunable support vector machine assembly classifier for epileptic seizure detection publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2011.08.088 contributor: fullname: Tang – volume: 114 start-page: 45 issue: 12 year: 2015 ident: 10.1016/j.cmpb.2016.05.002_bib0060 article-title: Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI publication-title: Int. J. Comput. Appl contributor: fullname: Cetin – volume: 13 start-page: 703 issue: 5 year: 2009 ident: 10.1016/j.cmpb.2016.05.002_bib0215 article-title: Epileptic seizure detection in EEGs using time frequency analysis publication-title: IEEE Trans. Inf. Technol. Biomed doi: 10.1109/TITB.2009.2017939 contributor: fullname: Tzallas – year: 1943 ident: 10.1016/j.cmpb.2016.05.002_bib0165 contributor: fullname: Chebotarev – volume: 24 start-page: 1450013 issue: 04 year: 2014 ident: 10.1016/j.cmpb.2016.05.002_bib0125 article-title: Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis publication-title: Int. J. Neural Syst doi: 10.1142/S0129065714500130 contributor: fullname: Zhang – volume: 36 start-page: 2027 issue: 2 Pt 1 year: 2009 ident: 10.1016/j.cmpb.2016.05.002_bib0205 article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2007.12.065 contributor: fullname: Ocak – volume: 26 start-page: 55 issue: 1 year: 2004 ident: 10.1016/j.cmpb.2016.05.002_bib0235 article-title: A neural-network-based detection of epilepsy publication-title: Neurol. Res doi: 10.1179/016164104773026534 contributor: fullname: Nigam – volume: 2 start-page: 154 issue: 3 year: 2007 ident: 10.1016/j.cmpb.2016.05.002_bib0030 article-title: Extraction of reproducible seizure patterns based on EEG scalp correlations publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.07.002 contributor: fullname: Dorr – year: 1997 ident: 10.1016/j.cmpb.2016.05.002_bib0185 contributor: fullname: Trefethen – volume: 282 start-page: 204 year: 2016 ident: 10.1016/j.cmpb.2016.05.002_bib0130 article-title: Linear least squares problems involving fixed knots polynomial splines and their singularity study publication-title: Appl. Math. Comput contributor: fullname: Zamir – volume: 2007 start-page: 80510 year: 2007 ident: 10.1016/j.cmpb.2016.05.002_bib0190 article-title: Automatic seizure detection based on time-frequency analysis and artificial neural networks publication-title: Comput. Intell. Neurosci doi: 10.1155/2007/80510 contributor: fullname: Tzallas – volume: 114 start-page: 898 issue: 5 year: 2003 ident: 10.1016/j.cmpb.2016.05.002_bib0045 article-title: Wavelet based automatic seizure detection in intracerebral electroencephalogram publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(03)00035-X contributor: fullname: Khan – volume: 123 start-page: 69 issue: 1 year: 2003 ident: 10.1016/j.cmpb.2016.05.002_bib0040 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(02)00340-0 contributor: fullname: Adeli – year: 2010 ident: 10.1016/j.cmpb.2016.05.002_bib0180 contributor: fullname: Boyd – volume: 16 start-page: 1135 issue: 6 year: 2012 ident: 10.1016/j.cmpb.2016.05.002_bib0095 article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition publication-title: IEEE Trans. Inf. Technol. Biomed doi: 10.1109/TITB.2011.2181403 contributor: fullname: Bajaj – volume: 60 start-page: 3375 issue: 12 year: 2013 ident: 10.1016/j.cmpb.2016.05.002_bib0020 article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2013.2254486 contributor: fullname: Zhou – ident: 10.1016/j.cmpb.2016.05.002_bib0070 contributor: fullname: Panda – volume: 64 start-page: 061907 year: 2001 ident: 10.1016/j.cmpb.2016.05.002_bib0100 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 contributor: fullname: Andrzejak – volume: 21 start-page: 233 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2016.05.002_bib0105 article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehab. Eng doi: 10.1109/TNSRE.2013.2243471 contributor: fullname: Zhang – volume: vol. 2 year: 1969 ident: 10.1016/j.cmpb.2016.05.002_bib0145 contributor: fullname: Rice – volume: 2010 year: 2010 ident: 10.1016/j.cmpb.2016.05.002_bib0220 article-title: Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection publication-title: EURASIP J. Adv. Signal Proc contributor: fullname: Liang – ident: 10.1016/j.cmpb.2016.05.002_bib0025 contributor: fullname: Epilepsy Australia Ltd. – year: 1967 ident: 10.1016/j.cmpb.2016.05.002_bib0140 contributor: fullname: Powell – volume: 80 start-page: 187 issue: 3 year: 2005 ident: 10.1016/j.cmpb.2016.05.002_bib0240 article-title: Entropies for detection of epilepsy in EEG publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2005.06.012 contributor: fullname: Kannathal – year: 1999 ident: 10.1016/j.cmpb.2016.05.002_bib0175 contributor: fullname: Barlow – year: 1989 ident: 10.1016/j.cmpb.2016.05.002_bib0155 contributor: fullname: Nürnberger – volume: 32 start-page: 1084 issue: 4 year: 2007 ident: 10.1016/j.cmpb.2016.05.002_bib0250 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2006.02.005 contributor: fullname: Subasi – volume: 88 start-page: 1858 issue: 7 year: 2008 ident: 10.1016/j.cmpb.2016.05.002_bib0080 article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm publication-title: Signal Proc doi: 10.1016/j.sigpro.2008.01.026 contributor: fullname: Ocak – volume: 268 start-page: 947 year: 2015 ident: 10.1016/j.cmpb.2016.05.002_bib0115 article-title: Convex optimisation-based methods for k-complex detection publication-title: Appl. Math. Comput contributor: fullname: Zamir – volume: 22 start-page: S49 year: 2011 ident: 10.1016/j.cmpb.2016.05.002_bib0010 article-title: Quickest detection of drug-resistant seizures: an optimal control approach publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2011.08.041 contributor: fullname: Santaniello – volume: 193 start-page: 156 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2016.05.002_bib0195 article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.08.030 contributor: fullname: Guo – volume: 187 start-page: 1017 issue: 2 year: 2007 ident: 10.1016/j.cmpb.2016.05.002_bib0085 article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform publication-title: Appl. Math. Comput contributor: fullname: Polat – volume: 114 start-page: 45 issue: 12 year: 2015 ident: 10.1016/j.cmpb.2016.05.002_bib0260 article-title: The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI publication-title: Int. J. Comput. Appl contributor: fullname: Cetin – volume: 16 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.cmpb.2016.05.002_bib0150 article-title: Spline functions in data analysis publication-title: Technometrics doi: 10.1080/00401706.1974.10489142 contributor: fullname: Wold – volume: 29 start-page: 647 issue: 6 year: 2005 ident: 10.1016/j.cmpb.2016.05.002_bib0055 article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features publication-title: J. Med. Syst doi: 10.1007/s10916-005-6133-1 contributor: fullname: Srinivasan – volume: 80 start-page: 17 issue: 1 year: 2005 ident: 10.1016/j.cmpb.2016.05.002_bib0245 article-title: Characterization of EEG a comparative study publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2005.06.005 contributor: fullname: Kannathal |
SSID | ssj0002556 |
Score | 2.2886598 |
Snippet | Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG... •Linear least squares preprocessing models are developed for automatic detection of seizures.•They extract key features of an epileptic EEG signal.•They... An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 95 |
SubjectTerms | Accuracy Biological signal classification Classification Classifiers Data analysis EEG seizure detection Electroencephalography Electroencephalography - methods Epilepsy - physiopathology Feature extraction Humans Internal Medicine Least-Squares Analysis Linear least squares problems Mathematical models Models, Theoretical Other Preprocessing Seizing Signal approximation |
Title | Detection of epileptic seizure in EEG signals using linear least squares preprocessing |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S016926071530273X https://dx.doi.org/10.1016/j.cmpb.2016.05.002 https://www.ncbi.nlm.nih.gov/pubmed/27393803 https://search.proquest.com/docview/1803112224 https://search.proquest.com/docview/1811899425 https://search.proquest.com/docview/1835657599 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJcEC2vhVIZiRtKN3H8SI5V2bIFtRco2pvl16JFkA2b3QuH_vbO5FGKoHvgEinRRI7Gns_j-PvGAG-c1nMdSpU4qVwiCp8nVnGHl8JyFTObtkLa8ws1vRQfZnK2AyeDFoZolT32d5jeonX_ZNx7c1wvFuNPVEeEU3k0OvhG5zNSsMs2OI-uftM8qMRWV9-7TMi6F850HC__o3ZE71JHt36t_GNyuiv5bCeh00fwsM8e2XH3gXuwE6t9uH_e748_hi_v4rrlVlVsOWexxpBHSPCsiYtfm1Vki4pNJu8ZkTZw2DEivX9llGjaFftOp_iw5ueGFEmspmqXrYYATZ7A5enk88k06U9OSLzQep1gkhac1WXIcqvSIL0tcZ0jtAiZzXVQJGfF2RFTJY8Bazkuwnhw3AZeFEE6lz-F3WpZxefA0pA670QUQWfCq6KYexucykURuOZzOYK3g8tM3RXIMANz7JshBxtysEmlQQePQA9eNYP0E8EqNn3kNCYzDTep-at3RyBv3vxjgBjE_q0tvh46z2Dk0HaIreJygy0VCGgZ5kdimw0uwMoSgW2bTU57x7IsR_CsGx03nuBUcBDbefGfX_8SHtBdR2o7gN31ahNfYRa0doftMD-Ee8dnH6cX1xshBcE |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXBOXRpRRciRtKN3EcOzmismWh3V5o0d4svxYtotmw2b1w4Ld3Jo-2CNgDlxySiRyNx5_H8TefAd5YpWbKFzKymbSRyF0aGcktXnLDZUhM3BTSTs7k-EJ8mmbTLTjqa2GIVtlhf4vpDVp3d4adN4fVfD78TDoinOTR6OAblU7vwF1B-lkY1Ie_bngepLHVCnwXEZl3lTMtyctdVpb4XfLw1r-Vv8xO_8o-m1no-BE87NJH9q79wsewFcoduDfpNsifwJf3YdWQq0q2mLFQ4ZhHTHCsDvOf62Vg85KNRh8YsTYw7hix3r8yyjTNkn2nY3xY_WNNJUmsIrnLpogATZ7CxfHo_GgcdUcnRE4otYowS_PWqMInqZGxz5wpcKEjlPCJSZWXVM-K0yPmSg5HrOG4CuPecuN5nvvM2vQZbJeLMuwCi31snRVBeJUIJ_N85oy3MhW554rPsgG87V2mq1YhQ_fUsW-aHKzJwTrONDp4AKr3qu5rPxGtQt0NnVonuuY61n907wCy6zd_ixCN4L-xxYO-8zQOHdoPMWVYrLGlHBEtwQRJbLLBFVhRILJtsklp8xhDbwDP2-i49gQnxUFs58V_fv1ruD8-n5zq049nJ3vwgJ60DLeXsL1arsM-pkQr-6oJ-Ss78Adj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+epileptic+seizure+in+EEG+signals+using+linear+least+squares+preprocessing&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Roshan+Zamir%2C+Z&rft.date=2016-09-01&rft.eissn=1872-7565&rft.volume=133&rft.spage=95&rft.epage=109&rft_id=info:doi/10.1016%2Fj.cmpb.2016.05.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |