Detection of epileptic seizure in EEG signals using linear least squares preprocessing

Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accu...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 133; pp. 95 - 109
Main Author Zamir, Z. Roshan
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accuracy of an EEG signal in presence of seizures. • They are robust and efficient for detecting epileptic seizures.
AbstractList Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG signal. • They significantly reduce the dimension of the classification problem and the computational time. • They enhance the classification accuracy of an EEG signal in presence of seizures. • They are robust and efficient for detecting epileptic seizures.
•Linear least squares preprocessing models are developed for automatic detection of seizures.•They extract key features of an epileptic EEG signal.•They significantly reduce the dimension of the classification problem and the computational time.•They enhance the classification accuracy of an EEG signal in the presence of seizures.•They are robust and efficient for detecting epileptic seizures. An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these models are robust and efficient for detecting epileptic seizure.
An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of electrical changes in the brain that happen before the seizure takes place. The automatic detection of seizures is necessary since the visual screening of EEG recordings is a time consuming task and requires experts to improve the diagnosis. Much of the prior research in detection of seizures has been developed based on artificial neural network, genetic programming, and wavelet transforms. Although the highest achieved accuracy for classification is 100%, there are drawbacks, such as the existence of unbalanced datasets and the lack of investigations in performances consistency. To address these, four linear least squares-based preprocessing models are proposed to extract key features of an EEG signal in order to detect seizures. The first two models are newly developed. The original signal (EEG) is approximated by a sinusoidal curve. Its amplitude is formed by a polynomial function and compared with the predeveloped spline function. Different statistical measures, namely classification accuracy, true positive and negative rates, false positive and negative rates and precision, are utilised to assess the performance of the proposed models. These metrics are derived from confusion matrices obtained from classifiers. Different classifiers are used over the original dataset and the set of extracted features. The proposed models significantly reduce the dimension of the classification problem and the computational time while the classification accuracy is improved in most cases. The first and third models are promising feature extraction methods with the classification accuracy of 100%. Logistic, LazyIB1, LazyIB5, and J48 are the best classifiers. Their true positive and negative rates are 1 while false positive and negative rates are 0 and the corresponding precision values are 1. Numerical results suggest that these models are robust and efficient for detecting epileptic seizure.
Author Zamir, Z. Roshan
Author_xml – sequence: 1
  fullname: Zamir, Z. Roshan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27393803$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFP8AB-cglwR-xHUsICZVti1SJAx_iZjn2bOUlm6SeBKn8ehxt4cAB9WRLfub1aJ45IyfDOAAhLzmrOeP6zb4Oh6mrRbnXTNWMiSdkw1sjKqO0OiGb8mAroZk5JWeIe1YIpfQzciqMtLJlckO-fYAZwpzGgY47ClPqYZpToAjp15KBpoFut1cU0-3ge6QLpuGW9mkAn2kPHmeKd4vPgHTKMOUxAK7Ic_J0V3h48XCek6-X2y8X19XNp6uPF-9vqtAYM1da6dh5YyOXXrOogrdaqMY0kXtporZW6QDQSBVMa7ywohGxEz6Kto2q6-Q5eX3MLV_fLYCzOyQM0Pd-gHFBx1tZRmGUtY9AOW-tbYR6BMok50KIpqDiiIY8ImbYuSmng8_3jjO3WnJ7t1pyqyXHlCsOStGrh_ylO0D8W_JHSwHeHgEos_uZIDsMCYYAMeViy8Ux_T__3T_loShLwfc_4B5wPy55tem4Q-GY-7zuybomXElWevgufwMJgrkD
CitedBy_id crossref_primary_10_1016_j_eswa_2019_03_021
crossref_primary_10_1016_j_eswa_2017_08_012
crossref_primary_10_1515_bmt_2017_0233
crossref_primary_10_1038_srep35622
crossref_primary_10_1016_j_amc_2020_125560
crossref_primary_10_1016_j_bspc_2020_101921
crossref_primary_10_1016_j_cmpb_2018_05_007
crossref_primary_10_1007_s12553_019_00363_y
crossref_primary_10_1007_s12652_022_03856_3
crossref_primary_10_1142_S0129065717500058
crossref_primary_10_1007_s12652_020_02185_7
crossref_primary_10_1080_03091902_2018_1464075
crossref_primary_10_3233_IDT_190101
crossref_primary_10_3389_frai_2023_1156269
crossref_primary_10_1590_1678_4324_2022210559
crossref_primary_10_1016_j_measurement_2020_108135
crossref_primary_10_1016_j_irbm_2019_01_001
crossref_primary_10_1080_03091902_2018_1513576
Cites_doi 10.3923/jas.2013.207.219
10.1017/S1446181112000016
10.1007/s11517-012-0967-8
10.1016/j.jneumeth.2010.05.020
10.1145/1656274.1656278
10.1109/TBME.2007.891945
10.1016/j.cmpb.2013.11.014
10.1016/j.cmpb.2015.10.001
10.4236/jbise.2010.36078
10.1016/j.eswa.2011.08.088
10.1109/TITB.2009.2017939
10.1142/S0129065714500130
10.1016/j.eswa.2007.12.065
10.1179/016164104773026534
10.1016/j.bspc.2007.07.002
10.1155/2007/80510
10.1016/S1388-2457(03)00035-X
10.1016/S0165-0270(02)00340-0
10.1109/TITB.2011.2181403
10.1109/TBME.2013.2254486
10.1103/PhysRevE.64.061907
10.1109/TNSRE.2013.2243471
10.1016/j.cmpb.2005.06.012
10.1016/j.eswa.2006.02.005
10.1016/j.sigpro.2008.01.026
10.1016/j.yebeh.2011.08.041
10.1016/j.jneumeth.2010.08.030
10.1080/00401706.1974.10489142
10.1007/s10916-005-6133-1
10.1016/j.cmpb.2005.06.005
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cmpb.2016.05.002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

MEDLINE
Engineering Research Database
Computer and Information Systems Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 109
ExternalDocumentID 10_1016_j_cmpb_2016_05_002
27393803
S016926071530273X
1_s2_0_S016926071530273X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABTAH
ABXDB
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c477t-656dba79d13a60d5ca9625474d1a37d69956cee435c787a29242db2ad288d5bb3
IEDL.DBID .~1
ISSN 0169-2607
IngestDate Fri Oct 25 08:35:36 EDT 2024
Thu Oct 24 20:11:45 EDT 2024
Fri Oct 25 01:32:11 EDT 2024
Thu Sep 26 17:10:20 EDT 2024
Sat Sep 28 07:58:11 EDT 2024
Fri Feb 23 02:25:56 EST 2024
Tue Oct 15 22:54:52 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords 92C55
Signal approximation
Data analysis
65K05
Biological signal classification
EEG Seizure detection
90C25
Feature extraction
65D15
65D07
Linear least squares problems
EEG seizure detection
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-656dba79d13a60d5ca9625474d1a37d69956cee435c787a29242db2ad288d5bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27393803
PQID 1803112224
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1835657599
proquest_miscellaneous_1811899425
proquest_miscellaneous_1803112224
crossref_primary_10_1016_j_cmpb_2016_05_002
pubmed_primary_27393803
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_05_002
elsevier_clinicalkeyesjournals_1_s2_0_S016926071530273X
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khan, Gotman (bib0045) 2003; 114
Nigam, Graupe (bib0235) 2004; 26
Rice (bib0145) 1969; vol. 2
Kannathal, Choo, Acharya, Sadasivan (bib0240) 2005; 80
Powell (bib0140) 1967
Dem'janov, Malozemov, Louvish (bib0160) 1974
Zamir, Sukhorukova (bib0130) 2016; 282
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib0100) 2001; 64
Zhang, Zhou, Zhao, Jin, Wang, Cichocki (bib0105) 2013; 21
Boyd, Vandenberghe (bib0180) 2010
Moloney, Sukhorukova, Vamplew, Ugon, Li, Beliakov (bib0135) 2011; 52
Cetin, Cetin, Bozkurt (bib0260) 2015; 114
Cetin, Cetin, Bozkurt (bib0060) 2015; 114
Chebotarev (bib0165) 1943
Epilepsy Australia Ltd. (bib0025) 2014
Srinivasan, Eswaran, Sriraam (bib0055) 2005; 29
Tzallas, Tsipouras, Fotiadis (bib0190) 2007; 2007
Ocak (bib0080) 2008; 88
Guo, Rivero, Seoane, Pazos (bib0255) 2009
Ghosh-Dastidar, Adeli, Dadmehr (bib0075) 2007; 54
Guo, Rivero, Dorado, Rabual, Pazos (bib0210) 2010; 191
Bhardwaj, Tiwari, Krishna, Varma (bib0065) 2016; 124
Song, Lio (bib0225) 2010; 3
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0120) 2009; 11
Zamir, Sukhorukova, Amiel, Ugon, Philippe (bib0115) 2015; 268
Netoff, Park, Parhi (bib0015) 2009
Zamir, Sukhorukova, Amiel, Ugon, Philippe (bib0110) 2014
Wold (bib0150) 1974; 16
Dehuri, Jagadev, Cho (bib0200) 2013
Liang, Wang, Chang (bib0220) 2010; 2010
Polat, Gne (bib0085) 2007; 187
Pachori, Patidar (bib0090) 2014; 113
Guo, Rivero, Pazos (bib0195) 2010; 193
Barlow (bib0175) 1999
Panda, Khobragade, Jambhule, Jengthe, Pal, Gandhi (bib0070) 2010
Bjõrck (bib0170) 1996
Tzallas, Tsipouras, Fotiadis (bib0215) 2009; 13
Ocak (bib0205) 2009; 36
Trefethen, Bau (bib0185) 1997
Xie, Krishnan (bib0050) 2013; 51
Santaniello, Burns, Golby, Singer, Anderson, Sarma (bib0010) 2011; 22
Adeli, Zhou, Dadmehr (bib0040) 2003; 123
Kannathal, Acharya, Lim, Sadasivan (bib0245) 2005; 80
Dorr, Caparos, Wendling, Vignal, Wolf (bib0030) 2007; 2
Zhang, Zhou, Jin, Wang, Cichocki (bib0125) 2014; 24
Zhou, Liu, Yuan, Li (bib0020) 2013; 60
Nürnberger (bib0155) 1989
Ravish, Shenbaga Devi, Krishnamoorthy, Karthikeyan (bib0230) 2013; 13
Bajaj, Pachori (bib0095) 2012; 16
Subasi (bib0250) 2007; 32
Tang, Durand (bib0035) 2012; 39
Ghosh-Dastidar (10.1016/j.cmpb.2016.05.002_bib0075) 2007; 54
Tzallas (10.1016/j.cmpb.2016.05.002_bib0190) 2007; 2007
Pachori (10.1016/j.cmpb.2016.05.002_bib0090) 2014; 113
Powell (10.1016/j.cmpb.2016.05.002_bib0140) 1967
Dehuri (10.1016/j.cmpb.2016.05.002_bib0200)
Zhang (10.1016/j.cmpb.2016.05.002_bib0125) 2014; 24
Kannathal (10.1016/j.cmpb.2016.05.002_bib0240) 2005; 80
Hall (10.1016/j.cmpb.2016.05.002_bib0120) 2009; 11
Zhou (10.1016/j.cmpb.2016.05.002_bib0020) 2013; 60
Bhardwaj (10.1016/j.cmpb.2016.05.002_bib0065) 2016; 124
Adeli (10.1016/j.cmpb.2016.05.002_bib0040) 2003; 123
Nürnberger (10.1016/j.cmpb.2016.05.002_bib0155) 1989
Liang (10.1016/j.cmpb.2016.05.002_bib0220) 2010; 2010
Polat (10.1016/j.cmpb.2016.05.002_bib0085) 2007; 187
Ravish (10.1016/j.cmpb.2016.05.002_bib0230) 2013; 13
Santaniello (10.1016/j.cmpb.2016.05.002_bib0010) 2011; 22
Wold (10.1016/j.cmpb.2016.05.002_bib0150) 1974; 16
Panda (10.1016/j.cmpb.2016.05.002_bib0070)
Zamir (10.1016/j.cmpb.2016.05.002_bib0130) 2016; 282
Subasi (10.1016/j.cmpb.2016.05.002_bib0250) 2007; 32
Andrzejak (10.1016/j.cmpb.2016.05.002_bib0100) 2001; 64
Nigam (10.1016/j.cmpb.2016.05.002_bib0235) 2004; 26
Ocak (10.1016/j.cmpb.2016.05.002_bib0205) 2009; 36
Barlow (10.1016/j.cmpb.2016.05.002_bib0175) 1999
Dorr (10.1016/j.cmpb.2016.05.002_bib0030) 2007; 2
Bajaj (10.1016/j.cmpb.2016.05.002_bib0095) 2012; 16
Bjõrck (10.1016/j.cmpb.2016.05.002_bib0170) 1996
Netoff (10.1016/j.cmpb.2016.05.002_bib0015)
Song (10.1016/j.cmpb.2016.05.002_bib0225) 2010; 3
Cetin (10.1016/j.cmpb.2016.05.002_bib0260) 2015; 114
Guo (10.1016/j.cmpb.2016.05.002_bib0255)
Tang (10.1016/j.cmpb.2016.05.002_bib0035) 2012; 39
Kannathal (10.1016/j.cmpb.2016.05.002_bib0245) 2005; 80
Dem'janov (10.1016/j.cmpb.2016.05.002_bib0160) 1974
Tzallas (10.1016/j.cmpb.2016.05.002_bib0215) 2009; 13
Rice (10.1016/j.cmpb.2016.05.002_bib0145) 1969; vol. 2
Epilepsy Australia Ltd. (10.1016/j.cmpb.2016.05.002_bib0025)
Boyd (10.1016/j.cmpb.2016.05.002_bib0180) 2010
Zamir (10.1016/j.cmpb.2016.05.002_bib0110)
Chebotarev (10.1016/j.cmpb.2016.05.002_bib0165) 1943
Trefethen (10.1016/j.cmpb.2016.05.002_bib0185) 1997
Guo (10.1016/j.cmpb.2016.05.002_bib0195) 2010; 193
Srinivasan (10.1016/j.cmpb.2016.05.002_bib0055) 2005; 29
Moloney (10.1016/j.cmpb.2016.05.002_bib0135) 2011; 52
Zamir (10.1016/j.cmpb.2016.05.002_bib0115) 2015; 268
Ocak (10.1016/j.cmpb.2016.05.002_bib0080) 2008; 88
Xie (10.1016/j.cmpb.2016.05.002_bib0050) 2013; 51
Guo (10.1016/j.cmpb.2016.05.002_bib0210) 2010; 191
Khan (10.1016/j.cmpb.2016.05.002_bib0045) 2003; 114
Zhang (10.1016/j.cmpb.2016.05.002_bib0105) 2013; 21
Cetin (10.1016/j.cmpb.2016.05.002_bib0060) 2015; 114
References_xml – volume: 114
  start-page: 45
  year: 2015
  end-page: 50
  ident: bib0060
  article-title: Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
  publication-title: Int. J. Comput. Appl
  contributor:
    fullname: Bozkurt
– volume: vol. 2
  year: 1969
  ident: bib0145
  publication-title: The Approximation of Functions
  contributor:
    fullname: Rice
– year: 2009
  ident: bib0015
  article-title: Seizure prediction using cost-sensitive support vector machine
  contributor:
    fullname: Parhi
– volume: 54
  start-page: 1545
  year: 2007
  end-page: 1551
  ident: bib0075
  article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng
  contributor:
    fullname: Dadmehr
– year: 1989
  ident: bib0155
  article-title: Approximation by Spline Functions
  contributor:
    fullname: Nürnberger
– volume: 80
  start-page: 187
  year: 2005
  end-page: 194
  ident: bib0240
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed
  contributor:
    fullname: Sadasivan
– year: 1943
  ident: bib0165
  article-title: On a certain minimax criterion
  contributor:
    fullname: Chebotarev
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0120
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor. Newsl
  contributor:
    fullname: Witten
– volume: 3
  start-page: 556
  year: 2010
  end-page: 567
  ident: bib0225
  article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
  publication-title: J. Biomed. Sci. Eng
  contributor:
    fullname: Lio
– volume: 51
  start-page: 49
  year: 2013
  end-page: 60
  ident: bib0050
  article-title: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis
  publication-title: Med. Biol. Eng. Comput
  contributor:
    fullname: Krishnan
– year: 2010
  ident: bib0070
  article-title: Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction
  contributor:
    fullname: Gandhi
– volume: 24
  start-page: 1450013
  year: 2014
  ident: bib0125
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis
  publication-title: Int. J. Neural Syst
  contributor:
    fullname: Cichocki
– volume: 26
  start-page: 55
  year: 2004
  end-page: 60
  ident: bib0235
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurol. Res
  contributor:
    fullname: Graupe
– volume: 29
  start-page: 647
  year: 2005
  end-page: 660
  ident: bib0055
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst
  contributor:
    fullname: Sriraam
– volume: 193
  start-page: 156
  year: 2010
  end-page: 163
  ident: bib0195
  article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Pazos
– volume: 16
  start-page: 1135
  year: 2012
  end-page: 1142
  ident: bib0095
  article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition
  publication-title: IEEE Trans. Inf. Technol. Biomed
  contributor:
    fullname: Pachori
– year: 1996
  ident: bib0170
  article-title: Numerical methods for least squares problems
  publication-title: Handbook of Numerical Analysis
  contributor:
    fullname: Bjõrck
– volume: 60
  start-page: 3375
  year: 2013
  end-page: 3381
  ident: bib0020
  article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG
  publication-title: IEEE Trans. Biomed. Eng
  contributor:
    fullname: Li
– year: 1997
  ident: bib0185
  article-title: Numerical Linear Algebra
  contributor:
    fullname: Bau
– volume: 2
  start-page: 154
  year: 2007
  end-page: 162
  ident: bib0030
  article-title: Extraction of reproducible seizure patterns based on EEG scalp correlations
  publication-title: Biomed. Signal Process. Control
  contributor:
    fullname: Wolf
– volume: 21
  start-page: 233
  year: 2013
  end-page: 243
  ident: bib0105
  article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng
  contributor:
    fullname: Cichocki
– volume: 268
  start-page: 947
  year: 2015
  end-page: 956
  ident: bib0115
  article-title: Convex optimisation-based methods for k-complex detection
  publication-title: Appl. Math. Comput
  contributor:
    fullname: Philippe
– volume: 52
  start-page: 319
  year: 2011
  end-page: 332
  ident: bib0135
  article-title: Detecting k-complexes for sleep stage identification using nonsmooth optimization
  publication-title: ANZIAM J.
  contributor:
    fullname: Beliakov
– volume: 187
  start-page: 1017
  year: 2007
  end-page: 1026
  ident: bib0085
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput
  contributor:
    fullname: Gne
– volume: 191
  start-page: 101
  year: 2010
  end-page: 109
  ident: bib0210
  article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Pazos
– year: 1974
  ident: bib0160
  article-title: Introduction to Minimax
  contributor:
    fullname: Louvish
– year: 2013
  ident: bib0200
  article-title: Epileptic seizure identification from electroencephalography signal using DE-RBFNs ensemble
  contributor:
    fullname: Cho
– volume: 32
  start-page: 1084
  year: 2007
  end-page: 1093
  ident: bib0250
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl
  contributor:
    fullname: Subasi
– volume: 16
  start-page: 1
  year: 1974
  end-page: 11
  ident: bib0150
  article-title: Spline functions in data analysis
  publication-title: Technometrics
  contributor:
    fullname: Wold
– year: 1999
  ident: bib0175
  article-title: Numerical aspects of solving linear least squares problems
  contributor:
    fullname: Barlow
– volume: 124
  start-page: 2
  year: 2016
  end-page: 18
  ident: bib0065
  article-title: A novel genetic programming approach for epileptic seizure detection
  publication-title: Comput. Methods Programs Biomed
  contributor:
    fullname: Varma
– volume: 114
  start-page: 45
  year: 2015
  end-page: 50
  ident: bib0260
  article-title: The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
  publication-title: Int. J. Comput. Appl
  contributor:
    fullname: Bozkurt
– volume: 22
  start-page: S49
  year: 2011
  end-page: S60
  ident: bib0010
  article-title: Quickest detection of drug-resistant seizures: an optimal control approach
  publication-title: Epilepsy Behav
  contributor:
    fullname: Sarma
– volume: 80
  start-page: 17
  year: 2005
  end-page: 23
  ident: bib0245
  article-title: Characterization of EEG a comparative study
  publication-title: Comput. Methods Programs Biomed
  contributor:
    fullname: Sadasivan
– volume: 39
  start-page: 3925
  year: 2012
  end-page: 3938
  ident: bib0035
  article-title: A tunable support vector machine assembly classifier for epileptic seizure detection
  publication-title: Expert Syst. Appl
  contributor:
    fullname: Durand
– volume: 13
  start-page: 207
  year: 2013
  end-page: 219
  ident: bib0230
  article-title: Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis
  publication-title: J. Appl. Sci
  contributor:
    fullname: Karthikeyan
– volume: 2007
  start-page: 80510
  year: 2007
  ident: bib0190
  article-title: Automatic seizure detection based on time-frequency analysis and artificial neural networks
  publication-title: Comput. Intell. Neurosci
  contributor:
    fullname: Fotiadis
– year: 2014
  ident: bib0025
  article-title: Epilepsy Australia–Information
  contributor:
    fullname: Epilepsy Australia Ltd.
– year: 1967
  ident: bib0140
  article-title: Curve fitting by cubic splines
  contributor:
    fullname: Powell
– volume: 2010
  year: 2010
  ident: bib0220
  article-title: Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
  publication-title: EURASIP J. Adv. Signal Proc
  contributor:
    fullname: Chang
– volume: 282
  start-page: 204
  year: 2016
  end-page: 215
  ident: bib0130
  article-title: Linear least squares problems involving fixed knots polynomial splines and their singularity study
  publication-title: Appl. Math. Comput
  contributor:
    fullname: Sukhorukova
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: bib0040
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
  contributor:
    fullname: Dadmehr
– volume: 114
  start-page: 898
  year: 2003
  end-page: 908
  ident: bib0045
  article-title: Wavelet based automatic seizure detection in intracerebral electroencephalogram
  publication-title: Clin. Neurophysiol
  contributor:
    fullname: Gotman
– volume: 88
  start-page: 1858
  year: 2008
  end-page: 1867
  ident: bib0080
  article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
  publication-title: Signal Proc
  contributor:
    fullname: Ocak
– volume: 113
  start-page: 494
  year: 2014
  end-page: 502
  ident: bib0090
  article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
  publication-title: Comput. Methods Programs Biomed
  contributor:
    fullname: Patidar
– volume: 13
  start-page: 703
  year: 2009
  end-page: 710
  ident: bib0215
  article-title: Epileptic seizure detection in EEGs using time frequency analysis
  publication-title: IEEE Trans. Inf. Technol. Biomed
  contributor:
    fullname: Fotiadis
– year: 2014
  ident: bib0110
  article-title: Optimization-based features extraction for k-complex detection
  contributor:
    fullname: Philippe
– year: 2010
  ident: bib0180
  article-title: Convex Optimization
  contributor:
    fullname: Vandenberghe
– year: 2009
  ident: bib0255
  article-title: Classification of EEG signals using relative wavelet energy and artificial neural networks
  contributor:
    fullname: Pazos
– volume: 64
  start-page: 061907
  year: 2001
  ident: bib0100
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  contributor:
    fullname: Elger
– volume: 36
  start-page: 2027
  year: 2009
  end-page: 2036
  ident: bib0205
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Syst. Appl
  contributor:
    fullname: Ocak
– year: 1974
  ident: 10.1016/j.cmpb.2016.05.002_bib0160
  contributor:
    fullname: Dem'janov
– volume: 13
  start-page: 207
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2016.05.002_bib0230
  article-title: Detection of epileptic seizure in EEG recordings by spectral method and statistical analysis
  publication-title: J. Appl. Sci
  doi: 10.3923/jas.2013.207.219
  contributor:
    fullname: Ravish
– volume: 52
  start-page: 319
  year: 2011
  ident: 10.1016/j.cmpb.2016.05.002_bib0135
  article-title: Detecting k-complexes for sleep stage identification using nonsmooth optimization
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181112000016
  contributor:
    fullname: Moloney
– year: 1996
  ident: 10.1016/j.cmpb.2016.05.002_bib0170
  article-title: Numerical methods for least squares problems
  contributor:
    fullname: Bjõrck
– volume: 51
  start-page: 49
  issue: 1–2
  year: 2013
  ident: 10.1016/j.cmpb.2016.05.002_bib0050
  article-title: Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis
  publication-title: Med. Biol. Eng. Comput
  doi: 10.1007/s11517-012-0967-8
  contributor:
    fullname: Xie
– ident: 10.1016/j.cmpb.2016.05.002_bib0200
  contributor:
    fullname: Dehuri
– volume: 191
  start-page: 101
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2016.05.002_bib0210
  article-title: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.05.020
  contributor:
    fullname: Guo
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2016.05.002_bib0120
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor. Newsl
  doi: 10.1145/1656274.1656278
  contributor:
    fullname: Hall
– volume: 54
  start-page: 1545
  issue: 9
  year: 2007
  ident: 10.1016/j.cmpb.2016.05.002_bib0075
  article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2007.891945
  contributor:
    fullname: Ghosh-Dastidar
– volume: 113
  start-page: 494
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2016.05.002_bib0090
  article-title: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.11.014
  contributor:
    fullname: Pachori
– volume: 124
  start-page: 2
  year: 2016
  ident: 10.1016/j.cmpb.2016.05.002_bib0065
  article-title: A novel genetic programming approach for epileptic seizure detection
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2015.10.001
  contributor:
    fullname: Bhardwaj
– ident: 10.1016/j.cmpb.2016.05.002_bib0255
  contributor:
    fullname: Guo
– volume: 3
  start-page: 556
  issue: 6
  year: 2010
  ident: 10.1016/j.cmpb.2016.05.002_bib0225
  article-title: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine
  publication-title: J. Biomed. Sci. Eng
  doi: 10.4236/jbise.2010.36078
  contributor:
    fullname: Song
– ident: 10.1016/j.cmpb.2016.05.002_bib0110
  contributor:
    fullname: Zamir
– ident: 10.1016/j.cmpb.2016.05.002_bib0015
  contributor:
    fullname: Netoff
– volume: 39
  start-page: 3925
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2016.05.002_bib0035
  article-title: A tunable support vector machine assembly classifier for epileptic seizure detection
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2011.08.088
  contributor:
    fullname: Tang
– volume: 114
  start-page: 45
  issue: 12
  year: 2015
  ident: 10.1016/j.cmpb.2016.05.002_bib0060
  article-title: Article: the detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
  publication-title: Int. J. Comput. Appl
  contributor:
    fullname: Cetin
– volume: 13
  start-page: 703
  issue: 5
  year: 2009
  ident: 10.1016/j.cmpb.2016.05.002_bib0215
  article-title: Epileptic seizure detection in EEGs using time frequency analysis
  publication-title: IEEE Trans. Inf. Technol. Biomed
  doi: 10.1109/TITB.2009.2017939
  contributor:
    fullname: Tzallas
– year: 1943
  ident: 10.1016/j.cmpb.2016.05.002_bib0165
  contributor:
    fullname: Chebotarev
– volume: 24
  start-page: 1450013
  issue: 04
  year: 2014
  ident: 10.1016/j.cmpb.2016.05.002_bib0125
  article-title: Frequency recognition in SSVEP-based BCI using multiset canonicalcorrelation analysis
  publication-title: Int. J. Neural Syst
  doi: 10.1142/S0129065714500130
  contributor:
    fullname: Zhang
– volume: 36
  start-page: 2027
  issue: 2 Pt 1
  year: 2009
  ident: 10.1016/j.cmpb.2016.05.002_bib0205
  article-title: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2007.12.065
  contributor:
    fullname: Ocak
– volume: 26
  start-page: 55
  issue: 1
  year: 2004
  ident: 10.1016/j.cmpb.2016.05.002_bib0235
  article-title: A neural-network-based detection of epilepsy
  publication-title: Neurol. Res
  doi: 10.1179/016164104773026534
  contributor:
    fullname: Nigam
– volume: 2
  start-page: 154
  issue: 3
  year: 2007
  ident: 10.1016/j.cmpb.2016.05.002_bib0030
  article-title: Extraction of reproducible seizure patterns based on EEG scalp correlations
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.07.002
  contributor:
    fullname: Dorr
– year: 1997
  ident: 10.1016/j.cmpb.2016.05.002_bib0185
  contributor:
    fullname: Trefethen
– volume: 282
  start-page: 204
  year: 2016
  ident: 10.1016/j.cmpb.2016.05.002_bib0130
  article-title: Linear least squares problems involving fixed knots polynomial splines and their singularity study
  publication-title: Appl. Math. Comput
  contributor:
    fullname: Zamir
– volume: 2007
  start-page: 80510
  year: 2007
  ident: 10.1016/j.cmpb.2016.05.002_bib0190
  article-title: Automatic seizure detection based on time-frequency analysis and artificial neural networks
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2007/80510
  contributor:
    fullname: Tzallas
– volume: 114
  start-page: 898
  issue: 5
  year: 2003
  ident: 10.1016/j.cmpb.2016.05.002_bib0045
  article-title: Wavelet based automatic seizure detection in intracerebral electroencephalogram
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(03)00035-X
  contributor:
    fullname: Khan
– volume: 123
  start-page: 69
  issue: 1
  year: 2003
  ident: 10.1016/j.cmpb.2016.05.002_bib0040
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(02)00340-0
  contributor:
    fullname: Adeli
– year: 2010
  ident: 10.1016/j.cmpb.2016.05.002_bib0180
  contributor:
    fullname: Boyd
– volume: 16
  start-page: 1135
  issue: 6
  year: 2012
  ident: 10.1016/j.cmpb.2016.05.002_bib0095
  article-title: Classification of seizure and nonseizure EEG signals using empirical mode decomposition
  publication-title: IEEE Trans. Inf. Technol. Biomed
  doi: 10.1109/TITB.2011.2181403
  contributor:
    fullname: Bajaj
– volume: 60
  start-page: 3375
  issue: 12
  year: 2013
  ident: 10.1016/j.cmpb.2016.05.002_bib0020
  article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2013.2254486
  contributor:
    fullname: Zhou
– ident: 10.1016/j.cmpb.2016.05.002_bib0070
  contributor:
    fullname: Panda
– volume: 64
  start-page: 061907
  year: 2001
  ident: 10.1016/j.cmpb.2016.05.002_bib0100
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
  contributor:
    fullname: Andrzejak
– volume: 21
  start-page: 233
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2016.05.002_bib0105
  article-title: Spatial-temporal discriminant analysis for ERP-based brain-computer interface
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng
  doi: 10.1109/TNSRE.2013.2243471
  contributor:
    fullname: Zhang
– volume: vol. 2
  year: 1969
  ident: 10.1016/j.cmpb.2016.05.002_bib0145
  contributor:
    fullname: Rice
– volume: 2010
  year: 2010
  ident: 10.1016/j.cmpb.2016.05.002_bib0220
  article-title: Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
  publication-title: EURASIP J. Adv. Signal Proc
  contributor:
    fullname: Liang
– ident: 10.1016/j.cmpb.2016.05.002_bib0025
  contributor:
    fullname: Epilepsy Australia Ltd.
– year: 1967
  ident: 10.1016/j.cmpb.2016.05.002_bib0140
  contributor:
    fullname: Powell
– volume: 80
  start-page: 187
  issue: 3
  year: 2005
  ident: 10.1016/j.cmpb.2016.05.002_bib0240
  article-title: Entropies for detection of epilepsy in EEG
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2005.06.012
  contributor:
    fullname: Kannathal
– year: 1999
  ident: 10.1016/j.cmpb.2016.05.002_bib0175
  contributor:
    fullname: Barlow
– year: 1989
  ident: 10.1016/j.cmpb.2016.05.002_bib0155
  contributor:
    fullname: Nürnberger
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  ident: 10.1016/j.cmpb.2016.05.002_bib0250
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2006.02.005
  contributor:
    fullname: Subasi
– volume: 88
  start-page: 1858
  issue: 7
  year: 2008
  ident: 10.1016/j.cmpb.2016.05.002_bib0080
  article-title: Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
  publication-title: Signal Proc
  doi: 10.1016/j.sigpro.2008.01.026
  contributor:
    fullname: Ocak
– volume: 268
  start-page: 947
  year: 2015
  ident: 10.1016/j.cmpb.2016.05.002_bib0115
  article-title: Convex optimisation-based methods for k-complex detection
  publication-title: Appl. Math. Comput
  contributor:
    fullname: Zamir
– volume: 22
  start-page: S49
  year: 2011
  ident: 10.1016/j.cmpb.2016.05.002_bib0010
  article-title: Quickest detection of drug-resistant seizures: an optimal control approach
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2011.08.041
  contributor:
    fullname: Santaniello
– volume: 193
  start-page: 156
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2016.05.002_bib0195
  article-title: Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.08.030
  contributor:
    fullname: Guo
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  ident: 10.1016/j.cmpb.2016.05.002_bib0085
  article-title: Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
  publication-title: Appl. Math. Comput
  contributor:
    fullname: Polat
– volume: 114
  start-page: 45
  issue: 12
  year: 2015
  ident: 10.1016/j.cmpb.2016.05.002_bib0260
  article-title: The detection of normal and epileptic EEG signals using ANN methods with Matlab-based GUI
  publication-title: Int. J. Comput. Appl
  contributor:
    fullname: Cetin
– volume: 16
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.cmpb.2016.05.002_bib0150
  article-title: Spline functions in data analysis
  publication-title: Technometrics
  doi: 10.1080/00401706.1974.10489142
  contributor:
    fullname: Wold
– volume: 29
  start-page: 647
  issue: 6
  year: 2005
  ident: 10.1016/j.cmpb.2016.05.002_bib0055
  article-title: Artificial neural network based epileptic detection using time-domain and frequency-domain features
  publication-title: J. Med. Syst
  doi: 10.1007/s10916-005-6133-1
  contributor:
    fullname: Srinivasan
– volume: 80
  start-page: 17
  issue: 1
  year: 2005
  ident: 10.1016/j.cmpb.2016.05.002_bib0245
  article-title: Characterization of EEG a comparative study
  publication-title: Comput. Methods Programs Biomed
  doi: 10.1016/j.cmpb.2005.06.005
  contributor:
    fullname: Kannathal
SSID ssj0002556
Score 2.2886598
Snippet Highlights • Linear least squares preprocessing models are developed for automatic detection of seizures. • They extract key features of an epileptic EEG...
•Linear least squares preprocessing models are developed for automatic detection of seizures.•They extract key features of an epileptic EEG signal.•They...
An epileptic seizure is a transient event of abnormal excessive neuronal discharge in the brain. This unwanted event can be obstructed by detection of...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 95
SubjectTerms Accuracy
Biological signal classification
Classification
Classifiers
Data analysis
EEG seizure detection
Electroencephalography
Electroencephalography - methods
Epilepsy - physiopathology
Feature extraction
Humans
Internal Medicine
Least-Squares Analysis
Linear least squares problems
Mathematical models
Models, Theoretical
Other
Preprocessing
Seizing
Signal approximation
Title Detection of epileptic seizure in EEG signals using linear least squares preprocessing
URI https://www.clinicalkey.es/playcontent/1-s2.0-S016926071530273X
https://dx.doi.org/10.1016/j.cmpb.2016.05.002
https://www.ncbi.nlm.nih.gov/pubmed/27393803
https://search.proquest.com/docview/1803112224
https://search.proquest.com/docview/1811899425
https://search.proquest.com/docview/1835657599
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJcEC2vhVIZiRtKN3H8SI5V2bIFtRco2pvl16JFkA2b3QuH_vbO5FGKoHvgEinRRI7Gns_j-PvGAG-c1nMdSpU4qVwiCp8nVnGHl8JyFTObtkLa8ws1vRQfZnK2AyeDFoZolT32d5jeonX_ZNx7c1wvFuNPVEeEU3k0OvhG5zNSsMs2OI-uftM8qMRWV9-7TMi6F850HC__o3ZE71JHt36t_GNyuiv5bCeh00fwsM8e2XH3gXuwE6t9uH_e748_hi_v4rrlVlVsOWexxpBHSPCsiYtfm1Vki4pNJu8ZkTZw2DEivX9llGjaFftOp_iw5ueGFEmspmqXrYYATZ7A5enk88k06U9OSLzQep1gkhac1WXIcqvSIL0tcZ0jtAiZzXVQJGfF2RFTJY8Bazkuwnhw3AZeFEE6lz-F3WpZxefA0pA670QUQWfCq6KYexucykURuOZzOYK3g8tM3RXIMANz7JshBxtysEmlQQePQA9eNYP0E8EqNn3kNCYzDTep-at3RyBv3vxjgBjE_q0tvh46z2Dk0HaIreJygy0VCGgZ5kdimw0uwMoSgW2bTU57x7IsR_CsGx03nuBUcBDbefGfX_8SHtBdR2o7gN31ahNfYRa0doftMD-Ee8dnH6cX1xshBcE
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXBOXRpRRciRtKN3EcOzmismWh3V5o0d4svxYtotmw2b1w4Ld3Jo-2CNgDlxySiRyNx5_H8TefAd5YpWbKFzKymbSRyF0aGcktXnLDZUhM3BTSTs7k-EJ8mmbTLTjqa2GIVtlhf4vpDVp3d4adN4fVfD78TDoinOTR6OAblU7vwF1B-lkY1Ie_bngepLHVCnwXEZl3lTMtyctdVpb4XfLw1r-Vv8xO_8o-m1no-BE87NJH9q79wsewFcoduDfpNsifwJf3YdWQq0q2mLFQ4ZhHTHCsDvOf62Vg85KNRh8YsTYw7hix3r8yyjTNkn2nY3xY_WNNJUmsIrnLpogATZ7CxfHo_GgcdUcnRE4otYowS_PWqMInqZGxz5wpcKEjlPCJSZWXVM-K0yPmSg5HrOG4CuPecuN5nvvM2vQZbJeLMuwCi31snRVBeJUIJ_N85oy3MhW554rPsgG87V2mq1YhQ_fUsW-aHKzJwTrONDp4AKr3qu5rPxGtQt0NnVonuuY61n907wCy6zd_ixCN4L-xxYO-8zQOHdoPMWVYrLGlHBEtwQRJbLLBFVhRILJtsklp8xhDbwDP2-i49gQnxUFs58V_fv1ruD8-n5zq049nJ3vwgJ60DLeXsL1arsM-pkQr-6oJ-Ss78Adj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+epileptic+seizure+in+EEG+signals+using+linear+least+squares+preprocessing&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Roshan+Zamir%2C+Z&rft.date=2016-09-01&rft.eissn=1872-7565&rft.volume=133&rft.spage=95&rft.epage=109&rft_id=info:doi/10.1016%2Fj.cmpb.2016.05.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon