Live and Inactivated Chlamydia trachomatis Mouse Pneumonitis Strain Induces the Maturation of Dendritic Cells That Are Phenotypically and Immunologically Distinct

The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and tran...

Full description

Saved in:
Bibliographic Details
Published inInfection and Immunity Vol. 73; no. 3; pp. 1568 - 1577
Main Authors Rey-Ladino, Jose, Koochesfahani, Kasra M, Zaharik, Michelle L, Shen, Caixia, Brunham, Robert C
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.03.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4⁺ T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4⁺ T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
AbstractList The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4⁺ T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4⁺ T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4+ T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4+ T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue IAI About IAI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy Connect to IAI IAI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0019-9567 Online ISSN: 1098-5522 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to IAI .asm.org, visit: IAI       
The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia-specific CD4 super(+) T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia-specific CD4 super(+) T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis. The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
ABSTRACT The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia -specific CD4 + T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia- specific CD4 + T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis . The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to develop following natural chlamydial infection in humans, early vaccine trials using heat-killed C. trachomatis resulted in limited and transient protection with possible enhanced disease during follow-up. Thus, immunity following natural infection with live chlamydia may differ from immune responses induced by immunization with inactivated chlamydia. To study this differing immunology, we used murine bone marrow-derived dendritic cells (DC) to examine DC maturation and immune effector function induced by live and UV-irradiated C. trachomatis elementary bodies (live EBs and UV-EB, respectively). DC exposed to live EBs acquired a mature DC morphology; expressed high levels of major histocompatibility complex (MHC) class II, CD80, CD86, CD40, and ICAM-1; produced elevated amounts of interleukin-12 and tumor necrosis factor alpha; and were efficiently recognized by Chlamydia -specific CD4 + T cells. In contrast, UV-EB-pulsed DC expressed low levels of CD40 and CD86 but displayed high levels of MHC class II, ICAM-1, and CD80; secreted low levels of proinflammatory cytokines; and exhibited reduced recognition by Chlamydia- specific CD4 + T cells. Adoptive transfer of live EB-pulsed DC was more effective than that of UV-EB-pulsed DC at protecting mice against challenge with live C. trachomatis . The expression of DC maturation markers and immune protection induced by UV-EB could be significantly enhanced by costimulation of DC ex vivo with UV-EB and oligodeoxynucleotides containing cytosine phosphate guanosine; however, the level of protection was significantly less than that achieved by using DC pulsed ex vivo with viable EBs. Thus, exposure of DC to live EBs results in a mature DC phenotype which is able to promote protective immunity, while exposure to UV-EB generates a semimature DC phenotype with less protective potential. This result may explain in part the differences in protective immunity induced by natural infection and immunization with whole inactivated organisms and is relevant to rational chlamydia vaccine design strategies.
Author Rey-Ladino, Jose
Zaharik, Michelle L
Brunham, Robert C
Shen, Caixia
Koochesfahani, Kasra M
AuthorAffiliation University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada 1
AuthorAffiliation_xml – name: University of British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada 1
Author_xml – sequence: 1
  fullname: Rey-Ladino, Jose
– sequence: 2
  fullname: Koochesfahani, Kasra M
– sequence: 3
  fullname: Zaharik, Michelle L
– sequence: 4
  fullname: Shen, Caixia
– sequence: 5
  fullname: Brunham, Robert C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16723695$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15731055$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURLeFv0DNodyy-DN2LkirLR8rbQVS27PlOM7GKLEX2ynav8MvxausWjhxsjzzzOuZ8XtRnDnvTFFcIbhECIsPm9VmycmSLBGrRIkY50sMIXtRLBCsRckYxmfFAkJUlzWr-HlxEeOPfKWUilfFeS4gCDK2KH5v7aMByrVg45RO9lEl04J1P6jx0FoFUlC696NKNoJbP0UDvjszjd7ZY-Qup63Lpe2kTQSpN-BWpSlk3DvgO3BjXBsyqsHaDEME971KYBWySm-cT4e91WoYDnMD4zg5P_jdKXZjY7JOp9fFy04N0bw5nZfFw-dP9-uv5fbbl816tS015TyVFeSNaGpBYE07glrKiWjyjAQTzjTVFDPCWC0qgTXuUIeqtmsaIRrGWwxbTS6Lj7PufmpG02rj8nSD3Ac7qnCQXln5b8bZXu78o0SwojUlWeD9SSD4n5OJSY426jy3ciavTlacVriq2X9BxAVCFaYZ5DOog48xmO6pGwTl0QgyG0FyIok8GkEejSCPRsiVb_8e5rnu9PMZuD4BKuZ9d0E5beMzV3FM5l7fzVxvd_0vG4xUcZQ2L-Pp2cxczUynvFS7kHUe7nB229FxCGNC_gAzFNWK
CODEN INFIBR
CitedBy_id crossref_primary_10_1038_icb_2015_79
crossref_primary_10_1111_j_1574_695X_2010_00653_x
crossref_primary_10_1016_j_vaccine_2011_07_012
crossref_primary_10_1016_j_ajpath_2010_11_019
crossref_primary_10_1111_j_1574_695X_2008_00523_x
crossref_primary_10_1111_j_1365_2567_2007_02642_x
crossref_primary_10_1038_srep37723
crossref_primary_10_1128_IAI_73_11_7170_7179_2005
crossref_primary_10_1186_s12865_017_0212_1
crossref_primary_10_3390_microorganisms11030604
crossref_primary_10_1016_j_vaccine_2011_10_059
crossref_primary_10_2166_wh_2020_040
crossref_primary_10_3390_ani13020252
crossref_primary_10_1016_j_ejps_2020_105651
crossref_primary_10_1128_IAI_01584_07
crossref_primary_10_1111_j_1574_695X_2010_00729_x
crossref_primary_10_1164_rccm_200804_517OC
crossref_primary_10_4049_jimmunol_1002952
crossref_primary_10_1111_j_1462_5822_2007_01001_x
crossref_primary_10_1038_icb_2015_20
crossref_primary_10_1038_mi_2008_57
crossref_primary_10_4049_jimmunol_177_1_459
crossref_primary_10_1111_j_1365_2567_2006_02488_x
crossref_primary_10_1111_j_1574_695X_2007_00367_x
crossref_primary_10_1371_journal_pone_0059958
crossref_primary_10_1530_REP_16_0561
crossref_primary_10_4049_jimmunol_1002519
crossref_primary_10_1016_S1001_9294_09_60043_2
crossref_primary_10_1586_eog_11_12
crossref_primary_10_1016_j_vaccine_2012_12_057
crossref_primary_10_4049_jimmunol_180_4_2459
crossref_primary_10_4161_hv_6_8_12299
crossref_primary_10_1089_acm_2006_12_409
crossref_primary_10_1128_IAI_01618_06
crossref_primary_10_1016_j_vaccine_2006_12_019
crossref_primary_10_1128_CMR_00105_13
crossref_primary_10_1038_mi_2007_19
crossref_primary_10_1128_AAC_01826_20
Cites_doi 10.1002/elps.1150180338
10.1084/jem.185.2.317
10.1146/annurev.immunol.21.120601.141040
10.1084/jem.176.6.1693
10.4049/jimmunol.160.3.1297
10.4049/jimmunol.161.3.1439
10.4049/jimmunol.169.11.6324
10.4269/ajtmh.1990.42.358
10.1038/nri1001
10.1084/jem.161.3.526
10.1128/IAI.69.7.4667-4672.2001
10.1172/JCI0215962
10.1084/jem.20020147
10.4049/jimmunol.173.3.1934
10.1007/BF03401798
10.4049/jimmunol.164.8.4212
10.1084/jem.172.2.631
10.1002/eji.200324387
10.4049/jimmunol.172.10.6281
10.1128/IAI.70.6.2741-2751.2002
10.4049/jimmunol.172.4.2407
10.4049/jimmunol.168.11.5589
10.1086/315630
10.1016/S0092-8674(01)00456-1
10.1084/jem.20040317
10.1046/j.1365-2958.2003.03462.x
10.1046/j.1462-5822.2003.00291.x
10.1128/IAI.68.12.6979-6987.2000
10.1128/iai.65.8.3386-3390.1997
10.4049/jimmunol.167.6.3316
10.1084/jem.193.2.233
10.2165/00063030-200216010-00003
10.1128/iai.64.4.1208-1214.1996
10.4049/jimmunol.172.3.1727
10.1073/pnas.1331135100
10.1016/S1471-4906(02)02281-0
10.1038/4000
10.1128/IAI.70.7.3793-3803.2002
10.1002/1521-4141(200203)32:3<742::AID-IMMU742>3.0.CO;2-9
10.1038/nri1256
10.1097/00007435-197804000-00011
10.1093/infdis/173.4.950
10.1084/jem.188.5.809
10.1016/0002-9394(79)90076-X
10.1016/S1074-7613(03)00140-7
10.1128/IAI.67.4.1763-1769.1999
10.1093/clinids/7.6.717
10.1038/32588
10.1128/IAI.71.1.117-125.2003
10.1084/jem.189.12.1931
10.1016/j.it.2004.04.006
10.1084/jem.191.9.1525
10.1128/IAI.70.3.1097-1105.2002
10.1002/jlb.66.3.462
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright © 2005, American Society for Microbiology 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright © 2005, American Society for Microbiology 2005
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T5
C1K
H94
7X8
5PM
DOI 10.1128/IAI.73.3.1568-1577.2005
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
Immunology Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AIDS and Cancer Research Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-5522
EndPage 1577
ExternalDocumentID 10_1128_IAI_73_3_1568_1577_2005
15731055
16723695
iai_73_3_1568
US201400141223
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AFMIJ
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CS3
D0S
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
RHF
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UCJ
UPT
VH1
VQA
W2D
W8F
WH7
WHG
WOQ
X7M
XFK
Y6R
ZA5
ZGI
ZXP
~KM
08R
AAPBV
AAUGY
H13
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AGVNZ
CITATION
7QL
7T5
C1K
H94
7X8
5PM
ID FETCH-LOGICAL-c477t-607b8b983094f31d4738b05532375c4c42535598682c2f1f16dfbb88b57d20dc3
IEDL.DBID RPM
ISSN 0019-9567
IngestDate Tue Sep 17 21:13:05 EDT 2024
Fri Aug 16 01:02:34 EDT 2024
Tue Aug 27 04:30:18 EDT 2024
Thu Sep 12 18:18:50 EDT 2024
Thu May 23 23:08:23 EDT 2024
Sun Oct 22 16:06:11 EDT 2023
Wed May 18 15:26:55 EDT 2016
Wed Dec 27 19:17:30 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Lung disease
Dendritic cell
Pneumonia
Chlamydiaceae
Microbiology
Respiratory disease
Rodentia
Chlamydia trachomatis
Immunity
Vertebrata
Mammalia
Mouse
Chlamydiales
Bacteria
Inactivated strain
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-607b8b983094f31d4738b05532375c4c42535598682c2f1f16dfbb88b57d20dc3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Editor: J. L. Flynn
Corresponding author. Mailing address: University of British Columbia Centre for Disease Control, 655 West 12th Ave., Vancouver, BC V5Z 4R4, Canada. Phone: (604) 660-2626. Fax: (604) 660-6066. E-mail: robert.brunham@bccdc.ca.
PMID 15731055
PQID 17811624
PQPubID 23462
PageCount 10
ParticipantIDs crossref_primary_10_1128_IAI_73_3_1568_1577_2005
fao_agris_US201400141223
pascalfrancis_primary_16723695
pubmed_primary_15731055
proquest_miscellaneous_67462695
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1064943
proquest_miscellaneous_17811624
highwire_asm_iai_73_3_1568
PublicationCentury 2000
PublicationDate 2005-03-01
PublicationDateYYYYMMDD 2005-03-01
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Infection and Immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2005
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 8606080 - Infect Immun. 1996 Apr;64(4):1208-14
11036772 - Curr Top Microbiol Immunol. 2000;251:167-71
12200066 - Trends Immunol. 2002 Sep;23(9):445-9
11854188 - Infect Immun. 2002 Mar;70(3):1097-105
9234802 - Infect Immun. 1997 Aug;65(8):3386-90
12818162 - Immunity. 2003 Jun;18(6):813-23
11908999 - BioDrugs. 2002;16(1):19-35
9730883 - J Exp Med. 1998 Sep 7;188(5):809-18
9846579 - Nat Med. 1998 Dec;4(12):1409-15
2373994 - J Exp Med. 1990 Aug 1;172(2):631-40
10328037 - Sex Transm Dis. 1978 Apr-Jun;5(2):73-7
2331044 - Am J Trop Med Hyg. 1990 Apr;42(4):358-64
11083822 - Infect Immun. 2000 Dec;68(12):6979-87
9016880 - J Exp Med. 1997 Jan 20;185(2):317-28
1460426 - J Exp Med. 1992 Dec 1;176(6):1693-702
9521319 - Nature. 1998 Mar 19;392(6673):245-52
3871837 - J Exp Med. 1985 Mar 1;161(3):526-46
9150942 - Electrophoresis. 1997 Mar-Apr;18(3-4):563-7
10997341 - Mol Med. 2000 Jul;6(7):604-12
12070284 - J Exp Med. 2002 Jun 17;195(12):1565-73
12444139 - J Immunol. 2002 Dec 1;169(11):6324-31
15207502 - Trends Immunol. 2004 Jul;25(7):353-9
12615891 - Annu Rev Immunol. 2003;21:685-711
10790427 - J Exp Med. 2000 May 1;191(9):1525-34
14704765 - Nat Rev Immunol. 2004 Jan;4(1):24-34
11544320 - J Immunol. 2001 Sep 15;167(6):3316-23
10754317 - J Immunol. 2000 Apr 15;164(8):4212-9
11208863 - J Exp Med. 2001 Jan 15;193(2):233-8
15265927 - J Immunol. 2004 Aug 1;173(3):1934-40
11402013 - Infect Immun. 2001 Jul;69(7):4667-72
12010958 - Infect Immun. 2002 Jun;70(6):2741-51
12023355 - J Immunol. 2002 Jun 1;168(11):5589-95
11509173 - Cell. 2001 Aug 10;106(3):259-62
12694613 - Mol Microbiol. 2003 May;48(3):671-83
434096 - Am J Ophthalmol. 1979 Mar;87(3):350-3
15128817 - J Immunol. 2004 May 15;172(10):6281-9
12496156 - Infect Immun. 2003 Jan;71(1):117-25
11870618 - Eur J Immunol. 2002 Mar;32(3):742-51
14764711 - J Immunol. 2004 Feb 15;172(4):2407-15
10839755 - J Infect Dis. 2000 Jun;181 Suppl 3:S538-43
12563297 - Nat Rev Immunol. 2003 Feb;3(2):133-46
12070296 - J Clin Invest. 2002 Jun;109(12):1519-26
10085016 - Infect Immun. 1999 Apr;67(4):1763-9
14734755 - J Immunol. 2004 Feb 1;172(3):1727-34
8603976 - J Infect Dis. 1996 Apr;173(4):950-6
10496317 - J Leukoc Biol. 1999 Sep;66(3):462-70
12864809 - Cell Microbiol. 2003 Aug;5(8):493-500
15197224 - J Exp Med. 2004 Jun 21;199(12):1607-18
4070905 - Rev Infect Dis. 1985 Nov-Dec;7(6):717-25
12065523 - Infect Immun. 2002 Jul;70(7):3793-803
9570547 - J Immunol. 1998 Feb 1;160(3):1297-303
9686609 - J Immunol. 1998 Aug 1;161(3):1439-46
10377188 - J Exp Med. 1999 Jun 21;189(12):1931-8
12234994 - Cancer Res. 2002 Sep 15;62(18):5260-6
15048708 - Eur J Immunol. 2004 Apr;34(4):981-9
12815105 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8478-83
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
(e_1_3_2_35_2) 1998; 160
e_1_3_2_24_2
e_1_3_2_47_2
(e_1_3_2_40_2) 2000; 251
e_1_3_2_9_2
e_1_3_2_16_2
(e_1_3_2_30_2) 2002; 62
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
(e_1_3_2_56_2) 1998; 161
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_4_2
  doi: 10.1002/elps.1150180338
– ident: e_1_3_2_54_2
  doi: 10.1084/jem.185.2.317
– ident: e_1_3_2_47_2
  doi: 10.1146/annurev.immunol.21.120601.141040
– ident: e_1_3_2_20_2
  doi: 10.1084/jem.176.6.1693
– volume: 160
  start-page: 1297
  year: 1998
  ident: e_1_3_2_35_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.160.3.1297
– volume: 161
  start-page: 1439
  year: 1998
  ident: e_1_3_2_56_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.161.3.1439
– ident: e_1_3_2_24_2
  doi: 10.4049/jimmunol.169.11.6324
– ident: e_1_3_2_51_2
  doi: 10.4269/ajtmh.1990.42.358
– ident: e_1_3_2_53_2
  doi: 10.1038/nri1001
– ident: e_1_3_2_43_2
  doi: 10.1084/jem.161.3.526
– ident: e_1_3_2_45_2
  doi: 10.1128/IAI.69.7.4667-4672.2001
– ident: e_1_3_2_48_2
  doi: 10.1172/JCI0215962
– ident: e_1_3_2_38_2
  doi: 10.1084/jem.20020147
– ident: e_1_3_2_46_2
  doi: 10.4049/jimmunol.173.3.1934
– ident: e_1_3_2_25_2
  doi: 10.1007/BF03401798
– ident: e_1_3_2_18_2
  doi: 10.4049/jimmunol.164.8.4212
– ident: e_1_3_2_21_2
  doi: 10.1084/jem.172.2.631
– ident: e_1_3_2_17_2
  doi: 10.1002/eji.200324387
– ident: e_1_3_2_37_2
  doi: 10.4049/jimmunol.172.10.6281
– ident: e_1_3_2_32_2
  doi: 10.1128/IAI.70.6.2741-2751.2002
– ident: e_1_3_2_39_2
  doi: 10.4049/jimmunol.172.4.2407
– ident: e_1_3_2_10_2
  doi: 10.4049/jimmunol.168.11.5589
– ident: e_1_3_2_6_2
  doi: 10.1086/315630
– ident: e_1_3_2_23_2
  doi: 10.1016/S0092-8674(01)00456-1
– ident: e_1_3_2_55_2
– ident: e_1_3_2_12_2
  doi: 10.1084/jem.20040317
– ident: e_1_3_2_11_2
  doi: 10.1046/j.1365-2958.2003.03462.x
– ident: e_1_3_2_31_2
  doi: 10.1046/j.1462-5822.2003.00291.x
– ident: e_1_3_2_33_2
  doi: 10.1128/IAI.68.12.6979-6987.2000
– ident: e_1_3_2_29_2
  doi: 10.1128/iai.65.8.3386-3390.1997
– ident: e_1_3_2_36_2
  doi: 10.4049/jimmunol.167.6.3316
– ident: e_1_3_2_9_2
  doi: 10.1084/jem.193.2.233
– volume: 251
  start-page: 167
  year: 2000
  ident: e_1_3_2_40_2
  publication-title: Curr. Top. Microbiol. Immunol.
– ident: e_1_3_2_19_2
  doi: 10.2165/00063030-200216010-00003
– ident: e_1_3_2_42_2
  doi: 10.1128/iai.64.4.1208-1214.1996
– ident: e_1_3_2_22_2
  doi: 10.4049/jimmunol.172.3.1727
– ident: e_1_3_2_3_2
  doi: 10.1073/pnas.1331135100
– ident: e_1_3_2_27_2
  doi: 10.1016/S1471-4906(02)02281-0
– ident: e_1_3_2_15_2
  doi: 10.1038/4000
– ident: e_1_3_2_7_2
  doi: 10.1128/IAI.70.7.3793-3803.2002
– ident: e_1_3_2_28_2
  doi: 10.1002/1521-4141(200203)32:3<742::AID-IMMU742>3.0.CO;2-9
– ident: e_1_3_2_16_2
  doi: 10.1038/nri1256
– ident: e_1_3_2_13_2
  doi: 10.1097/00007435-197804000-00011
– ident: e_1_3_2_5_2
  doi: 10.1093/infdis/173.4.950
– ident: e_1_3_2_50_2
  doi: 10.1084/jem.188.5.809
– ident: e_1_3_2_8_2
  doi: 10.1016/0002-9394(79)90076-X
– ident: e_1_3_2_34_2
  doi: 10.1016/S1074-7613(03)00140-7
– ident: e_1_3_2_26_2
  doi: 10.1128/IAI.67.4.1763-1769.1999
– ident: e_1_3_2_14_2
  doi: 10.1093/clinids/7.6.717
– ident: e_1_3_2_2_2
  doi: 10.1038/32588
– ident: e_1_3_2_41_2
  doi: 10.1128/IAI.71.1.117-125.2003
– ident: e_1_3_2_57_2
  doi: 10.1084/jem.189.12.1931
– ident: e_1_3_2_52_2
  doi: 10.1016/j.it.2004.04.006
– ident: e_1_3_2_58_2
  doi: 10.1084/jem.191.9.1525
– volume: 62
  start-page: 5260
  year: 2002
  ident: e_1_3_2_30_2
  publication-title: Cancer Res.
– ident: e_1_3_2_44_2
  doi: 10.1128/IAI.70.3.1097-1105.2002
– ident: e_1_3_2_49_2
  doi: 10.1002/jlb.66.3.462
SSID ssj0014448
Score 2.0464518
Snippet The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to...
Classifications Services IAI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
ABSTRACT The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does...
The intracellular bacterial pathogen Chlamydia trachomatis is a major cause of sexually transmitted disease worldwide. While protective immunity does appear to...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1568
SubjectTerms Adoptive Transfer
Animals
Bacterial Vaccines - administration & dosage
Bacterial Vaccines - immunology
Bacteriology
Biological and medical sciences
Bone Marrow Cells
Cell Differentiation - immunology
Chlamydia Infections - immunology
Chlamydia Infections - microbiology
Chlamydia Infections - prevention & control
Chlamydia trachomatis
Chlamydia trachomatis - growth & development
Chlamydia trachomatis - immunology
Chlamydia trachomatis - pathogenicity
Chlamydia trachomatis - radiation effects
cytosine
dendritic cells
Dendritic Cells - cytology
Dendritic Cells - immunology
Dendritic Cells - metabolism
Female
Fundamental and applied biological sciences. Psychology
guanosine
Histocompatibility Antigens Class II - metabolism
Host Response and Inflammation
humans
immune response
immunization
Intercellular Adhesion Molecule-1 - metabolism
interleukin-12
major histocompatibility complex
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Microbiology
Miscellaneous
oligodeoxyribonucleotides
pathogens
Phenotype
pneumonia
Pneumonia, Bacterial - immunology
Pneumonia, Bacterial - microbiology
Pneumonia, Bacterial - prevention & control
T-lymphocytes
tumor necrosis factor-alpha
ultraviolet radiation
Ultraviolet Rays
vaccine development
Vaccines, Inactivated - administration & dosage
Vaccines, Inactivated - immunology
Title Live and Inactivated Chlamydia trachomatis Mouse Pneumonitis Strain Induces the Maturation of Dendritic Cells That Are Phenotypically and Immunologically Distinct
URI http://iai.asm.org/content/73/3/1568.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15731055
https://search.proquest.com/docview/17811624
https://search.proquest.com/docview/67462695
https://pubmed.ncbi.nlm.nih.gov/PMC1064943
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaaAht2GbbuUXdbp8OuzsOSJfsYpCuaYR4KtAF6EyRbXgIkctA4A_J_-kNLyvbSDNtlVz8oWaT4sEh-hHxJUrAJzMZhXloR8ohrbHmbhqlhuhAGDLbBQuHsh7ia8W938d0RibtaGJ-0n5tF3y1XfbeY-9zK9SofdHlig-tsAmEMTzkb9EhPMtaF6O3RAee8Vb8wYixkm9QFengwHU_7kvVZH4IWiJ1iKf1PFQ_NIxlCRR5Yp16pqyd9gzFtUm9g5coG8uJvPumfqZVPbNXlK_KydTLpuPmY1-TIuhPyrIGd3J2Q51l7oP6GPIzpd9B3VLuCTh0WOfwC57OgkzlIyg5khwJ9xFPBIgiaVduNpdfObleoCuDKjYeYoAgAAgqHgjdJM2wV6vlNq5JeWFd4NAU6scvlht7OdQ0TAypz66p6t0YhWe6aCWCtSqeM4doF6h-X12_J7PLr7eQqbIEbwpxLWYdiKE1i0oRB7FiyUcElSwysLouYjHOeg55gvjF8EuVROSpHoiiNSRITyyIaFjl7R45d5ewpoUxIcNlihC0DO2pHxjL8aWmE0ZbnwzQgw45hat3051A-rokSBexWkimmkN0K2Y2gm3FAToGxSv8ELapmNxHGmJjuCo5SQM46biu9WamFXuwpBOT8gP_78WCOTKRA-HMnEAo2KZ68aGeBM2qE9bwi4v9-QkgOoSXSeN8I0J56K5oBkQei9fsBbBB-eAf2jW8U3u6Ts_9-8wN54VvV-py7j-S4vt_aT-CE1ebcb7pH-C8twg
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWSFF0uXdIlTtuEh14l2yIlSkfDaWC3VhAgTpEbQUpUbNSmjVou4H5PP7QzlFTHQXtor1pGlPQ4Czkzj5APcQI2gZnQywoTeTzgClveJl6imcojDQZbY6FwehENrvmnm_Bmj4RNLYxL2s_01LezuW-nE5dbuZxn7SZPrH2Z9iGM4Qln7X3yAOZrIJogvd484JzXChieGUaiTusCTdwe9oa-YD7zIWyB6CkUwi2rOHIewZAscsc-7RdqcadzMCZOqhV8u6IivfiTV3o_ufKOtTp_Rr4071klqXz116X2sx_3WkD-84d4Tp7W_ivtVadfkD1jD8nDitFyc0gepfVe_Uvys0dHoEqpsjkdWqyf-A5-bU77EwDhBmBJYeBI1YL1FTRdrFeGXlqznqOWgSNXjr2CIrcI6DIKjipNsQupgxJdFPTM2NwRNdC-mc1WdDxRJQwMpEyMXZSbJeJvtqkGgGUwjZ6HY2eo2mxWviLX5x_H_YFXc0J4GRei9KKO0LFOYgZhacG6ORcs1vDbWMBEmPEMVBBzPefjIAuKbtGN8kLrONahyINOnrHX5MAurDkilEUCvMEQGdHARJuuNgzXQ3WkleFZJ2mRToMEuaxaf0gXMgWxBBxJwSSTiCOJOEI-z7BFjgAxUt2CgpbXVwGGr5hJCz5Yixw3MJJqNZdTNd1KaJGTHWBtnwdjZFECgk8bpEmY_7ipo6yBPyO7WCocBfzvV0SCQ9SKMt5UyNxKrzHfImIHs78vwN7ju2cAia4HeY284_--85Q8HozTkRwNLz6_JU9cR1yX2veOHJTf1uY9-HqlPnEz-xc25k-1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9owELbWTqv6sh_dj9JtrR_2mgCxEyePCIbKViqkFqnai2UnzkADg0qYxP6e_aG7c5IB1fbS12AuTvLl8118dx8hn-IE1gRmQi_NTeTxgCtseZt4iWYqizQs2BoLhYfX0eWYf7kL73akvlzSfqqnvp3NfTuduNzK5Txt1nlizdGwC2EMTzhrLrO8eUCewjsbJHWgXm0gcM4rEobzhpGoUruAjZuDzsAXzGc-hC4QQYVCuE8rTqBHMBSM3FujDnK12OkejMmTagX3Ly-FL_7lmT5MsNxZsfovyLf6WstElR_-utB--utBG8hH3YyX5Hnlx9JOOeQVeWLsCXlWKltuTsjRsNqzf01-d-gVUCpVNqMDi3UUP8G_zWh3AmDcADwpTB4lW7DOgg4X65WhI2vWc2QbOHLjVCwoaowAp1FwWOkQu5E6SNFFTnvGZk6wgXbNbLaitxNVwMTAysTYRbFZIg5nm3ICWA5T8z0c6yHF2bR4Q8b9z7fdS6_ShvBSLkThRS2hY53EDMLTnLUzLlis4dGxgIkw5SlQEXO95-MgDfJ23o6yXOs41qHIglaWsrfk0C6sOSWURQK8whCV0WCpNm1tGH4X1ZFWhqetpEFaNRrksmwBIl3oFMQSsCQFk0wiliRiCXU9wwY5BdRI9R2IWo5vAgxjMaMWfLEGOauhJNVqLqdqurXQIOd74NqeD-bIogQMX9Rok8ADuLmjrIEnI9tYMhwF_P8jIsEhekUb70p0bq1XuG8QsYfbvwOwB_n-L4BG14u8Qt_Zo_95QY5Gvb68Glx_fU-OXWNcl-H3gRwW92vzEVy-Qp-7l_sPsnhSNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Live+and+Inactivated+Chlamydia+trachomatis+Mouse+Pneumonitis+Strain+Induces+the+Maturation+of+Dendritic+Cells+That+Are+Phenotypically+and+Immunologically+Distinct&rft.jtitle=Infection+and+immunity&rft.au=Rey-Ladino%2C+Jose&rft.au=Koochesfahani%2C+Kasra+M.&rft.au=Zaharik%2C+Michelle+L.&rft.au=Shen%2C+Caixia&rft.date=2005-03-01&rft.issn=0019-9567&rft.eissn=1098-5522&rft.volume=73&rft.issue=3&rft.spage=1568&rft.epage=1577&rft_id=info:doi/10.1128%2FIAI.73.3.1568-1577.2005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_IAI_73_3_1568_1577_2005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon