Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo
Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells has been reported, their effectiveness has rarely been est...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 1; no. 39; pp. 5288 - 5297 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells
has been reported, their effectiveness has rarely been established
. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity. |
---|---|
AbstractList | Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity.Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity. Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity. Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells has been reported, their effectiveness has rarely been established . Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity. Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo . Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity. |
Author | Tang, Li Yang, Xujuan Yin, Qian Dobrucki, Lawrence W. Katzenellenbogen, John A. Helferich, William G. Cheng, Jianjun Wong, Ngo Yin Yasui, Norio Lu, Yi Wang, Wendan Hwang, Kevin Xing, Hang |
AuthorAffiliation | c Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-244-5414 d Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-244-5023 a Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-333-2619 b Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-244-3924 |
AuthorAffiliation_xml | – name: c Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-244-5414 – name: b Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-244-3924 – name: a Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-333-2619 – name: d Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. Tel: +1-217-244-5023 |
Author_xml | – sequence: 1 givenname: Hang surname: Xing fullname: Xing, Hang – sequence: 2 givenname: Li surname: Tang fullname: Tang, Li – sequence: 3 givenname: Xujuan surname: Yang fullname: Yang, Xujuan – sequence: 4 givenname: Kevin surname: Hwang fullname: Hwang, Kevin – sequence: 5 givenname: Wendan surname: Wang fullname: Wang, Wendan – sequence: 6 givenname: Qian surname: Yin fullname: Yin, Qian – sequence: 7 givenname: Ngo Yin surname: Wong fullname: Wong, Ngo Yin – sequence: 8 givenname: Lawrence W. surname: Dobrucki fullname: Dobrucki, Lawrence W. – sequence: 9 givenname: Norio surname: Yasui fullname: Yasui, Norio – sequence: 10 givenname: John A. surname: Katzenellenbogen fullname: Katzenellenbogen, John A. – sequence: 11 givenname: William G. surname: Helferich fullname: Helferich, William G. – sequence: 12 givenname: Jianjun surname: Cheng fullname: Cheng, Jianjun – sequence: 13 givenname: Yi surname: Lu fullname: Lu, Yi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24159374$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFDEUx4NUbK198QNIHkUYzXUyeRGkeIOCDyr4NuRypk2ZTdYks6X99GbZdb0g1BA4Cfn9_8nJOY_RUUwREHpKyUtKuH7leLWMCMquH6ATRiTplKTD0WFNvh2js1KuSRsD7QcuHqFjJqjUXIkTdPcZZnA1bAB7mFvItzhN2MQ2a3AmOsjY5-US34R6hc26mhXkblpiE6Vo5nAHHs9hnUpaQcE1YZvBlIr3WgfzXHCIeBNqTs3V7zab9AQ9nMxc4GwfT9HXd2-_nH_oLj69_3j-5qJzQqnaST-A01r11hAtpdWeeE8U-MlyYYEzruTE3GQ1ccxqYa1hSvaSOS4Gbjw_Ra93vuvFrsA7iDWbeVznsDL5dkwmjH-exHA1XqbNyAdClKDN4PneIKfvC5Q6rkLZ5mUipKWMjDOlpZZsuBelA-ulZr1m96N9366XvVb_gTLNhaR8-9Znvyd7yPJnxRvwYge4nErJMB0QSsZtR42_OqrB5C_YhWq2hW8fFeZ_SX4AySzQEQ |
CitedBy_id | crossref_primary_10_1002_cbic_201600092 crossref_primary_10_1021_nn507494p crossref_primary_10_1016_j_jafr_2025_101630 crossref_primary_10_1016_j_canlet_2019_01_045 crossref_primary_10_1039_D4CC05186F crossref_primary_10_1016_j_bioadv_2022_213194 crossref_primary_10_1002_advs_202408168 crossref_primary_10_1039_D0BM01531H crossref_primary_10_3390_scipharm86020017 crossref_primary_10_1371_journal_pone_0147674 crossref_primary_10_1039_C5CC04643B crossref_primary_10_1016_j_biomaterials_2024_122608 crossref_primary_10_1080_21691401_2017_1408120 crossref_primary_10_3390_ijms21239123 crossref_primary_10_3390_ijms161023784 crossref_primary_10_1016_j_jddst_2024_106214 crossref_primary_10_1124_pr_115_012070 crossref_primary_10_1016_j_biopha_2020_110902 crossref_primary_10_1002_smll_201702103 crossref_primary_10_1002_adhm_201801158 crossref_primary_10_1016_j_colsurfb_2015_12_009 crossref_primary_10_1002_wnan_1438 crossref_primary_10_1016_j_bbagen_2016_12_015 crossref_primary_10_1002_smll_201403073 crossref_primary_10_1021_acs_analchem_5b04031 crossref_primary_10_1002_anie_201707795 crossref_primary_10_3390_polym11091515 crossref_primary_10_1039_C7TB01026E crossref_primary_10_1021_acsami_0c04363 crossref_primary_10_3390_molecules24101873 crossref_primary_10_3390_polym15041018 crossref_primary_10_1088_1361_6528_aaa3cb crossref_primary_10_3390_ph16050751 crossref_primary_10_1021_bm501220a crossref_primary_10_1016_j_phrs_2016_07_007 crossref_primary_10_1208_s12249_016_0600_5 crossref_primary_10_2217_clp_14_48 crossref_primary_10_1016_j_ab_2018_03_008 crossref_primary_10_1007_s12038_016_9632_y crossref_primary_10_1039_C9SC05656D crossref_primary_10_1002_ange_201812650 crossref_primary_10_3390_life12111937 crossref_primary_10_1016_j_jddst_2023_104255 crossref_primary_10_1039_C4TB00262H crossref_primary_10_1039_D0NR00301H crossref_primary_10_1038_s41467_018_02929_2 crossref_primary_10_3390_nano10122433 crossref_primary_10_1016_j_biomaterials_2014_04_087 crossref_primary_10_1039_C7DT02616A crossref_primary_10_2174_1381612828666220928105044 crossref_primary_10_1016_j_critrevonc_2018_03_008 crossref_primary_10_1016_j_bioactmat_2022_12_027 crossref_primary_10_1021_acs_biomac_5b00250 crossref_primary_10_3390_ph14070671 crossref_primary_10_1039_C8TB00758F crossref_primary_10_1002_adfm_201603524 crossref_primary_10_1186_s11671_024_03979_w crossref_primary_10_1016_j_drudis_2023_103550 crossref_primary_10_1186_s40164_025_00602_1 crossref_primary_10_1016_j_jconrel_2023_09_016 crossref_primary_10_1021_acsnano_2c10379 crossref_primary_10_1002_anie_201812650 crossref_primary_10_1039_C8TB01563E crossref_primary_10_1016_j_semcancer_2019_08_013 crossref_primary_10_1039_D1RA05138E crossref_primary_10_3390_molecules201219739 crossref_primary_10_1021_acs_langmuir_8b01368 crossref_primary_10_3390_ph12040146 crossref_primary_10_1002_jbm_a_36609 crossref_primary_10_3390_s150716281 crossref_primary_10_1021_acsami_0c05750 crossref_primary_10_1038_mtna_2014_32 crossref_primary_10_1021_acs_analchem_7b03933 crossref_primary_10_1016_j_ijbiomac_2023_129157 crossref_primary_10_1016_j_jconrel_2017_05_017 crossref_primary_10_1007_s11010_022_04614_x crossref_primary_10_1016_j_talanta_2023_125577 crossref_primary_10_1517_17425247_2015_966681 crossref_primary_10_3390_molecules24102023 crossref_primary_10_1016_j_ijpharm_2019_04_025 crossref_primary_10_1002_anie_202005624 crossref_primary_10_1002_advs_202001669 crossref_primary_10_1021_acs_accounts_9b00167 crossref_primary_10_1002_ange_201707795 crossref_primary_10_1016_j_addr_2018_09_011 crossref_primary_10_3390_molecules23040830 crossref_primary_10_1039_C4SC03949A crossref_primary_10_3389_fchem_2022_984916 crossref_primary_10_3390_molecules25010003 crossref_primary_10_1021_acsami_9b16249 crossref_primary_10_1016_j_jddst_2021_102733 crossref_primary_10_1016_j_ijbiomac_2018_06_137 crossref_primary_10_1039_C7NR04138A crossref_primary_10_1016_j_omtn_2017_10_019 crossref_primary_10_1016_j_snb_2016_07_164 crossref_primary_10_1080_08982104_2021_1903035 crossref_primary_10_1080_17425247_2016_1213238 crossref_primary_10_2174_0126673878301004240703073107 crossref_primary_10_1016_j_colsurfb_2015_12_048 crossref_primary_10_1002_anie_202004805 crossref_primary_10_1016_j_ijpharm_2020_120117 crossref_primary_10_1007_s13205_020_2144_3 crossref_primary_10_1016_j_coche_2014_01_007 crossref_primary_10_1002_ange_202111647 crossref_primary_10_1002_smll_202104341 crossref_primary_10_1016_j_actbio_2016_02_012 crossref_primary_10_1093_nar_gkx1184 crossref_primary_10_3390_ph9040069 crossref_primary_10_4155_tde_2021_0041 crossref_primary_10_1021_acs_analchem_5b01085 crossref_primary_10_3390_molecules27092876 crossref_primary_10_1111_os_13806 crossref_primary_10_1016_j_drudis_2020_03_009 crossref_primary_10_1002_adma_201707351 crossref_primary_10_3390_cancers14205048 crossref_primary_10_1021_acs_nanolett_9b01571 crossref_primary_10_1016_j_jconrel_2020_10_039 crossref_primary_10_1039_D0RA07325C crossref_primary_10_1016_j_jconrel_2020_04_051 crossref_primary_10_1016_j_ijbiomac_2019_11_118 crossref_primary_10_1002_ange_202005624 crossref_primary_10_1039_C4TB00876F crossref_primary_10_3390_pharmaceutics14020254 crossref_primary_10_18632_oncotarget_4207 crossref_primary_10_1016_j_jddst_2020_102315 crossref_primary_10_2174_0929867325666181008142831 crossref_primary_10_2174_1573394719666230911113126 crossref_primary_10_18632_oncotarget_7178 crossref_primary_10_1016_j_chemphyslip_2022_105258 crossref_primary_10_1002_ange_202004805 crossref_primary_10_1039_C5AN00945F crossref_primary_10_1002_anie_202111647 crossref_primary_10_1016_j_biotechadv_2015_02_008 crossref_primary_10_1039_c4tb00103f crossref_primary_10_1021_acsabm_0c00610 crossref_primary_10_1109_TNB_2024_3382203 crossref_primary_10_1186_s11671_019_3208_3 crossref_primary_10_1002_adma_202306852 crossref_primary_10_3390_cancers10010009 crossref_primary_10_1016_j_ijpharm_2020_119948 |
Cites_doi | 10.1021/cr200263w 10.1016/0304-4157(92)90038-C 10.1073/pnas.0601755103 10.1021/nn9014032 10.1182/blood-2006-08-043257 10.1038/nrc2559 10.1073/pnas.0602615103 10.1021/ar200019c 10.1093/nar/gkg316 10.1158/0008-5472.CAN-05-4199 10.1093/jn/123.11.1939 10.1210/er.2002-0007 10.1002/anie.200901452 10.1158/0008-5472.CAN-07-5723 10.1021/ar7000815 10.1039/C2NR32835F 10.2217/17435889.2.1.23 10.1002/anie.200705982 10.1016/j.biomaterials.2011.07.004 10.1016/j.cbpa.2010.06.170 10.1146/annurev.anchem.1.031207.112851 10.1016/j.biomaterials.2010.05.043 10.1074/jbc.274.37.26369 10.1016/j.biomaterials.2006.09.047 10.1016/j.yexmp.2009.01.004 10.1038/nrd3141 10.1016/j.jconrel.2012.03.020 10.1038/nnano.2007.387 10.1021/cr030183i 10.1016/S0169-409X(00)00069-7 10.1080/08923970600927520 10.1038/nrd1957 10.1073/pnas.0914140107 10.1021/ar900245u 10.1021/bi0119520 10.1016/S0168-3659(99)00248-5 10.1021/mp100460h 10.1073/pnas.1009172107 10.1002/adma.201101086 10.1016/S0163-7827(03)00032-8 10.1158/1535-7163.MCT-06-0172 10.1021/cr030067f 10.3390/ph3061761 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 7U5 L7M 7X8 7S9 L.6 5PM |
DOI | 10.1039/c3tb20412j |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed Engineering Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7518 |
EndPage | 5297 |
ExternalDocumentID | PMC3800741 24159374 10_1039_c3tb20412j |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH HHS grantid: DP2 OD007246 – fundername: NCI NIH HHS grantid: R21 CA152627 – fundername: NIGMS NIH HHS grantid: T32 GM008276 – fundername: NCI NIH HHS grantid: R25 CA154015 – fundername: NCCIH NIH HHS grantid: P50 AT006268 – fundername: Office of the Director : NIH grantid: DP2 OD007246 || OD – fundername: National Cancer Institute : NCI grantid: R21 CA152627 || CA |
GroupedDBID | 0-7 0R~ 4.4 53G 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION D0L EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH NPM 7QO 8FD FR3 P64 7U5 L7M 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c477t-5d8ec9976ba0955b9d0dd07edfb34be32375f2cfb90c2b94bba275652c3483ad3 |
ISSN | 2050-750X 2050-7518 |
IngestDate | Thu Aug 21 13:32:40 EDT 2025 Fri Jul 11 16:13:51 EDT 2025 Fri Jul 11 09:22:32 EDT 2025 Fri Jul 11 12:03:44 EDT 2025 Fri Jul 11 16:54:01 EDT 2025 Thu Apr 03 07:05:22 EDT 2025 Tue Jul 01 04:27:00 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Keywords | breast cancer targeted drug delivery cancer targeting DNA aptamer liposome nucleolin |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-5d8ec9976ba0955b9d0dd07edfb34be32375f2cfb90c2b94bba275652c3483ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/128556 |
PMID | 24159374 |
PQID | 1629345131 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3800741 proquest_miscellaneous_2327959528 proquest_miscellaneous_1826592692 proquest_miscellaneous_1660075697 proquest_miscellaneous_1629345131 pubmed_primary_24159374 crossref_primary_10_1039_c3tb20412j crossref_citationtrail_10_1039_c3tb20412j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-21 |
PublicationDateYYYYMMDD | 2013-10-21 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of materials chemistry. B, Materials for biology and medicine |
PublicationTitleAlternate | J Mater Chem B |
PublicationYear | 2013 |
References | Bates (c3tb20412j-(cit34)/*[position()=1]) 2009; 86 Gupta (c3tb20412j-(cit11)/*[position()=1]) 2007; 2 Kaneda (c3tb20412j-(cit27)/*[position()=1]) 2000; 43 Farokhzad (c3tb20412j-(cit16)/*[position()=1]) 2006; 103 Zhu (c3tb20412j-(cit5)/*[position()=1]) 2012; 112 Aryal (c3tb20412j-(cit3)/*[position()=1]) 2010; 4 Schafer (c3tb20412j-(cit28)/*[position()=1]) 2010; 31 Martin-Kleiner (c3tb20412j-(cit46)/*[position()=1]) 2006; 28 Lammers (c3tb20412j-(cit12)/*[position()=1]) 2011; 44 Drummond (c3tb20412j-(cit39)/*[position()=1]) 1999; 51 Schrama (c3tb20412j-(cit9)/*[position()=1]) 2006; 5 Zhang (c3tb20412j-(cit10)/*[position()=1]) 2009; 9 Ray (c3tb20412j-(cit23)/*[position()=1]) 2010; 3 Rosi (c3tb20412j-(cit24)/*[position()=1]) 2005; 105 Cho (c3tb20412j-(cit20)/*[position()=1]) 2009; 2 Maeda (c3tb20412j-(cit29)/*[position()=1]) 2000; 65 Yang (c3tb20412j-(cit7)/*[position()=1]) 2013; 5 Reubi (c3tb20412j-(cit8)/*[position()=1]) 2003; 24 Ireson (c3tb20412j-(cit35)/*[position()=1]) 2006; 5 Soundararajan (c3tb20412j-(cit33)/*[position()=1]) 2008; 68 Park (c3tb20412j-(cit36)/*[position()=1]) 2002; 8 Kim (c3tb20412j-(cit4)/*[position()=1]) 2011; 8 Dapic (c3tb20412j-(cit41)/*[position()=1]) 2002; 41 Keefe (c3tb20412j-(cit14)/*[position()=1]) 2010; 9 Reeves (c3tb20412j-(cit47)/*[position()=1]) 1993; 123 Ju (c3tb20412j-(cit48)/*[position()=1]) 2002; 62 Osborne (c3tb20412j-(cit42)/*[position()=1]) 1985; 45 Barenholz (c3tb20412j-(cit37)/*[position()=1]) 2012; 160 Cheng (c3tb20412j-(cit1)/*[position()=1]) 2007; 28 Dave (c3tb20412j-(cit25)/*[position()=1]) 2011; 23 Bates (c3tb20412j-(cit40)/*[position()=1]) 1999; 274 Otake (c3tb20412j-(cit32)/*[position()=1]) 2007; 109 Low (c3tb20412j-(cit43)/*[position()=1]) 2008; 41 Alley (c3tb20412j-(cit6)/*[position()=1]) 2010; 14 Sapra (c3tb20412j-(cit13)/*[position()=1]) 2003; 42 Kirpotin (c3tb20412j-(cit44)/*[position()=1]) 2006; 66 Guo (c3tb20412j-(cit17)/*[position()=1]) 2011; 32 Li (c3tb20412j-(cit21)/*[position()=1]) 2010; 43 Cao (c3tb20412j-(cit26)/*[position()=1]) 2009; 48 Shangguan (c3tb20412j-(cit15)/*[position()=1]) 2006; 103 Oh (c3tb20412j-(cit22)/*[position()=1]) 2010; 107 Zhao (c3tb20412j-(cit18)/*[position()=1]) 2008; 47 Derenzini (c3tb20412j-(cit30)/*[position()=1]) 1995; 73 Dapic (c3tb20412j-(cit31)/*[position()=1]) 2003; 31 Choi (c3tb20412j-(cit45)/*[position()=1]) 2010; 107 Woodle (c3tb20412j-(cit38)/*[position()=1]) 1992; 1113 Liu (c3tb20412j-(cit19)/*[position()=1]) 2009; 109 Peer (c3tb20412j-(cit2)/*[position()=1]) 2007; 2 |
References_xml | – volume: 112 start-page: 4687 year: 2012 ident: c3tb20412j-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200263w – volume: 1113 start-page: 171 year: 1992 ident: c3tb20412j-(cit38)/*[position()=1] publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(92)90038-C – volume: 103 start-page: 6315 year: 2006 ident: c3tb20412j-(cit16)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0601755103 – volume: 4 start-page: 251 year: 2010 ident: c3tb20412j-(cit3)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn9014032 – volume: 109 start-page: 3069 year: 2007 ident: c3tb20412j-(cit32)/*[position()=1] publication-title: Blood doi: 10.1182/blood-2006-08-043257 – volume: 8 start-page: 1172 year: 2002 ident: c3tb20412j-(cit36)/*[position()=1] publication-title: Clin. Cancer Res. – volume: 9 start-page: 28 year: 2009 ident: c3tb20412j-(cit10)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2559 – volume: 103 start-page: 11838 year: 2006 ident: c3tb20412j-(cit15)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0602615103 – volume: 44 start-page: 1029 year: 2011 ident: c3tb20412j-(cit12)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar200019c – volume: 31 start-page: 2097 year: 2003 ident: c3tb20412j-(cit31)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg316 – volume: 51 start-page: 691 year: 1999 ident: c3tb20412j-(cit39)/*[position()=1] publication-title: Pharmacol. Rev. – volume: 66 start-page: 6732 year: 2006 ident: c3tb20412j-(cit44)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-4199 – volume: 123 start-page: 1939 year: 1993 ident: c3tb20412j-(cit47)/*[position()=1] publication-title: J. Nutr. doi: 10.1093/jn/123.11.1939 – volume: 24 start-page: 389 year: 2003 ident: c3tb20412j-(cit8)/*[position()=1] publication-title: Endocr. Rev. doi: 10.1210/er.2002-0007 – volume: 48 start-page: 6494 year: 2009 ident: c3tb20412j-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901452 – volume: 73 start-page: 497 year: 1995 ident: c3tb20412j-(cit30)/*[position()=1] publication-title: Lab. Invest. – volume: 68 start-page: 2358 year: 2008 ident: c3tb20412j-(cit33)/*[position()=1] publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-5723 – volume: 41 start-page: 120 year: 2008 ident: c3tb20412j-(cit43)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar7000815 – volume: 5 start-page: 231 year: 2013 ident: c3tb20412j-(cit7)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C2NR32835F – volume: 2 start-page: 23 year: 2007 ident: c3tb20412j-(cit11)/*[position()=1] publication-title: Nanomedicine doi: 10.2217/17435889.2.1.23 – volume: 47 start-page: 6330 year: 2008 ident: c3tb20412j-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705982 – volume: 32 start-page: 8010 year: 2011 ident: c3tb20412j-(cit17)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.07.004 – volume: 14 start-page: 529 year: 2010 ident: c3tb20412j-(cit6)/*[position()=1] publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2010.06.170 – volume: 2 start-page: 241 year: 2009 ident: c3tb20412j-(cit20)/*[position()=1] publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.1.031207.112851 – volume: 31 start-page: 6892 year: 2010 ident: c3tb20412j-(cit28)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.043 – volume: 274 start-page: 26369 year: 1999 ident: c3tb20412j-(cit40)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.37.26369 – volume: 28 start-page: 869 year: 2007 ident: c3tb20412j-(cit1)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.09.047 – volume: 86 start-page: 151 year: 2009 ident: c3tb20412j-(cit34)/*[position()=1] publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2009.01.004 – volume: 9 start-page: 537 year: 2010 ident: c3tb20412j-(cit14)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd3141 – volume: 160 start-page: 117 year: 2012 ident: c3tb20412j-(cit37)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2012.03.020 – volume: 2 start-page: 751 year: 2007 ident: c3tb20412j-(cit2)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 109 start-page: 1948 year: 2009 ident: c3tb20412j-(cit19)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030183i – volume: 43 start-page: 197 year: 2000 ident: c3tb20412j-(cit27)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(00)00069-7 – volume: 28 start-page: 411 year: 2006 ident: c3tb20412j-(cit46)/*[position()=1] publication-title: Immunopharmacol. Immunotoxicol. doi: 10.1080/08923970600927520 – volume: 62 start-page: 2474 year: 2002 ident: c3tb20412j-(cit48)/*[position()=1] publication-title: Cancer Res. – volume: 5 start-page: 147 year: 2006 ident: c3tb20412j-(cit9)/*[position()=1] publication-title: Nat. Rev. Drug Discovery doi: 10.1038/nrd1957 – volume: 107 start-page: 1235 year: 2010 ident: c3tb20412j-(cit45)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0914140107 – volume: 43 start-page: 631 year: 2010 ident: c3tb20412j-(cit21)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar900245u – volume: 41 start-page: 3676 year: 2002 ident: c3tb20412j-(cit41)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi0119520 – volume: 65 start-page: 271 year: 2000 ident: c3tb20412j-(cit29)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/S0168-3659(99)00248-5 – volume: 45 start-page: 584 year: 1985 ident: c3tb20412j-(cit42)/*[position()=1] publication-title: Cancer Res. – volume: 8 start-page: 1955 year: 2011 ident: c3tb20412j-(cit4)/*[position()=1] publication-title: Mol. Pharmaceutics doi: 10.1021/mp100460h – volume: 107 start-page: 14053 year: 2010 ident: c3tb20412j-(cit22)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1009172107 – volume: 23 start-page: 3182 year: 2011 ident: c3tb20412j-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201101086 – volume: 42 start-page: 439 year: 2003 ident: c3tb20412j-(cit13)/*[position()=1] publication-title: Prog. Lipid Res. doi: 10.1016/S0163-7827(03)00032-8 – volume: 5 start-page: 2957 year: 2006 ident: c3tb20412j-(cit35)/*[position()=1] publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-06-0172 – volume: 105 start-page: 1547 year: 2005 ident: c3tb20412j-(cit24)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030067f – volume: 3 start-page: 1761 year: 2010 ident: c3tb20412j-(cit23)/*[position()=1] publication-title: Pharmaceuticals doi: 10.3390/ph3061761 |
SSID | ssj0000816834 |
Score | 2.432854 |
Snippet | Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5288 |
SubjectTerms | binding capacity Breast breast neoplasms Cancer chemistry cytotoxicity DNA Doxorubicin Drug delivery systems drug therapy human cell lines In vitro testing ligands Liposomes mice neoplasm cells nucleotide aptamers Surgical implants Tumors |
Title | Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24159374 https://www.proquest.com/docview/1629345131 https://www.proquest.com/docview/1660075697 https://www.proquest.com/docview/1826592692 https://www.proquest.com/docview/2327959528 https://pubmed.ncbi.nlm.nih.gov/PMC3800741 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9owELYoe2kPVd-lL7lqLxXKNsRxjI9AQXSLtoeGiltk56FmxSaIDVuJW_95x3YSwi672vYSEccYh_nsmbHH3yD0MaLC9YiQFrelAAdFJJbkLLFAF4YiUcSTkY62OPWmc_dkQRet1p_m6ZJCHofbg-dK_keqUAZyVadk_0GydaNQAJ9BvnAFCcP1TjL-oZPYmNifpQqw0NvlMGIHmVqiBnmuu1_Wm3K1dbAqxHm8tiagyswKYLoFc3OWrvKL_NxQPQxVjHrRHZnvjuLlUsfL_kyLdV4SNcHNZX6DTQvmr3nvblglkjvuDs2ZoOqJjg9tUD9d3d1flFlWpqJUqnpdwZTN0nqWKksWm7PNDuDT32XxN9D3WXNFo6dj48wxaTPxOTa1LbBkFnuzdAOMhv6onHKpY_ICXtMFNlFUqiPiDx1FKnay03jVLv_p92Ayn80Cf7zw76EjBzwNp42OBmP_66xeqNOZSXR0Qt2viuaW8M-75vcNm2veytWg24YV4z9CD0tR4YHB0mPUirMn6EGDlPIp2taowhWqcJ5gkeEdqrBCFVaowodRhWtU4SLHBlXYoAprVOE0wxpV0HBkbi7zZ2g-GfujqVVm6LBCl7HColE_DjlYtFIoKkPJIzuKbBZHiSSujIlDGE2cMJHcDh3JXSmFSjdAnZC4fSIi8hy1szyLXyIsbQrzBrNFRG1XsKgvBPdCRkIm1Y-4HfSp-nuDsKSvV1lUloEOoyA8CEkhtSjOOuhDXXdlSFsO1npfSSmAEaE2ykQW55uLoOeBEezSHundVkdldqAeZ7fUAd-dcsfjzs11wKNhnHJAcQe9MAip-6ysa3Af4N3ZHnbqCoobfv9Jlv7SHPGkr52FV3fo22t0fzcK36B2sd7Eb8HSLuS7ciz8Bbru3PA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+Delivery+of+an+Anticancer+Drug+with+Aptamer-Functionalized+Liposomes+to+Breast+Cancer+Cells+in+Vitro+and+in+Vivo&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Xing%2C+Hang&rft.au=Tang%2C+Li&rft.au=Yang%2C+Xujuan&rft.au=Hwang%2C+Kevin&rft.date=2013-10-21&rft.issn=2050-750X&rft.volume=1&rft.issue=39&rft.spage=5288&rft_id=info:doi/10.1039%2FC3TB20412J&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon |