Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1
The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non–small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia...
Saved in:
Published in | Molecular cancer research Vol. 16; no. 10; pp. 1458 - 1469 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non–small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458–69. ©2018 AACR. |
---|---|
AbstractList | The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth
compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response
These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs.
. The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458-69. ©2018 AACR.The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458-69. ©2018 AACR. The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non–small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458–69. ©2018 AACR. The development of small-molecule tyrosine kinase inhibitors (TKIs) specific for epidermal growth factor receptors (EGFRs) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key micro-environmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study, documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line, HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N- cadherin, Fibronectin and Vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT) which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared to cells grown in normoxia, but inhibition of LSD1 function by shRNA- mediated knockdown or by the small-molecular inhibitor, SP2509, suppressed tumor growth and enhanced gefitinib response in vivo. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. |
Author | Liu, Yanfeng Glazer, Peter M. Lu, Yuhong Oeck, Sebastian |
AuthorAffiliation | 2 Genetics, Yale University School of Medicine. New Haven, CT 06510. U.S.A 1 Departments of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510. U.S.A 3 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany |
AuthorAffiliation_xml | – name: 1 Departments of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510. U.S.A – name: 3 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany – name: 2 Genetics, Yale University School of Medicine. New Haven, CT 06510. U.S.A |
Author_xml | – sequence: 1 givenname: Yuhong surname: Lu fullname: Lu, Yuhong – sequence: 2 givenname: Yanfeng surname: Liu fullname: Liu, Yanfeng – sequence: 3 givenname: Sebastian orcidid: 0000-0001-9695-8771 surname: Oeck fullname: Oeck, Sebastian – sequence: 4 givenname: Peter M. orcidid: 0000-0003-4525-5560 surname: Glazer fullname: Glazer, Peter M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29934325$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URB_wE0BesiDFN4ntREhIKH1MpQDVlK4tJ77DuErsIfZUzL-vo04rYMHKlny-c67vOSYHzjsk5C2wUwBefQReQiZlJU6_NssMZMZEIV-QI-BcZgXk_GC-7zWH5DiEO8ZyBlK8Iod5XRdlkfMjcrfYbfxvq-n15EcfMdAlBhuidj3S6On55cWSXrm17Wy03lHr6Lebpm1og8MQ6H0i4xrpIiFpPnqGI8b1btABwwfa3pwB1c7Q6_Y2g9fk5UoPAd_szxNye3H-o1lk7ffLq-ZLm_WllDErO2S1kCuoTIdc6BWKyhhdVTo3pa5KIYzWwIsi7wzktRHGFAwBSi6rHmssTsjnR9_NthvR9OjipAe1meyop53y2qq_X5xdq5_-XgmQTDKWDN7vDSb_a4shqtGGPv1XO_TboHLGK56UYpa--zPrOeRpwUnw6VHQTz6ECVeqt1HPq0zRdlDA1FynmqtSc1Uq1alAqrnORPN_6KeA_3MPym2jUw |
CitedBy_id | crossref_primary_10_1002_mc_23792 crossref_primary_10_2174_1568009622666220330151725 crossref_primary_10_3390_cancers13143421 crossref_primary_10_1016_j_ejmech_2020_112640 crossref_primary_10_1158_0008_5472_CAN_20_1192 crossref_primary_10_1177_2397847319842845 crossref_primary_10_1016_j_phymed_2024_155690 crossref_primary_10_1016_j_ejphar_2019_172615 crossref_primary_10_1172_JCI126044 crossref_primary_10_1016_j_carbpol_2021_118655 crossref_primary_10_3390_biology10111200 crossref_primary_10_1186_s12935_020_01729_3 crossref_primary_10_3390_ijms23010250 crossref_primary_10_3389_fonc_2018_00566 crossref_primary_10_1016_j_cbi_2020_109320 crossref_primary_10_3389_fonc_2020_01234 crossref_primary_10_3390_ijms241512222 crossref_primary_10_1111_1759_7714_12984 crossref_primary_10_1177_2397847318816617 crossref_primary_10_1016_j_ejmech_2021_113963 crossref_primary_10_1177_2397847319850167 crossref_primary_10_1016_j_canlet_2019_03_052 crossref_primary_10_1021_acs_jmedchem_2c01527 crossref_primary_10_2174_1574892818666221201145810 crossref_primary_10_1016_j_critrevonc_2020_102906 crossref_primary_10_3389_fphar_2023_1120911 crossref_primary_10_1016_j_ejps_2021_106004 crossref_primary_10_1016_j_ejmech_2021_113300 crossref_primary_10_1016_j_drudis_2025_104321 crossref_primary_10_1016_j_semcancer_2020_12_022 crossref_primary_10_1016_j_canlet_2020_05_025 crossref_primary_10_3390_cancers12082121 crossref_primary_10_1016_j_tem_2023_11_005 crossref_primary_10_1134_S0006297924120113 crossref_primary_10_1089_cmb_2021_0314 crossref_primary_10_1186_s12885_021_07863_z crossref_primary_10_1016_j_bcp_2022_115262 crossref_primary_10_1080_14728222_2023_2288277 crossref_primary_10_1038_s41392_023_01341_7 crossref_primary_10_1021_acs_jmedchem_3c02133 crossref_primary_10_1038_s41392_019_0038_9 crossref_primary_10_3389_fbinf_2022_813960 crossref_primary_10_1016_j_bioorg_2020_103731 crossref_primary_10_1093_neuonc_noad018 crossref_primary_10_1002_med_21955 crossref_primary_10_3389_fonc_2020_01424 crossref_primary_10_1016_j_bmc_2024_117651 |
Cites_doi | 10.1128/MCB.24.7.2875-2889.2004 10.1128/MCB.01121-10 10.1016/j.ccr.2011.09.001 10.1016/j.gene.2005.10.018 10.1016/j.ccr.2012.03.014 10.1016/j.molcel.2014.05.015 10.1002/ijc.25349 10.1634/theoncologist.9-90005-10 10.1097/PPO.0000000000000131 10.1016/j.phrs.2015.09.022 10.1016/j.ccell.2016.03.007 10.1016/j.cell.2010.02.027 10.1038/leu.2014.119 10.1016/j.ccell.2015.06.002 10.1200/JCO.2012.43.3912 10.1016/j.celrep.2015.03.037 10.1016/j.apsb.2015.05.007 10.1056/NEJMoa0810699 10.1007/s10549-016-3959-9 10.3892/ol.2017.6613 10.1093/jnci/djt072 10.1038/nrc2947 10.18632/oncotarget.9539 10.1002/med.21334 10.1016/j.hoc.2016.08.003 10.1038/nsmb.2084 10.1371/journal.pone.0086459 10.1016/j.celrep.2016.05.050 10.1158/1078-0432.CCR-12-1558 10.2174/15680096113139990004 10.1126/scitranslmed.3002003 10.1016/j.celrep.2014.06.035 10.21037/tlcr.2016.04.07 10.1259/0007-1285-26-312-638 10.1126/science.1099314 10.1097/JTO.0b013e318216ee52 10.1371/journal.pmed.0040316 10.1016/j.ccr.2013.05.003 10.1371/journal.pone.0084597 10.1158/0008-5472.CAN-07-2460 10.1016/j.ccell.2015.05.006 10.3109/07357907.2011.597810 10.1016/j.dnarep.2015.04.030 10.1056/NEJMoa040938 10.1038/nature04020 10.1158/1535-7163.MCT-07-0138 |
ContentType | Journal Article |
Copyright | 2018 American Association for Cancer Research. |
Copyright_xml | – notice: 2018 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/1541-7786.MCR-17-0637 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1557-3125 |
EndPage | 1469 |
ExternalDocumentID | PMC6170700 29934325 10_1158_1541_7786_MCR_17_0637 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES005775 |
GroupedDBID | --- 123 18M 2FS 2WC 34G 39C 53G 5RE 5VS AAJMC AAYXX ACGFO ACPRK ADBBV ADCOW AENEX AFHIN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 IH2 KQ8 L7B OK1 QTD RCR RHI TR2 W8F WOQ YKV .55 .GJ 3O- ABEFU AFFNX C1A CGR CUY CVF ECM EIF H~9 MVM NPM WHG X7M ZGI 7X8 5PM |
ID | FETCH-LOGICAL-c477t-4be0967f18dbe56afe68dda88a2d4a8466daa15332bd129d6dd30e114578ce9e3 |
ISSN | 1541-7786 1557-3125 |
IngestDate | Thu Aug 21 18:17:42 EDT 2025 Fri Jul 11 00:11:38 EDT 2025 Thu Apr 03 06:58:39 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Tue Jul 01 04:31:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2018 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-4be0967f18dbe56afe68dda88a2d4a8466daa15332bd129d6dd30e114578ce9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9695-8771 0000-0003-4525-5560 |
OpenAccessLink | https://mcr.aacrjournals.org/content/molcanres/16/10/1458.full.pdf |
PMID | 29934325 |
PQID | 2058507060 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6170700 proquest_miscellaneous_2058507060 pubmed_primary_29934325 crossref_citationtrail_10_1158_1541_7786_MCR_17_0637 crossref_primary_10_1158_1541_7786_MCR_17_0637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cancer research |
PublicationTitleAlternate | Mol Cancer Res |
PublicationYear | 2018 |
References | Mohammad (2022060706442974900_bib49) 2015; 28 Tan (2022060706442974900_bib15) 2015; 21 Stratikopoulos (2022060706442974900_bib45) 2015; 27 Scanlon (2022060706442974900_bib13) 2015; 32 Easwaran (2022060706442974900_bib44) 2014; 54 Murakami (2022060706442974900_bib22) 2014; 9 Pao (2022060706442974900_bib9) 2010; 10 Suda (2022060706442974900_bib23) 2011; 6 Sequist (2022060706442974900_bib5) 2011; 3 Ohashi (2022060706442974900_bib10) 2013; 31 Frederick (2022060706442974900_bib37) 2007; 6 Normanno (2022060706442974900_bib1) 2006; 366 Fiskus (2022060706442974900_bib35) 2014; 28 Stuhlmiller (2022060706442974900_bib46) 2015; 11 Erler (2022060706442974900_bib47) 2004; 24 Pakkala (2022060706442974900_bib7) 2017; 31 Tetsu (2022060706442974900_bib42) 2015; 102 Jakobsen (2022060706442974900_bib11) 2016; 5 Luo (2022060706442974900_bib30) 2016; 15 Brien (2022060706442974900_bib43) 2016; 29 Mould (2022060706442974900_bib36) 2015; 35 Chen (2022060706442974900_bib33) 2011; 29 Lee (2022060706442974900_bib6) 2013; 105 Feng (2022060706442974900_bib28) 2016; 159 Fuchs (2022060706442974900_bib38) 2008; 68 McDonald (2022060706442974900_bib40) 2011; 18 Metzger (2022060706442974900_bib32) 2005; 437 Lu (2022060706442974900_bib19) 2011; 31 Lin (2022060706442974900_bib8) 2014; 4 Byers (2022060706442974900_bib12) 2013; 19 Gale (2022060706442974900_bib24) 2016; 7 An (2022060706442974900_bib21) 2017; 14 Lynch (2022060706442974900_bib3) 2004; 350 Tang (2022060706442974900_bib27) 2015 Lee (2022060706442974900_bib39) 2014; 9 Gray (2022060706442974900_bib16) 1953; 26 Cragg (2022060706442974900_bib18) 2007; 4 Mok (2022060706442974900_bib4) 2009; 361 Levy (2022060706442974900_bib41) 2016; 30 Ambrosio (2022060706442974900_bib29) 2017 Harris (2022060706442974900_bib50) 2012; 21 Paez (2022060706442974900_bib2) 2004; 304 Lu (2022060706442974900_bib48) 2014; 8 Roesch (2022060706442974900_bib26) 2013; 23 Cai (2022060706442974900_bib31) 2011; 20 Vaupel (2022060706442974900_bib14) 2004; 9 Khaled (2022060706442974900_bib20) 2013; 13 Masoud (2022060706442974900_bib17) 2015; 5 Sharma (2022060706442974900_bib25) 2010; 141 Hayami (2022060706442974900_bib34) 2011; 128 |
References_xml | – volume: 24 start-page: 2875 year: 2004 ident: 2022060706442974900_bib47 article-title: Hypoxia-mediated down-regulation of bid and bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance publication-title: Mol Cell Biol doi: 10.1128/MCB.24.7.2875-2889.2004 – volume: 31 start-page: 3339 year: 2011 ident: 2022060706442974900_bib19 article-title: Hypoxia-Induced epigenetic regulation and silencing of the BRCA1 promoter publication-title: Mol Cell Biol doi: 10.1128/MCB.01121-10 – volume: 20 start-page: 457 year: 2011 ident: 2022060706442974900_bib31 article-title: Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.09.001 – volume: 366 start-page: 2 year: 2006 ident: 2022060706442974900_bib1 article-title: Epidermal growth factor receptor (EGFR) signaling in cancer publication-title: Gene doi: 10.1016/j.gene.2005.10.018 – volume: 21 start-page: 473 year: 2012 ident: 2022060706442974900_bib50 article-title: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.03.014 – volume: 54 start-page: 716 year: 2014 ident: 2022060706442974900_bib44 article-title: Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance publication-title: Mol Cell doi: 10.1016/j.molcel.2014.05.015 – volume: 128 start-page: 574 year: 2011 ident: 2022060706442974900_bib34 article-title: Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers publication-title: Int J Cancer doi: 10.1002/ijc.25349 – volume: 9 start-page: 10 year: 2004 ident: 2022060706442974900_bib14 article-title: The role of hypoxia-induced factors in tumor progression publication-title: Oncologist doi: 10.1634/theoncologist.9-90005-10 – volume: 21 start-page: 254 year: 2015 ident: 2022060706442974900_bib15 article-title: Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them publication-title: Cancer J doi: 10.1097/PPO.0000000000000131 – volume: 102 start-page: 132 year: 2015 ident: 2022060706442974900_bib42 article-title: AKT inactivation causes persistent drug tolerance to EGFR inhibitors publication-title: Pharmacol Res doi: 10.1016/j.phrs.2015.09.022 – volume: 29 start-page: 464 year: 2016 ident: 2022060706442974900_bib43 article-title: Exploiting the epigenome to control cancer-promoting gene-expression programs publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.03.007 – volume: 141 start-page: 69 year: 2010 ident: 2022060706442974900_bib25 article-title: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations publication-title: Cell doi: 10.1016/j.cell.2010.02.027 – volume: 28 start-page: 2155 year: 2014 ident: 2022060706442974900_bib35 article-title: Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells publication-title: Leukemia doi: 10.1038/leu.2014.119 – volume: 28 start-page: 57 year: 2015 ident: 2022060706442974900_bib49 article-title: A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.06.002 – volume: 31 start-page: 1070 year: 2013 ident: 2022060706442974900_bib10 article-title: Epidermal growth factor receptor tyrosine kinase inhibitor–resistant disease publication-title: J Clin Oncol doi: 10.1200/JCO.2012.43.3912 – volume: 11 start-page: 390 year: 2015 ident: 2022060706442974900_bib46 article-title: Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains publication-title: Cell Reports doi: 10.1016/j.celrep.2015.03.037 – volume: 5 start-page: 378 year: 2015 ident: 2022060706442974900_bib17 article-title: HIF-1α pathway: role, regulation and intervention for cancer therapy publication-title: Acta Pharmaceutica Sinica B doi: 10.1016/j.apsb.2015.05.007 – volume: 361 start-page: 947 year: 2009 ident: 2022060706442974900_bib4 article-title: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma publication-title: N Engl J Med doi: 10.1056/NEJMoa0810699 – volume: 159 start-page: 443 year: 2016 ident: 2022060706442974900_bib28 article-title: Phosphorylation of LSD1 at Ser112 is crucial for its function in induction of EMT and metastasis in breast cancer publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-016-3959-9 – volume: 14 start-page: 3445 year: 2017 ident: 2022060706442974900_bib21 article-title: Interleukin-6 identified as an important factor in hypoxia- and aldehyde dehydrogenase-based gefitinib adaptive resistance in non-small cell lung cancer cells publication-title: Oncol Lett doi: 10.3892/ol.2017.6613 – volume: 105 start-page: 595 year: 2013 ident: 2022060706442974900_bib6 article-title: Impact of EGFR inhibitor in non–small cell lung cancer on progression-free and overall survival: a meta-analysis publication-title: J Nat Cancer Inst doi: 10.1093/jnci/djt072 – volume: 30 start-page: 601 year: 2016 ident: 2022060706442974900_bib41 article-title: Attacking a Moving target: understanding resistance and managing progression in EGFR-positive lung cancer patients treated with tyrosine kinase inhibitors publication-title: Oncology – volume: 10 start-page: 760 year: 2010 ident: 2022060706442974900_bib9 article-title: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer publication-title: Nat Rev Cancer doi: 10.1038/nrc2947 – volume: 7 start-page: 39931 year: 2016 ident: 2022060706442974900_bib24 article-title: Screen-identified selective inhibitor of lysine demethylase 5A blocks cancer cell growth and drug resistance publication-title: Oncotarget doi: 10.18632/oncotarget.9539 – volume: 35 start-page: 586 year: 2015 ident: 2022060706442974900_bib36 article-title: Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date publication-title: Med Res Rev doi: 10.1002/med.21334 – volume: 31 start-page: 83 year: 2017 ident: 2022060706442974900_bib7 article-title: Epidermal growth factor receptor mutated advanced non–small cell lung cancer publication-title: Hematol Oncol Clin N Am doi: 10.1016/j.hoc.2016.08.003 – volume: 18 start-page: 867 year: 2011 ident: 2022060706442974900_bib40 article-title: Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2084 – volume: 9 start-page: e86459 year: 2014 ident: 2022060706442974900_bib22 article-title: Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor publication-title: PLoS One doi: 10.1371/journal.pone.0086459 – volume: 15 start-page: 2665 year: 2016 ident: 2022060706442974900_bib30 article-title: MOF acetylates the histone demethylase LSD1 to suppress epithelial-to-mesenchymal transition publication-title: Cell Reports doi: 10.1016/j.celrep.2016.05.050 – volume: 19 start-page: 279 year: 2013 ident: 2022060706442974900_bib12 article-title: An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-12-1558 – volume: 13 start-page: 670 year: 2013 ident: 2022060706442974900_bib20 article-title: Targeting hypoxia for sensitization of tumors to radio- and chemotherapy publication-title: Curr Cancer Drug Targets doi: 10.2174/15680096113139990004 – volume: 3 start-page: 75ra26 year: 2011 ident: 2022060706442974900_bib5 article-title: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002003 – volume: 8 start-page: 501 year: 2014 ident: 2022060706442974900_bib48 article-title: Silencing of the DNA mismatch repair gene MLH1 induced by hypoxic stress in a pathway dependent on the histone demethylase LSD1 publication-title: Cell Reports doi: 10.1016/j.celrep.2014.06.035 – volume: 5 start-page: 172 year: 2016 ident: 2022060706442974900_bib11 article-title: The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer publication-title: Translat Lung Cancer Res doi: 10.21037/tlcr.2016.04.07 – volume: 26 start-page: 638 year: 1953 ident: 2022060706442974900_bib16 article-title: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy publication-title: Br J Radiol doi: 10.1259/0007-1285-26-312-638 – volume: 304 start-page: 1497 year: 2004 ident: 2022060706442974900_bib2 article-title: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy publication-title: Science doi: 10.1126/science.1099314 – volume: 6 start-page: 1152 year: 2011 ident: 2022060706442974900_bib23 article-title: Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib publication-title: J Thoracic Oncol doi: 10.1097/JTO.0b013e318216ee52 – volume: 4 start-page: 1681 year: 2007 ident: 2022060706442974900_bib18 article-title: Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics publication-title: PLoS Med doi: 10.1371/journal.pmed.0040316 – volume: 23 start-page: 811 year: 2013 ident: 2022060706442974900_bib26 article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B high cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.05.003 – volume: 4 start-page: 411 year: 2014 ident: 2022060706442974900_bib8 article-title: EGFR-TKI resistance in NSCLC patients: mechanisms and strategies publication-title: Am J Cancer Res – volume: 9 start-page: e84597 year: 2014 ident: 2022060706442974900_bib39 article-title: MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance publication-title: PLoS One doi: 10.1371/journal.pone.0084597 – start-page: 12723 volume-title: Oncotarget year: 2015 ident: 2022060706442974900_bib27 article-title: JARID1B promotes metastasis and epithelial–mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells – volume: 68 start-page: 2391 year: 2008 ident: 2022060706442974900_bib38 article-title: Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-2460 – volume: 27 start-page: 837 year: 2015 ident: 2022060706442974900_bib45 article-title: Kinase and BET inhibitors together clamp inhibition of Pi3k signaling and overcome resistance to therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.05.006 – volume: 29 start-page: 548 year: 2011 ident: 2022060706442974900_bib33 article-title: Abnormal histone acetylation and methylation levels in esophageal squamous cell carcinomas publication-title: Cancer Invest doi: 10.3109/07357907.2011.597810 – volume: 32 start-page: 180 year: 2015 ident: 2022060706442974900_bib13 article-title: Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2015.04.030 – volume: 350 start-page: 2129 year: 2004 ident: 2022060706442974900_bib3 article-title: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib publication-title: N Engl J Med doi: 10.1056/NEJMoa040938 – start-page: 3854 volume-title: Oncotarget year: 2017 ident: 2022060706442974900_bib29 article-title: LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene – volume: 437 start-page: 436 year: 2005 ident: 2022060706442974900_bib32 article-title: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription publication-title: Nature doi: 10.1038/nature04020 – volume: 6 start-page: 1683 year: 2007 ident: 2022060706442974900_bib37 article-title: Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non–small cell lung carcinoma publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-07-0138 |
SSID | ssj0020176 |
Score | 2.4566302 |
Snippet | The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a... The development of small-molecule tyrosine kinase inhibitors (TKIs) specific for epidermal growth factor receptors (EGFRs) with activating mutations has led to... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1458 |
SubjectTerms | Animals Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - pathology Cell Line, Tumor Cell Survival - drug effects Drug Resistance, Neoplasm - genetics Epithelial-Mesenchymal Transition - drug effects ErbB Receptors - antagonists & inhibitors ErbB Receptors - genetics Gefitinib - administration & dosage Gene Expression Regulation, Neoplastic - drug effects Histone Demethylases - antagonists & inhibitors Histone Demethylases - genetics Humans Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors Jumonji Domain-Containing Histone Demethylases - genetics Mice Mutation Nuclear Proteins - antagonists & inhibitors Nuclear Proteins - genetics Protein Kinase Inhibitors - administration & dosage Repressor Proteins - antagonists & inhibitors Repressor Proteins - genetics Tumor Hypoxia - drug effects Xenograft Model Antitumor Assays |
Title | Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29934325 https://www.proquest.com/docview/2058507060 https://pubmed.ncbi.nlm.nih.gov/PMC6170700 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBAss5SUjcSspiZvnEWUfBZoFbXelvUV24qpBJa22KaL7W_ixzNhOmkIlYHuIqmkdR_m-zMOZGRPyhmUsE07OrMwTwgKL51si4NzKQ495EyYGoSqkTU794YX78dK77HR-trKWVpXoZ9c760pugirIAFeskv0PZJuTggC-A75wBITh-E8YD9eL-Y-CY7Y_3HGJJR9L9AfxYQWf8ujk-AwUwLQQRZ3SeDqOR3EvlrPZsvcdRqLbqTqFlJg_hNtJr8Gd1qpjND50dDHB6MJy2l5sUu-pizljmbzqmZZBzdLyaKVU-2o6N4YRZYUW8nIiN9LPUuvjsQR7WrW4ejLj15pOKoW4l_TbCxRO2KS6NTrVdSxsU6dNjpF5uDyqa54bRey3CWe31Krj6v7uxkSDdo92q38PSxqaCftJfGY5mN6nG8u0KLH4pjgBxhgra72NNWxyFL8kMTarD2z7FrnNIAjB_TEOP3xqwnnQZap2rZ7N1IfBNbzbeQXYd9pMt-0E_RHZ_J6g2_J4zh-Q-yZUoe817x6Sjiz3yR29eel6n9xNTFrGI_LVEJHWRKQbItJqTpGIdENEWpRUEZEqIlIgIgUiUkNE2ibiW4o0pEBDqmj4mFwcH53HQ8ts4mFlbhBUliskRMnBxAlzIT2fT6Qf5jkPQ85yl4P36-ecY9DBRA6-Z-7n-cCWEKWDKclkJAdPyF4Jcz8l1INPxMWERaHrysATPvfDzI8mLPDzyGVd4tZ3Nc1Mh3vcaGWWqkjXC1PEJUVcUsAldYIUcemSfjNsoVu8_G3A6xqyFJQxvmHjpZyvlimzIfq2sSFVlxxoCJtT1th3SbAFbvMHbPS-_UtZTFXDd8PDZzce-Zzc2zyZL8hedbWSL8GZrsQrxelfp8jCnw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia+Promotes+Resistance+to+EGFR+Inhibition+in+NSCLC+Cells+via+the+Histone+Demethylases%2C+LSD1+and+PLU-1&rft.jtitle=Molecular+cancer+research&rft.au=Lu%2C+Yuhong&rft.au=Liu%2C+Yanfeng&rft.au=Oeck%2C+Sebastian&rft.au=Glazer%2C+Peter+M.&rft.date=2018-10-01&rft.issn=1541-7786&rft.eissn=1557-3125&rft.volume=16&rft.issue=10&rft.spage=1458&rft.epage=1469&rft_id=info:doi/10.1158%2F1541-7786.MCR-17-0637&rft_id=info%3Apmid%2F29934325&rft.externalDocID=PMC6170700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7786&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7786&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7786&client=summon |