Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1

The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non–small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer research Vol. 16; no. 10; pp. 1458 - 1469
Main Authors Lu, Yuhong, Liu, Yanfeng, Oeck, Sebastian, Glazer, Peter M.
Format Journal Article
LanguageEnglish
Published United States 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non–small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458–69. ©2018 AACR.
AbstractList The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. .
The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458-69. ©2018 AACR.The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458-69. ©2018 AACR.
The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non–small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458–69. ©2018 AACR.
The development of small-molecule tyrosine kinase inhibitors (TKIs) specific for epidermal growth factor receptors (EGFRs) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key micro-environmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study, documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line, HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N- cadherin, Fibronectin and Vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT) which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared to cells grown in normoxia, but inhibition of LSD1 function by shRNA- mediated knockdown or by the small-molecular inhibitor, SP2509, suppressed tumor growth and enhanced gefitinib response in vivo. These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs.
Author Liu, Yanfeng
Glazer, Peter M.
Lu, Yuhong
Oeck, Sebastian
AuthorAffiliation 2 Genetics, Yale University School of Medicine. New Haven, CT 06510. U.S.A
1 Departments of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510. U.S.A
3 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
AuthorAffiliation_xml – name: 1 Departments of Therapeutic Radiology, Yale University School of Medicine. New Haven, CT 06510. U.S.A
– name: 3 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
– name: 2 Genetics, Yale University School of Medicine. New Haven, CT 06510. U.S.A
Author_xml – sequence: 1
  givenname: Yuhong
  surname: Lu
  fullname: Lu, Yuhong
– sequence: 2
  givenname: Yanfeng
  surname: Liu
  fullname: Liu, Yanfeng
– sequence: 3
  givenname: Sebastian
  orcidid: 0000-0001-9695-8771
  surname: Oeck
  fullname: Oeck, Sebastian
– sequence: 4
  givenname: Peter M.
  orcidid: 0000-0003-4525-5560
  surname: Glazer
  fullname: Glazer, Peter M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29934325$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_wE0BesiDFN4ntREhIKH1MpQDVlK4tJ77DuErsIfZUzL-vo04rYMHKlny-c67vOSYHzjsk5C2wUwBefQReQiZlJU6_NssMZMZEIV-QI-BcZgXk_GC-7zWH5DiEO8ZyBlK8Iod5XRdlkfMjcrfYbfxvq-n15EcfMdAlBhuidj3S6On55cWSXrm17Wy03lHr6Lebpm1og8MQ6H0i4xrpIiFpPnqGI8b1btABwwfa3pwB1c7Q6_Y2g9fk5UoPAd_szxNye3H-o1lk7ffLq-ZLm_WllDErO2S1kCuoTIdc6BWKyhhdVTo3pa5KIYzWwIsi7wzktRHGFAwBSi6rHmssTsjnR9_NthvR9OjipAe1meyop53y2qq_X5xdq5_-XgmQTDKWDN7vDSb_a4shqtGGPv1XO_TboHLGK56UYpa--zPrOeRpwUnw6VHQTz6ECVeqt1HPq0zRdlDA1FynmqtSc1Uq1alAqrnORPN_6KeA_3MPym2jUw
CitedBy_id crossref_primary_10_1002_mc_23792
crossref_primary_10_2174_1568009622666220330151725
crossref_primary_10_3390_cancers13143421
crossref_primary_10_1016_j_ejmech_2020_112640
crossref_primary_10_1158_0008_5472_CAN_20_1192
crossref_primary_10_1177_2397847319842845
crossref_primary_10_1016_j_phymed_2024_155690
crossref_primary_10_1016_j_ejphar_2019_172615
crossref_primary_10_1172_JCI126044
crossref_primary_10_1016_j_carbpol_2021_118655
crossref_primary_10_3390_biology10111200
crossref_primary_10_1186_s12935_020_01729_3
crossref_primary_10_3390_ijms23010250
crossref_primary_10_3389_fonc_2018_00566
crossref_primary_10_1016_j_cbi_2020_109320
crossref_primary_10_3389_fonc_2020_01234
crossref_primary_10_3390_ijms241512222
crossref_primary_10_1111_1759_7714_12984
crossref_primary_10_1177_2397847318816617
crossref_primary_10_1016_j_ejmech_2021_113963
crossref_primary_10_1177_2397847319850167
crossref_primary_10_1016_j_canlet_2019_03_052
crossref_primary_10_1021_acs_jmedchem_2c01527
crossref_primary_10_2174_1574892818666221201145810
crossref_primary_10_1016_j_critrevonc_2020_102906
crossref_primary_10_3389_fphar_2023_1120911
crossref_primary_10_1016_j_ejps_2021_106004
crossref_primary_10_1016_j_ejmech_2021_113300
crossref_primary_10_1016_j_drudis_2025_104321
crossref_primary_10_1016_j_semcancer_2020_12_022
crossref_primary_10_1016_j_canlet_2020_05_025
crossref_primary_10_3390_cancers12082121
crossref_primary_10_1016_j_tem_2023_11_005
crossref_primary_10_1134_S0006297924120113
crossref_primary_10_1089_cmb_2021_0314
crossref_primary_10_1186_s12885_021_07863_z
crossref_primary_10_1016_j_bcp_2022_115262
crossref_primary_10_1080_14728222_2023_2288277
crossref_primary_10_1038_s41392_023_01341_7
crossref_primary_10_1021_acs_jmedchem_3c02133
crossref_primary_10_1038_s41392_019_0038_9
crossref_primary_10_3389_fbinf_2022_813960
crossref_primary_10_1016_j_bioorg_2020_103731
crossref_primary_10_1093_neuonc_noad018
crossref_primary_10_1002_med_21955
crossref_primary_10_3389_fonc_2020_01424
crossref_primary_10_1016_j_bmc_2024_117651
Cites_doi 10.1128/MCB.24.7.2875-2889.2004
10.1128/MCB.01121-10
10.1016/j.ccr.2011.09.001
10.1016/j.gene.2005.10.018
10.1016/j.ccr.2012.03.014
10.1016/j.molcel.2014.05.015
10.1002/ijc.25349
10.1634/theoncologist.9-90005-10
10.1097/PPO.0000000000000131
10.1016/j.phrs.2015.09.022
10.1016/j.ccell.2016.03.007
10.1016/j.cell.2010.02.027
10.1038/leu.2014.119
10.1016/j.ccell.2015.06.002
10.1200/JCO.2012.43.3912
10.1016/j.celrep.2015.03.037
10.1016/j.apsb.2015.05.007
10.1056/NEJMoa0810699
10.1007/s10549-016-3959-9
10.3892/ol.2017.6613
10.1093/jnci/djt072
10.1038/nrc2947
10.18632/oncotarget.9539
10.1002/med.21334
10.1016/j.hoc.2016.08.003
10.1038/nsmb.2084
10.1371/journal.pone.0086459
10.1016/j.celrep.2016.05.050
10.1158/1078-0432.CCR-12-1558
10.2174/15680096113139990004
10.1126/scitranslmed.3002003
10.1016/j.celrep.2014.06.035
10.21037/tlcr.2016.04.07
10.1259/0007-1285-26-312-638
10.1126/science.1099314
10.1097/JTO.0b013e318216ee52
10.1371/journal.pmed.0040316
10.1016/j.ccr.2013.05.003
10.1371/journal.pone.0084597
10.1158/0008-5472.CAN-07-2460
10.1016/j.ccell.2015.05.006
10.3109/07357907.2011.597810
10.1016/j.dnarep.2015.04.030
10.1056/NEJMoa040938
10.1038/nature04020
10.1158/1535-7163.MCT-07-0138
ContentType Journal Article
Copyright 2018 American Association for Cancer Research.
Copyright_xml – notice: 2018 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/1541-7786.MCR-17-0637
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1557-3125
EndPage 1469
ExternalDocumentID PMC6170700
29934325
10_1158_1541_7786_MCR_17_0637
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES005775
GroupedDBID ---
123
18M
2FS
2WC
34G
39C
53G
5RE
5VS
AAJMC
AAYXX
ACGFO
ACPRK
ADBBV
ADCOW
AENEX
AFHIN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
IH2
KQ8
L7B
OK1
QTD
RCR
RHI
TR2
W8F
WOQ
YKV
.55
.GJ
3O-
ABEFU
AFFNX
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NPM
WHG
X7M
ZGI
7X8
5PM
ID FETCH-LOGICAL-c477t-4be0967f18dbe56afe68dda88a2d4a8466daa15332bd129d6dd30e114578ce9e3
ISSN 1541-7786
1557-3125
IngestDate Thu Aug 21 18:17:42 EDT 2025
Fri Jul 11 00:11:38 EDT 2025
Thu Apr 03 06:58:39 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Tue Jul 01 04:31:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2018 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-4be0967f18dbe56afe68dda88a2d4a8466daa15332bd129d6dd30e114578ce9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9695-8771
0000-0003-4525-5560
OpenAccessLink https://mcr.aacrjournals.org/content/molcanres/16/10/1458.full.pdf
PMID 29934325
PQID 2058507060
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6170700
proquest_miscellaneous_2058507060
pubmed_primary_29934325
crossref_citationtrail_10_1158_1541_7786_MCR_17_0637
crossref_primary_10_1158_1541_7786_MCR_17_0637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cancer research
PublicationTitleAlternate Mol Cancer Res
PublicationYear 2018
References Mohammad (2022060706442974900_bib49) 2015; 28
Tan (2022060706442974900_bib15) 2015; 21
Stratikopoulos (2022060706442974900_bib45) 2015; 27
Scanlon (2022060706442974900_bib13) 2015; 32
Easwaran (2022060706442974900_bib44) 2014; 54
Murakami (2022060706442974900_bib22) 2014; 9
Pao (2022060706442974900_bib9) 2010; 10
Suda (2022060706442974900_bib23) 2011; 6
Sequist (2022060706442974900_bib5) 2011; 3
Ohashi (2022060706442974900_bib10) 2013; 31
Frederick (2022060706442974900_bib37) 2007; 6
Normanno (2022060706442974900_bib1) 2006; 366
Fiskus (2022060706442974900_bib35) 2014; 28
Stuhlmiller (2022060706442974900_bib46) 2015; 11
Erler (2022060706442974900_bib47) 2004; 24
Pakkala (2022060706442974900_bib7) 2017; 31
Tetsu (2022060706442974900_bib42) 2015; 102
Jakobsen (2022060706442974900_bib11) 2016; 5
Luo (2022060706442974900_bib30) 2016; 15
Brien (2022060706442974900_bib43) 2016; 29
Mould (2022060706442974900_bib36) 2015; 35
Chen (2022060706442974900_bib33) 2011; 29
Lee (2022060706442974900_bib6) 2013; 105
Feng (2022060706442974900_bib28) 2016; 159
Fuchs (2022060706442974900_bib38) 2008; 68
McDonald (2022060706442974900_bib40) 2011; 18
Metzger (2022060706442974900_bib32) 2005; 437
Lu (2022060706442974900_bib19) 2011; 31
Lin (2022060706442974900_bib8) 2014; 4
Byers (2022060706442974900_bib12) 2013; 19
Gale (2022060706442974900_bib24) 2016; 7
An (2022060706442974900_bib21) 2017; 14
Lynch (2022060706442974900_bib3) 2004; 350
Tang (2022060706442974900_bib27) 2015
Lee (2022060706442974900_bib39) 2014; 9
Gray (2022060706442974900_bib16) 1953; 26
Cragg (2022060706442974900_bib18) 2007; 4
Mok (2022060706442974900_bib4) 2009; 361
Levy (2022060706442974900_bib41) 2016; 30
Ambrosio (2022060706442974900_bib29) 2017
Harris (2022060706442974900_bib50) 2012; 21
Paez (2022060706442974900_bib2) 2004; 304
Lu (2022060706442974900_bib48) 2014; 8
Roesch (2022060706442974900_bib26) 2013; 23
Cai (2022060706442974900_bib31) 2011; 20
Vaupel (2022060706442974900_bib14) 2004; 9
Khaled (2022060706442974900_bib20) 2013; 13
Masoud (2022060706442974900_bib17) 2015; 5
Sharma (2022060706442974900_bib25) 2010; 141
Hayami (2022060706442974900_bib34) 2011; 128
References_xml – volume: 24
  start-page: 2875
  year: 2004
  ident: 2022060706442974900_bib47
  article-title: Hypoxia-mediated down-regulation of bid and bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.7.2875-2889.2004
– volume: 31
  start-page: 3339
  year: 2011
  ident: 2022060706442974900_bib19
  article-title: Hypoxia-Induced epigenetic regulation and silencing of the BRCA1 promoter
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01121-10
– volume: 20
  start-page: 457
  year: 2011
  ident: 2022060706442974900_bib31
  article-title: Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.09.001
– volume: 366
  start-page: 2
  year: 2006
  ident: 2022060706442974900_bib1
  article-title: Epidermal growth factor receptor (EGFR) signaling in cancer
  publication-title: Gene
  doi: 10.1016/j.gene.2005.10.018
– volume: 21
  start-page: 473
  year: 2012
  ident: 2022060706442974900_bib50
  article-title: The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.03.014
– volume: 54
  start-page: 716
  year: 2014
  ident: 2022060706442974900_bib44
  article-title: Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.05.015
– volume: 128
  start-page: 574
  year: 2011
  ident: 2022060706442974900_bib34
  article-title: Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25349
– volume: 9
  start-page: 10
  year: 2004
  ident: 2022060706442974900_bib14
  article-title: The role of hypoxia-induced factors in tumor progression
  publication-title: Oncologist
  doi: 10.1634/theoncologist.9-90005-10
– volume: 21
  start-page: 254
  year: 2015
  ident: 2022060706442974900_bib15
  article-title: Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them
  publication-title: Cancer J
  doi: 10.1097/PPO.0000000000000131
– volume: 102
  start-page: 132
  year: 2015
  ident: 2022060706442974900_bib42
  article-title: AKT inactivation causes persistent drug tolerance to EGFR inhibitors
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2015.09.022
– volume: 29
  start-page: 464
  year: 2016
  ident: 2022060706442974900_bib43
  article-title: Exploiting the epigenome to control cancer-promoting gene-expression programs
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.03.007
– volume: 141
  start-page: 69
  year: 2010
  ident: 2022060706442974900_bib25
  article-title: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.027
– volume: 28
  start-page: 2155
  year: 2014
  ident: 2022060706442974900_bib35
  article-title: Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells
  publication-title: Leukemia
  doi: 10.1038/leu.2014.119
– volume: 28
  start-page: 57
  year: 2015
  ident: 2022060706442974900_bib49
  article-title: A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.06.002
– volume: 31
  start-page: 1070
  year: 2013
  ident: 2022060706442974900_bib10
  article-title: Epidermal growth factor receptor tyrosine kinase inhibitor–resistant disease
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.43.3912
– volume: 11
  start-page: 390
  year: 2015
  ident: 2022060706442974900_bib46
  article-title: Inhibition of lapatinib-induced kinome reprogramming in ERBB2-positive breast cancer by targeting BET family bromodomains
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2015.03.037
– volume: 5
  start-page: 378
  year: 2015
  ident: 2022060706442974900_bib17
  article-title: HIF-1α pathway: role, regulation and intervention for cancer therapy
  publication-title: Acta Pharmaceutica Sinica B
  doi: 10.1016/j.apsb.2015.05.007
– volume: 361
  start-page: 947
  year: 2009
  ident: 2022060706442974900_bib4
  article-title: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0810699
– volume: 159
  start-page: 443
  year: 2016
  ident: 2022060706442974900_bib28
  article-title: Phosphorylation of LSD1 at Ser112 is crucial for its function in induction of EMT and metastasis in breast cancer
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-016-3959-9
– volume: 14
  start-page: 3445
  year: 2017
  ident: 2022060706442974900_bib21
  article-title: Interleukin-6 identified as an important factor in hypoxia- and aldehyde dehydrogenase-based gefitinib adaptive resistance in non-small cell lung cancer cells
  publication-title: Oncol Lett
  doi: 10.3892/ol.2017.6613
– volume: 105
  start-page: 595
  year: 2013
  ident: 2022060706442974900_bib6
  article-title: Impact of EGFR inhibitor in non–small cell lung cancer on progression-free and overall survival: a meta-analysis
  publication-title: J Nat Cancer Inst
  doi: 10.1093/jnci/djt072
– volume: 30
  start-page: 601
  year: 2016
  ident: 2022060706442974900_bib41
  article-title: Attacking a Moving target: understanding resistance and managing progression in EGFR-positive lung cancer patients treated with tyrosine kinase inhibitors
  publication-title: Oncology
– volume: 10
  start-page: 760
  year: 2010
  ident: 2022060706442974900_bib9
  article-title: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2947
– volume: 7
  start-page: 39931
  year: 2016
  ident: 2022060706442974900_bib24
  article-title: Screen-identified selective inhibitor of lysine demethylase 5A blocks cancer cell growth and drug resistance
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9539
– volume: 35
  start-page: 586
  year: 2015
  ident: 2022060706442974900_bib36
  article-title: Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date
  publication-title: Med Res Rev
  doi: 10.1002/med.21334
– volume: 31
  start-page: 83
  year: 2017
  ident: 2022060706442974900_bib7
  article-title: Epidermal growth factor receptor mutated advanced non–small cell lung cancer
  publication-title: Hematol Oncol Clin N Am
  doi: 10.1016/j.hoc.2016.08.003
– volume: 18
  start-page: 867
  year: 2011
  ident: 2022060706442974900_bib40
  article-title: Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2084
– volume: 9
  start-page: e86459
  year: 2014
  ident: 2022060706442974900_bib22
  article-title: Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0086459
– volume: 15
  start-page: 2665
  year: 2016
  ident: 2022060706442974900_bib30
  article-title: MOF acetylates the histone demethylase LSD1 to suppress epithelial-to-mesenchymal transition
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2016.05.050
– volume: 19
  start-page: 279
  year: 2013
  ident: 2022060706442974900_bib12
  article-title: An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-1558
– volume: 13
  start-page: 670
  year: 2013
  ident: 2022060706442974900_bib20
  article-title: Targeting hypoxia for sensitization of tumors to radio- and chemotherapy
  publication-title: Curr Cancer Drug Targets
  doi: 10.2174/15680096113139990004
– volume: 3
  start-page: 75ra26
  year: 2011
  ident: 2022060706442974900_bib5
  article-title: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002003
– volume: 8
  start-page: 501
  year: 2014
  ident: 2022060706442974900_bib48
  article-title: Silencing of the DNA mismatch repair gene MLH1 induced by hypoxic stress in a pathway dependent on the histone demethylase LSD1
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2014.06.035
– volume: 5
  start-page: 172
  year: 2016
  ident: 2022060706442974900_bib11
  article-title: The role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer
  publication-title: Translat Lung Cancer Res
  doi: 10.21037/tlcr.2016.04.07
– volume: 26
  start-page: 638
  year: 1953
  ident: 2022060706442974900_bib16
  article-title: The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy
  publication-title: Br J Radiol
  doi: 10.1259/0007-1285-26-312-638
– volume: 304
  start-page: 1497
  year: 2004
  ident: 2022060706442974900_bib2
  article-title: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy
  publication-title: Science
  doi: 10.1126/science.1099314
– volume: 6
  start-page: 1152
  year: 2011
  ident: 2022060706442974900_bib23
  article-title: Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib
  publication-title: J Thoracic Oncol
  doi: 10.1097/JTO.0b013e318216ee52
– volume: 4
  start-page: 1681
  year: 2007
  ident: 2022060706442974900_bib18
  article-title: Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0040316
– volume: 23
  start-page: 811
  year: 2013
  ident: 2022060706442974900_bib26
  article-title: Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B high cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.05.003
– volume: 4
  start-page: 411
  year: 2014
  ident: 2022060706442974900_bib8
  article-title: EGFR-TKI resistance in NSCLC patients: mechanisms and strategies
  publication-title: Am J Cancer Res
– volume: 9
  start-page: e84597
  year: 2014
  ident: 2022060706442974900_bib39
  article-title: MicroRNA-147 induces a mesenchymal-to-epithelial transition (MET) and reverses EGFR inhibitor resistance
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0084597
– start-page: 12723
  volume-title: Oncotarget
  year: 2015
  ident: 2022060706442974900_bib27
  article-title: JARID1B promotes metastasis and epithelial–mesenchymal transition via PTEN/AKT signaling in hepatocellular carcinoma cells
– volume: 68
  start-page: 2391
  year: 2008
  ident: 2022060706442974900_bib38
  article-title: Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-2460
– volume: 27
  start-page: 837
  year: 2015
  ident: 2022060706442974900_bib45
  article-title: Kinase and BET inhibitors together clamp inhibition of Pi3k signaling and overcome resistance to therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.05.006
– volume: 29
  start-page: 548
  year: 2011
  ident: 2022060706442974900_bib33
  article-title: Abnormal histone acetylation and methylation levels in esophageal squamous cell carcinomas
  publication-title: Cancer Invest
  doi: 10.3109/07357907.2011.597810
– volume: 32
  start-page: 180
  year: 2015
  ident: 2022060706442974900_bib13
  article-title: Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment
  publication-title: DNA Repair (Amst)
  doi: 10.1016/j.dnarep.2015.04.030
– volume: 350
  start-page: 2129
  year: 2004
  ident: 2022060706442974900_bib3
  article-title: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa040938
– start-page: 3854
  volume-title: Oncotarget
  year: 2017
  ident: 2022060706442974900_bib29
  article-title: LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene
– volume: 437
  start-page: 436
  year: 2005
  ident: 2022060706442974900_bib32
  article-title: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription
  publication-title: Nature
  doi: 10.1038/nature04020
– volume: 6
  start-page: 1683
  year: 2007
  ident: 2022060706442974900_bib37
  article-title: Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non–small cell lung carcinoma
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-07-0138
SSID ssj0020176
Score 2.4566302
Snippet The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a...
The development of small-molecule tyrosine kinase inhibitors (TKIs) specific for epidermal growth factor receptors (EGFRs) with activating mutations has led to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1458
SubjectTerms Animals
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - pathology
Cell Line, Tumor
Cell Survival - drug effects
Drug Resistance, Neoplasm - genetics
Epithelial-Mesenchymal Transition - drug effects
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
Gefitinib - administration & dosage
Gene Expression Regulation, Neoplastic - drug effects
Histone Demethylases - antagonists & inhibitors
Histone Demethylases - genetics
Humans
Jumonji Domain-Containing Histone Demethylases - antagonists & inhibitors
Jumonji Domain-Containing Histone Demethylases - genetics
Mice
Mutation
Nuclear Proteins - antagonists & inhibitors
Nuclear Proteins - genetics
Protein Kinase Inhibitors - administration & dosage
Repressor Proteins - antagonists & inhibitors
Repressor Proteins - genetics
Tumor Hypoxia - drug effects
Xenograft Model Antitumor Assays
Title Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1
URI https://www.ncbi.nlm.nih.gov/pubmed/29934325
https://www.proquest.com/docview/2058507060
https://pubmed.ncbi.nlm.nih.gov/PMC6170700
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBAss5SUjcSspiZvnEWUfBZoFbXelvUV24qpBJa22KaL7W_ixzNhOmkIlYHuIqmkdR_m-zMOZGRPyhmUsE07OrMwTwgKL51si4NzKQ495EyYGoSqkTU794YX78dK77HR-trKWVpXoZ9c760pugirIAFeskv0PZJuTggC-A75wBITh-E8YD9eL-Y-CY7Y_3HGJJR9L9AfxYQWf8ujk-AwUwLQQRZ3SeDqOR3EvlrPZsvcdRqLbqTqFlJg_hNtJr8Gd1qpjND50dDHB6MJy2l5sUu-pizljmbzqmZZBzdLyaKVU-2o6N4YRZYUW8nIiN9LPUuvjsQR7WrW4ejLj15pOKoW4l_TbCxRO2KS6NTrVdSxsU6dNjpF5uDyqa54bRey3CWe31Krj6v7uxkSDdo92q38PSxqaCftJfGY5mN6nG8u0KLH4pjgBxhgra72NNWxyFL8kMTarD2z7FrnNIAjB_TEOP3xqwnnQZap2rZ7N1IfBNbzbeQXYd9pMt-0E_RHZ_J6g2_J4zh-Q-yZUoe817x6Sjiz3yR29eel6n9xNTFrGI_LVEJHWRKQbItJqTpGIdENEWpRUEZEqIlIgIgUiUkNE2ibiW4o0pEBDqmj4mFwcH53HQ8ts4mFlbhBUliskRMnBxAlzIT2fT6Qf5jkPQ85yl4P36-ecY9DBRA6-Z-7n-cCWEKWDKclkJAdPyF4Jcz8l1INPxMWERaHrysATPvfDzI8mLPDzyGVd4tZ3Nc1Mh3vcaGWWqkjXC1PEJUVcUsAldYIUcemSfjNsoVu8_G3A6xqyFJQxvmHjpZyvlimzIfq2sSFVlxxoCJtT1th3SbAFbvMHbPS-_UtZTFXDd8PDZzce-Zzc2zyZL8hedbWSL8GZrsQrxelfp8jCnw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypoxia+Promotes+Resistance+to+EGFR+Inhibition+in+NSCLC+Cells+via+the+Histone+Demethylases%2C+LSD1+and+PLU-1&rft.jtitle=Molecular+cancer+research&rft.au=Lu%2C+Yuhong&rft.au=Liu%2C+Yanfeng&rft.au=Oeck%2C+Sebastian&rft.au=Glazer%2C+Peter+M.&rft.date=2018-10-01&rft.issn=1541-7786&rft.eissn=1557-3125&rft.volume=16&rft.issue=10&rft.spage=1458&rft.epage=1469&rft_id=info:doi/10.1158%2F1541-7786.MCR-17-0637&rft_id=info%3Apmid%2F29934325&rft.externalDocID=PMC6170700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7786&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7786&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7786&client=summon