Guided transition waves in multistable mechanical metamaterials
Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions,...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 5; pp. 2319 - 2325 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave’s direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption. |
---|---|
AbstractList | Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave’s direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption. Mimicking material-level phenomena using macroscopically architected materials has gained popularity and enabled novel engineering applications such as photonic, acoustic, mechanical, and topological metamaterials. An interesting microstructural phenomenon observed in phase-transforming materials is the dissipative motion of topological defects such as phase and domain boundaries. With a few one-dimensional exceptions, structural analogs of dynamic phase-transforming materials are still rare, owing to their complicating strong nonlinearity. Through experiments, models, and simulations, we demonstrate a concept for tailoring propagating transition fronts in periodic structures in arbitrary dimensions. This significantly increases the design space of metamaterial performance and functionality and finds application in programming soft robotic locomotion, in controlling energy absorption (or release), and in mechanical logic devices. Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave’s direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption. |
Author | Khajehtourian, Romik Jin, Lishuai Tournat, Vincent Kochmann, Dennis M. Bertoldi, Katia Mueller, Jochen Rafsanjani, Ahmad |
Author_xml | – sequence: 1 givenname: Lishuai surname: Jin fullname: Jin, Lishuai – sequence: 2 givenname: Romik surname: Khajehtourian fullname: Khajehtourian, Romik – sequence: 3 givenname: Jochen surname: Mueller fullname: Mueller, Jochen – sequence: 4 givenname: Ahmad surname: Rafsanjani fullname: Rafsanjani, Ahmad – sequence: 5 givenname: Vincent surname: Tournat fullname: Tournat, Vincent – sequence: 6 givenname: Katia surname: Bertoldi fullname: Bertoldi, Katia – sequence: 7 givenname: Dennis M. surname: Kochmann fullname: Kochmann, Dennis M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31969454$$D View this record in MEDLINE/PubMed https://univ-lemans.hal.science/hal-02471496$$DView record in HAL |
BookMark | eNpdkU1v1DAQhi1URLeFMydQJC5wSDv-2Di-gKoK2kor9QJny7EnrFeJvcTOIv49Xm3Zlp5mNPPMO2O_Z-QkxICEvKVwQUHyy20w6YIqyhlrKZUvyIKConUjFJyQBQCTdSuYOCVnKW0AQC1beEVOOVWNEkuxIF9uZu_QVXkyIfnsY6h-mx2myodqnIfsUzbdgNWIdm2Ct2YoaTajyTh5M6TX5GVfAr55iOfkx7ev369v69X9zd311aq2Qspci1aIljcC2g5d23SInZROMCqda6xRvQO0YKXFHoVqqOttD4r3lBpmjWv4Ofl80N3O3YjOYigXD3o7-dFMf3Q0Xv_fCX6tf8adlgBySWUR-HQQWD8bu71a6X0NmJC07N7Rwn58WDbFXzOmrEefLA6DCRjnpBkXgrEGOC_oh2foJs5TKF9RqKXgHEDsBS8PlJ1iShP2xwso6L2Rem-kfjSyTLx_-t4j_8-5Arw7AJuU43Tss0axtmWS_wWry6XS |
CitedBy_id | crossref_primary_10_1016_j_matdes_2023_112428 crossref_primary_10_1088_1361_665X_ac37ff crossref_primary_10_1063_5_0057288 crossref_primary_10_1002_adfm_202207581 crossref_primary_10_1002_adfm_202300433 crossref_primary_10_1016_j_compositesb_2023_110585 crossref_primary_10_1016_j_compstruct_2022_115308 crossref_primary_10_1016_j_jmps_2022_104834 crossref_primary_10_1073_pnas_2317340121 crossref_primary_10_1016_j_eml_2021_101580 crossref_primary_10_3389_frobt_2021_673478 crossref_primary_10_1016_j_tws_2021_108212 crossref_primary_10_1007_s00707_021_03015_3 crossref_primary_10_1002_aisy_202200146 crossref_primary_10_1063_5_0171993 crossref_primary_10_1016_j_eml_2021_101347 crossref_primary_10_1016_j_ijsolstr_2023_112597 crossref_primary_10_1002_adfm_202313865 crossref_primary_10_1002_adma_202305254 crossref_primary_10_1088_1361_6633_ace069 crossref_primary_10_1126_sciadv_abf1966 crossref_primary_10_1016_j_apm_2024_06_035 crossref_primary_10_1039_D3SM01174G crossref_primary_10_1038_s42256_023_00762_x crossref_primary_10_1016_j_apmt_2022_101714 crossref_primary_10_1038_s41467_024_45602_7 crossref_primary_10_1038_s41467_022_28696_9 crossref_primary_10_1017_pma_2023_4 crossref_primary_10_20517_ss_2023_42 crossref_primary_10_1016_j_jsv_2024_118493 crossref_primary_10_1038_s41467_023_44293_w crossref_primary_10_1016_j_matdes_2023_111988 crossref_primary_10_1115_1_4064208 crossref_primary_10_1002_adma_202301109 crossref_primary_10_1007_s00707_021_03089_z crossref_primary_10_1007_s11071_022_08082_2 crossref_primary_10_1016_j_eml_2023_102029 crossref_primary_10_1126_sciadv_ado6476 crossref_primary_10_1007_s10338_023_00399_8 crossref_primary_10_1038_s41467_021_27825_0 crossref_primary_10_1016_j_ijmecsci_2024_109375 crossref_primary_10_1016_j_ymssp_2022_110033 crossref_primary_10_1038_s41586_023_06652_x crossref_primary_10_1002_advs_202102662 crossref_primary_10_1073_pnas_2118161119 crossref_primary_10_1063_5_0050271 crossref_primary_10_1103_PhysRevResearch_3_023174 crossref_primary_10_1016_j_cossms_2020_100869 crossref_primary_10_1016_j_eml_2020_100700 crossref_primary_10_1016_j_jmps_2024_105599 crossref_primary_10_1103_PhysRevE_104_054209 crossref_primary_10_1073_pnas_2015847117 crossref_primary_10_1016_j_polymertesting_2024_108489 crossref_primary_10_3389_frobt_2020_00075 crossref_primary_10_1016_j_eml_2021_101527 crossref_primary_10_1007_s11071_023_08413_x crossref_primary_10_1145_3450626_3459940 crossref_primary_10_1038_s41467_021_23574_2 crossref_primary_10_1038_s42005_024_01630_9 crossref_primary_10_1016_j_matdes_2024_112913 crossref_primary_10_1002_adma_202304517 crossref_primary_10_1016_j_taml_2024_100528 crossref_primary_10_1002_adfm_202101428 crossref_primary_10_21468_SciPostPhys_10_6_136 crossref_primary_10_1002_advs_202202740 crossref_primary_10_1002_adma_202006939 crossref_primary_10_1103_PhysRevApplied_18_034041 crossref_primary_10_1002_aisy_202300039 crossref_primary_10_1007_s10338_023_00378_z crossref_primary_10_1016_j_tws_2022_109570 crossref_primary_10_1016_j_tws_2024_111686 crossref_primary_10_1038_s41467_020_20698_9 crossref_primary_10_1021_acsami_3c00946 crossref_primary_10_1002_advs_202308137 crossref_primary_10_1038_s41467_024_47201_y crossref_primary_10_1016_j_mechrescom_2024_104260 crossref_primary_10_1016_j_ijmecsci_2024_109315 crossref_primary_10_1073_pnas_2018610118 crossref_primary_10_1098_rspa_2020_0729 crossref_primary_10_1007_s00707_020_02881_7 crossref_primary_10_1103_PhysRevE_106_024210 crossref_primary_10_1016_j_jmps_2021_104634 crossref_primary_10_54097_hset_v77i_14353 crossref_primary_10_1063_5_0023472 crossref_primary_10_1002_adma_202200671 crossref_primary_10_1073_pnas_2212489120 crossref_primary_10_1016_j_mechmachtheory_2024_105691 crossref_primary_10_1002_adma_202308560 crossref_primary_10_1016_j_ijsolstr_2023_112396 crossref_primary_10_1103_PhysRevLett_132_068201 crossref_primary_10_1177_09574565231154248 crossref_primary_10_3390_mi13081275 crossref_primary_10_1038_s41467_023_42323_1 crossref_primary_10_1016_j_apmt_2023_102031 crossref_primary_10_1088_2631_7990_acf96a crossref_primary_10_1126_sciadv_abe2000 crossref_primary_10_1016_j_eml_2023_102068 crossref_primary_10_1002_adma_202313198 crossref_primary_10_1002_adfm_202105128 crossref_primary_10_1038_s43246_024_00448_w crossref_primary_10_1016_j_ijmecsci_2022_107913 crossref_primary_10_1016_j_ijmecsci_2023_108905 crossref_primary_10_1038_s43246_022_00280_0 crossref_primary_10_1177_09544062221099790 crossref_primary_10_1016_j_euromechsol_2022_104745 crossref_primary_10_1016_j_compstruct_2023_117366 crossref_primary_10_1115_1_4051425 crossref_primary_10_3390_designs7060129 crossref_primary_10_1016_j_jfranklin_2022_07_030 crossref_primary_10_1016_j_ijmecsci_2024_109172 crossref_primary_10_1016_j_mechmachtheory_2024_105626 crossref_primary_10_1039_D2SM01284G crossref_primary_10_1016_j_ijmecsci_2023_108584 crossref_primary_10_1103_PhysRevApplied_17_014004 crossref_primary_10_1142_S0219455422501000 crossref_primary_10_1063_5_0156023 crossref_primary_10_1002_aisy_202200400 crossref_primary_10_1103_PhysRevB_104_L140101 crossref_primary_10_1016_j_jmps_2020_104217 crossref_primary_10_1016_j_jmps_2023_105503 crossref_primary_10_1002_advs_202204733 crossref_primary_10_1016_j_eml_2021_101323 crossref_primary_10_1063_5_0152733 crossref_primary_10_1103_PhysRevLett_126_194102 crossref_primary_10_1103_PhysRevApplied_13_054067 crossref_primary_10_1515_nanoph_2022_0671 crossref_primary_10_1038_s42005_024_01690_x crossref_primary_10_1103_PhysRevE_107_014220 crossref_primary_10_1145_3476576_3476583 crossref_primary_10_1002_advs_202305113 crossref_primary_10_1016_j_sna_2021_112743 crossref_primary_10_1002_adem_202201323 crossref_primary_10_1021_acsami_1c07327 crossref_primary_10_1002_adma_202309604 crossref_primary_10_1038_s41578_022_00450_z crossref_primary_10_1017_pma_2023_11 crossref_primary_10_1016_j_jmps_2023_105237 crossref_primary_10_1038_s41586_020_03123_5 crossref_primary_10_1103_PhysRevApplied_17_024036 crossref_primary_10_1002_aisy_202000233 crossref_primary_10_1038_s41467_021_23690_z crossref_primary_10_1016_j_cpc_2022_108365 crossref_primary_10_1088_2631_8695_ad2e51 crossref_primary_10_1063_5_0153438 crossref_primary_10_2140_jomms_2024_19_265 crossref_primary_10_1002_adma_202404369 crossref_primary_10_1063_5_0144454 crossref_primary_10_1021_acs_nanolett_1c00764 crossref_primary_10_1038_s41598_022_09422_3 crossref_primary_10_1073_pnas_2117649119 crossref_primary_10_1115_1_4050556 |
Cites_doi | 10.1038/s41467-019-08678-0 10.1073/pnas.1800386115 10.1103/PhysRevLett.106.024301 10.1088/0034-4885/76/12/126501 10.1038/s41598-018-22215-x 10.1038/natrevmats.2016.46 10.1002/adma.201605800 10.1073/pnas.1713826115 10.1016/j.ijsolstr.2017.05.042 10.1093/oso/9780198509349.001.0001 10.1016/j.ijsolstr.2017.03.024 10.1557/mrc.2015.51 10.1080/00018730110117433 10.1557/jmr.2017.417 10.1103/PhysRevLett.118.204102 10.1007/978-1-4613-8348-2_11 10.1080/00150198708227908 10.1038/s41467-018-08055-3 10.1016/0001-6160(85)90214-7 10.1103/PhysRevB.93.104109 10.1038/natrevmats.2017.66 10.1063/1.4921358 10.1016/j.eml.2016.09.001 10.1038/s41563-017-0011-3 10.1016/j.jsv.2010.04.003 10.1038/nphys3801 10.1017/CBO9780511534874 10.1089/3dp.2017.0118 10.1073/pnas.1817763116 10.1103/PhysRevLett.97.133901 10.1126/scirobotics.aar7555 10.1073/pnas.1618314114 10.1007/BF01388067 10.1038/nmat2743 10.1016/j.eml.2019.100565 10.1103/PhysRevLett.115.104302 10.1007/BF00375400 10.1115/1.4026911 10.1073/pnas.1604838113 10.1002/adfm.201805290 10.1103/PhysRevLett.116.244501 10.1016/0079-6425(94)00007-7 10.1038/nphys3185 10.1063/1.3111797 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 4, 2020 Distributed under a Creative Commons Attribution 4.0 International License 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 4, 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2020 |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1073/pnas.1913228117 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1091-6490 |
EndPage | 2325 |
ExternalDocumentID | oai_HAL_hal_02471496v1 10_1073_pnas_1913228117 31969454 26928827 |
Genre | Journal Article |
GrantInformation_xml | – fundername: DOD | United States Army | RDECOM | Army Research Office (ARO) grantid: W911NF-17-1-0147 – fundername: Swiss National Science Foundation grantid: P3P3P2-174326 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c477t-4844836408bed86beeb77d4217dd6ca9fd0ec0c7cefe4961dfcf093f11a2cad63 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:22:10 EDT 2024 Tue Oct 15 15:31:08 EDT 2024 Sat Aug 17 05:44:20 EDT 2024 Thu Oct 10 16:07:29 EDT 2024 Fri Aug 23 04:37:54 EDT 2024 Sat Nov 02 12:24:45 EDT 2024 Fri Feb 02 07:18:45 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mechanical metamaterial multistability nonlinear dynamics structure phase transformation |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-4844836408bed86beeb77d4217dd6ca9fd0ec0c7cefe4961dfcf093f11a2cad63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC7007517 Author contributions: K.B. and D.M.K. designed research; L.J., R.K., J.M., A.R., V.T., and D.M.K. performed research; R.K. contributed new reagents/analytic tools; L.J., R.K., J.M., A.R., and D.M.K. analyzed data; and K.B. and D.M.K. wrote the paper. 1L.J., R.K., J.M., and A.R. contributed equally to this work. Edited by Huajian Gao, Nanyang Technological University, Singapore, and approved December 27, 2019 (received for review August 1, 2019) |
ORCID | 0000-0002-9112-6615 0000-0003-4497-5742 0000-0002-4808-2223 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/5/2319.full.pdf |
PMID | 31969454 |
PQID | 2354330041 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007517 hal_primary_oai_HAL_hal_02471496v1 proquest_miscellaneous_2344226033 proquest_journals_2354330041 crossref_primary_10_1073_pnas_1913228117 pubmed_primary_31969454 jstor_primary_26928827 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-04 |
PublicationDateYYYYMMDD | 2020-02-04 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 Porter D. A. (e_1_3_4_21_2) 2009 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_43_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_46_2 Jona F. (e_1_3_4_22_2) 1962 e_1_3_4_28_2 Bhattacharya K. (e_1_3_4_20_2) 2003 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_36_2 Truskinovsky L. (e_1_3_4_37_2) 1993 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_41_2 doi: 10.1038/s41467-019-08678-0 – ident: e_1_3_4_44_2 doi: 10.1073/pnas.1800386115 – ident: e_1_3_4_7_2 doi: 10.1103/PhysRevLett.106.024301 – ident: e_1_3_4_1_2 doi: 10.1088/0034-4885/76/12/126501 – ident: e_1_3_4_46_2 doi: 10.1038/s41598-018-22215-x – ident: e_1_3_4_24_2 doi: 10.1038/natrevmats.2016.46 – ident: e_1_3_4_28_2 doi: 10.1002/adma.201605800 – ident: e_1_3_4_39_2 doi: 10.1073/pnas.1713826115 – ident: e_1_3_4_12_2 doi: 10.1016/j.ijsolstr.2017.05.042 – volume-title: Microstructure of Martensite year: 2003 ident: e_1_3_4_20_2 doi: 10.1093/oso/9780198509349.001.0001 contributor: fullname: Bhattacharya K. – ident: e_1_3_4_11_2 doi: 10.1016/j.ijsolstr.2017.03.024 – ident: e_1_3_4_2_2 doi: 10.1557/mrc.2015.51 – ident: e_1_3_4_27_2 doi: 10.1080/00018730110117433 – ident: e_1_3_4_33_2 doi: 10.1557/jmr.2017.417 – ident: e_1_3_4_17_2 doi: 10.1103/PhysRevLett.118.204102 – start-page: 185 volume-title: Shock Induced Transitions and Phase Structures in General Media year: 1993 ident: e_1_3_4_37_2 doi: 10.1007/978-1-4613-8348-2_11 contributor: fullname: Truskinovsky L. – ident: e_1_3_4_34_2 doi: 10.1080/00150198708227908 – ident: e_1_3_4_40_2 doi: 10.1038/s41467-018-08055-3 – ident: e_1_3_4_35_2 doi: 10.1016/0001-6160(85)90214-7 – ident: e_1_3_4_19_2 doi: 10.1103/PhysRevB.93.104109 – ident: e_1_3_4_3_2 doi: 10.1038/natrevmats.2017.66 – ident: e_1_3_4_14_2 doi: 10.1063/1.4921358 – ident: e_1_3_4_32_2 doi: 10.1016/j.eml.2016.09.001 – ident: e_1_3_4_30_2 doi: 10.1038/s41563-017-0011-3 – ident: e_1_3_4_10_2 doi: 10.1016/j.jsv.2010.04.003 – volume-title: Ferroelectric Crystals, International Series of Monographs on Solid State Physics year: 1962 ident: e_1_3_4_22_2 contributor: fullname: Jona F. – ident: e_1_3_4_5_2 doi: 10.1038/nphys3801 – ident: e_1_3_4_26_2 doi: 10.1017/CBO9780511534874 – ident: e_1_3_4_29_2 doi: 10.1089/3dp.2017.0118 – ident: e_1_3_4_43_2 doi: 10.1073/pnas.1817763116 – ident: e_1_3_4_8_2 doi: 10.1103/PhysRevLett.97.133901 – ident: e_1_3_4_42_2 doi: 10.1126/scirobotics.aar7555 – ident: e_1_3_4_16_2 doi: 10.1073/pnas.1618314114 – ident: e_1_3_4_23_2 doi: 10.1007/BF01388067 – ident: e_1_3_4_45_2 doi: 10.1038/nmat2743 – ident: e_1_3_4_13_2 doi: 10.1016/j.eml.2019.100565 – ident: e_1_3_4_6_2 doi: 10.1103/PhysRevLett.115.104302 – ident: e_1_3_4_36_2 doi: 10.1007/BF00375400 – ident: e_1_3_4_4_2 doi: 10.1115/1.4026911 – ident: e_1_3_4_15_2 doi: 10.1073/pnas.1604838113 – ident: e_1_3_4_31_2 doi: 10.1002/adfm.201805290 – ident: e_1_3_4_18_2 doi: 10.1103/PhysRevLett.116.244501 – volume-title: Phase Transformations in Metals and Alloys year: 2009 ident: e_1_3_4_21_2 contributor: fullname: Porter D. A. – ident: e_1_3_4_25_2 doi: 10.1016/0079-6425(94)00007-7 – ident: e_1_3_4_38_2 doi: 10.1038/nphys3185 – ident: e_1_3_4_9_2 doi: 10.1063/1.3111797 |
SSID | ssj0009580 |
Score | 2.6892345 |
Snippet | Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level... Mimicking material-level phenomena using macroscopically architected materials has gained popularity and enabled novel engineering applications such as... |
SourceID | pubmedcentral hal proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2319 |
SubjectTerms | Acoustics Computational fluid dynamics Crystal defects Energy absorption Engineering Sciences Free surfaces Geophysics Mechanics Metamaterials Morphing Nonlinear Sciences Pattern Formation and Solitons Phase transitions Physical Sciences Physics Point defects Robotics Stiffness Two dimensional models Vibrations |
Title | Guided transition waves in multistable mechanical metamaterials |
URI | https://www.jstor.org/stable/26928827 https://www.ncbi.nlm.nih.gov/pubmed/31969454 https://www.proquest.com/docview/2354330041 https://search.proquest.com/docview/2344226033 https://univ-lemans.hal.science/hal-02471496 https://pubmed.ncbi.nlm.nih.gov/PMC7007517 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e0C9IAoU0pYqIA7lkN3EduzkhKqKsnwUcaBSb5HtjNWVuumKzbZ_n7HzAYs4cYvicRTNjOP35DcTgLdYFsgRWeKMThPBNUtKY7PEKl44jlLpcHp--U3Or8Tn6_x6B_KhFiaI9q1ZTJvb5bRZ3ARt5WppZ4NObPb98lz5jS5TswlMKEEHij522i26uhNGn1_BxNDPR_HZqtHrKREUSmJfX7kHj3wCliIXW7vS5MZrIjt54r-A59_6yT82pIsn8LhHkvFZ98b7sIPNU9jv1-o6Pu0bSr97Bu8_bhY11nHr96Ug0Yof9D3ZLJo4CAoJIZpbjJfoy4B91Oiy1YRlu_R8DlcXH36cz5P-xwmJFUq1iSiIdHEp0sJgXUiDaJSqBbGPupZWl65O0aZWWXQoSpnVzrq05C7LNLO6lvwAdpu7Bl9CTAyH587mjixFYaQRjgAV2RbWCWVZBKeD46pV1x-jCufailfe3dVvd0fwhhw7Wvm-1vOzr5W_R0BBEVWT91kEB8HvoxmTJSMWQLOPh0BU_TJbV4zngoeeYRG8HodpgfhTD93g3cbbCF8tnHIewYsubuPDh_BHoLYiuvWS2yOUk6EJd5-Dh_898wj2mOfuXgEujmG3_bnBVwRwWnNC0P7Tl5OQ1r8AOVr69w |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RYJegAKFlAIBcSiHZBPbsZMTqirKArsVhxb1FtmOra7opis2W6T-esbOB2zFBW5RPI5izYxnJn7zAvDWFLmhxpDIKplEjEoSFUqnkRY0t9RwIf3p-fSEj8_Y5_PsfAOyvhfGg_a1msX15TyuZxceW7mY61GPExt9nR4JF-hSMdqEO-ivCeuL9IFrN287TwhuwIywntFH0NGilssYSxQ0Y9dhuQ13nQkWLGNrcWnzwqEiW4Di31LP2wjKP0LS8QP41i-mRaJ8j1eNivXNLZ7Hf17tQ7jfJanhYTu8AxumfgQ73TawDA86rup3j-H9x9WsMlXYuJDn0V_hT3mNMrM69FhFTD7VpQnnxnUYO4PAy0Zimtxa_hM4O_5wejSOun8yRJoJ0UQsx3qOcpbkylQ5V8YoISqGhU1VcS0LWyVGJ1poYw0reFpZbZOC2jSVRMuK013Yqq9q8wxCLJ5oZnVmUZLliitmMVdD2VxbJjQJ4KDXSLloqTdKf2QuaOn0WP7WYwBvUGODlKPMHh9OSncPcxCBVSC_TgPY9QodxAgvCBYYOHu_13DZefCyJDRj1NORBfB6GEbfcwcqsjZXKyfDXCNyQmkAT1uDGB7e21UAYs1U1l5yfQQNwPN7dwrf---Zr-De-HQ6KSefTr48h23iPhE4oDnbh63mx8q8wDyqUS-91_wCF8ob_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIlW9UAq0pBQIiEM55GU7dnJCVWFZoK16oFLFJfJTXdFNV2y2SPx6xnks3YpTb1EyjmLNjGcm_uYzwDtbFpZaSyKnZBoxKklUKp1FWtDCUcuFbHfPT075-Jx9vcgvbh311YL2tZrE9dU0rieXLbZyNtXJgBNLzk6OhA90mUhmxiVr8BB9NuVDob7k2y267hOCizAjbGD1ETSZ1XIeY5mCpuy7LDdhw5thyXK2EpvWLj0ysgMp_i_9vIuivBWWRlvwY5hQh0b5GS8aFes_d7ge7zXjx_CoT1bDw05kGx7Y-gls98vBPDzoOavfP4UPnxcTY03Y-NDXosDC3_IGZSZ12GIWMQlVVzacWt9p7A0DLxuJ6XLnAc_gfPTp-9E46s9miDQToolYgXUd5SwtlDUFV9YqIQzDAscYrmXpTGp1qoW2zrKSZ8Zpl5bUZZkkWhpOd2C9vq7tcwixiKK507lDSVYorpjDnA1lC-2Y0CSAg0Er1ayj4KjarXNBK6_L6p8uA3iLWltKeers8eFx5e9hLiKwGuQ3WQA7rVKXYoSXBAsNHL0_aLnqPXleEZoz2tKSBfBm-Rh90G-syNpeL7wM8w3JKaUB7HZGsXz5YFsBiBVzWfnI1SdoBC3Pd6_0vXuPfA0bZx9H1fGX028vYJP4PwUeb872Yb35tbAvMZ1q1KvWcf4C_y8efg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guided+transition+waves+in+multistable+mechanical+metamaterials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jin%2C+Lishuai&rft.au=Khajehtourian%2C+Romik&rft.au=Mueller%2C+Jochen&rft.au=Rafsanjani%2C+Ahmad&rft.date=2020-02-04&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=5&rft.spage=2319&rft.epage=2325&rft_id=info:doi/10.1073%2Fpnas.1913228117&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02471496v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |