Guided transition waves in multistable mechanical metamaterials

Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions,...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 5; pp. 2319 - 2325
Main Authors Jin, Lishuai, Khajehtourian, Romik, Mueller, Jochen, Rafsanjani, Ahmad, Tournat, Vincent, Bertoldi, Katia, Kochmann, Dennis M.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave’s direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.
AbstractList Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave’s direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.
Mimicking material-level phenomena using macroscopically architected materials has gained popularity and enabled novel engineering applications such as photonic, acoustic, mechanical, and topological metamaterials. An interesting microstructural phenomenon observed in phase-transforming materials is the dissipative motion of topological defects such as phase and domain boundaries. With a few one-dimensional exceptions, structural analogs of dynamic phase-transforming materials are still rare, owing to their complicating strong nonlinearity. Through experiments, models, and simulations, we demonstrate a concept for tailoring propagating transition fronts in periodic structures in arbitrary dimensions. This significantly increases the design space of metamaterial performance and functionality and finds application in programming soft robotic locomotion, in controlling energy absorption (or release), and in mechanical logic devices. Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level in bistable architectures. What has been limited to simple one-dimensional (1D) examples is here cast into a blueprint for higher dimensions, demonstrated through 2D experiments and described by a continuum mechanical model that draws inspiration from phase transition theory in crystalline solids. Unlike materials, the presented structural analogs admit precise control of the transition wave’s direction, shape, and velocity through spatially tailoring the underlying periodic network architecture (locally varying the shape or stiffness of the fundamental building blocks, and exploiting interactions of transition fronts with lattice defects such as point defects and free surfaces). The outcome is a predictable and programmable strongly nonlinear metamaterial motion with potential for, for example, propulsion in soft robotics, morphing surfaces, reconfigurable devices, mechanical logic, and controlled energy absorption.
Author Khajehtourian, Romik
Jin, Lishuai
Tournat, Vincent
Kochmann, Dennis M.
Bertoldi, Katia
Mueller, Jochen
Rafsanjani, Ahmad
Author_xml – sequence: 1
  givenname: Lishuai
  surname: Jin
  fullname: Jin, Lishuai
– sequence: 2
  givenname: Romik
  surname: Khajehtourian
  fullname: Khajehtourian, Romik
– sequence: 3
  givenname: Jochen
  surname: Mueller
  fullname: Mueller, Jochen
– sequence: 4
  givenname: Ahmad
  surname: Rafsanjani
  fullname: Rafsanjani, Ahmad
– sequence: 5
  givenname: Vincent
  surname: Tournat
  fullname: Tournat, Vincent
– sequence: 6
  givenname: Katia
  surname: Bertoldi
  fullname: Bertoldi, Katia
– sequence: 7
  givenname: Dennis M.
  surname: Kochmann
  fullname: Kochmann, Dennis M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31969454$$D View this record in MEDLINE/PubMed
https://univ-lemans.hal.science/hal-02471496$$DView record in HAL
BookMark eNpdkU1v1DAQhi1URLeFMydQJC5wSDv-2Di-gKoK2kor9QJny7EnrFeJvcTOIv49Xm3Zlp5mNPPMO2O_Z-QkxICEvKVwQUHyy20w6YIqyhlrKZUvyIKConUjFJyQBQCTdSuYOCVnKW0AQC1beEVOOVWNEkuxIF9uZu_QVXkyIfnsY6h-mx2myodqnIfsUzbdgNWIdm2Ct2YoaTajyTh5M6TX5GVfAr55iOfkx7ev369v69X9zd311aq2Qspci1aIljcC2g5d23SInZROMCqda6xRvQO0YKXFHoVqqOttD4r3lBpmjWv4Ofl80N3O3YjOYigXD3o7-dFMf3Q0Xv_fCX6tf8adlgBySWUR-HQQWD8bu71a6X0NmJC07N7Rwn58WDbFXzOmrEefLA6DCRjnpBkXgrEGOC_oh2foJs5TKF9RqKXgHEDsBS8PlJ1iShP2xwso6L2Rem-kfjSyTLx_-t4j_8-5Arw7AJuU43Tss0axtmWS_wWry6XS
CitedBy_id crossref_primary_10_1016_j_matdes_2023_112428
crossref_primary_10_1088_1361_665X_ac37ff
crossref_primary_10_1063_5_0057288
crossref_primary_10_1002_adfm_202207581
crossref_primary_10_1002_adfm_202300433
crossref_primary_10_1016_j_compositesb_2023_110585
crossref_primary_10_1016_j_compstruct_2022_115308
crossref_primary_10_1016_j_jmps_2022_104834
crossref_primary_10_1073_pnas_2317340121
crossref_primary_10_1016_j_eml_2021_101580
crossref_primary_10_3389_frobt_2021_673478
crossref_primary_10_1016_j_tws_2021_108212
crossref_primary_10_1007_s00707_021_03015_3
crossref_primary_10_1002_aisy_202200146
crossref_primary_10_1063_5_0171993
crossref_primary_10_1016_j_eml_2021_101347
crossref_primary_10_1016_j_ijsolstr_2023_112597
crossref_primary_10_1002_adfm_202313865
crossref_primary_10_1002_adma_202305254
crossref_primary_10_1088_1361_6633_ace069
crossref_primary_10_1126_sciadv_abf1966
crossref_primary_10_1016_j_apm_2024_06_035
crossref_primary_10_1039_D3SM01174G
crossref_primary_10_1038_s42256_023_00762_x
crossref_primary_10_1016_j_apmt_2022_101714
crossref_primary_10_1038_s41467_024_45602_7
crossref_primary_10_1038_s41467_022_28696_9
crossref_primary_10_1017_pma_2023_4
crossref_primary_10_20517_ss_2023_42
crossref_primary_10_1016_j_jsv_2024_118493
crossref_primary_10_1038_s41467_023_44293_w
crossref_primary_10_1016_j_matdes_2023_111988
crossref_primary_10_1115_1_4064208
crossref_primary_10_1002_adma_202301109
crossref_primary_10_1007_s00707_021_03089_z
crossref_primary_10_1007_s11071_022_08082_2
crossref_primary_10_1016_j_eml_2023_102029
crossref_primary_10_1126_sciadv_ado6476
crossref_primary_10_1007_s10338_023_00399_8
crossref_primary_10_1038_s41467_021_27825_0
crossref_primary_10_1016_j_ijmecsci_2024_109375
crossref_primary_10_1016_j_ymssp_2022_110033
crossref_primary_10_1038_s41586_023_06652_x
crossref_primary_10_1002_advs_202102662
crossref_primary_10_1073_pnas_2118161119
crossref_primary_10_1063_5_0050271
crossref_primary_10_1103_PhysRevResearch_3_023174
crossref_primary_10_1016_j_cossms_2020_100869
crossref_primary_10_1016_j_eml_2020_100700
crossref_primary_10_1016_j_jmps_2024_105599
crossref_primary_10_1103_PhysRevE_104_054209
crossref_primary_10_1073_pnas_2015847117
crossref_primary_10_1016_j_polymertesting_2024_108489
crossref_primary_10_3389_frobt_2020_00075
crossref_primary_10_1016_j_eml_2021_101527
crossref_primary_10_1007_s11071_023_08413_x
crossref_primary_10_1145_3450626_3459940
crossref_primary_10_1038_s41467_021_23574_2
crossref_primary_10_1038_s42005_024_01630_9
crossref_primary_10_1016_j_matdes_2024_112913
crossref_primary_10_1002_adma_202304517
crossref_primary_10_1016_j_taml_2024_100528
crossref_primary_10_1002_adfm_202101428
crossref_primary_10_21468_SciPostPhys_10_6_136
crossref_primary_10_1002_advs_202202740
crossref_primary_10_1002_adma_202006939
crossref_primary_10_1103_PhysRevApplied_18_034041
crossref_primary_10_1002_aisy_202300039
crossref_primary_10_1007_s10338_023_00378_z
crossref_primary_10_1016_j_tws_2022_109570
crossref_primary_10_1016_j_tws_2024_111686
crossref_primary_10_1038_s41467_020_20698_9
crossref_primary_10_1021_acsami_3c00946
crossref_primary_10_1002_advs_202308137
crossref_primary_10_1038_s41467_024_47201_y
crossref_primary_10_1016_j_mechrescom_2024_104260
crossref_primary_10_1016_j_ijmecsci_2024_109315
crossref_primary_10_1073_pnas_2018610118
crossref_primary_10_1098_rspa_2020_0729
crossref_primary_10_1007_s00707_020_02881_7
crossref_primary_10_1103_PhysRevE_106_024210
crossref_primary_10_1016_j_jmps_2021_104634
crossref_primary_10_54097_hset_v77i_14353
crossref_primary_10_1063_5_0023472
crossref_primary_10_1002_adma_202200671
crossref_primary_10_1073_pnas_2212489120
crossref_primary_10_1016_j_mechmachtheory_2024_105691
crossref_primary_10_1002_adma_202308560
crossref_primary_10_1016_j_ijsolstr_2023_112396
crossref_primary_10_1103_PhysRevLett_132_068201
crossref_primary_10_1177_09574565231154248
crossref_primary_10_3390_mi13081275
crossref_primary_10_1038_s41467_023_42323_1
crossref_primary_10_1016_j_apmt_2023_102031
crossref_primary_10_1088_2631_7990_acf96a
crossref_primary_10_1126_sciadv_abe2000
crossref_primary_10_1016_j_eml_2023_102068
crossref_primary_10_1002_adma_202313198
crossref_primary_10_1002_adfm_202105128
crossref_primary_10_1038_s43246_024_00448_w
crossref_primary_10_1016_j_ijmecsci_2022_107913
crossref_primary_10_1016_j_ijmecsci_2023_108905
crossref_primary_10_1038_s43246_022_00280_0
crossref_primary_10_1177_09544062221099790
crossref_primary_10_1016_j_euromechsol_2022_104745
crossref_primary_10_1016_j_compstruct_2023_117366
crossref_primary_10_1115_1_4051425
crossref_primary_10_3390_designs7060129
crossref_primary_10_1016_j_jfranklin_2022_07_030
crossref_primary_10_1016_j_ijmecsci_2024_109172
crossref_primary_10_1016_j_mechmachtheory_2024_105626
crossref_primary_10_1039_D2SM01284G
crossref_primary_10_1016_j_ijmecsci_2023_108584
crossref_primary_10_1103_PhysRevApplied_17_014004
crossref_primary_10_1142_S0219455422501000
crossref_primary_10_1063_5_0156023
crossref_primary_10_1002_aisy_202200400
crossref_primary_10_1103_PhysRevB_104_L140101
crossref_primary_10_1016_j_jmps_2020_104217
crossref_primary_10_1016_j_jmps_2023_105503
crossref_primary_10_1002_advs_202204733
crossref_primary_10_1016_j_eml_2021_101323
crossref_primary_10_1063_5_0152733
crossref_primary_10_1103_PhysRevLett_126_194102
crossref_primary_10_1103_PhysRevApplied_13_054067
crossref_primary_10_1515_nanoph_2022_0671
crossref_primary_10_1038_s42005_024_01690_x
crossref_primary_10_1103_PhysRevE_107_014220
crossref_primary_10_1145_3476576_3476583
crossref_primary_10_1002_advs_202305113
crossref_primary_10_1016_j_sna_2021_112743
crossref_primary_10_1002_adem_202201323
crossref_primary_10_1021_acsami_1c07327
crossref_primary_10_1002_adma_202309604
crossref_primary_10_1038_s41578_022_00450_z
crossref_primary_10_1017_pma_2023_11
crossref_primary_10_1016_j_jmps_2023_105237
crossref_primary_10_1038_s41586_020_03123_5
crossref_primary_10_1103_PhysRevApplied_17_024036
crossref_primary_10_1002_aisy_202000233
crossref_primary_10_1038_s41467_021_23690_z
crossref_primary_10_1016_j_cpc_2022_108365
crossref_primary_10_1088_2631_8695_ad2e51
crossref_primary_10_1063_5_0153438
crossref_primary_10_2140_jomms_2024_19_265
crossref_primary_10_1002_adma_202404369
crossref_primary_10_1063_5_0144454
crossref_primary_10_1021_acs_nanolett_1c00764
crossref_primary_10_1038_s41598_022_09422_3
crossref_primary_10_1073_pnas_2117649119
crossref_primary_10_1115_1_4050556
Cites_doi 10.1038/s41467-019-08678-0
10.1073/pnas.1800386115
10.1103/PhysRevLett.106.024301
10.1088/0034-4885/76/12/126501
10.1038/s41598-018-22215-x
10.1038/natrevmats.2016.46
10.1002/adma.201605800
10.1073/pnas.1713826115
10.1016/j.ijsolstr.2017.05.042
10.1093/oso/9780198509349.001.0001
10.1016/j.ijsolstr.2017.03.024
10.1557/mrc.2015.51
10.1080/00018730110117433
10.1557/jmr.2017.417
10.1103/PhysRevLett.118.204102
10.1007/978-1-4613-8348-2_11
10.1080/00150198708227908
10.1038/s41467-018-08055-3
10.1016/0001-6160(85)90214-7
10.1103/PhysRevB.93.104109
10.1038/natrevmats.2017.66
10.1063/1.4921358
10.1016/j.eml.2016.09.001
10.1038/s41563-017-0011-3
10.1016/j.jsv.2010.04.003
10.1038/nphys3801
10.1017/CBO9780511534874
10.1089/3dp.2017.0118
10.1073/pnas.1817763116
10.1103/PhysRevLett.97.133901
10.1126/scirobotics.aar7555
10.1073/pnas.1618314114
10.1007/BF01388067
10.1038/nmat2743
10.1016/j.eml.2019.100565
10.1103/PhysRevLett.115.104302
10.1007/BF00375400
10.1115/1.4026911
10.1073/pnas.1604838113
10.1002/adfm.201805290
10.1103/PhysRevLett.116.244501
10.1016/0079-6425(94)00007-7
10.1038/nphys3185
10.1063/1.3111797
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 4, 2020
Distributed under a Creative Commons Attribution 4.0 International License
2020
Copyright_xml – notice: Copyright National Academy of Sciences Feb 4, 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2020
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.1913228117
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
PubMed


Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1091-6490
EndPage 2325
ExternalDocumentID oai_HAL_hal_02471496v1
10_1073_pnas_1913228117
31969454
26928827
Genre Journal Article
GrantInformation_xml – fundername: DOD | United States Army | RDECOM | Army Research Office (ARO)
  grantid: W911NF-17-1-0147
– fundername: Swiss National Science Foundation
  grantid: P3P3P2-174326
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c477t-4844836408bed86beeb77d4217dd6ca9fd0ec0c7cefe4961dfcf093f11a2cad63
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:10 EDT 2024
Tue Oct 15 15:31:08 EDT 2024
Sat Aug 17 05:44:20 EDT 2024
Thu Oct 10 16:07:29 EDT 2024
Fri Aug 23 04:37:54 EDT 2024
Sat Nov 02 12:24:45 EDT 2024
Fri Feb 02 07:18:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mechanical metamaterial
multistability
nonlinear dynamics
structure
phase transformation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-4844836408bed86beeb77d4217dd6ca9fd0ec0c7cefe4961dfcf093f11a2cad63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC7007517
Author contributions: K.B. and D.M.K. designed research; L.J., R.K., J.M., A.R., V.T., and D.M.K. performed research; R.K. contributed new reagents/analytic tools; L.J., R.K., J.M., A.R., and D.M.K. analyzed data; and K.B. and D.M.K. wrote the paper.
1L.J., R.K., J.M., and A.R. contributed equally to this work.
Edited by Huajian Gao, Nanyang Technological University, Singapore, and approved December 27, 2019 (received for review August 1, 2019)
ORCID 0000-0002-9112-6615
0000-0003-4497-5742
0000-0002-4808-2223
OpenAccessLink https://www.pnas.org/content/pnas/117/5/2319.full.pdf
PMID 31969454
PQID 2354330041
PQPubID 42026
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7007517
hal_primary_oai_HAL_hal_02471496v1
proquest_miscellaneous_2344226033
proquest_journals_2354330041
crossref_primary_10_1073_pnas_1913228117
pubmed_primary_31969454
jstor_primary_26928827
PublicationCentury 2000
PublicationDate 2020-02-04
PublicationDateYYYYMMDD 2020-02-04
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
Porter D. A. (e_1_3_4_21_2) 2009
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_43_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_46_2
Jona F. (e_1_3_4_22_2) 1962
e_1_3_4_28_2
Bhattacharya K. (e_1_3_4_20_2) 2003
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_36_2
Truskinovsky L. (e_1_3_4_37_2) 1993
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_41_2
  doi: 10.1038/s41467-019-08678-0
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.1800386115
– ident: e_1_3_4_7_2
  doi: 10.1103/PhysRevLett.106.024301
– ident: e_1_3_4_1_2
  doi: 10.1088/0034-4885/76/12/126501
– ident: e_1_3_4_46_2
  doi: 10.1038/s41598-018-22215-x
– ident: e_1_3_4_24_2
  doi: 10.1038/natrevmats.2016.46
– ident: e_1_3_4_28_2
  doi: 10.1002/adma.201605800
– ident: e_1_3_4_39_2
  doi: 10.1073/pnas.1713826115
– ident: e_1_3_4_12_2
  doi: 10.1016/j.ijsolstr.2017.05.042
– volume-title: Microstructure of Martensite
  year: 2003
  ident: e_1_3_4_20_2
  doi: 10.1093/oso/9780198509349.001.0001
  contributor:
    fullname: Bhattacharya K.
– ident: e_1_3_4_11_2
  doi: 10.1016/j.ijsolstr.2017.03.024
– ident: e_1_3_4_2_2
  doi: 10.1557/mrc.2015.51
– ident: e_1_3_4_27_2
  doi: 10.1080/00018730110117433
– ident: e_1_3_4_33_2
  doi: 10.1557/jmr.2017.417
– ident: e_1_3_4_17_2
  doi: 10.1103/PhysRevLett.118.204102
– start-page: 185
  volume-title: Shock Induced Transitions and Phase Structures in General Media
  year: 1993
  ident: e_1_3_4_37_2
  doi: 10.1007/978-1-4613-8348-2_11
  contributor:
    fullname: Truskinovsky L.
– ident: e_1_3_4_34_2
  doi: 10.1080/00150198708227908
– ident: e_1_3_4_40_2
  doi: 10.1038/s41467-018-08055-3
– ident: e_1_3_4_35_2
  doi: 10.1016/0001-6160(85)90214-7
– ident: e_1_3_4_19_2
  doi: 10.1103/PhysRevB.93.104109
– ident: e_1_3_4_3_2
  doi: 10.1038/natrevmats.2017.66
– ident: e_1_3_4_14_2
  doi: 10.1063/1.4921358
– ident: e_1_3_4_32_2
  doi: 10.1016/j.eml.2016.09.001
– ident: e_1_3_4_30_2
  doi: 10.1038/s41563-017-0011-3
– ident: e_1_3_4_10_2
  doi: 10.1016/j.jsv.2010.04.003
– volume-title: Ferroelectric Crystals, International Series of Monographs on Solid State Physics
  year: 1962
  ident: e_1_3_4_22_2
  contributor:
    fullname: Jona F.
– ident: e_1_3_4_5_2
  doi: 10.1038/nphys3801
– ident: e_1_3_4_26_2
  doi: 10.1017/CBO9780511534874
– ident: e_1_3_4_29_2
  doi: 10.1089/3dp.2017.0118
– ident: e_1_3_4_43_2
  doi: 10.1073/pnas.1817763116
– ident: e_1_3_4_8_2
  doi: 10.1103/PhysRevLett.97.133901
– ident: e_1_3_4_42_2
  doi: 10.1126/scirobotics.aar7555
– ident: e_1_3_4_16_2
  doi: 10.1073/pnas.1618314114
– ident: e_1_3_4_23_2
  doi: 10.1007/BF01388067
– ident: e_1_3_4_45_2
  doi: 10.1038/nmat2743
– ident: e_1_3_4_13_2
  doi: 10.1016/j.eml.2019.100565
– ident: e_1_3_4_6_2
  doi: 10.1103/PhysRevLett.115.104302
– ident: e_1_3_4_36_2
  doi: 10.1007/BF00375400
– ident: e_1_3_4_4_2
  doi: 10.1115/1.4026911
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.1604838113
– ident: e_1_3_4_31_2
  doi: 10.1002/adfm.201805290
– ident: e_1_3_4_18_2
  doi: 10.1103/PhysRevLett.116.244501
– volume-title: Phase Transformations in Metals and Alloys
  year: 2009
  ident: e_1_3_4_21_2
  contributor:
    fullname: Porter D. A.
– ident: e_1_3_4_25_2
  doi: 10.1016/0079-6425(94)00007-7
– ident: e_1_3_4_38_2
  doi: 10.1038/nphys3185
– ident: e_1_3_4_9_2
  doi: 10.1063/1.3111797
SSID ssj0009580
Score 2.6892345
Snippet Transition fronts, moving through solids and fluids in the form of propagating domain or phase boundaries, have recently been mimicked at the structural level...
Mimicking material-level phenomena using macroscopically architected materials has gained popularity and enabled novel engineering applications such as...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2319
SubjectTerms Acoustics
Computational fluid dynamics
Crystal defects
Energy absorption
Engineering Sciences
Free surfaces
Geophysics
Mechanics
Metamaterials
Morphing
Nonlinear Sciences
Pattern Formation and Solitons
Phase transitions
Physical Sciences
Physics
Point defects
Robotics
Stiffness
Two dimensional models
Vibrations
Title Guided transition waves in multistable mechanical metamaterials
URI https://www.jstor.org/stable/26928827
https://www.ncbi.nlm.nih.gov/pubmed/31969454
https://www.proquest.com/docview/2354330041
https://search.proquest.com/docview/2344226033
https://univ-lemans.hal.science/hal-02471496
https://pubmed.ncbi.nlm.nih.gov/PMC7007517
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e0C9IAoU0pYqIA7lkN3EduzkhKqKsnwUcaBSb5HtjNWVuumKzbZ_n7HzAYs4cYvicRTNjOP35DcTgLdYFsgRWeKMThPBNUtKY7PEKl44jlLpcHp--U3Or8Tn6_x6B_KhFiaI9q1ZTJvb5bRZ3ARt5WppZ4NObPb98lz5jS5TswlMKEEHij522i26uhNGn1_BxNDPR_HZqtHrKREUSmJfX7kHj3wCliIXW7vS5MZrIjt54r-A59_6yT82pIsn8LhHkvFZ98b7sIPNU9jv1-o6Pu0bSr97Bu8_bhY11nHr96Ug0Yof9D3ZLJo4CAoJIZpbjJfoy4B91Oiy1YRlu_R8DlcXH36cz5P-xwmJFUq1iSiIdHEp0sJgXUiDaJSqBbGPupZWl65O0aZWWXQoSpnVzrq05C7LNLO6lvwAdpu7Bl9CTAyH587mjixFYaQRjgAV2RbWCWVZBKeD46pV1x-jCufailfe3dVvd0fwhhw7Wvm-1vOzr5W_R0BBEVWT91kEB8HvoxmTJSMWQLOPh0BU_TJbV4zngoeeYRG8HodpgfhTD93g3cbbCF8tnHIewYsubuPDh_BHoLYiuvWS2yOUk6EJd5-Dh_898wj2mOfuXgEujmG3_bnBVwRwWnNC0P7Tl5OQ1r8AOVr69w
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21RYJegAKFlAIBcSiHZBPbsZMTqirKArsVhxb1FtmOra7opis2W6T-esbOB2zFBW5RPI5izYxnJn7zAvDWFLmhxpDIKplEjEoSFUqnkRY0t9RwIf3p-fSEj8_Y5_PsfAOyvhfGg_a1msX15TyuZxceW7mY61GPExt9nR4JF-hSMdqEO-ivCeuL9IFrN287TwhuwIywntFH0NGilssYSxQ0Y9dhuQ13nQkWLGNrcWnzwqEiW4Di31LP2wjKP0LS8QP41i-mRaJ8j1eNivXNLZ7Hf17tQ7jfJanhYTu8AxumfgQ73TawDA86rup3j-H9x9WsMlXYuJDn0V_hT3mNMrM69FhFTD7VpQnnxnUYO4PAy0Zimtxa_hM4O_5wejSOun8yRJoJ0UQsx3qOcpbkylQ5V8YoISqGhU1VcS0LWyVGJ1poYw0reFpZbZOC2jSVRMuK013Yqq9q8wxCLJ5oZnVmUZLliitmMVdD2VxbJjQJ4KDXSLloqTdKf2QuaOn0WP7WYwBvUGODlKPMHh9OSncPcxCBVSC_TgPY9QodxAgvCBYYOHu_13DZefCyJDRj1NORBfB6GEbfcwcqsjZXKyfDXCNyQmkAT1uDGB7e21UAYs1U1l5yfQQNwPN7dwrf---Zr-De-HQ6KSefTr48h23iPhE4oDnbh63mx8q8wDyqUS-91_wCF8ob_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIlW9UAq0pBQIiEM55GU7dnJCVWFZoK16oFLFJfJTXdFNV2y2SPx6xnks3YpTb1EyjmLNjGcm_uYzwDtbFpZaSyKnZBoxKklUKp1FWtDCUcuFbHfPT075-Jx9vcgvbh311YL2tZrE9dU0rieXLbZyNtXJgBNLzk6OhA90mUhmxiVr8BB9NuVDob7k2y267hOCizAjbGD1ETSZ1XIeY5mCpuy7LDdhw5thyXK2EpvWLj0ysgMp_i_9vIuivBWWRlvwY5hQh0b5GS8aFes_d7ge7zXjx_CoT1bDw05kGx7Y-gls98vBPDzoOavfP4UPnxcTY03Y-NDXosDC3_IGZSZ12GIWMQlVVzacWt9p7A0DLxuJ6XLnAc_gfPTp-9E46s9miDQToolYgXUd5SwtlDUFV9YqIQzDAscYrmXpTGp1qoW2zrKSZ8Zpl5bUZZkkWhpOd2C9vq7tcwixiKK507lDSVYorpjDnA1lC-2Y0CSAg0Er1ayj4KjarXNBK6_L6p8uA3iLWltKeers8eFx5e9hLiKwGuQ3WQA7rVKXYoSXBAsNHL0_aLnqPXleEZoz2tKSBfBm-Rh90G-syNpeL7wM8w3JKaUB7HZGsXz5YFsBiBVzWfnI1SdoBC3Pd6_0vXuPfA0bZx9H1fGX028vYJP4PwUeb872Yb35tbAvMZ1q1KvWcf4C_y8efg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guided+transition+waves+in+multistable+mechanical+metamaterials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Jin%2C+Lishuai&rft.au=Khajehtourian%2C+Romik&rft.au=Mueller%2C+Jochen&rft.au=Rafsanjani%2C+Ahmad&rft.date=2020-02-04&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=5&rft.spage=2319&rft.epage=2325&rft_id=info:doi/10.1073%2Fpnas.1913228117&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02471496v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon