Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells
Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointe...
Saved in:
Published in | Pharmaceutics Vol. 12; no. 2; p. 158 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
15.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy. |
---|---|
AbstractList | Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy. |
Author | Carrascal, Mylène A Ferreira, Daniel Alexandre Gomes, Célia Calmeiro, João Falcão, Amílcar Tavares, Adriana Ramos Neves, Bruno Miguel Cruz, Maria Teresa |
AuthorAffiliation | 1 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; calmeiro.joao@gmail.com (J.C.); adriana_tavares.36@hotmail.com (A.R.T.); acfalcao@ff.uc.pt (A.F.); trosete@ff.uc.pt (M.T.C.) 4 Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; dbferreira96@gmail.com (D.A.F.); cgomes@fmed.uc.pt (C.G.) 3 Tecnimede Group, 2710-089 Sintra, Portugal 2 Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal; mylenecarrascal87@gmail.com 6 Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal 7 Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal 5 Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal |
AuthorAffiliation_xml | – name: 2 Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal; mylenecarrascal87@gmail.com – name: 3 Tecnimede Group, 2710-089 Sintra, Portugal – name: 1 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; calmeiro.joao@gmail.com (J.C.); adriana_tavares.36@hotmail.com (A.R.T.); acfalcao@ff.uc.pt (A.F.); trosete@ff.uc.pt (M.T.C.) – name: 5 Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal – name: 7 Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal – name: 4 Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; dbferreira96@gmail.com (D.A.F.); cgomes@fmed.uc.pt (C.G.) – name: 6 Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal |
Author_xml | – sequence: 1 givenname: João orcidid: 0000-0003-4061-0391 surname: Calmeiro fullname: Calmeiro, João organization: Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal – sequence: 2 givenname: Mylène A orcidid: 0000-0002-3391-543X surname: Carrascal fullname: Carrascal, Mylène A organization: Tecnimede Group, 2710-089 Sintra, Portugal – sequence: 3 givenname: Adriana Ramos orcidid: 0000-0002-5501-1829 surname: Tavares fullname: Tavares, Adriana Ramos organization: Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal – sequence: 4 givenname: Daniel Alexandre surname: Ferreira fullname: Ferreira, Daniel Alexandre organization: Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal – sequence: 5 givenname: Célia orcidid: 0000-0002-7497-4129 surname: Gomes fullname: Gomes, Célia organization: Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal – sequence: 6 givenname: Amílcar surname: Falcão fullname: Falcão, Amílcar organization: Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal – sequence: 7 givenname: Maria Teresa surname: Cruz fullname: Cruz, Maria Teresa organization: Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal – sequence: 8 givenname: Bruno Miguel orcidid: 0000-0001-7391-3124 surname: Neves fullname: Neves, Bruno Miguel organization: Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32075343$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV1rFDEUhoNUbK39CUouvVnN94cXgowfXSgIsnobMsmZ3SkzyZjsFPbfO3Vr6YLnJoeTnOe8J-9LdJZyAoReU_KOc0veTztfRh9g3vehUkYYodI8QxfUWrsSlvGzJ_k5uqr1lizBOTXcvkDnnBEtueAXaPsZUiz9wsENDAP-5UPoE1Tc5YIbnwIUvB7HOeX9DoqfDh_wZgf4Rx4A5w5fz6NPuMnpDtK-z8kPeHOYAFN8yq2v0PPODxWuHs5L9PPrl01zvbr5_m3dfLpZBaH1fiVU4BJshGA1k8qEEFmkXinFvA6KcmNiZ6U0LTFtMFwK0yqmPPUMVBc1v0TrIzdmf-um0o--HFz2vftbyGXrfFlUDeCMloa3PAobW2GNsD54zYkiOoDR1C6sj0fWNLcjxLCsWPxwAj29Sf3ObfOd00QrrvkCePsAKPn3DHXvxr6G5Tt8gjxXx7i0ggjF7nXL49NQcq0FuscxlLh7z91_PV_63jzV-Nj1z2H-B4CFrZs |
CitedBy_id | crossref_primary_10_5306_wjco_v12_i11_966 crossref_primary_10_1007_s00761_021_01012_8 crossref_primary_10_1186_s43141_023_00597_4 crossref_primary_10_1089_jir_2019_0244 crossref_primary_10_3389_fimmu_2024_1350208 crossref_primary_10_3389_fneur_2023_1271822 crossref_primary_10_3390_cancers13092280 crossref_primary_10_1016_j_ctarc_2022_100575 crossref_primary_10_1016_j_trecan_2022_12_008 crossref_primary_10_1016_j_phrs_2020_105309 crossref_primary_10_1021_acssynbio_2c00027 crossref_primary_10_1007_s00262_022_03190_9 crossref_primary_10_3390_cancers16101831 crossref_primary_10_3389_fimmu_2023_1242911 crossref_primary_10_1002_ijc_35062 crossref_primary_10_3389_fonc_2023_1149551 crossref_primary_10_2217_imt_2021_0097 crossref_primary_10_18632_oncotarget_27977 crossref_primary_10_3389_fbioe_2022_953887 crossref_primary_10_3389_fimmu_2024_1385484 crossref_primary_10_3389_fcimb_2022_897133 crossref_primary_10_3389_fimmu_2024_1354339 crossref_primary_10_4049_jimmunol_2200366 crossref_primary_10_1007_s10529_021_03176_0 crossref_primary_10_1016_j_addr_2021_03_001 crossref_primary_10_1371_journal_pntd_0009627 crossref_primary_10_1080_08820139_2022_2109486 crossref_primary_10_3390_genes14122118 crossref_primary_10_1016_j_ctrv_2023_102665 crossref_primary_10_1172_jci_insight_155022 crossref_primary_10_3390_ijms22083978 crossref_primary_10_3390_vaccines9060634 crossref_primary_10_3389_fonc_2023_1251355 crossref_primary_10_1038_s41598_022_27303_7 crossref_primary_10_1016_j_yexcr_2020_112003 crossref_primary_10_1007_s11654_021_00356_2 crossref_primary_10_3389_fimmu_2021_733506 crossref_primary_10_3390_pharmaceutics14081614 crossref_primary_10_35754_0234_5730_2021_66_3_322_345 crossref_primary_10_3390_v15112277 crossref_primary_10_4049_jimmunol_2300642 crossref_primary_10_1016_j_compbiolchem_2021_107585 crossref_primary_10_3390_vaccines9060668 crossref_primary_10_1007_s00262_021_03109_w crossref_primary_10_1016_j_ejcb_2022_151284 crossref_primary_10_3389_fimmu_2021_719664 crossref_primary_10_1002_eji_202149487 crossref_primary_10_3390_ijms23094865 crossref_primary_10_1016_j_neo_2023_100899 crossref_primary_10_2217_pme_2022_0052 crossref_primary_10_1007_s11684_023_1048_0 crossref_primary_10_1016_j_cellimm_2022_104616 crossref_primary_10_1016_j_phrs_2020_105374 crossref_primary_10_3390_jcm11123417 crossref_primary_10_1080_13543784_2022_2049232 |
Cites_doi | 10.1038/srep23505 10.1002/ijc.29087 10.3389/fimmu.2018.02806 10.3389/fimmu.2019.01195 10.3389/fimmu.2012.00014 10.1111/cas.12695 10.1038/nrc.2018.6 10.1016/j.trecan.2018.09.001 10.4049/jimmunol.1401903 10.3389/fimmu.2018.01499 10.1016/S1470-2045(13)70585-0 10.1016/j.immuni.2013.07.004 10.1126/sciimmunol.aau4292 10.1038/nature14404 10.1016/j.ctrv.2017.01.008 10.1038/nrd4506 10.1182/blood-2005-03-1154 10.1186/s40425-019-0580-6 10.1080/21645515.2015.1096458 10.1158/2159-8290.CD-15-0510 10.1038/nrd4296 10.1002/eji.201344272 10.1038/ni.2370 10.1016/j.it.2012.04.009 10.1016/B978-0-12-417028-5.00001-6 10.1186/s40425-019-0787-6 10.5772/intechopen.68352 10.1084/jem.20100223 10.1084/jem.20142350 10.1038/nm.f.1774 10.1615/CritRevOncog.2014011142 10.1056/NEJMoa1001294 10.1186/s40425-019-0716-8 10.1016/j.immuni.2017.01.003 10.1007/978-1-4939-3606-9_2 10.1097/01.cji.0000211335.14385.57 10.1016/j.cell.2018.01.004 10.1158/1078-0432.CCR-10-3421 10.4049/jimmunol.1401243 10.21037/tlcr.2017.03.02 10.4049/jimmunol.172.1.123 10.4049/jimmunol.1500564 10.4049/jimmunol.174.5.2591 10.1084/jem.20100348 10.1093/hmg/ddv270 10.1016/j.celrep.2019.08.086 10.1038/bjc.2013.117 10.3389/fimmu.2017.00760 10.1186/s12916-016-0623-5 10.3389/fimmu.2014.00159 10.1002/eji.201040419 10.1016/j.immuni.2012.04.012 10.3389/fimmu.2019.00009 10.1146/annurev-immunol-100311-102839 10.1089/scd.2013.0521 10.1158/2326-6066.CIR-14-0165 10.1084/jem.20141441 10.1186/s40425-019-0565-5 10.3389/fimmu.2015.00013 10.4292/wjgpt.v7.i1.133 10.1126/science.1164206 10.4049/jimmunol.1202798 10.18632/oncotarget.9624 10.1016/j.trsl.2015.07.008 10.1016/j.immuni.2009.08.027 10.1158/0008-5472.CAN-12-2583 10.2217/fon.12.125 10.1158/1078-0432.CCR-15-2205 10.3389/fimmu.2019.01205 10.1080/2162402X.2016.1168555 10.1158/1078-0432.CCR-15-0685 10.3389/fimmu.2012.00013 10.1126/science.1083317 10.1016/j.immuni.2012.03.009 10.1182/blood-2002-08-2493 10.1084/jem.20092618 10.1056/NEJM197709012970907 10.1016/j.ccell.2016.06.003 10.1038/s41591-018-0085-8 10.1038/ncomms8458 10.1038/nature06175 10.4049/jimmunol.173.4.2780 10.1016/j.immuni.2011.07.010 10.1158/0008-5472.CAN-08-1440 10.4161/onci.23140 10.1016/j.ccell.2015.03.001 10.3389/fimmu.2014.00174 10.1158/0008-5472.CAN-12-4366 10.1172/JCI34584 10.1038/cr.2016.157 10.1038/nature07750 10.1038/gt.2011.177 10.1016/j.coi.2014.11.001 10.1097/CJI.0000000000000063 10.1158/2326-6066.CIR-17-0341 10.1016/j.jcyt.2019.07.007 10.1038/ncomms13720 10.3389/fimmu.2012.00214 10.1084/jem.20121103 10.1111/imm.12888 10.1016/j.celrep.2018.07.033 10.1016/j.immuni.2016.03.012 10.3389/fimmu.2014.00165 10.1182/blood-2008-05-155176 10.1126/science.aaa3828 10.1182/blood-2012-06-435644 10.1016/j.ccell.2014.09.007 10.1158/1078-0432.CCR-08-2729 10.1038/s41590-018-0145-8 10.1172/JCI96791 10.1016/j.ccell.2014.09.006 10.2332/allergolint.R-07-149 10.1146/annurev-immunol-020711-074950 10.1038/nri3254 10.1080/2162402X.2015.1019198 10.1016/j.cell.2019.09.035 10.1038/s41551-018-0250-x 10.1007/s00262-019-02396-8 10.1002/eji.201344076 10.1016/j.ccell.2017.04.003 10.1084/jem.20092140 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/pharmaceutics12020158 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1999-4923 |
ExternalDocumentID | oai_doaj_org_article_87583b3d49db49849aca730607ce8719 10_3390_pharmaceutics12020158 32075343 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia grantid: PD/BDE/135076/2017 – fundername: FCT/FEDER/COMPETE2020 grantid: UIDB/04501/2020 – fundername: FCT/FEDER/COMPETE2020 grantid: POCI-01-0247-FEDER-033532 |
GroupedDBID | --- 3V. 53G 5VS 8G5 AADQD ABDBF ABUWG ACGFO ACIHN AEAQA AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BPHCQ CCPQU DIK DWQXO EBD ESX F5P FD6 GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IHR KQ8 M2O M48 MK0 MODMG M~E NPM OK1 P6G PGMZT PIMPY PQQKQ PROAC RIG RNS RPM TR2 TUS AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c477t-46c35e9dec972568ccd2d1a6662a7c61388df9558b08bc83548b626a1a2e6fd73 |
IEDL.DBID | RPM |
ISSN | 1999-4923 |
IngestDate | Tue Oct 22 15:09:56 EDT 2024 Tue Sep 17 21:19:35 EDT 2024 Sat Aug 17 00:45:15 EDT 2024 Thu Aug 22 11:28:50 EDT 2024 Sat Sep 28 08:28:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | dendritic cell-based vaccines conventional type 1 dendritic cells CD141+XCR1+ DCs anti-tumor immunotherapy |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-46c35e9dec972568ccd2d1a6662a7c61388df9558b08bc83548b626a1a2e6fd73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0001-7391-3124 0000-0003-4061-0391 0000-0002-3391-543X 0000-0002-7497-4129 0000-0002-5501-1829 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076373/ |
PMID | 32075343 |
PQID | 2359404627 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_87583b3d49db49849aca730607ce8719 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076373 proquest_miscellaneous_2359404627 crossref_primary_10_3390_pharmaceutics12020158 pubmed_primary_32075343 |
PublicationCentury | 2000 |
PublicationDate | 20200215 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200215 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Pharmaceutics |
PublicationTitleAlternate | Pharmaceutics |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Wculek (ref_102) 2019; 7 Hierro (ref_3) 2017; 54 Takeuchi (ref_54) 2007; 56 Tsuchiya (ref_120) 2019; 29 Spranger (ref_94) 2015; 523 Hartung (ref_110) 2015; 194 Isolation (ref_68) 2018; 1423 Schreibelt (ref_96) 2016; 22 Zhang (ref_31) 2011; 35 Manzo (ref_8) 2015; 24 Yamazaki (ref_65) 2013; 190 Sancho (ref_67) 2009; 458 Bi (ref_40) 2017; 8 Rosa (ref_62) 2018; 3 Wylie (ref_80) 2015; 4 Collin (ref_45) 2018; 154 Ruffell (ref_88) 2014; 26 Melief (ref_26) 1991; 2 Bachem (ref_60) 2012; 3 Ratzinger (ref_23) 2004; 173 Kroczek (ref_111) 2018; 9 Yan (ref_119) 2016; 7 Mikucki (ref_85) 2015; 6 Quezada (ref_29) 2013; 108 Guo (ref_124) 2018; 9 Anguille (ref_6) 2014; 15 Spolski (ref_35) 2014; 13 Schraml (ref_57) 2015; 32 Dresch (ref_58) 2012; 33 Salmon (ref_78) 2016; 44 Ferlazzo (ref_89) 2014; 5 Haniffa (ref_52) 2012; 37 Rousseau (ref_117) 2003; 101 Campbell (ref_9) 2017; 6 Haniffa (ref_64) 2013; 2 Saxena (ref_18) 2018; 2 Ohta (ref_72) 2016; 6 Barry (ref_93) 2018; 24 Picco (ref_115) 2014; 44 Steinman (ref_13) 2011; 30 Appay (ref_32) 2008; 14 Sun (ref_36) 2003; 300 Verdijk (ref_20) 2009; 15 Tel (ref_24) 2013; 121 Zhang (ref_66) 2012; 36 Cancel (ref_75) 2019; 10 Walzer (ref_44) 2005; 106 Silk (ref_108) 2012; 19 Anel (ref_28) 2015; 21 Kroczek (ref_70) 2012; 3 Roberts (ref_81) 2016; 30 Tel (ref_98) 2013; 73 Haniffa (ref_46) 2013; 120 Constantino (ref_10) 2016; 168 Hayakawa (ref_43) 2004; 172 Antony (ref_34) 2005; 174 Thordardottir (ref_105) 2014; 23 Calmeiro (ref_16) 2019; 7 Laoui (ref_103) 2016; 7 Miller (ref_61) 2012; 13 Larsen (ref_39) 2014; 19 Terhorst (ref_113) 2015; 194 Kantoff (ref_100) 2010; 363 Okamoto (ref_12) 2016; 7 Steinman (ref_14) 2007; 449 ref_55 Poulin (ref_63) 2010; 207 Bol (ref_95) 2019; 7 Oettgen (ref_1) 1977; 297 Mizumoto (ref_112) 2018; 45 Joffre (ref_25) 2012; 12 (ref_84) 2018; 4 Caminschi (ref_109) 2008; 112 Cintolo (ref_17) 2012; 8 Romano (ref_22) 2011; 17 Prue (ref_99) 2015; 38 Fromm (ref_101) 2016; 5 Haabeth (ref_33) 2014; 5 Sluijter (ref_83) 2015; 3 Wendel (ref_86) 2008; 68 Caminschi (ref_122) 2012; 3 Vitale (ref_38) 2014; 44 Hu (ref_41) 2019; 10 Carreno (ref_125) 2015; 348 Deauvieau (ref_90) 2015; 136 Dorner (ref_71) 2009; 31 Cueto (ref_79) 2016; 6 Zeng (ref_116) 2018; 128 Breton (ref_59) 2015; 212 Spranger (ref_87) 2017; 31 Sancho (ref_114) 2008; 118 Segura (ref_50) 2013; 210 Tomita (ref_106) 2019; 68 Bonavita (ref_92) 2018; 172 Michea (ref_82) 2018; 19 Mittal (ref_53) 2017; 5 Crozat (ref_69) 2010; 207 Sabado (ref_11) 2017; 27 Pampena (ref_42) 2015; 6 Joffre (ref_123) 2010; 40 ref_30 Childs (ref_7) 2015; 14 Adachi (ref_4) 2015; 106 Topalian (ref_5) 2015; 27 Alexandre (ref_74) 2016; 213 Hildner (ref_76) 2008; 322 Westdorp (ref_97) 2019; 7 Brown (ref_47) 2019; 179 Kim (ref_107) 2019; 21 Murray (ref_37) 2016; 12 Ngwa (ref_2) 2018; 18 Wimmers (ref_19) 2014; 5 Balan (ref_48) 2018; 24 Broz (ref_77) 2014; 26 Wong (ref_91) 2013; 73 Palucka (ref_15) 2013; 39 Jongbloed (ref_49) 2010; 207 Merad (ref_56) 2013; 31 Balan (ref_104) 2016; 1423 Balan (ref_21) 2014; 193 Hariharan (ref_27) 1995; 55 Bachem (ref_51) 2010; 207 Kitazawa (ref_121) 2019; 10 Russell (ref_118) 2007; 30 Brewitz (ref_73) 2017; 46 |
References_xml | – volume: 6 start-page: 23505 year: 2016 ident: ref_72 article-title: Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis publication-title: Sci. Rep. doi: 10.1038/srep23505 contributor: fullname: Ohta – volume: 136 start-page: 1085 year: 2015 ident: ref_90 article-title: Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells publication-title: Int. J. Cancer doi: 10.1002/ijc.29087 contributor: fullname: Deauvieau – volume: 9 start-page: 2806 year: 2018 ident: ref_111 article-title: Structure-Function Relationship of XCL1 Used for in vivo Targeting of Antigen Into XCR1+ Dendritic Cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02806 contributor: fullname: Kroczek – volume: 55 start-page: 3486 year: 1995 ident: ref_27 article-title: The induction of cytotoxic T cells and tumor regression by soluble antigen formulation publication-title: Cancer Res. contributor: fullname: Hariharan – volume: 10 start-page: 1195 year: 2019 ident: ref_121 article-title: Novel targeting to XCR1+ dendritic cells using allogeneic T cells for polytopical antibody responses in the lymph nodes publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01195 contributor: fullname: Kitazawa – volume: 3 start-page: 14 year: 2012 ident: ref_70 article-title: The Role of XCR1 and its Ligand XCL1 in Antigen Cross-Presentation by Murine and Human Dendritic Cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2012.00014 contributor: fullname: Kroczek – volume: 106 start-page: 945 year: 2015 ident: ref_4 article-title: Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy publication-title: Cancer Sci. doi: 10.1111/cas.12695 contributor: fullname: Adachi – volume: 18 start-page: 313 year: 2018 ident: ref_2 article-title: Using immunotherapy to boost the abscopal effect publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2018.6 contributor: fullname: Ngwa – volume: 4 start-page: 784 year: 2018 ident: ref_84 article-title: The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity publication-title: Trends Cancer doi: 10.1016/j.trecan.2018.09.001 – volume: 194 start-page: 1069 year: 2015 ident: ref_110 article-title: Induction of Potent CD8 T Cell Cytotoxicity by Specific Targeting of Antigen to Cross-Presenting Dendritic Cells In Vivo via Murine or Human XCR1 publication-title: J. Immunol. doi: 10.4049/jimmunol.1401903 contributor: fullname: Hartung – volume: 9 start-page: 1499 year: 2018 ident: ref_124 article-title: Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01499 contributor: fullname: Guo – volume: 15 start-page: e257 year: 2014 ident: ref_6 article-title: Clinical use of dendritic cells for cancer therapy publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(13)70585-0 contributor: fullname: Anguille – volume: 39 start-page: 38 year: 2013 ident: ref_15 article-title: Dendritic-cell-based therapeutic cancer vaccines publication-title: Immunity doi: 10.1016/j.immuni.2013.07.004 contributor: fullname: Palucka – volume: 3 start-page: 1 year: 2018 ident: ref_62 article-title: Direct reprogramming of fibroblasts into antigen-presenting dendritic cells publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aau4292 contributor: fullname: Rosa – volume: 523 start-page: 231 year: 2015 ident: ref_94 article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity publication-title: Nature doi: 10.1038/nature14404 contributor: fullname: Spranger – volume: 54 start-page: 74 year: 2017 ident: ref_3 article-title: The expanding role of immunotherapy publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2017.01.008 contributor: fullname: Hierro – volume: 2 start-page: 347 year: 1991 ident: ref_26 article-title: Cytotoxic T lymphocyte therapy of cancer and tumor escape mechanisms publication-title: Semin. Cancer Biol. contributor: fullname: Melief – volume: 14 start-page: 487 year: 2015 ident: ref_7 article-title: Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: The force awakens publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4506 contributor: fullname: Childs – volume: 106 start-page: 2252 year: 2005 ident: ref_44 article-title: Natural-killer cells and dendritic cells: l’union fait la force publication-title: Blood doi: 10.1182/blood-2005-03-1154 contributor: fullname: Walzer – volume: 7 start-page: 109 year: 2019 ident: ref_95 article-title: The clinical application of cancer immunotherapy based on naturally circulating dendritic cells publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0580-6 contributor: fullname: Bol – volume: 12 start-page: 607 year: 2016 ident: ref_37 article-title: Targeting the tumor microenvironment to improve natural killer cell-based immunotherapies: On being in the right place at the right time, with resilience publication-title: Hum. Vaccines Immunother. doi: 10.1080/21645515.2015.1096458 contributor: fullname: Murray – volume: 6 start-page: 71 year: 2016 ident: ref_79 article-title: Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-0510 contributor: fullname: Cueto – volume: 13 start-page: 379 year: 2014 ident: ref_35 article-title: Interleukin-21: A double-edged sword with therapeutic potential publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4296 contributor: fullname: Spolski – volume: 44 start-page: 1582 year: 2014 ident: ref_38 article-title: Effect of tumor cells and tumor microenvironment on NK-cell function publication-title: Eur. J. Immunol. doi: 10.1002/eji.201344272 contributor: fullname: Vitale – volume: 13 start-page: 888 year: 2012 ident: ref_61 article-title: Deciphering the transcriptional network of the dendritic cell lineage publication-title: Nat. Immunol. doi: 10.1038/ni.2370 contributor: fullname: Miller – volume: 33 start-page: 381 year: 2012 ident: ref_58 article-title: Development of antigen cross-presentation capacity in dendritic cells publication-title: Trends Immunol. doi: 10.1016/j.it.2012.04.009 contributor: fullname: Dresch – volume: 120 start-page: 1 year: 2013 ident: ref_46 article-title: Ontogeny and functional specialization of dendritic cells in human and mouse publication-title: Adv. Immunol. doi: 10.1016/B978-0-12-417028-5.00001-6 contributor: fullname: Haniffa – volume: 7 start-page: 302 year: 2019 ident: ref_97 article-title: Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0787-6 contributor: fullname: Westdorp – ident: ref_55 doi: 10.5772/intechopen.68352 – volume: 207 start-page: 1283 year: 2010 ident: ref_69 article-title: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20100223 contributor: fullname: Crozat – volume: 213 start-page: 75 year: 2016 ident: ref_74 article-title: XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses publication-title: J. Exp. Med. doi: 10.1084/jem.20142350 contributor: fullname: Alexandre – volume: 14 start-page: 623 year: 2008 ident: ref_32 article-title: CD8+ T cell efficacy in vaccination and disease publication-title: Nat. Med. doi: 10.1038/nm.f.1774 contributor: fullname: Appay – volume: 19 start-page: 91 year: 2014 ident: ref_39 article-title: NK cells in the tumor microenvironment publication-title: Crit. Rev. Oncog. doi: 10.1615/CritRevOncog.2014011142 contributor: fullname: Larsen – volume: 363 start-page: 411 year: 2010 ident: ref_100 article-title: Sipuleucel-T immunotherapy for castration-resistant prostate cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1001294 contributor: fullname: Kantoff – volume: 7 start-page: 238 year: 2019 ident: ref_16 article-title: Biomaterial-based platforms for in situ dendritic cell programming and their use in antitumor immunotherapy publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0716-8 contributor: fullname: Calmeiro – volume: 46 start-page: 205 year: 2017 ident: ref_73 article-title: CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming publication-title: Immunity doi: 10.1016/j.immuni.2017.01.003 contributor: fullname: Brewitz – volume: 1423 start-page: 19 year: 2016 ident: ref_104 article-title: In vitro generation of human XCR1+ dendritic cells from CD34+ hematopoietic progenitors publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3606-9_2 contributor: fullname: Balan – volume: 30 start-page: 227 year: 2007 ident: ref_118 article-title: Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin publication-title: J. Immunother. doi: 10.1097/01.cji.0000211335.14385.57 contributor: fullname: Russell – volume: 172 start-page: 1022 year: 2018 ident: ref_92 article-title: NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control publication-title: Cell doi: 10.1016/j.cell.2018.01.004 contributor: fullname: Bonavita – volume: 17 start-page: 1984 year: 2011 ident: ref_22 article-title: Peptide-Loaded Langerhans Cells, Despite Increased IL15 Secretion and T-Cell Activation In Vitro, Elicit Antitumor T-Cell Responses Comparable to Peptide-Loaded Monocyte-Derived Dendritic Cells In Vivo publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-3421 contributor: fullname: Romano – volume: 193 start-page: 1622 year: 2014 ident: ref_21 article-title: Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1401243 contributor: fullname: Balan – volume: 6 start-page: 220 year: 2017 ident: ref_9 article-title: Mini-review of conventional and hypofractionated radiation therapy combined with immunotherapy for non-small cell lung cancer publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2017.03.02 contributor: fullname: Campbell – volume: 172 start-page: 123 year: 2004 ident: ref_43 article-title: NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy publication-title: J. Immunol. doi: 10.4049/jimmunol.172.1.123 contributor: fullname: Hayakawa – volume: 194 start-page: 5895 year: 2015 ident: ref_113 article-title: Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1 + Dendritic Cells Induces Potent Antitumoral Responses publication-title: J. Immunol. doi: 10.4049/jimmunol.1500564 contributor: fullname: Terhorst – volume: 174 start-page: 2591 year: 2005 ident: ref_34 article-title: CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells publication-title: J. Immunol. doi: 10.4049/jimmunol.174.5.2591 contributor: fullname: Antony – volume: 207 start-page: 1273 year: 2010 ident: ref_51 article-title: Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20100348 contributor: fullname: Bachem – volume: 24 start-page: R67 year: 2015 ident: ref_8 article-title: Antigen-specific T cell therapies for cancer publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv270 contributor: fullname: Manzo – volume: 29 start-page: 162 year: 2019 ident: ref_120 article-title: Type I Interferon Delivery by iPSC-Derived Myeloid Cells Elicits Antitumor Immunity via XCR1+ Dendritic Cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.086 contributor: fullname: Tsuchiya – volume: 108 start-page: 1560 year: 2013 ident: ref_29 article-title: Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.117 contributor: fullname: Quezada – volume: 8 start-page: 760 year: 2017 ident: ref_40 article-title: NK Cell Exhaustion publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00760 contributor: fullname: Bi – ident: ref_30 doi: 10.1186/s12916-016-0623-5 – volume: 5 start-page: 159 year: 2014 ident: ref_89 article-title: Cross-talks between natural killer cells and distinct subsets of dendritic cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00159 contributor: fullname: Ferlazzo – volume: 40 start-page: 1255 year: 2010 ident: ref_123 article-title: Efficient and versatile manipulation of the peripheral CD4+ compartment by Ag targeting to DNGR-1/CLEC9A publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040419 contributor: fullname: Joffre – volume: 37 start-page: 60 year: 2012 ident: ref_52 article-title: Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells publication-title: Immunity doi: 10.1016/j.immuni.2012.04.012 contributor: fullname: Haniffa – volume: 10 start-page: 9 year: 2019 ident: ref_75 article-title: Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How? publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00009 contributor: fullname: Cancel – volume: 30 start-page: 1 year: 2011 ident: ref_13 article-title: Decisions about Dendritic Cells: Past, Present, and Future publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-100311-102839 contributor: fullname: Steinman – volume: 23 start-page: 955 year: 2014 ident: ref_105 article-title: The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+ hematopoietic progenitor cells publication-title: Stem Cells Dev. doi: 10.1089/scd.2013.0521 contributor: fullname: Thordardottir – volume: 3 start-page: 495 year: 2015 ident: ref_83 article-title: Arming the melanoma sentinel lymph node through local administration of CpG-B and GM-CSF: Recruitment and activation of BDCA3/CD141+ dendritic cells and enhanced cross-presentation publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0165 contributor: fullname: Sluijter – volume: 212 start-page: 401 year: 2015 ident: ref_59 article-title: Circulating precursors of human CD1c+ and CD141+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20141441 contributor: fullname: Breton – volume: 7 start-page: 1 year: 2019 ident: ref_102 article-title: Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0565-5 contributor: fullname: Wculek – volume: 6 start-page: 13 year: 2015 ident: ref_42 article-title: Natural killer cells as helper cells in dendritic cell cancer vaccines publication-title: Front. Immunol. doi: 10.3389/fimmu.2015.00013 contributor: fullname: Pampena – volume: 7 start-page: 133 year: 2016 ident: ref_12 article-title: Dendritic cell-based vaccine for pancreatic cancer in Japan publication-title: World J. Gastrointest. Pharmacol. Ther. doi: 10.4292/wjgpt.v7.i1.133 contributor: fullname: Okamoto – volume: 322 start-page: 1097 year: 2008 ident: ref_76 article-title: Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity publication-title: Science doi: 10.1126/science.1164206 contributor: fullname: Hildner – volume: 190 start-page: 6071 year: 2013 ident: ref_65 article-title: Critical Roles of a Dendritic Cell Subset Expressing a Chemokine Receptor, XCR1 publication-title: J. Immunol. doi: 10.4049/jimmunol.1202798 contributor: fullname: Yamazaki – volume: 7 start-page: 40437 year: 2016 ident: ref_119 article-title: A novel peptide targeting Clec9a on dendritic cell for cancer immunotherapy publication-title: Oncotarget doi: 10.18632/oncotarget.9624 contributor: fullname: Yan – volume: 168 start-page: 74 year: 2016 ident: ref_10 article-title: Antitumor dendritic cell–based vaccines: Lessons from 20 years of clinical trials and future perspectives publication-title: Transl. Res. doi: 10.1016/j.trsl.2015.07.008 contributor: fullname: Constantino – volume: 31 start-page: 823 year: 2009 ident: ref_71 article-title: Selective Expression of the Chemokine Receptor XCR1 on Cross-presenting Dendritic Cells Determines Cooperation with CD8+ T Cells publication-title: Immunity doi: 10.1016/j.immuni.2009.08.027 contributor: fullname: Dorner – volume: 73 start-page: 1063 year: 2013 ident: ref_98 article-title: Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2583 contributor: fullname: Tel – volume: 8 start-page: 1273 year: 2012 ident: ref_17 article-title: Dendritic cell-based vaccines: Barriers and opportunities publication-title: Future Oncol. doi: 10.2217/fon.12.125 contributor: fullname: Cintolo – volume: 22 start-page: 2155 year: 2016 ident: ref_96 article-title: Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-2205 contributor: fullname: Schreibelt – volume: 10 start-page: 1205 year: 2019 ident: ref_41 article-title: Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01205 contributor: fullname: Hu – volume: 5 start-page: e1168555 year: 2016 ident: ref_101 article-title: CMRF-56+ blood dendritic cells loaded with mRNA induce effective antigen-specific cytotoxic T-lymphocyte responses publication-title: Oncoimmunology doi: 10.1080/2162402X.2016.1168555 contributor: fullname: Fromm – volume: 21 start-page: 5047 year: 2015 ident: ref_28 article-title: How Do Cytotoxic Lymphocytes Kill Cancer Cells? publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0685 contributor: fullname: Anel – volume: 3 start-page: 13 year: 2012 ident: ref_122 article-title: Targeting Dendritic Cells in vivo for Cancer Therapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2012.00013 contributor: fullname: Caminschi – volume: 300 start-page: 339 year: 2003 ident: ref_36 article-title: Defective CD8 T cell memory following acute infection without CD4 T cell help publication-title: Science doi: 10.1126/science.1083317 contributor: fullname: Sun – volume: 36 start-page: 646 year: 2012 ident: ref_66 article-title: The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments publication-title: Immunity doi: 10.1016/j.immuni.2012.03.009 contributor: fullname: Zhang – volume: 101 start-page: 1718 year: 2003 ident: ref_117 article-title: Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma publication-title: Blood doi: 10.1182/blood-2002-08-2493 contributor: fullname: Rousseau – volume: 207 start-page: 1261 year: 2010 ident: ref_63 article-title: Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20092618 contributor: fullname: Poulin – volume: 297 start-page: 484 year: 1977 ident: ref_1 article-title: Immunotherapy of cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJM197709012970907 contributor: fullname: Oettgen – volume: 30 start-page: 324 year: 2016 ident: ref_81 article-title: Critical Role for CD103 + /CD141 + Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.003 contributor: fullname: Roberts – volume: 24 start-page: 1178 year: 2018 ident: ref_93 article-title: A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments publication-title: Nat. Med. doi: 10.1038/s41591-018-0085-8 contributor: fullname: Barry – volume: 6 start-page: 7458 year: 2015 ident: ref_85 article-title: Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints publication-title: Nat. Commun. doi: 10.1038/ncomms8458 contributor: fullname: Mikucki – volume: 449 start-page: 419 year: 2007 ident: ref_14 article-title: Taking dendritic cells into medicine publication-title: Nature doi: 10.1038/nature06175 contributor: fullname: Steinman – volume: 173 start-page: 2780 year: 2004 ident: ref_23 article-title: Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monoc publication-title: J. Immunol. doi: 10.4049/jimmunol.173.4.2780 contributor: fullname: Ratzinger – volume: 35 start-page: 161 year: 2011 ident: ref_31 article-title: CD8+ T Cells: Foot Soldiers of the Immune System publication-title: Immunity doi: 10.1016/j.immuni.2011.07.010 contributor: fullname: Zhang – volume: 68 start-page: 8437 year: 2008 ident: ref_86 article-title: Natural Killer Cell Accumulation in Tumors Is Dependent on IFN- and CXCR3 Ligands publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-1440 contributor: fullname: Wendel – volume: 2 start-page: e23140 year: 2013 ident: ref_64 article-title: Identification of human tissue cross-presenting dendritic cells: A new target for cancer vaccines publication-title: Oncoimmunology doi: 10.4161/onci.23140 contributor: fullname: Haniffa – volume: 1423 start-page: 61 year: 2018 ident: ref_68 article-title: Chapter 5 the Isolation and Enrichment of Large Numbers of Highly Purifi ed Mouse Spleen Dendritic Cell Populations and Their publication-title: Methods Mol. Biol. contributor: fullname: Isolation – volume: 27 start-page: 450 year: 2015 ident: ref_5 article-title: Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.03.001 contributor: fullname: Topalian – volume: 5 start-page: 174 year: 2014 ident: ref_33 article-title: How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules? publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00174 contributor: fullname: Haabeth – volume: 73 start-page: 4653 year: 2013 ident: ref_91 article-title: IL-18-Primed Helper NK Cells Collaborate with Dendritic Cells to Promote Recruitment of Effector CD8+ T Cells to the Tumor Microenvironment publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4366 contributor: fullname: Wong – volume: 118 start-page: 2098 year: 2008 ident: ref_114 article-title: Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin publication-title: J. Clin. Investig. doi: 10.1172/JCI34584 contributor: fullname: Sancho – volume: 27 start-page: 74 year: 2017 ident: ref_11 article-title: Dendritic cell-based immunotherapy publication-title: Cell Res. doi: 10.1038/cr.2016.157 contributor: fullname: Sabado – volume: 458 start-page: 899 year: 2009 ident: ref_67 article-title: Identification of a dendritic cell receptor that couples sensing of necrosis to immunity publication-title: Nature doi: 10.1038/nature07750 contributor: fullname: Sancho – volume: 19 start-page: 1035 year: 2012 ident: ref_108 article-title: Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141+XCR1+ dendritic cells publication-title: Gene Ther. doi: 10.1038/gt.2011.177 contributor: fullname: Silk – volume: 32 start-page: 13 year: 2015 ident: ref_57 article-title: Defining dendritic cells publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2014.11.001 contributor: fullname: Schraml – volume: 38 start-page: 71 year: 2015 ident: ref_99 article-title: A Phase I Clinical Trial of CD1c (BDCA-1)+ Dendritic Cells Pulsed With HLA-A*0201 Peptides for Immunotherapy of Metastatic Hormone Refractory Prostate Cancer publication-title: J. Immunother. doi: 10.1097/CJI.0000000000000063 contributor: fullname: Prue – volume: 5 start-page: 1098 year: 2017 ident: ref_53 article-title: Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-17-0341 contributor: fullname: Mittal – volume: 21 start-page: 1049 year: 2019 ident: ref_107 article-title: Human CD141+ dendritic cells generated from adult peripheral blood monocytes publication-title: Cytotherapy doi: 10.1016/j.jcyt.2019.07.007 contributor: fullname: Kim – volume: 7 start-page: 1 year: 2016 ident: ref_103 article-title: The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity publication-title: Nat. Commun. doi: 10.1038/ncomms13720 contributor: fullname: Laoui – volume: 3 start-page: 214 year: 2012 ident: ref_60 article-title: Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation publication-title: Front. Immunol. doi: 10.3389/fimmu.2012.00214 contributor: fullname: Bachem – volume: 210 start-page: 1035 year: 2013 ident: ref_50 article-title: Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ–resident dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20121103 contributor: fullname: Segura – volume: 45 start-page: 1469 year: 2018 ident: ref_112 article-title: In Vivo Antigen Delivery to Dendritic Cells-A Novel Peptide Vaccine for Cancer Therapy publication-title: Cancer Chemother. contributor: fullname: Mizumoto – volume: 154 start-page: 3 year: 2018 ident: ref_45 article-title: Human dendritic cell subsets: An update publication-title: Immunology doi: 10.1111/imm.12888 contributor: fullname: Collin – volume: 24 start-page: 1902 year: 2018 ident: ref_48 article-title: Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.07.033 contributor: fullname: Balan – volume: 44 start-page: 924 year: 2016 ident: ref_78 article-title: Expansion and Activation of CD103 + Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition publication-title: Immunity doi: 10.1016/j.immuni.2016.03.012 contributor: fullname: Salmon – volume: 5 start-page: 165 year: 2014 ident: ref_19 article-title: Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00165 contributor: fullname: Wimmers – volume: 112 start-page: 3264 year: 2008 ident: ref_109 article-title: The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement publication-title: Blood doi: 10.1182/blood-2008-05-155176 contributor: fullname: Caminschi – volume: 348 start-page: 803 year: 2015 ident: ref_125 article-title: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells publication-title: Science doi: 10.1126/science.aaa3828 contributor: fullname: Carreno – volume: 121 start-page: 459 year: 2013 ident: ref_24 article-title: Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets publication-title: Blood doi: 10.1182/blood-2012-06-435644 contributor: fullname: Tel – volume: 26 start-page: 638 year: 2014 ident: ref_77 article-title: Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.007 contributor: fullname: Broz – volume: 15 start-page: 2531 year: 2009 ident: ref_20 article-title: Limited Amounts of Dendritic Cells Migrate into the T-Cell Area of Lymph Nodes but Have High Immune Activating Potential in Melanoma Patients publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-2729 contributor: fullname: Verdijk – volume: 19 start-page: 885 year: 2018 ident: ref_82 article-title: Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0145-8 contributor: fullname: Michea – volume: 128 start-page: 1971 year: 2018 ident: ref_116 article-title: Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy publication-title: J. Clin. Investig. doi: 10.1172/JCI96791 contributor: fullname: Zeng – volume: 26 start-page: 623 year: 2014 ident: ref_88 article-title: Macrophage IL-10 Blocks CD8+ T Cell-Dependent Responses to Chemotherapy by Suppressing IL-12 Expression in Intratumoral Dendritic Cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.09.006 contributor: fullname: Ruffell – volume: 56 start-page: 215 year: 2007 ident: ref_54 article-title: Dendritic cells: Ontogeny publication-title: Allergol. Int. doi: 10.2332/allergolint.R-07-149 contributor: fullname: Takeuchi – volume: 31 start-page: 563 year: 2013 ident: ref_56 article-title: The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-020711-074950 contributor: fullname: Merad – volume: 12 start-page: 557 year: 2012 ident: ref_25 article-title: Cross-presentation by dendritic cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3254 contributor: fullname: Joffre – volume: 4 start-page: e1019198 year: 2015 ident: ref_80 article-title: Cross-presentation of cutaneous melanoma antigen by migratory XCR1 + CD103 − and XCR1 + CD103 + dendritic cells publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1019198 contributor: fullname: Wylie – volume: 179 start-page: 846 year: 2019 ident: ref_47 article-title: Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity publication-title: Cell doi: 10.1016/j.cell.2019.09.035 contributor: fullname: Brown – volume: 2 start-page: 341 year: 2018 ident: ref_18 article-title: Towards superior dendritic-cell vaccines for cancer therapy publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0250-x contributor: fullname: Saxena – volume: 68 start-page: 1605 year: 2019 ident: ref_106 article-title: Induction of tumor-specific CD8+ cytotoxic T lymphocytes from naïve human T cells by using Mycobacterium-derived mycolic acid and lipoarabinomannan-stimulated dendritic cells publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02396-8 contributor: fullname: Tomita – volume: 44 start-page: 1947 year: 2014 ident: ref_115 article-title: Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas publication-title: Eur. J. Immunol. doi: 10.1002/eji.201344076 contributor: fullname: Picco – volume: 31 start-page: 711 year: 2017 ident: ref_87 article-title: Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.04.003 contributor: fullname: Spranger – volume: 207 start-page: 1247 year: 2010 ident: ref_49 article-title: Human CD141 + (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens publication-title: J. Exp. Med. doi: 10.1084/jem.20092140 contributor: fullname: Jongbloed |
SSID | ssj0000331839 |
Score | 2.4613194 |
SecondaryResourceType | review_article |
Snippet | Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 158 |
SubjectTerms | anti-tumor immunotherapy cd141+xcr1+ dcs conventional type 1 dendritic cells dendritic cell-based vaccines Review |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr1UpfQRWtBUqjiRkvgR29zotohWKkIIKm6RXymVVllElsP-e2aShd1USL30mkS25W_i-T57ZszYpzLpxANHdaIFz6UqQ-5EEXJUAjyQQYVI-5A_T6uTS_njSl2tXfVFMWFDeeBh4g6QTxvhRZQ2emmNtC44tMqq0CEh2R9S9wq7Jqb6NViQrdohZUegrj-4uV5tEXclSn70g2bkjPqa_U8Rzb_jJdcc0PFL9mLJHOFoGPEme5baV2zvbOhwsQ8Xq0yqbh_24GxVlHqxxX5_TW3srzWASZpO4ZcLdKTeAZJWmBD0t_CdckWWGVmLQ2oQzmfTBLMG-r1-mKyFqAMpWChh3G73ml0ef7uYnOTLSxbyILWe57IKQiUbU7Aa6Y8JIfJYOlQ13OmAzt6Y2FiljC-MD7RNZDyKIFc6nqomavGGbbSzNr1jkBCgRgYeTaVkLJNHNuVipX1SXnreZOzzw2zXN0MtjRo1CMFTPwlPxr4QJo8fUyns_gEaSL00kPpfBpKxjw-I1vjr0HmIa9Psrqu5UFZScq7O2NsB4ceuBEcuJaTImB5hPxrL-E3757ovz60LXLO12P4fg3_PntNcUJh4qT6wjfntXdpBFjT3u73B3wMohAdP priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6V8sIL4iZcMhLqU1M2PmIHCSFYqAoSqEJd1LfIV1qkVVI2W4n998wk2W6Dljdec9iWZ8b-PnsOgFdZ1JF7juxEC55KlfnUiolPkQlwTwrlA51Dfv2WH83kl1N1ugPrhArDBLZbqR3Vk5ot5ge_f63eocG_JcaJlP31xfnm9LfNkM3jFmduwE0ukayTN9-A-LvFWZASF30sz7__Hu1SXTL_bQj0b0fKazvT4R24PUBK9r7XgbuwE-t7sHfcd7jaZyebEKt2n-2x40226tV9OPsY69DVO2DTOJ-zH9bTXXvLEM2yKenEgn2mIJIhVGv1hhpk35t5ZE3FuksANr3mu86I2rKMjdttH8Ds8NPJ9Cgdqi-kXmq9TGXuhYpFiL7QiIuM94GHzCLd4VZ7RAHGhKpQyriJcZ7Oj4xDdmQzy2NeBS0ewm7d1PExsOhkUUnPg8mVDFl0CLNsyLWLyknHqwQO1rNdXvRJNkokJySecqt4EvhAMrn6mHJkdw-axVk5mFyJTMwIJ4IsAvZvZGG9xfUsn2gfkSYWCbxcS7REm6KLElvH5rItuVCFpKhdncCjXsJXXQmOIEtIkYAeyX40lvGb-ud5l7dbT3Ax1-LJ_xj8U7hFc0H-45l6BrvLxWV8jvBo6V50Cv8HUsoSmw priority: 102 providerName: Scholars Portal |
Title | Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32075343 https://search.proquest.com/docview/2359404627 https://pubmed.ncbi.nlm.nih.gov/PMC7076373 https://doaj.org/article/87583b3d49db49849aca730607ce8719 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaSdOlS9F31YbBAkSmyLT5EqlujJkgLODCCpMgm8KUkgCMZljP43_dISbFVZOqiQQ-S4H3U3Xe8OyL0LXHCEUOAnQhKYsYTEys6NTEwAWI8oIz1fsjZeXp2xX5f8-s9xPtcmBC0b_TduFrcj6u72xBbubw3kz5ObDKf5QLINxV0so_2AaA7FD38fqmHadZm61Cg9JPl7dY73CTA9kEF-nP6KAF9SRkdqKRQuf8pc_PfqMkdNXT6Er3o7Ef8ox3nK7TnqtfocN72vTnCl9t8quYIH-L5tjT15g26-ekqGw43wLlbLPAfZfzGeoPBdMW5B8AK__IZI11e1ua7bxBf1AuH6xIHjz_OdwLVseexOMHDdpu36Or05DI_i7ujFmLDhFjHLDWUu8w6kwkwgqQxlthEAbchShhQ-VLaMuNc6qnUxjuLpAYqpBJFXFpaQd-hg6qu3AeEnWZZyQyxMuXMJk6DTaVsKrTjmmlSRmjcz3axbCtqFMBEvKSKJyUVoWMvk8eXfUHscKNe3RQdLAqgXZJqallmoX_JMmUUYCOdCuOAE2YR-tpLtIAF5HdFVOXqh6YglGfMp-iKCL1vJfzYVY-QCImB7AdjGT4BzIYi3R1GP_73l5_Qcz8BPkI84Z_RwXr14L6AAbTWI_Ts-OR8fjEKDgS4zpgchUXwF1Z7C_4 |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jc9MwFNaUcoALO8WsYobpqXZiLZbNDQydFJpOhkk7vXm0ue2Q2pk4OYRfz5OXJu70AlfLli3rk973Se89IfQptMISTUCdCEp8xkPtSzrUPigBoh2gtHHrkOOTaHTKfpzz8x3Eu1iY2mlfq6ugmF0HxdVl7Vs5v9aDzk9sMBmnAsQ3FXRwD92H8TpkWyK9noCpA2rSxOtQEPWD-eVmfbgKQe-DEXQn9VECFpMy2jNKde7-uwjnbb_JLUN0-BiddU1o_E9-B6ulCvSfW9kd_7mNT9CjlpriL03xU7Rji2dof9I0an2Ap5tQreoA7-PJJuv1-jm6-GYLU5-bgFM7m-Ezqd2efYWBFePUYWuBj1wwShvytf7sKsS_ypnFZY7rzQScbvnAYyeRcYj79VYv0Onh92k68ttTHHzNhFj6LNKU28RYnQjgV7HWhphQgmwiUmhgE3Fs8oTzWA1jpd06VKxAZclQEhvlRtCXaLcoC_sKYatYkjNNTBxxZkKrgK5JEwlluWKK5B4Kum7M5k2yjgxEjoNAdicEPPTVdfbNzS7Xdn2hXFxkbW9koOhiqqhhiYH3xyyRWsK8GA2FtiA3Ew997KCSwdh0Gy6ysOWqygjlCXPRv8JDew10bl7VQc9Dogeq3rf0SwAqdf7vFhqv__vJD-jBaDo-zo6PTn6-QQ_dz3CO6CF_i3aXi5V9Bzxrqd7Xo-ovtCoqjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagSIgLZSdlMxLqqUkmthM73CBl1AKtRqhFFZfIW9qKaTKazByGX89zls6k6qnXxLFj-7Pf--y3IPQpstwSTYCdcEp8Fkfal3SkfWACRDtAaePOIY-Ok4NT9v0sPttI9dUY7Wt1GZTTq6C8vGhsK2dXOuztxMLJUcaBfFNOw5kpwvvoAazZUbJB1JtNmDqwpq3PDgViH84u1mfEdQScHwShy9ZHCUhNyuhAMDXx-29TOm_aTm4Io_E2-tN3o7VB-RssFyrQ_25EeLxTP5-gx52Kir-0RZ6ie7Z8hnYnbcdWe_hk7bJV7-FdPFlHv149R-f7tjRN_gSc2ekU_5ba3d3XGLRjnDmMzfGhc0rpXL9Wn12F-Fc1tbgqcHOpgLMNW3jsqDKO8LDe-gU6HX87yQ78LpuDrxnnC58lmsY2NVanHPQsobUhJpJAn4jkGrQKIUyRxrFQI6G0O48SCtiWjCSxSWE4fYm2yqq0rxG2iqUF08SIJGYmsgrUNmkSrmysmCKFh4J-KvNZG7QjB7LjYJDfCgMPfXUTfl3YxdxuHlTz87ybkRyYnaCKGpYaaF-wVGoJ-2My4toC7Uw99LGHSw5r1F28yNJWyzonNE6Z8wLmHnrVwue6qR5-HuIDYA3-ZfgG4NLEAe_gsXPnLz-gh5P9cf7z8PjHG_TIjYWzR4_it2hrMV_ad6BuLdT7ZmH9B-5cLQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dendritic+Cell+Vaccines+for+Cancer+Immunotherapy%3A+The+Role+of+Human+Conventional+Type+1+Dendritic+Cells&rft.jtitle=Pharmaceutics&rft.au=Jo%C3%A3o+Calmeiro&rft.au=Myl%C3%A8ne+A.+Carrascal&rft.au=Adriana+Ramos+Tavares&rft.au=Daniel+Alexandre+Ferreira&rft.date=2020-02-15&rft.pub=MDPI+AG&rft.eissn=1999-4923&rft.volume=12&rft.issue=2&rft.spage=158&rft_id=info:doi/10.3390%2Fpharmaceutics12020158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_87583b3d49db49849aca730607ce8719 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon |