Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells

Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointe...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutics Vol. 12; no. 2; p. 158
Main Authors Calmeiro, João, Carrascal, Mylène A, Tavares, Adriana Ramos, Ferreira, Daniel Alexandre, Gomes, Célia, Falcão, Amílcar, Cruz, Maria Teresa, Neves, Bruno Miguel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 15.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.
AbstractList Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.
Author Carrascal, Mylène A
Ferreira, Daniel Alexandre
Gomes, Célia
Calmeiro, João
Falcão, Amílcar
Tavares, Adriana Ramos
Neves, Bruno Miguel
Cruz, Maria Teresa
AuthorAffiliation 1 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; calmeiro.joao@gmail.com (J.C.); adriana_tavares.36@hotmail.com (A.R.T.); acfalcao@ff.uc.pt (A.F.); trosete@ff.uc.pt (M.T.C.)
4 Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; dbferreira96@gmail.com (D.A.F.); cgomes@fmed.uc.pt (C.G.)
3 Tecnimede Group, 2710-089 Sintra, Portugal
2 Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal; mylenecarrascal87@gmail.com
6 Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
7 Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
5 Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal
AuthorAffiliation_xml – name: 2 Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal; mylenecarrascal87@gmail.com
– name: 3 Tecnimede Group, 2710-089 Sintra, Portugal
– name: 1 Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; calmeiro.joao@gmail.com (J.C.); adriana_tavares.36@hotmail.com (A.R.T.); acfalcao@ff.uc.pt (A.F.); trosete@ff.uc.pt (M.T.C.)
– name: 5 Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal
– name: 7 Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
– name: 4 Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; dbferreira96@gmail.com (D.A.F.); cgomes@fmed.uc.pt (C.G.)
– name: 6 Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
Author_xml – sequence: 1
  givenname: João
  orcidid: 0000-0003-4061-0391
  surname: Calmeiro
  fullname: Calmeiro, João
  organization: Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal
– sequence: 2
  givenname: Mylène A
  orcidid: 0000-0002-3391-543X
  surname: Carrascal
  fullname: Carrascal, Mylène A
  organization: Tecnimede Group, 2710-089 Sintra, Portugal
– sequence: 3
  givenname: Adriana Ramos
  orcidid: 0000-0002-5501-1829
  surname: Tavares
  fullname: Tavares, Adriana Ramos
  organization: Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal
– sequence: 4
  givenname: Daniel Alexandre
  surname: Ferreira
  fullname: Ferreira, Daniel Alexandre
  organization: Coimbra Institute for Clinical and Biomedical Research-iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
– sequence: 5
  givenname: Célia
  orcidid: 0000-0002-7497-4129
  surname: Gomes
  fullname: Gomes, Célia
  organization: Center for Innovation in Biomedicine and Biotechnology-CIBB, University of Coimbra, 3004-504 Coimbra, Portugal
– sequence: 6
  givenname: Amílcar
  surname: Falcão
  fullname: Falcão, Amílcar
  organization: Coimbra Institute for Biomedical Imaging and Translational Research-CIBIT, University of Coimbra, 3000-548 Coimbra, Portugal
– sequence: 7
  givenname: Maria Teresa
  surname: Cruz
  fullname: Cruz, Maria Teresa
  organization: Center for Neuroscience and Cell Biology-CNC, University of Coimbra, 3004-504 Coimbra, Portugal
– sequence: 8
  givenname: Bruno Miguel
  orcidid: 0000-0001-7391-3124
  surname: Neves
  fullname: Neves, Bruno Miguel
  organization: Department of Medical Sciences and Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32075343$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFDEUhoNUbK39CUouvVnN94cXgowfXSgIsnobMsmZ3SkzyZjsFPbfO3Vr6YLnJoeTnOe8J-9LdJZyAoReU_KOc0veTztfRh9g3vehUkYYodI8QxfUWrsSlvGzJ_k5uqr1lizBOTXcvkDnnBEtueAXaPsZUiz9wsENDAP-5UPoE1Tc5YIbnwIUvB7HOeX9DoqfDh_wZgf4Rx4A5w5fz6NPuMnpDtK-z8kPeHOYAFN8yq2v0PPODxWuHs5L9PPrl01zvbr5_m3dfLpZBaH1fiVU4BJshGA1k8qEEFmkXinFvA6KcmNiZ6U0LTFtMFwK0yqmPPUMVBc1v0TrIzdmf-um0o--HFz2vftbyGXrfFlUDeCMloa3PAobW2GNsD54zYkiOoDR1C6sj0fWNLcjxLCsWPxwAj29Sf3ObfOd00QrrvkCePsAKPn3DHXvxr6G5Tt8gjxXx7i0ggjF7nXL49NQcq0FuscxlLh7z91_PV_63jzV-Nj1z2H-B4CFrZs
CitedBy_id crossref_primary_10_5306_wjco_v12_i11_966
crossref_primary_10_1007_s00761_021_01012_8
crossref_primary_10_1186_s43141_023_00597_4
crossref_primary_10_1089_jir_2019_0244
crossref_primary_10_3389_fimmu_2024_1350208
crossref_primary_10_3389_fneur_2023_1271822
crossref_primary_10_3390_cancers13092280
crossref_primary_10_1016_j_ctarc_2022_100575
crossref_primary_10_1016_j_trecan_2022_12_008
crossref_primary_10_1016_j_phrs_2020_105309
crossref_primary_10_1021_acssynbio_2c00027
crossref_primary_10_1007_s00262_022_03190_9
crossref_primary_10_3390_cancers16101831
crossref_primary_10_3389_fimmu_2023_1242911
crossref_primary_10_1002_ijc_35062
crossref_primary_10_3389_fonc_2023_1149551
crossref_primary_10_2217_imt_2021_0097
crossref_primary_10_18632_oncotarget_27977
crossref_primary_10_3389_fbioe_2022_953887
crossref_primary_10_3389_fimmu_2024_1385484
crossref_primary_10_3389_fcimb_2022_897133
crossref_primary_10_3389_fimmu_2024_1354339
crossref_primary_10_4049_jimmunol_2200366
crossref_primary_10_1007_s10529_021_03176_0
crossref_primary_10_1016_j_addr_2021_03_001
crossref_primary_10_1371_journal_pntd_0009627
crossref_primary_10_1080_08820139_2022_2109486
crossref_primary_10_3390_genes14122118
crossref_primary_10_1016_j_ctrv_2023_102665
crossref_primary_10_1172_jci_insight_155022
crossref_primary_10_3390_ijms22083978
crossref_primary_10_3390_vaccines9060634
crossref_primary_10_3389_fonc_2023_1251355
crossref_primary_10_1038_s41598_022_27303_7
crossref_primary_10_1016_j_yexcr_2020_112003
crossref_primary_10_1007_s11654_021_00356_2
crossref_primary_10_3389_fimmu_2021_733506
crossref_primary_10_3390_pharmaceutics14081614
crossref_primary_10_35754_0234_5730_2021_66_3_322_345
crossref_primary_10_3390_v15112277
crossref_primary_10_4049_jimmunol_2300642
crossref_primary_10_1016_j_compbiolchem_2021_107585
crossref_primary_10_3390_vaccines9060668
crossref_primary_10_1007_s00262_021_03109_w
crossref_primary_10_1016_j_ejcb_2022_151284
crossref_primary_10_3389_fimmu_2021_719664
crossref_primary_10_1002_eji_202149487
crossref_primary_10_3390_ijms23094865
crossref_primary_10_1016_j_neo_2023_100899
crossref_primary_10_2217_pme_2022_0052
crossref_primary_10_1007_s11684_023_1048_0
crossref_primary_10_1016_j_cellimm_2022_104616
crossref_primary_10_1016_j_phrs_2020_105374
crossref_primary_10_3390_jcm11123417
crossref_primary_10_1080_13543784_2022_2049232
Cites_doi 10.1038/srep23505
10.1002/ijc.29087
10.3389/fimmu.2018.02806
10.3389/fimmu.2019.01195
10.3389/fimmu.2012.00014
10.1111/cas.12695
10.1038/nrc.2018.6
10.1016/j.trecan.2018.09.001
10.4049/jimmunol.1401903
10.3389/fimmu.2018.01499
10.1016/S1470-2045(13)70585-0
10.1016/j.immuni.2013.07.004
10.1126/sciimmunol.aau4292
10.1038/nature14404
10.1016/j.ctrv.2017.01.008
10.1038/nrd4506
10.1182/blood-2005-03-1154
10.1186/s40425-019-0580-6
10.1080/21645515.2015.1096458
10.1158/2159-8290.CD-15-0510
10.1038/nrd4296
10.1002/eji.201344272
10.1038/ni.2370
10.1016/j.it.2012.04.009
10.1016/B978-0-12-417028-5.00001-6
10.1186/s40425-019-0787-6
10.5772/intechopen.68352
10.1084/jem.20100223
10.1084/jem.20142350
10.1038/nm.f.1774
10.1615/CritRevOncog.2014011142
10.1056/NEJMoa1001294
10.1186/s40425-019-0716-8
10.1016/j.immuni.2017.01.003
10.1007/978-1-4939-3606-9_2
10.1097/01.cji.0000211335.14385.57
10.1016/j.cell.2018.01.004
10.1158/1078-0432.CCR-10-3421
10.4049/jimmunol.1401243
10.21037/tlcr.2017.03.02
10.4049/jimmunol.172.1.123
10.4049/jimmunol.1500564
10.4049/jimmunol.174.5.2591
10.1084/jem.20100348
10.1093/hmg/ddv270
10.1016/j.celrep.2019.08.086
10.1038/bjc.2013.117
10.3389/fimmu.2017.00760
10.1186/s12916-016-0623-5
10.3389/fimmu.2014.00159
10.1002/eji.201040419
10.1016/j.immuni.2012.04.012
10.3389/fimmu.2019.00009
10.1146/annurev-immunol-100311-102839
10.1089/scd.2013.0521
10.1158/2326-6066.CIR-14-0165
10.1084/jem.20141441
10.1186/s40425-019-0565-5
10.3389/fimmu.2015.00013
10.4292/wjgpt.v7.i1.133
10.1126/science.1164206
10.4049/jimmunol.1202798
10.18632/oncotarget.9624
10.1016/j.trsl.2015.07.008
10.1016/j.immuni.2009.08.027
10.1158/0008-5472.CAN-12-2583
10.2217/fon.12.125
10.1158/1078-0432.CCR-15-2205
10.3389/fimmu.2019.01205
10.1080/2162402X.2016.1168555
10.1158/1078-0432.CCR-15-0685
10.3389/fimmu.2012.00013
10.1126/science.1083317
10.1016/j.immuni.2012.03.009
10.1182/blood-2002-08-2493
10.1084/jem.20092618
10.1056/NEJM197709012970907
10.1016/j.ccell.2016.06.003
10.1038/s41591-018-0085-8
10.1038/ncomms8458
10.1038/nature06175
10.4049/jimmunol.173.4.2780
10.1016/j.immuni.2011.07.010
10.1158/0008-5472.CAN-08-1440
10.4161/onci.23140
10.1016/j.ccell.2015.03.001
10.3389/fimmu.2014.00174
10.1158/0008-5472.CAN-12-4366
10.1172/JCI34584
10.1038/cr.2016.157
10.1038/nature07750
10.1038/gt.2011.177
10.1016/j.coi.2014.11.001
10.1097/CJI.0000000000000063
10.1158/2326-6066.CIR-17-0341
10.1016/j.jcyt.2019.07.007
10.1038/ncomms13720
10.3389/fimmu.2012.00214
10.1084/jem.20121103
10.1111/imm.12888
10.1016/j.celrep.2018.07.033
10.1016/j.immuni.2016.03.012
10.3389/fimmu.2014.00165
10.1182/blood-2008-05-155176
10.1126/science.aaa3828
10.1182/blood-2012-06-435644
10.1016/j.ccell.2014.09.007
10.1158/1078-0432.CCR-08-2729
10.1038/s41590-018-0145-8
10.1172/JCI96791
10.1016/j.ccell.2014.09.006
10.2332/allergolint.R-07-149
10.1146/annurev-immunol-020711-074950
10.1038/nri3254
10.1080/2162402X.2015.1019198
10.1016/j.cell.2019.09.035
10.1038/s41551-018-0250-x
10.1007/s00262-019-02396-8
10.1002/eji.201344076
10.1016/j.ccell.2017.04.003
10.1084/jem.20092140
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/pharmaceutics12020158
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1999-4923
ExternalDocumentID oai_doaj_org_article_87583b3d49db49849aca730607ce8719
10_3390_pharmaceutics12020158
32075343
Genre Journal Article
Review
GrantInformation_xml – fundername: Fundação para a Ciência e a Tecnologia
  grantid: PD/BDE/135076/2017
– fundername: FCT/FEDER/COMPETE2020
  grantid: UIDB/04501/2020
– fundername: FCT/FEDER/COMPETE2020
  grantid: POCI-01-0247-FEDER-033532
GroupedDBID ---
3V.
53G
5VS
8G5
AADQD
ABDBF
ABUWG
ACGFO
ACIHN
AEAQA
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BPHCQ
CCPQU
DIK
DWQXO
EBD
ESX
F5P
FD6
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HH5
HYE
IHR
KQ8
M2O
M48
MK0
MODMG
M~E
NPM
OK1
P6G
PGMZT
PIMPY
PQQKQ
PROAC
RIG
RNS
RPM
TR2
TUS
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c477t-46c35e9dec972568ccd2d1a6662a7c61388df9558b08bc83548b626a1a2e6fd73
IEDL.DBID RPM
ISSN 1999-4923
IngestDate Tue Oct 22 15:09:56 EDT 2024
Tue Sep 17 21:19:35 EDT 2024
Sat Aug 17 00:45:15 EDT 2024
Thu Aug 22 11:28:50 EDT 2024
Sat Sep 28 08:28:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords dendritic cell-based vaccines
conventional type 1 dendritic cells
CD141+XCR1+ DCs
anti-tumor immunotherapy
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-46c35e9dec972568ccd2d1a6662a7c61388df9558b08bc83548b626a1a2e6fd73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0001-7391-3124
0000-0003-4061-0391
0000-0002-3391-543X
0000-0002-7497-4129
0000-0002-5501-1829
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076373/
PMID 32075343
PQID 2359404627
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_87583b3d49db49849aca730607ce8719
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7076373
proquest_miscellaneous_2359404627
crossref_primary_10_3390_pharmaceutics12020158
pubmed_primary_32075343
PublicationCentury 2000
PublicationDate 20200215
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 2
  year: 2020
  text: 20200215
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Pharmaceutics
PublicationTitleAlternate Pharmaceutics
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Wculek (ref_102) 2019; 7
Hierro (ref_3) 2017; 54
Takeuchi (ref_54) 2007; 56
Tsuchiya (ref_120) 2019; 29
Spranger (ref_94) 2015; 523
Hartung (ref_110) 2015; 194
Isolation (ref_68) 2018; 1423
Schreibelt (ref_96) 2016; 22
Zhang (ref_31) 2011; 35
Manzo (ref_8) 2015; 24
Yamazaki (ref_65) 2013; 190
Sancho (ref_67) 2009; 458
Bi (ref_40) 2017; 8
Rosa (ref_62) 2018; 3
Wylie (ref_80) 2015; 4
Collin (ref_45) 2018; 154
Ruffell (ref_88) 2014; 26
Melief (ref_26) 1991; 2
Bachem (ref_60) 2012; 3
Ratzinger (ref_23) 2004; 173
Kroczek (ref_111) 2018; 9
Yan (ref_119) 2016; 7
Mikucki (ref_85) 2015; 6
Quezada (ref_29) 2013; 108
Guo (ref_124) 2018; 9
Anguille (ref_6) 2014; 15
Spolski (ref_35) 2014; 13
Schraml (ref_57) 2015; 32
Dresch (ref_58) 2012; 33
Salmon (ref_78) 2016; 44
Ferlazzo (ref_89) 2014; 5
Haniffa (ref_52) 2012; 37
Rousseau (ref_117) 2003; 101
Campbell (ref_9) 2017; 6
Haniffa (ref_64) 2013; 2
Saxena (ref_18) 2018; 2
Ohta (ref_72) 2016; 6
Barry (ref_93) 2018; 24
Picco (ref_115) 2014; 44
Steinman (ref_13) 2011; 30
Appay (ref_32) 2008; 14
Sun (ref_36) 2003; 300
Verdijk (ref_20) 2009; 15
Tel (ref_24) 2013; 121
Zhang (ref_66) 2012; 36
Cancel (ref_75) 2019; 10
Walzer (ref_44) 2005; 106
Silk (ref_108) 2012; 19
Anel (ref_28) 2015; 21
Kroczek (ref_70) 2012; 3
Roberts (ref_81) 2016; 30
Tel (ref_98) 2013; 73
Haniffa (ref_46) 2013; 120
Constantino (ref_10) 2016; 168
Hayakawa (ref_43) 2004; 172
Antony (ref_34) 2005; 174
Thordardottir (ref_105) 2014; 23
Calmeiro (ref_16) 2019; 7
Laoui (ref_103) 2016; 7
Miller (ref_61) 2012; 13
Larsen (ref_39) 2014; 19
Terhorst (ref_113) 2015; 194
Kantoff (ref_100) 2010; 363
Okamoto (ref_12) 2016; 7
Steinman (ref_14) 2007; 449
ref_55
Poulin (ref_63) 2010; 207
Bol (ref_95) 2019; 7
Oettgen (ref_1) 1977; 297
Mizumoto (ref_112) 2018; 45
Joffre (ref_25) 2012; 12
(ref_84) 2018; 4
Caminschi (ref_109) 2008; 112
Cintolo (ref_17) 2012; 8
Romano (ref_22) 2011; 17
Prue (ref_99) 2015; 38
Fromm (ref_101) 2016; 5
Haabeth (ref_33) 2014; 5
Sluijter (ref_83) 2015; 3
Wendel (ref_86) 2008; 68
Caminschi (ref_122) 2012; 3
Vitale (ref_38) 2014; 44
Hu (ref_41) 2019; 10
Carreno (ref_125) 2015; 348
Deauvieau (ref_90) 2015; 136
Dorner (ref_71) 2009; 31
Cueto (ref_79) 2016; 6
Zeng (ref_116) 2018; 128
Breton (ref_59) 2015; 212
Spranger (ref_87) 2017; 31
Sancho (ref_114) 2008; 118
Segura (ref_50) 2013; 210
Tomita (ref_106) 2019; 68
Bonavita (ref_92) 2018; 172
Michea (ref_82) 2018; 19
Mittal (ref_53) 2017; 5
Crozat (ref_69) 2010; 207
Sabado (ref_11) 2017; 27
Pampena (ref_42) 2015; 6
Joffre (ref_123) 2010; 40
ref_30
Childs (ref_7) 2015; 14
Adachi (ref_4) 2015; 106
Topalian (ref_5) 2015; 27
Alexandre (ref_74) 2016; 213
Hildner (ref_76) 2008; 322
Westdorp (ref_97) 2019; 7
Brown (ref_47) 2019; 179
Kim (ref_107) 2019; 21
Murray (ref_37) 2016; 12
Ngwa (ref_2) 2018; 18
Wimmers (ref_19) 2014; 5
Balan (ref_48) 2018; 24
Broz (ref_77) 2014; 26
Wong (ref_91) 2013; 73
Palucka (ref_15) 2013; 39
Jongbloed (ref_49) 2010; 207
Merad (ref_56) 2013; 31
Balan (ref_104) 2016; 1423
Balan (ref_21) 2014; 193
Hariharan (ref_27) 1995; 55
Bachem (ref_51) 2010; 207
Kitazawa (ref_121) 2019; 10
Russell (ref_118) 2007; 30
Brewitz (ref_73) 2017; 46
References_xml – volume: 6
  start-page: 23505
  year: 2016
  ident: ref_72
  article-title: Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis
  publication-title: Sci. Rep.
  doi: 10.1038/srep23505
  contributor:
    fullname: Ohta
– volume: 136
  start-page: 1085
  year: 2015
  ident: ref_90
  article-title: Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29087
  contributor:
    fullname: Deauvieau
– volume: 9
  start-page: 2806
  year: 2018
  ident: ref_111
  article-title: Structure-Function Relationship of XCL1 Used for in vivo Targeting of Antigen Into XCR1+ Dendritic Cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02806
  contributor:
    fullname: Kroczek
– volume: 55
  start-page: 3486
  year: 1995
  ident: ref_27
  article-title: The induction of cytotoxic T cells and tumor regression by soluble antigen formulation
  publication-title: Cancer Res.
  contributor:
    fullname: Hariharan
– volume: 10
  start-page: 1195
  year: 2019
  ident: ref_121
  article-title: Novel targeting to XCR1+ dendritic cells using allogeneic T cells for polytopical antibody responses in the lymph nodes
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01195
  contributor:
    fullname: Kitazawa
– volume: 3
  start-page: 14
  year: 2012
  ident: ref_70
  article-title: The Role of XCR1 and its Ligand XCL1 in Antigen Cross-Presentation by Murine and Human Dendritic Cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2012.00014
  contributor:
    fullname: Kroczek
– volume: 106
  start-page: 945
  year: 2015
  ident: ref_4
  article-title: Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy
  publication-title: Cancer Sci.
  doi: 10.1111/cas.12695
  contributor:
    fullname: Adachi
– volume: 18
  start-page: 313
  year: 2018
  ident: ref_2
  article-title: Using immunotherapy to boost the abscopal effect
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2018.6
  contributor:
    fullname: Ngwa
– volume: 4
  start-page: 784
  year: 2018
  ident: ref_84
  article-title: The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2018.09.001
– volume: 194
  start-page: 1069
  year: 2015
  ident: ref_110
  article-title: Induction of Potent CD8 T Cell Cytotoxicity by Specific Targeting of Antigen to Cross-Presenting Dendritic Cells In Vivo via Murine or Human XCR1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401903
  contributor:
    fullname: Hartung
– volume: 9
  start-page: 1499
  year: 2018
  ident: ref_124
  article-title: Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01499
  contributor:
    fullname: Guo
– volume: 15
  start-page: e257
  year: 2014
  ident: ref_6
  article-title: Clinical use of dendritic cells for cancer therapy
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(13)70585-0
  contributor:
    fullname: Anguille
– volume: 39
  start-page: 38
  year: 2013
  ident: ref_15
  article-title: Dendritic-cell-based therapeutic cancer vaccines
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.07.004
  contributor:
    fullname: Palucka
– volume: 3
  start-page: 1
  year: 2018
  ident: ref_62
  article-title: Direct reprogramming of fibroblasts into antigen-presenting dendritic cells
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aau4292
  contributor:
    fullname: Rosa
– volume: 523
  start-page: 231
  year: 2015
  ident: ref_94
  article-title: Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature14404
  contributor:
    fullname: Spranger
– volume: 54
  start-page: 74
  year: 2017
  ident: ref_3
  article-title: The expanding role of immunotherapy
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2017.01.008
  contributor:
    fullname: Hierro
– volume: 2
  start-page: 347
  year: 1991
  ident: ref_26
  article-title: Cytotoxic T lymphocyte therapy of cancer and tumor escape mechanisms
  publication-title: Semin. Cancer Biol.
  contributor:
    fullname: Melief
– volume: 14
  start-page: 487
  year: 2015
  ident: ref_7
  article-title: Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: The force awakens
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4506
  contributor:
    fullname: Childs
– volume: 106
  start-page: 2252
  year: 2005
  ident: ref_44
  article-title: Natural-killer cells and dendritic cells: l’union fait la force
  publication-title: Blood
  doi: 10.1182/blood-2005-03-1154
  contributor:
    fullname: Walzer
– volume: 7
  start-page: 109
  year: 2019
  ident: ref_95
  article-title: The clinical application of cancer immunotherapy based on naturally circulating dendritic cells
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0580-6
  contributor:
    fullname: Bol
– volume: 12
  start-page: 607
  year: 2016
  ident: ref_37
  article-title: Targeting the tumor microenvironment to improve natural killer cell-based immunotherapies: On being in the right place at the right time, with resilience
  publication-title: Hum. Vaccines Immunother.
  doi: 10.1080/21645515.2015.1096458
  contributor:
    fullname: Murray
– volume: 6
  start-page: 71
  year: 2016
  ident: ref_79
  article-title: Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-0510
  contributor:
    fullname: Cueto
– volume: 13
  start-page: 379
  year: 2014
  ident: ref_35
  article-title: Interleukin-21: A double-edged sword with therapeutic potential
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4296
  contributor:
    fullname: Spolski
– volume: 44
  start-page: 1582
  year: 2014
  ident: ref_38
  article-title: Effect of tumor cells and tumor microenvironment on NK-cell function
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201344272
  contributor:
    fullname: Vitale
– volume: 13
  start-page: 888
  year: 2012
  ident: ref_61
  article-title: Deciphering the transcriptional network of the dendritic cell lineage
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2370
  contributor:
    fullname: Miller
– volume: 33
  start-page: 381
  year: 2012
  ident: ref_58
  article-title: Development of antigen cross-presentation capacity in dendritic cells
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2012.04.009
  contributor:
    fullname: Dresch
– volume: 120
  start-page: 1
  year: 2013
  ident: ref_46
  article-title: Ontogeny and functional specialization of dendritic cells in human and mouse
  publication-title: Adv. Immunol.
  doi: 10.1016/B978-0-12-417028-5.00001-6
  contributor:
    fullname: Haniffa
– volume: 7
  start-page: 302
  year: 2019
  ident: ref_97
  article-title: Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0787-6
  contributor:
    fullname: Westdorp
– ident: ref_55
  doi: 10.5772/intechopen.68352
– volume: 207
  start-page: 1283
  year: 2010
  ident: ref_69
  article-title: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100223
  contributor:
    fullname: Crozat
– volume: 213
  start-page: 75
  year: 2016
  ident: ref_74
  article-title: XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20142350
  contributor:
    fullname: Alexandre
– volume: 14
  start-page: 623
  year: 2008
  ident: ref_32
  article-title: CD8+ T cell efficacy in vaccination and disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.f.1774
  contributor:
    fullname: Appay
– volume: 19
  start-page: 91
  year: 2014
  ident: ref_39
  article-title: NK cells in the tumor microenvironment
  publication-title: Crit. Rev. Oncog.
  doi: 10.1615/CritRevOncog.2014011142
  contributor:
    fullname: Larsen
– volume: 363
  start-page: 411
  year: 2010
  ident: ref_100
  article-title: Sipuleucel-T immunotherapy for castration-resistant prostate cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1001294
  contributor:
    fullname: Kantoff
– volume: 7
  start-page: 238
  year: 2019
  ident: ref_16
  article-title: Biomaterial-based platforms for in situ dendritic cell programming and their use in antitumor immunotherapy
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0716-8
  contributor:
    fullname: Calmeiro
– volume: 46
  start-page: 205
  year: 2017
  ident: ref_73
  article-title: CD8+ T Cells Orchestrate pDC-XCR1+ Dendritic Cell Spatial and Functional Cooperativity to Optimize Priming
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.01.003
  contributor:
    fullname: Brewitz
– volume: 1423
  start-page: 19
  year: 2016
  ident: ref_104
  article-title: In vitro generation of human XCR1+ dendritic cells from CD34+ hematopoietic progenitors
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3606-9_2
  contributor:
    fullname: Balan
– volume: 30
  start-page: 227
  year: 2007
  ident: ref_118
  article-title: Phase I trial of vaccination with autologous neuroblastoma tumor cells genetically modified to secrete IL-2 and lymphotactin
  publication-title: J. Immunother.
  doi: 10.1097/01.cji.0000211335.14385.57
  contributor:
    fullname: Russell
– volume: 172
  start-page: 1022
  year: 2018
  ident: ref_92
  article-title: NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.004
  contributor:
    fullname: Bonavita
– volume: 17
  start-page: 1984
  year: 2011
  ident: ref_22
  article-title: Peptide-Loaded Langerhans Cells, Despite Increased IL15 Secretion and T-Cell Activation In Vitro, Elicit Antitumor T-Cell Responses Comparable to Peptide-Loaded Monocyte-Derived Dendritic Cells In Vivo
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-3421
  contributor:
    fullname: Romano
– volume: 193
  start-page: 1622
  year: 2014
  ident: ref_21
  article-title: Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1401243
  contributor:
    fullname: Balan
– volume: 6
  start-page: 220
  year: 2017
  ident: ref_9
  article-title: Mini-review of conventional and hypofractionated radiation therapy combined with immunotherapy for non-small cell lung cancer
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2017.03.02
  contributor:
    fullname: Campbell
– volume: 172
  start-page: 123
  year: 2004
  ident: ref_43
  article-title: NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.1.123
  contributor:
    fullname: Hayakawa
– volume: 194
  start-page: 5895
  year: 2015
  ident: ref_113
  article-title: Laser-Assisted Intradermal Delivery of Adjuvant-Free Vaccines Targeting XCR1 + Dendritic Cells Induces Potent Antitumoral Responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500564
  contributor:
    fullname: Terhorst
– volume: 174
  start-page: 2591
  year: 2005
  ident: ref_34
  article-title: CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.174.5.2591
  contributor:
    fullname: Antony
– volume: 207
  start-page: 1273
  year: 2010
  ident: ref_51
  article-title: Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100348
  contributor:
    fullname: Bachem
– volume: 24
  start-page: R67
  year: 2015
  ident: ref_8
  article-title: Antigen-specific T cell therapies for cancer
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv270
  contributor:
    fullname: Manzo
– volume: 29
  start-page: 162
  year: 2019
  ident: ref_120
  article-title: Type I Interferon Delivery by iPSC-Derived Myeloid Cells Elicits Antitumor Immunity via XCR1+ Dendritic Cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.086
  contributor:
    fullname: Tsuchiya
– volume: 108
  start-page: 1560
  year: 2013
  ident: ref_29
  article-title: Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.117
  contributor:
    fullname: Quezada
– volume: 8
  start-page: 760
  year: 2017
  ident: ref_40
  article-title: NK Cell Exhaustion
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00760
  contributor:
    fullname: Bi
– ident: ref_30
  doi: 10.1186/s12916-016-0623-5
– volume: 5
  start-page: 159
  year: 2014
  ident: ref_89
  article-title: Cross-talks between natural killer cells and distinct subsets of dendritic cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00159
  contributor:
    fullname: Ferlazzo
– volume: 40
  start-page: 1255
  year: 2010
  ident: ref_123
  article-title: Efficient and versatile manipulation of the peripheral CD4+ compartment by Ag targeting to DNGR-1/CLEC9A
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201040419
  contributor:
    fullname: Joffre
– volume: 37
  start-page: 60
  year: 2012
  ident: ref_52
  article-title: Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.04.012
  contributor:
    fullname: Haniffa
– volume: 10
  start-page: 9
  year: 2019
  ident: ref_75
  article-title: Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00009
  contributor:
    fullname: Cancel
– volume: 30
  start-page: 1
  year: 2011
  ident: ref_13
  article-title: Decisions about Dendritic Cells: Past, Present, and Future
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-100311-102839
  contributor:
    fullname: Steinman
– volume: 23
  start-page: 955
  year: 2014
  ident: ref_105
  article-title: The aryl hydrocarbon receptor antagonist StemRegenin 1 promotes human plasmacytoid and myeloid dendritic cell development from CD34+ hematopoietic progenitor cells
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2013.0521
  contributor:
    fullname: Thordardottir
– volume: 3
  start-page: 495
  year: 2015
  ident: ref_83
  article-title: Arming the melanoma sentinel lymph node through local administration of CpG-B and GM-CSF: Recruitment and activation of BDCA3/CD141+ dendritic cells and enhanced cross-presentation
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0165
  contributor:
    fullname: Sluijter
– volume: 212
  start-page: 401
  year: 2015
  ident: ref_59
  article-title: Circulating precursors of human CD1c+ and CD141+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141441
  contributor:
    fullname: Breton
– volume: 7
  start-page: 1
  year: 2019
  ident: ref_102
  article-title: Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0565-5
  contributor:
    fullname: Wculek
– volume: 6
  start-page: 13
  year: 2015
  ident: ref_42
  article-title: Natural killer cells as helper cells in dendritic cell cancer vaccines
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2015.00013
  contributor:
    fullname: Pampena
– volume: 7
  start-page: 133
  year: 2016
  ident: ref_12
  article-title: Dendritic cell-based vaccine for pancreatic cancer in Japan
  publication-title: World J. Gastrointest. Pharmacol. Ther.
  doi: 10.4292/wjgpt.v7.i1.133
  contributor:
    fullname: Okamoto
– volume: 322
  start-page: 1097
  year: 2008
  ident: ref_76
  article-title: Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity
  publication-title: Science
  doi: 10.1126/science.1164206
  contributor:
    fullname: Hildner
– volume: 190
  start-page: 6071
  year: 2013
  ident: ref_65
  article-title: Critical Roles of a Dendritic Cell Subset Expressing a Chemokine Receptor, XCR1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202798
  contributor:
    fullname: Yamazaki
– volume: 7
  start-page: 40437
  year: 2016
  ident: ref_119
  article-title: A novel peptide targeting Clec9a on dendritic cell for cancer immunotherapy
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9624
  contributor:
    fullname: Yan
– volume: 168
  start-page: 74
  year: 2016
  ident: ref_10
  article-title: Antitumor dendritic cell–based vaccines: Lessons from 20 years of clinical trials and future perspectives
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2015.07.008
  contributor:
    fullname: Constantino
– volume: 31
  start-page: 823
  year: 2009
  ident: ref_71
  article-title: Selective Expression of the Chemokine Receptor XCR1 on Cross-presenting Dendritic Cells Determines Cooperation with CD8+ T Cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.027
  contributor:
    fullname: Dorner
– volume: 73
  start-page: 1063
  year: 2013
  ident: ref_98
  article-title: Natural Human Plasmacytoid Dendritic Cells Induce Antigen-Specific T-Cell Responses in Melanoma Patients
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2583
  contributor:
    fullname: Tel
– volume: 8
  start-page: 1273
  year: 2012
  ident: ref_17
  article-title: Dendritic cell-based vaccines: Barriers and opportunities
  publication-title: Future Oncol.
  doi: 10.2217/fon.12.125
  contributor:
    fullname: Cintolo
– volume: 22
  start-page: 2155
  year: 2016
  ident: ref_96
  article-title: Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-2205
  contributor:
    fullname: Schreibelt
– volume: 10
  start-page: 1205
  year: 2019
  ident: ref_41
  article-title: Cancer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01205
  contributor:
    fullname: Hu
– volume: 5
  start-page: e1168555
  year: 2016
  ident: ref_101
  article-title: CMRF-56+ blood dendritic cells loaded with mRNA induce effective antigen-specific cytotoxic T-lymphocyte responses
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2016.1168555
  contributor:
    fullname: Fromm
– volume: 21
  start-page: 5047
  year: 2015
  ident: ref_28
  article-title: How Do Cytotoxic Lymphocytes Kill Cancer Cells?
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0685
  contributor:
    fullname: Anel
– volume: 3
  start-page: 13
  year: 2012
  ident: ref_122
  article-title: Targeting Dendritic Cells in vivo for Cancer Therapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2012.00013
  contributor:
    fullname: Caminschi
– volume: 300
  start-page: 339
  year: 2003
  ident: ref_36
  article-title: Defective CD8 T cell memory following acute infection without CD4 T cell help
  publication-title: Science
  doi: 10.1126/science.1083317
  contributor:
    fullname: Sun
– volume: 36
  start-page: 646
  year: 2012
  ident: ref_66
  article-title: The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.009
  contributor:
    fullname: Zhang
– volume: 101
  start-page: 1718
  year: 2003
  ident: ref_117
  article-title: Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma
  publication-title: Blood
  doi: 10.1182/blood-2002-08-2493
  contributor:
    fullname: Rousseau
– volume: 207
  start-page: 1261
  year: 2010
  ident: ref_63
  article-title: Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20092618
  contributor:
    fullname: Poulin
– volume: 297
  start-page: 484
  year: 1977
  ident: ref_1
  article-title: Immunotherapy of cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM197709012970907
  contributor:
    fullname: Oettgen
– volume: 30
  start-page: 324
  year: 2016
  ident: ref_81
  article-title: Critical Role for CD103 + /CD141 + Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.003
  contributor:
    fullname: Roberts
– volume: 24
  start-page: 1178
  year: 2018
  ident: ref_93
  article-title: A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0085-8
  contributor:
    fullname: Barry
– volume: 6
  start-page: 7458
  year: 2015
  ident: ref_85
  article-title: Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8458
  contributor:
    fullname: Mikucki
– volume: 449
  start-page: 419
  year: 2007
  ident: ref_14
  article-title: Taking dendritic cells into medicine
  publication-title: Nature
  doi: 10.1038/nature06175
  contributor:
    fullname: Steinman
– volume: 173
  start-page: 2780
  year: 2004
  ident: ref_23
  article-title: Mature human Langerhans cells derived from CD34+ hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monoc
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.4.2780
  contributor:
    fullname: Ratzinger
– volume: 35
  start-page: 161
  year: 2011
  ident: ref_31
  article-title: CD8+ T Cells: Foot Soldiers of the Immune System
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.07.010
  contributor:
    fullname: Zhang
– volume: 68
  start-page: 8437
  year: 2008
  ident: ref_86
  article-title: Natural Killer Cell Accumulation in Tumors Is Dependent on IFN- and CXCR3 Ligands
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1440
  contributor:
    fullname: Wendel
– volume: 2
  start-page: e23140
  year: 2013
  ident: ref_64
  article-title: Identification of human tissue cross-presenting dendritic cells: A new target for cancer vaccines
  publication-title: Oncoimmunology
  doi: 10.4161/onci.23140
  contributor:
    fullname: Haniffa
– volume: 1423
  start-page: 61
  year: 2018
  ident: ref_68
  article-title: Chapter 5 the Isolation and Enrichment of Large Numbers of Highly Purifi ed Mouse Spleen Dendritic Cell Populations and Their
  publication-title: Methods Mol. Biol.
  contributor:
    fullname: Isolation
– volume: 27
  start-page: 450
  year: 2015
  ident: ref_5
  article-title: Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
  contributor:
    fullname: Topalian
– volume: 5
  start-page: 174
  year: 2014
  ident: ref_33
  article-title: How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00174
  contributor:
    fullname: Haabeth
– volume: 73
  start-page: 4653
  year: 2013
  ident: ref_91
  article-title: IL-18-Primed Helper NK Cells Collaborate with Dendritic Cells to Promote Recruitment of Effector CD8+ T Cells to the Tumor Microenvironment
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4366
  contributor:
    fullname: Wong
– volume: 118
  start-page: 2098
  year: 2008
  ident: ref_114
  article-title: Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI34584
  contributor:
    fullname: Sancho
– volume: 27
  start-page: 74
  year: 2017
  ident: ref_11
  article-title: Dendritic cell-based immunotherapy
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.157
  contributor:
    fullname: Sabado
– volume: 458
  start-page: 899
  year: 2009
  ident: ref_67
  article-title: Identification of a dendritic cell receptor that couples sensing of necrosis to immunity
  publication-title: Nature
  doi: 10.1038/nature07750
  contributor:
    fullname: Sancho
– volume: 19
  start-page: 1035
  year: 2012
  ident: ref_108
  article-title: Cross-presentation of tumour antigens by human induced pluripotent stem cell-derived CD141+XCR1+ dendritic cells
  publication-title: Gene Ther.
  doi: 10.1038/gt.2011.177
  contributor:
    fullname: Silk
– volume: 32
  start-page: 13
  year: 2015
  ident: ref_57
  article-title: Defining dendritic cells
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2014.11.001
  contributor:
    fullname: Schraml
– volume: 38
  start-page: 71
  year: 2015
  ident: ref_99
  article-title: A Phase I Clinical Trial of CD1c (BDCA-1)+ Dendritic Cells Pulsed With HLA-A*0201 Peptides for Immunotherapy of Metastatic Hormone Refractory Prostate Cancer
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0000000000000063
  contributor:
    fullname: Prue
– volume: 5
  start-page: 1098
  year: 2017
  ident: ref_53
  article-title: Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-17-0341
  contributor:
    fullname: Mittal
– volume: 21
  start-page: 1049
  year: 2019
  ident: ref_107
  article-title: Human CD141+ dendritic cells generated from adult peripheral blood monocytes
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2019.07.007
  contributor:
    fullname: Kim
– volume: 7
  start-page: 1
  year: 2016
  ident: ref_103
  article-title: The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13720
  contributor:
    fullname: Laoui
– volume: 3
  start-page: 214
  year: 2012
  ident: ref_60
  article-title: Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2012.00214
  contributor:
    fullname: Bachem
– volume: 210
  start-page: 1035
  year: 2013
  ident: ref_50
  article-title: Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ–resident dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20121103
  contributor:
    fullname: Segura
– volume: 45
  start-page: 1469
  year: 2018
  ident: ref_112
  article-title: In Vivo Antigen Delivery to Dendritic Cells-A Novel Peptide Vaccine for Cancer Therapy
  publication-title: Cancer Chemother.
  contributor:
    fullname: Mizumoto
– volume: 154
  start-page: 3
  year: 2018
  ident: ref_45
  article-title: Human dendritic cell subsets: An update
  publication-title: Immunology
  doi: 10.1111/imm.12888
  contributor:
    fullname: Collin
– volume: 24
  start-page: 1902
  year: 2018
  ident: ref_48
  article-title: Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.07.033
  contributor:
    fullname: Balan
– volume: 44
  start-page: 924
  year: 2016
  ident: ref_78
  article-title: Expansion and Activation of CD103 + Dendritic Cell Progenitors at the Tumor Site Enhances Tumor Responses to Therapeutic PD-L1 and BRAF Inhibition
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.03.012
  contributor:
    fullname: Salmon
– volume: 5
  start-page: 165
  year: 2014
  ident: ref_19
  article-title: Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00165
  contributor:
    fullname: Wimmers
– volume: 112
  start-page: 3264
  year: 2008
  ident: ref_109
  article-title: The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement
  publication-title: Blood
  doi: 10.1182/blood-2008-05-155176
  contributor:
    fullname: Caminschi
– volume: 348
  start-page: 803
  year: 2015
  ident: ref_125
  article-title: A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells
  publication-title: Science
  doi: 10.1126/science.aaa3828
  contributor:
    fullname: Carreno
– volume: 121
  start-page: 459
  year: 2013
  ident: ref_24
  article-title: Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lower Ag uptake than myeloid dendritic cell subsets
  publication-title: Blood
  doi: 10.1182/blood-2012-06-435644
  contributor:
    fullname: Tel
– volume: 26
  start-page: 638
  year: 2014
  ident: ref_77
  article-title: Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.09.007
  contributor:
    fullname: Broz
– volume: 15
  start-page: 2531
  year: 2009
  ident: ref_20
  article-title: Limited Amounts of Dendritic Cells Migrate into the T-Cell Area of Lymph Nodes but Have High Immune Activating Potential in Melanoma Patients
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-2729
  contributor:
    fullname: Verdijk
– volume: 19
  start-page: 885
  year: 2018
  ident: ref_82
  article-title: Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0145-8
  contributor:
    fullname: Michea
– volume: 128
  start-page: 1971
  year: 2018
  ident: ref_116
  article-title: Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI96791
  contributor:
    fullname: Zeng
– volume: 26
  start-page: 623
  year: 2014
  ident: ref_88
  article-title: Macrophage IL-10 Blocks CD8+ T Cell-Dependent Responses to Chemotherapy by Suppressing IL-12 Expression in Intratumoral Dendritic Cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.09.006
  contributor:
    fullname: Ruffell
– volume: 56
  start-page: 215
  year: 2007
  ident: ref_54
  article-title: Dendritic cells: Ontogeny
  publication-title: Allergol. Int.
  doi: 10.2332/allergolint.R-07-149
  contributor:
    fullname: Takeuchi
– volume: 31
  start-page: 563
  year: 2013
  ident: ref_56
  article-title: The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-020711-074950
  contributor:
    fullname: Merad
– volume: 12
  start-page: 557
  year: 2012
  ident: ref_25
  article-title: Cross-presentation by dendritic cells
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3254
  contributor:
    fullname: Joffre
– volume: 4
  start-page: e1019198
  year: 2015
  ident: ref_80
  article-title: Cross-presentation of cutaneous melanoma antigen by migratory XCR1 + CD103 − and XCR1 + CD103 + dendritic cells
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1019198
  contributor:
    fullname: Wylie
– volume: 179
  start-page: 846
  year: 2019
  ident: ref_47
  article-title: Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity
  publication-title: Cell
  doi: 10.1016/j.cell.2019.09.035
  contributor:
    fullname: Brown
– volume: 2
  start-page: 341
  year: 2018
  ident: ref_18
  article-title: Towards superior dendritic-cell vaccines for cancer therapy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0250-x
  contributor:
    fullname: Saxena
– volume: 68
  start-page: 1605
  year: 2019
  ident: ref_106
  article-title: Induction of tumor-specific CD8+ cytotoxic T lymphocytes from naïve human T cells by using Mycobacterium-derived mycolic acid and lipoarabinomannan-stimulated dendritic cells
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-019-02396-8
  contributor:
    fullname: Tomita
– volume: 44
  start-page: 1947
  year: 2014
  ident: ref_115
  article-title: Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201344076
  contributor:
    fullname: Picco
– volume: 31
  start-page: 711
  year: 2017
  ident: ref_87
  article-title: Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.04.003
  contributor:
    fullname: Spranger
– volume: 207
  start-page: 1247
  year: 2010
  ident: ref_49
  article-title: Human CD141 + (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20092140
  contributor:
    fullname: Jongbloed
SSID ssj0000331839
Score 2.4613194
SecondaryResourceType review_article
Snippet Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 158
SubjectTerms anti-tumor immunotherapy
cd141+xcr1+ dcs
conventional type 1 dendritic cells
dendritic cell-based vaccines
Review
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTr1UpfQRWtBUqjiRkvgR29zotohWKkIIKm6RXymVVllElsP-e2aShd1USL30mkS25W_i-T57ZszYpzLpxANHdaIFz6UqQ-5EEXJUAjyQQYVI-5A_T6uTS_njSl2tXfVFMWFDeeBh4g6QTxvhRZQ2emmNtC44tMqq0CEh2R9S9wq7Jqb6NViQrdohZUegrj-4uV5tEXclSn70g2bkjPqa_U8Rzb_jJdcc0PFL9mLJHOFoGPEme5baV2zvbOhwsQ8Xq0yqbh_24GxVlHqxxX5_TW3srzWASZpO4ZcLdKTeAZJWmBD0t_CdckWWGVmLQ2oQzmfTBLMG-r1-mKyFqAMpWChh3G73ml0ef7uYnOTLSxbyILWe57IKQiUbU7Aa6Y8JIfJYOlQ13OmAzt6Y2FiljC-MD7RNZDyKIFc6nqomavGGbbSzNr1jkBCgRgYeTaVkLJNHNuVipX1SXnreZOzzw2zXN0MtjRo1CMFTPwlPxr4QJo8fUyns_gEaSL00kPpfBpKxjw-I1vjr0HmIa9Psrqu5UFZScq7O2NsB4ceuBEcuJaTImB5hPxrL-E3757ovz60LXLO12P4fg3_PntNcUJh4qT6wjfntXdpBFjT3u73B3wMohAdP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6V8sIL4iZcMhLqU1M2PmIHCSFYqAoSqEJd1LfIV1qkVVI2W4n998wk2W6Dljdec9iWZ8b-PnsOgFdZ1JF7juxEC55KlfnUiolPkQlwTwrlA51Dfv2WH83kl1N1ugPrhArDBLZbqR3Vk5ot5ge_f63eocG_JcaJlP31xfnm9LfNkM3jFmduwE0ukayTN9-A-LvFWZASF30sz7__Hu1SXTL_bQj0b0fKazvT4R24PUBK9r7XgbuwE-t7sHfcd7jaZyebEKt2n-2x40226tV9OPsY69DVO2DTOJ-zH9bTXXvLEM2yKenEgn2mIJIhVGv1hhpk35t5ZE3FuksANr3mu86I2rKMjdttH8Ds8NPJ9Cgdqi-kXmq9TGXuhYpFiL7QiIuM94GHzCLd4VZ7RAHGhKpQyriJcZ7Oj4xDdmQzy2NeBS0ewm7d1PExsOhkUUnPg8mVDFl0CLNsyLWLyknHqwQO1rNdXvRJNkokJySecqt4EvhAMrn6mHJkdw-axVk5mFyJTMwIJ4IsAvZvZGG9xfUsn2gfkSYWCbxcS7REm6KLElvH5rItuVCFpKhdncCjXsJXXQmOIEtIkYAeyX40lvGb-ud5l7dbT3Ax1-LJ_xj8U7hFc0H-45l6BrvLxWV8jvBo6V50Cv8HUsoSmw
  priority: 102
  providerName: Scholars Portal
Title Dendritic Cell Vaccines for Cancer Immunotherapy: The Role of Human Conventional Type 1 Dendritic Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/32075343
https://search.proquest.com/docview/2359404627
https://pubmed.ncbi.nlm.nih.gov/PMC7076373
https://doaj.org/article/87583b3d49db49849aca730607ce8719
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaSdOlS9F31YbBAkSmyLT5EqlujJkgLODCCpMgm8KUkgCMZljP43_dISbFVZOqiQQ-S4H3U3Xe8OyL0LXHCEUOAnQhKYsYTEys6NTEwAWI8oIz1fsjZeXp2xX5f8-s9xPtcmBC0b_TduFrcj6u72xBbubw3kz5ObDKf5QLINxV0so_2AaA7FD38fqmHadZm61Cg9JPl7dY73CTA9kEF-nP6KAF9SRkdqKRQuf8pc_PfqMkdNXT6Er3o7Ef8ox3nK7TnqtfocN72vTnCl9t8quYIH-L5tjT15g26-ekqGw43wLlbLPAfZfzGeoPBdMW5B8AK__IZI11e1ua7bxBf1AuH6xIHjz_OdwLVseexOMHDdpu36Or05DI_i7ujFmLDhFjHLDWUu8w6kwkwgqQxlthEAbchShhQ-VLaMuNc6qnUxjuLpAYqpBJFXFpaQd-hg6qu3AeEnWZZyQyxMuXMJk6DTaVsKrTjmmlSRmjcz3axbCtqFMBEvKSKJyUVoWMvk8eXfUHscKNe3RQdLAqgXZJqallmoX_JMmUUYCOdCuOAE2YR-tpLtIAF5HdFVOXqh6YglGfMp-iKCL1vJfzYVY-QCImB7AdjGT4BzIYi3R1GP_73l5_Qcz8BPkI84Z_RwXr14L6AAbTWI_Ts-OR8fjEKDgS4zpgchUXwF1Z7C_4
link.rule.ids 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,33757,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jc9MwFNaUcoALO8WsYobpqXZiLZbNDQydFJpOhkk7vXm0ue2Q2pk4OYRfz5OXJu70AlfLli3rk973Se89IfQptMISTUCdCEp8xkPtSzrUPigBoh2gtHHrkOOTaHTKfpzz8x3Eu1iY2mlfq6ugmF0HxdVl7Vs5v9aDzk9sMBmnAsQ3FXRwD92H8TpkWyK9noCpA2rSxOtQEPWD-eVmfbgKQe-DEXQn9VECFpMy2jNKde7-uwjnbb_JLUN0-BiddU1o_E9-B6ulCvSfW9kd_7mNT9CjlpriL03xU7Rji2dof9I0an2Ap5tQreoA7-PJJuv1-jm6-GYLU5-bgFM7m-Ezqd2efYWBFePUYWuBj1wwShvytf7sKsS_ypnFZY7rzQScbvnAYyeRcYj79VYv0Onh92k68ttTHHzNhFj6LNKU28RYnQjgV7HWhphQgmwiUmhgE3Fs8oTzWA1jpd06VKxAZclQEhvlRtCXaLcoC_sKYatYkjNNTBxxZkKrgK5JEwlluWKK5B4Kum7M5k2yjgxEjoNAdicEPPTVdfbNzS7Xdn2hXFxkbW9koOhiqqhhiYH3xyyRWsK8GA2FtiA3Ew997KCSwdh0Gy6ysOWqygjlCXPRv8JDew10bl7VQc9Dogeq3rf0SwAqdf7vFhqv__vJD-jBaDo-zo6PTn6-QQ_dz3CO6CF_i3aXi5V9Bzxrqd7Xo-ovtCoqjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagSIgLZSdlMxLqqUkmthM73CBl1AKtRqhFFZfIW9qKaTKazByGX89zls6k6qnXxLFj-7Pf--y3IPQpstwSTYCdcEp8Fkfal3SkfWACRDtAaePOIY-Ok4NT9v0sPttI9dUY7Wt1GZTTq6C8vGhsK2dXOuztxMLJUcaBfFNOw5kpwvvoAazZUbJB1JtNmDqwpq3PDgViH84u1mfEdQScHwShy9ZHCUhNyuhAMDXx-29TOm_aTm4Io_E2-tN3o7VB-RssFyrQ_25EeLxTP5-gx52Kir-0RZ6ie7Z8hnYnbcdWe_hk7bJV7-FdPFlHv149R-f7tjRN_gSc2ekU_5ba3d3XGLRjnDmMzfGhc0rpXL9Wn12F-Fc1tbgqcHOpgLMNW3jsqDKO8LDe-gU6HX87yQ78LpuDrxnnC58lmsY2NVanHPQsobUhJpJAn4jkGrQKIUyRxrFQI6G0O48SCtiWjCSxSWE4fYm2yqq0rxG2iqUF08SIJGYmsgrUNmkSrmysmCKFh4J-KvNZG7QjB7LjYJDfCgMPfXUTfl3YxdxuHlTz87ybkRyYnaCKGpYaaF-wVGoJ-2My4toC7Uw99LGHSw5r1F28yNJWyzonNE6Z8wLmHnrVwue6qR5-HuIDYA3-ZfgG4NLEAe_gsXPnLz-gh5P9cf7z8PjHG_TIjYWzR4_it2hrMV_ad6BuLdT7ZmH9B-5cLQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dendritic+Cell+Vaccines+for+Cancer+Immunotherapy%3A+The+Role+of+Human+Conventional+Type+1+Dendritic+Cells&rft.jtitle=Pharmaceutics&rft.au=Jo%C3%A3o+Calmeiro&rft.au=Myl%C3%A8ne+A.+Carrascal&rft.au=Adriana+Ramos+Tavares&rft.au=Daniel+Alexandre+Ferreira&rft.date=2020-02-15&rft.pub=MDPI+AG&rft.eissn=1999-4923&rft.volume=12&rft.issue=2&rft.spage=158&rft_id=info:doi/10.3390%2Fpharmaceutics12020158&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_87583b3d49db49849aca730607ce8719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4923&client=summon