TerraMobilita/iQmulus urban point cloud analysis benchmark
The objective of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separat...
Saved in:
Published in | Computers & graphics Vol. 49; pp. 126 - 133 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2015
Elsevier |
Series | Computers and Graphics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The objective of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different objects of the same type for object classes (detection). A very large ground truth is produced manually in two steps using advanced editing tools developed especially for this benchmark. Based on this ground truth, the benchmark aims at evaluating the classification, detection and segmentation quality of the submitted results.
[Display omitted]
•Very rich data: high accuracy, high resolution, many attributes.•Massive data: 160 million annotated points thanks to a performant web based annotation tool (and many hours of work).•Rich semantics organized in a semantic tree with various levels of generalization.•Very objective evaluation metrics. |
---|---|
AbstractList | The objective of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different objects of the same type for object classes (detection). A very large ground truth is produced manually in two steps using advanced editing tools developed especially for this benchmark. Based on this ground truth, the benchmark aims at evaluating the classification, detection and segmentation quality of the submitted results.
[Display omitted]
•Very rich data: high accuracy, high resolution, many attributes.•Massive data: 160 million annotated points thanks to a performant web based annotation tool (and many hours of work).•Rich semantics organized in a semantic tree with various levels of generalization.•Very objective evaluation metrics. The object of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different objects of the same type for object classes (detection). A very large ground truth is produced manually in two steps using advanced editing tools developed especially for this benchmark. Based on this ground truth, the benchmark aims at evaluating both the classification, detection and segmentation quality of the submitted results. The objective of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser scanning (MLS) at large scale. A very detailed semantic tree for urban scenes is proposed. We call analysis the capacity of a method to separate the points of the scene into these categories (classification), and to separate the different objects of the same type for object classes (detection). A very large ground truth is produced manually in two steps using advanced editing tools developed especially for this benchmark. Based on this ground truth, the benchmark aims at evaluating the classification, detection and segmentation quality of the submitted results. |
Author | Vallet, Bruno Brédif, Mathieu Marcotegui, Beatriz Serna, Andres Paparoditis, Nicolas |
Author_xml | – sequence: 1 givenname: Bruno surname: Vallet fullname: Vallet, Bruno email: bruno.vallet@ign.fr organization: Université Paris-Est, IGN Recherche, SRIG, MATIS, 73 avenue de Paris, 94160 Saint Mandé, France – sequence: 2 givenname: Mathieu surname: Brédif fullname: Brédif, Mathieu organization: Université Paris-Est, IGN Recherche, SRIG, MATIS, 73 avenue de Paris, 94160 Saint Mandé, France – sequence: 3 givenname: Andres orcidid: 0000-0003-2348-3079 surname: Serna fullname: Serna, Andres organization: Centre de Morphologie Mathématique (CMM), 35 rue Saint Honoré, 77305 Fontainebleau, France – sequence: 4 givenname: Beatriz surname: Marcotegui fullname: Marcotegui, Beatriz organization: Centre de Morphologie Mathématique (CMM), 35 rue Saint Honoré, 77305 Fontainebleau, France – sequence: 5 givenname: Nicolas surname: Paparoditis fullname: Paparoditis, Nicolas organization: Université Paris-Est, IGN Recherche, SRIG, MATIS, 73 avenue de Paris, 94160 Saint Mandé, France |
BackLink | https://hal.science/hal-01167995$$DView record in HAL |
BookMark | eNp9kEFr2zAYhkVJoWm6H7Cbj9vBzidLsqztFErXDjJGoT0LWf68KlOsTLID_fdTSNlhh55e-Hif94PnmizGMCIhHylUFGiz3lXW_KpqoKICVgHwC7KkrWSlbFq-IEsAJcuWK3ZFrlPaAUBdN3xJvjxhjOZH6Jx3k1m7x_3s51TMsTNjcQhunArrw9wXZjT-NblUdDjal72Jv2_I5WB8wg9vuSLP3-6ebh_K7c_777ebbWm5lFPJBQ69AIZKciaMsoMxFBuuaK8EVRJFD00_MOjr1kDdqVYpgQwtVw2XqmMr8vm8-2K8PkSXf7_qYJx-2Gz16QaUNjJDR5q7n87dQwx_ZkyT3rtk0XszYpiTplIwwSnLsSL0XLUxpBRx-LdNQZ-c6p3OTvXJqQams9PMyP8Ym61NLoxTNM6_S349k5hNHR1GnazLJrF3Ee2k--Deof8CiKWReA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3062547 crossref_primary_10_1007_s42489_025_00185_1 crossref_primary_10_3390_rs16224240 crossref_primary_10_3390_rs15153787 crossref_primary_10_3390_s19194188 crossref_primary_10_1049_cit2_12349 crossref_primary_10_1109_ACCESS_2019_2894533 crossref_primary_10_1109_TGRS_2020_3005960 crossref_primary_10_1109_TITS_2024_3469546 crossref_primary_10_3390_rs12111875 crossref_primary_10_1016_j_isprsjprs_2023_01_009 crossref_primary_10_1016_j_isprsjprs_2018_05_004 crossref_primary_10_1007_s00138_024_01543_1 crossref_primary_10_1016_j_isprsjprs_2020_03_011 crossref_primary_10_1080_01431161_2023_2297177 crossref_primary_10_1016_j_isprsjprs_2019_05_007 crossref_primary_10_1080_17538947_2024_2407943 crossref_primary_10_1007_s10489_022_03930_5 crossref_primary_10_1049_cvi2_12250 crossref_primary_10_1080_2150704X_2022_2163203 crossref_primary_10_1016_j_autcon_2019_103058 crossref_primary_10_1109_ACCESS_2020_2992612 crossref_primary_10_1016_j_isprsjprs_2019_01_004 crossref_primary_10_1109_LGRS_2021_3063290 crossref_primary_10_3390_rs10101531 crossref_primary_10_1016_j_isprsjprs_2023_05_018 crossref_primary_10_1139_geomatica_2018_0001 crossref_primary_10_24012_dumf_1067736 crossref_primary_10_1016_j_optlaseng_2022_107240 crossref_primary_10_1016_j_eswa_2023_121842 crossref_primary_10_1109_JSTARS_2020_3035274 crossref_primary_10_1080_17538947_2023_2228298 crossref_primary_10_1109_LGRS_2020_3037484 crossref_primary_10_1109_ACCESS_2023_3335607 crossref_primary_10_3390_s24061853 crossref_primary_10_1016_j_cag_2015_01_006 crossref_primary_10_1016_j_inffus_2024_102575 crossref_primary_10_3390_rs9030277 crossref_primary_10_3390_rs13153021 crossref_primary_10_3390_app13169146 crossref_primary_10_1109_TPAMI_2020_3005434 crossref_primary_10_1016_j_isprsjprs_2020_08_011 crossref_primary_10_3390_rs15163973 crossref_primary_10_1016_j_isprsjprs_2018_08_009 crossref_primary_10_3390_rs16142518 crossref_primary_10_3390_rs12111729 crossref_primary_10_3390_rs14051090 crossref_primary_10_3390_rs13204029 crossref_primary_10_3103_S1060992X20040062 crossref_primary_10_1016_j_buildenv_2024_112310 crossref_primary_10_3390_robotics12040100 crossref_primary_10_1109_TGRS_2023_3342807 crossref_primary_10_1155_2022_3707985 crossref_primary_10_1016_j_isprsjprs_2015_09_008 crossref_primary_10_3390_s19040810 crossref_primary_10_1109_ACCESS_2021_3094127 crossref_primary_10_3390_rs13183621 crossref_primary_10_1016_j_isprsjprs_2015_07_005 crossref_primary_10_1007_s00371_023_03237_7 crossref_primary_10_3390_rs13224713 crossref_primary_10_3390_rs14163848 crossref_primary_10_1109_TNNLS_2020_3015992 crossref_primary_10_20965_ijat_2017_p0657 crossref_primary_10_3390_rs11121499 crossref_primary_10_1109_TMM_2022_3233256 crossref_primary_10_1061__ASCE_CP_1943_5487_0000929 crossref_primary_10_3390_rs15112735 crossref_primary_10_1007_s11263_021_01504_5 crossref_primary_10_3390_ijgi5010006 crossref_primary_10_3390_rs11232727 crossref_primary_10_1109_JSTARS_2019_2897987 crossref_primary_10_3788_LOP232716 crossref_primary_10_1080_2150704X_2018_1444286 crossref_primary_10_1016_j_autcon_2017_06_026 crossref_primary_10_1016_j_autcon_2024_105870 crossref_primary_10_1016_j_isprsjprs_2024_02_007 crossref_primary_10_1109_JSEN_2019_2927269 crossref_primary_10_3390_rs10040531 crossref_primary_10_1016_j_cag_2015_04_006 crossref_primary_10_1016_j_isprsjprs_2021_07_008 crossref_primary_10_1016_j_isprsjprs_2017_08_010 crossref_primary_10_1080_01431161_2023_2266121 crossref_primary_10_3390_rs17020298 crossref_primary_10_1177_0278364918767506 crossref_primary_10_1080_10106049_2022_2032392 crossref_primary_10_1016_j_eswa_2023_120672 crossref_primary_10_1109_ACCESS_2022_3226211 crossref_primary_10_1109_TGRS_2025_3543174 crossref_primary_10_1016_j_isprsjprs_2022_02_007 crossref_primary_10_1016_j_jag_2018_02_016 crossref_primary_10_1007_s41064_021_00148_x crossref_primary_10_3390_rs16061079 crossref_primary_10_1080_17538947_2024_2310083 crossref_primary_10_3788_CJL231000 crossref_primary_10_1139_geomat_2018_0001 crossref_primary_10_1109_TITS_2021_3076844 crossref_primary_10_1364_AO_423599 crossref_primary_10_1007_s12524_021_01358_x crossref_primary_10_1109_TITS_2022_3167957 crossref_primary_10_1007_s11263_021_01554_9 crossref_primary_10_1109_MGRS_2019_2937630 crossref_primary_10_1109_JSTARS_2020_3001978 crossref_primary_10_3390_rs10010002 crossref_primary_10_1109_JSTARS_2021_3090502 crossref_primary_10_3390_su15021157 crossref_primary_10_3390_rs15061493 crossref_primary_10_1016_j_biosystemseng_2023_05_009 crossref_primary_10_1016_j_cag_2022_07_010 crossref_primary_10_3390_rs13163146 |
Cites_doi | 10.1109/3DIMPVT.2011.10 10.5194/isprsannals-II-5-W2-313-2013 10.1109/ICCV.2009.5459471 10.1016/j.isprsjprs.2013.07.001 10.1109/CVPRW.2009.5206590 10.52638/rfpt.2012.63 10.1007/978-3-642-38294-9_18 10.1016/j.isprsjprs.2014.03.015 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1016/j.cag.2015.03.004 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1873-7684 |
EndPage | 133 |
ExternalDocumentID | oai_HAL_hal_01167995v1 10_1016_j_cag_2015_03_004 S009784931500028X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGSOS AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W K-O KOM LG9 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSW SSZ T5K TN5 UHS VH1 VOH WH7 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c477t-45efd503e97435a9cfaa1e6491d95197e5d06df30d28a02b98995e3ec496479b3 |
IEDL.DBID | .~1 |
ISSN | 0097-8493 |
IngestDate | Fri May 09 12:23:10 EDT 2025 Fri Jul 11 01:10:03 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 03:26:51 EDT 2025 Sat Jun 29 15:31:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Benchmark Mobile mapping Laser scanning Segmentation Urban scene Classification detection urban scene segmentation mobile mapping classification analysis laser scanning |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-45efd503e97435a9cfaa1e6491d95197e5d06df30d28a02b98995e3ec496479b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2348-3079 0000-0002-3619-6661 0000-0002-9492-5180 0000-0002-2825-7292 0000-0003-0228-1232 |
OpenAccessLink | https://hal.science/hal-01167995 |
PQID | 1753541375 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_01167995v1 proquest_miscellaneous_1753541375 crossref_primary_10_1016_j_cag_2015_03_004 crossref_citationtrail_10_1016_j_cag_2015_03_004 elsevier_sciencedirect_doi_10_1016_j_cag_2015_03_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationSeriesTitle | Computers and Graphics |
PublicationTitle | Computers & graphics |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Golovinskiy A, Kim VG, Funkhouser T. Shape-based recognition of 3D point clouds in urban environments. In: International conference on computer vision, ICCV; 2009. Serna A, Marcotegui B, Goulette F, Deschaud J-E. Paris-rue-Madame database: a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods. ICPRAM 2014. Serna A, Marcotegui B. Attribute controlled reconstruction and adaptive mathematical morphology. In: Eleventh international symposium on mathematical morphology, Uppsala, Sweden; 2013. p. 205–16. Weinmann M, Jutzi B, Mallet C. Feature relevance assessment for the semantic interpretation of 3D point cloud data. ISPRS workshop on laser scanning. Antalya; 2013. Hernández J, Marcotegui B. Filtering of artifacts and pavement segmentation from mobile LiDAR data. In: Bretar F, Pierrot-Deseilligny M, Vosselman MG, editors. ISPRS workshop Laser scanning ׳09, vol. XXXVIII-3/W8 of The international archives of the photogrammetry, remote sensing and spatial information sciences. Paris, France; 2009, p. 329–33. Serna, Marcotegui (bib7) 2013; 84 〉 Kaartinen H, Kukko A, Hyyppä J, Lehtomäki M. EuroSDR benchmarking of mobile mapping algorithms and systems. EuroSDR report; 2012 Shapovalov R, Velizhev A, Barinova O. Non-associative Markov networks for 3D point cloud classification. The international archives of the photogrammetry, remote sensing and spatial information sciences, vol. XXXVIII. Part 3A; 2010. p. 103–8. Paparoditis N, Papelard J-P, Cannelle B, Devaux A, Soheilian B, David N, et al., Stereopolis II: a multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology. Revue Française de Photogrammétrie et de Télédétection 200: 69–79; October 2012. Serna, Marcotegui (bib8) 2014; 93 Munoz D, Bagnell JA, Vandapel N, Hebert M. Contextual classification with functional max-margin Markov networks. In: IEEE Computer society conference on computer vision and pattern recognition (CVPR); June, 2009. 10.1016/j.cag.2015.03.004_bib5 10.1016/j.cag.2015.03.004_bib4 10.1016/j.cag.2015.03.004_bib6 10.1016/j.cag.2015.03.004_bib9 10.1016/j.cag.2015.03.004_bib10 10.1016/j.cag.2015.03.004_bib1 10.1016/j.cag.2015.03.004_bib11 Serna (10.1016/j.cag.2015.03.004_bib8) 2014; 93 10.1016/j.cag.2015.03.004_bib3 10.1016/j.cag.2015.03.004_bib2 Serna (10.1016/j.cag.2015.03.004_bib7) 2013; 84 |
References_xml | – reference: Munoz D, Bagnell JA, Vandapel N, Hebert M. Contextual classification with functional max-margin Markov networks. In: IEEE Computer society conference on computer vision and pattern recognition (CVPR); June, 2009. – reference: Serna A, Marcotegui B, Goulette F, Deschaud J-E. Paris-rue-Madame database: a 3D mobile laser scanner dataset for benchmarking urban detection, segmentation and classification methods. ICPRAM 2014. 〈 – reference: Hernández J, Marcotegui B. Filtering of artifacts and pavement segmentation from mobile LiDAR data. In: Bretar F, Pierrot-Deseilligny M, Vosselman MG, editors. ISPRS workshop Laser scanning ׳09, vol. XXXVIII-3/W8 of The international archives of the photogrammetry, remote sensing and spatial information sciences. Paris, France; 2009, p. 329–33. – reference: Shapovalov R, Velizhev A, Barinova O. Non-associative Markov networks for 3D point cloud classification. The international archives of the photogrammetry, remote sensing and spatial information sciences, vol. XXXVIII. Part 3A; 2010. p. 103–8. – reference: Golovinskiy A, Kim VG, Funkhouser T. Shape-based recognition of 3D point clouds in urban environments. In: International conference on computer vision, ICCV; 2009. – volume: 93 start-page: 243 year: 2014 end-page: 255 ident: bib8 article-title: Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning publication-title: ISPRS J Photogramm Remote Sens – reference: 〉 – reference: Kaartinen H, Kukko A, Hyyppä J, Lehtomäki M. EuroSDR benchmarking of mobile mapping algorithms and systems. EuroSDR report; 2012 – volume: 84 start-page: 23 year: 2013 end-page: 32 ident: bib7 article-title: Urban accessibility diagnosis from mobile laser scanning data publication-title: ISPRS J Photogramm Remote Sens – reference: Serna A, Marcotegui B. Attribute controlled reconstruction and adaptive mathematical morphology. In: Eleventh international symposium on mathematical morphology, Uppsala, Sweden; 2013. p. 205–16. – reference: Paparoditis N, Papelard J-P, Cannelle B, Devaux A, Soheilian B, David N, et al., Stereopolis II: a multi-purpose and multi-sensor 3D mobile mapping system for street visualisation and 3D metrology. Revue Française de Photogrammétrie et de Télédétection 200: 69–79; October 2012. – reference: Weinmann M, Jutzi B, Mallet C. Feature relevance assessment for the semantic interpretation of 3D point cloud data. ISPRS workshop on laser scanning. Antalya; 2013. – ident: 10.1016/j.cag.2015.03.004_bib9 – ident: 10.1016/j.cag.2015.03.004_bib10 doi: 10.1109/3DIMPVT.2011.10 – ident: 10.1016/j.cag.2015.03.004_bib11 doi: 10.5194/isprsannals-II-5-W2-313-2013 – ident: 10.1016/j.cag.2015.03.004_bib1 doi: 10.1109/ICCV.2009.5459471 – volume: 84 start-page: 23 year: 2013 ident: 10.1016/j.cag.2015.03.004_bib7 article-title: Urban accessibility diagnosis from mobile laser scanning data publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2013.07.001 – ident: 10.1016/j.cag.2015.03.004_bib4 doi: 10.1109/CVPRW.2009.5206590 – ident: 10.1016/j.cag.2015.03.004_bib3 – ident: 10.1016/j.cag.2015.03.004_bib2 – ident: 10.1016/j.cag.2015.03.004_bib5 doi: 10.52638/rfpt.2012.63 – ident: 10.1016/j.cag.2015.03.004_bib6 doi: 10.1007/978-3-642-38294-9_18 – volume: 93 start-page: 243 year: 2014 ident: 10.1016/j.cag.2015.03.004_bib8 article-title: Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2014.03.015 |
SSID | ssj0002264 |
Score | 2.4496372 |
Snippet | The objective of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser... The object of the TerraMobilita/iQmulus 3D urban analysis benchmark is to evaluate the current state of the art in urban scene analysis from mobile laser... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126 |
SubjectTerms | Benchmark Benchmarking Categories Classification Computer Science Ground truth Image Processing Laser scanning Lasers Mobile mapping Scene analysis Segmentation Semantics Three dimensional models Urban scene |
Title | TerraMobilita/iQmulus urban point cloud analysis benchmark |
URI | https://dx.doi.org/10.1016/j.cag.2015.03.004 https://www.proquest.com/docview/1753541375 https://hal.science/hal-01167995 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT8IwFG4QX_TBeI14IdP4ZDLp6GXMN0IkeIHEBBLemq4rgsJGBvPR327PLnhJ5MHHNe22ntOe0_Z85ytCV1py5fpmAhJFiA0uwG4AAy1tSAe4SzDXcN7R7fHOgD4M2bCEWkUuDMAqc9uf2fTUWucltVyatflkAjm-ZgdEPeKw9IxoCBns1IVRfvPxBfOARNGMidJYY1O7iGymGC8lXwDdxTKeU_qXb9oYA0jyl61OHVB7F-3kK0ermf3cHirpcB9tf-MTPEC3fR3Hshtl1Nu1yfMsmSYLK4l9GVrzaBIuLTWNksCSORWJ5ZsOj2cyfjtEg_Zdv9Wx88sRbEVdd2lTpkcBw0SbDQFh0lMjKR3NqecEHiSjahZgHowIDuoNieu-Z1TANNGKQu6p55MjVA6jUB8jyzE-2qVYEsIhCKl8wiXXrIHpiBDl8wrChViEypnD4QKLqSggYq_CSFKAJAUmwkiygq5XTeYZbca6yrSQtfihe2HM-rpml0Yvq9cDT3an-SSgLIsueezdqaCLQm3CTByIhshQR8lCAEUpMy7cZSf_-_4p2oKnDDd2hsrLONHnZoWy9KvpEKyizeb9Y6f3CYQn4PY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB0VOAAHxCrKGhAnpFAHL2m4VQhUoEVCKlJvluO4tFCSKjQc-XY8WdgkOHB17CwzmRnb8-YZ4Mgoof3QGiDVlLoYAtwmMtCypvKQu4QIg_sd3VvRvmfXfd6vwXlVC4OwytL3Fz4999ZlS6OUZmMyGmGNr10BsYB6PN8j6s_AHLPmi8cYnLx94jywUrSgorTu2HavUps5yEurB4R38YLolP0WnGaGiJL84azzCHS5DEvl1NFpFW-3AjUTr8LiF0LBNTjrmTRV3aTg3m6M7p6zcfbiZGmoYmeSjOKpo8dJFjmq5CJxQvvFw2eVPq3D_eVF77ztlqcjuJr5_tRl3AwiTqixKwLKVaAHSnlGsMCLAqxGNTwiIhpQEp02FTkNA6sDbqjRDItPg5BuwGycxGYTHM8GaZ8RRanALKQOqVDC8CZhA0p1KOpAKrFIXVKH4wkWY1lhxB6llaRESUpCpZVkHY4_hkwK3oy_OrNK1vKb8qX1638NO7R6-bg9EmW3Wx2JbUV6KeCvXh0OKrVJazmYDlGxSbIXiRyl3MZwn2_97_n7MN_udTuyc3V7sw0LeKUAke3A7DTNzK6drkzDvfx3fAfCO-KE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TerraMobilita%2FiQmulus+urban+point+cloud+analysis+benchmark&rft.jtitle=Computers+%26+graphics&rft.au=Vallet%2C+Bruno&rft.au=Br%C3%A9dif%2C+Mathieu&rft.au=Serna%2C+Andres&rft.au=Marcotegui%2C+Beatriz&rft.date=2015-06-01&rft.issn=0097-8493&rft.volume=49&rft.spage=126&rft.epage=133&rft_id=info:doi/10.1016%2Fj.cag.2015.03.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cag_2015_03_004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon |