A Novel Fog Computing Approach for Minimization of Latency in Healthcare using Machine Learning

In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distribute...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of interactive multimedia and artificial intelligence Vol. 6; no. 7; pp. 7 - 17
Main Authors Kishor, Amit, Chakraborty, Chinmay, Jeberson, Wilson
Format Journal Article
LanguageEnglish
Published IMAI Software 01.09.2021
Universidad Internacional de La Rioja (UNIR)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, In IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare. KEYWORDS Cloud Computing, Data Segregation Scheme, Fog Computing, Latency, Machine Learning, Multimedia Healthcare Data Analytics, Multimedia Transmission, Quality Of Service.
AbstractList In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, in IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare.
In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, In IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare. KEYWORDS Cloud Computing, Data Segregation Scheme, Fog Computing, Latency, Machine Learning, Multimedia Healthcare Data Analytics, Multimedia Transmission, Quality Of Service.
Audience Academic
Author Jeberson, Wilson
Kishor, Amit
Chakraborty, Chinmay
Author_xml – sequence: 1
  fullname: Kishor, Amit
– sequence: 2
  fullname: Chakraborty, Chinmay
– sequence: 3
  fullname: Jeberson, Wilson
BookMark eNptkltr3DAQhU1JoWmaP9AnQZ_X1c2WBX0xS9MENi2U9FmMddnMYkuL7C2kv77a7lISiPQgcZjvjBid99VFTNFX1UdGa6069hl3OAHWnHJaM15TKt9Ul0x3esXall48u7-rrud5R8sSTDacXVamJ9_Tbz-Sm7Ql6zTtDwvGLen3-5zAPpKQMrnHiBP-gQVTJCmQDSw-2ieCkdx6GJdHC9mTw3wE7wuE0ZONhxyL8KF6G2Cc_fX5vKp-3Xx9WN-uNj--3a37zcpKpZaVpJS5QFWgg9TOukZr4VTjHGdt44XvwEJHlQpOD21wXkrnGiECk2HgVEhxVd2dfF2CndnnMpH8ZBKg-SekvDWQF7SjNyEUJzeAcIOXYIVutRNUCO14oxxlxevL2QthjH55aXfWDhEzph0YP5v-50MZKWuZ6HRX8E8nfAulG8aQlgx2wtmavlUta3iraKmqX6kq2_kJbfnggEV_AfATYHOa5-zD_2cxao45MKccmGMODOOm5ED8BWRlqGU
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3284390
crossref_primary_10_1007_s13198_021_01593_y
crossref_primary_10_1007_s12553_023_00796_6
crossref_primary_10_1002_nem_2200
crossref_primary_10_1007_s13198_021_01195_8
crossref_primary_10_1007_s13198_023_01970_9
crossref_primary_10_1109_TCSS_2022_3170375
crossref_primary_10_1007_s11042_022_14165_4
crossref_primary_10_1007_s11277_021_08708_5
crossref_primary_10_1007_s13198_021_01174_z
crossref_primary_10_1007_s11277_023_10350_2
crossref_primary_10_3390_electronics11172668
crossref_primary_10_1007_s11227_021_04056_0
crossref_primary_10_1049_cmu2_12501
crossref_primary_10_1111_exsy_13090
crossref_primary_10_1007_s13198_021_01226_4
crossref_primary_10_1145_3577926
crossref_primary_10_1007_s11082_023_05854_x
crossref_primary_10_1049_tje2_12177
crossref_primary_10_1111_exsy_13605
crossref_primary_10_1049_tje2_12193
crossref_primary_10_1007_s11277_021_08714_7
crossref_primary_10_1007_s10586_023_03985_0
crossref_primary_10_1007_s00521_023_08258_w
crossref_primary_10_1007_s41870_022_00922_z
crossref_primary_10_1109_JIOT_2021_3125885
crossref_primary_10_1016_j_ins_2023_01_148
ContentType Journal Article
Copyright COPYRIGHT 2021 IMAI Software
LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
Copyright_xml – notice: COPYRIGHT 2021 IMAI Software
– notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI
DBID AAYXX
CITATION
AGMXS
FKZ
DOA
DOI 10.9781/ijimai.2020.12.004
DatabaseName CrossRef
Dialnet (Open Access Full Text)
Dialnet
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1989-1660
EndPage 17
ExternalDocumentID oai_doaj_org_article_ff807dba3dbe4ac3969d30339d257d01
oai_dialnet_unirioja_es_ART0001613898
A676152670
10_9781_ijimai_2020_12_004
GeographicLocations Iran
India
GeographicLocations_xml – name: Iran
– name: India
GroupedDBID .4S
.DC
29J
2WC
5GY
5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
C1A
CITATION
E3Z
GROUPED_DOAJ
IAO
ICD
IPNFZ
ITC
KQ8
MK~
M~E
OK1
RIG
TR2
TUS
Z7F
AGMXS
FKZ
N95
ID FETCH-LOGICAL-c477t-4001df07f0b49dcd5993d75dd2165e3e8aca8077fd9b6fde44dd533f14fb20343
IEDL.DBID DOA
ISSN 1989-1660
IngestDate Tue Oct 22 15:08:42 EDT 2024
Sun Jul 23 03:17:30 EDT 2023
Thu Feb 22 23:32:00 EST 2024
Wed Oct 25 09:53:02 EDT 2023
Fri Aug 23 03:19:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-4001df07f0b49dcd5993d75dd2165e3e8aca8077fd9b6fde44dd533f14fb20343
OpenAccessLink https://doaj.org/article/ff807dba3dbe4ac3969d30339d257d01
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_ff807dba3dbe4ac3969d30339d257d01
dialnet_primary_oai_dialnet_unirioja_es_ART0001613898
gale_infotracmisc_A676152670
gale_infotracacademiconefile_A676152670
crossref_primary_10_9781_ijimai_2020_12_004
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of interactive multimedia and artificial intelligence
PublicationYear 2021
Publisher IMAI Software
Universidad Internacional de La Rioja (UNIR)
Publisher_xml – name: IMAI Software
– name: Universidad Internacional de La Rioja (UNIR)
SSID ssj0000314521
Score 2.4907336
Snippet In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices...
SourceID doaj
dialnet
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 7
SubjectTerms Analysis
Cloud Computing
data segregation
Data Segregation Scheme
Fog Computing
health
Health care industry
Health care reform
Information storage and retrieval
Latency
Machine Learning
Medical care
Multimedia Healthcare Data Analytics
Multimedia Transmission
Quality management
Quality Of Service
Title A Novel Fog Computing Approach for Minimization of Latency in Healthcare using Machine Learning
URI https://dialnet.unirioja.es/servlet/oaiart?codigo=9033992
https://doaj.org/article/ff807dba3dbe4ac3969d30339d257d01
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilbfqgbtOiQ6GHskSWZNk6bkuWpXRzaiA3YWmkxaGxw9Yp9N93xtaGzamXXCUL5E8zmm_seTD2idqqNiH6RZMkLLQR9H8X1d1HqX2rjAmacoc3F2Z9qb9fVVcHrb4oJmwuDzwDd5ZSI2rAZeCjboOyxgJeu8oCChvkzC1hD5yp6Q5WpUbDNGfJUFmns-66u2k7dAilmL7_5c5se0t0TGkafRxz6f58QR-YmtUL9ixzRL6c93bCnsT-JXu-77_Aszq-Ym7JL4Y_8RdfDVs-T6Mh4stcJpwjH-Wbru9ucq4lHxL_0RJJ_su7nq_vQ784Rb9v-WYKrIw811zdvmaXq_Of39aL3DBhEXRdj-gLihKSqJPw2kKACskH1BWALE0VVWza0CKadQLrTYKoNQDSvVTq5KVQWr1hR_3Qx7eMKxtbAYr8laQFBBvAW4EH4IWMCH7BvuzBc7dzXQyH_gRB7WaoHUHtSukQ6oJVGd_7h6ms9X7sru923XDduvjbIY2feSgyqaZgX-k0Hi6iAZQQlyXE_U9CCvaZztKRxo47hCAnHuCLUu0rtzQ10jppalGw0wdPoqaFg-l3j7Gb9-yppLCYKUztlB2Nu7v4AXnN6D9OIvwPyff2YA
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fog+Computing+Approach+for+Minimization+of+Latency+in+Healthcare+using+Machine+Learning&rft.jtitle=International+journal+of+interactive+multimedia+and+artificial+intelligence&rft.au=Kishor%2C+Amit&rft.au=Chakraborty%2C+Chinmay&rft.au=Jeberson%2C+Wilson&rft.date=2021-09-01&rft.pub=IMAI+Software&rft.issn=1989-1660&rft.eissn=1989-1660&rft.volume=6&rft.issue=7&rft.spage=7&rft_id=info:doi/10.9781%2Fijimai.2020.12.004&rft.externalDocID=A676152670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1989-1660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1989-1660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1989-1660&client=summon