A Novel Fog Computing Approach for Minimization of Latency in Healthcare using Machine Learning
In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distribute...
Saved in:
Published in | International journal of interactive multimedia and artificial intelligence Vol. 6; no. 7; pp. 7 - 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IMAI Software
01.09.2021
Universidad Internacional de La Rioja (UNIR) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, In IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare. KEYWORDS Cloud Computing, Data Segregation Scheme, Fog Computing, Latency, Machine Learning, Multimedia Healthcare Data Analytics, Multimedia Transmission, Quality Of Service. |
---|---|
AbstractList | In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, in IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare. In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices which becomes very difficult to handle only through the cloud. Fog computing technology emerges as an intelligent solution and uses a distributed environment to operate. The objective of the paper is latency minimization in e-healthcare through fog computing. Therefore, In IoT multimedia data transmission, the parameters such as transmission delay, network delay, and computation delay must be reduced as there is a high demand for healthcare multimedia analytics. Fog computing provides processing, storage, and analyze the data nearer to IoT and end-users to overcome the latency. In this paper, the novel Intelligent Multimedia Data Segregation (IMDS) scheme using Machine learning (k-fold random forest) is proposed in the fog computing environment that segregates the multimedia data and the model used to calculate total latency (transmission, computation, and network). With the simulated results, we achieved 92% as the classification accuracy of the model, an approximately 95% reduction in latency as compared with the pre-existing model, and improved the quality of services in e-healthcare. KEYWORDS Cloud Computing, Data Segregation Scheme, Fog Computing, Latency, Machine Learning, Multimedia Healthcare Data Analytics, Multimedia Transmission, Quality Of Service. |
Audience | Academic |
Author | Jeberson, Wilson Kishor, Amit Chakraborty, Chinmay |
Author_xml | – sequence: 1 fullname: Kishor, Amit – sequence: 2 fullname: Chakraborty, Chinmay – sequence: 3 fullname: Jeberson, Wilson |
BookMark | eNptkltr3DAQhU1JoWmaP9AnQZ_X1c2WBX0xS9MENi2U9FmMddnMYkuL7C2kv77a7lISiPQgcZjvjBid99VFTNFX1UdGa6069hl3OAHWnHJaM15TKt9Ul0x3esXall48u7-rrud5R8sSTDacXVamJ9_Tbz-Sm7Ql6zTtDwvGLen3-5zAPpKQMrnHiBP-gQVTJCmQDSw-2ieCkdx6GJdHC9mTw3wE7wuE0ZONhxyL8KF6G2Cc_fX5vKp-3Xx9WN-uNj--3a37zcpKpZaVpJS5QFWgg9TOukZr4VTjHGdt44XvwEJHlQpOD21wXkrnGiECk2HgVEhxVd2dfF2CndnnMpH8ZBKg-SekvDWQF7SjNyEUJzeAcIOXYIVutRNUCO14oxxlxevL2QthjH55aXfWDhEzph0YP5v-50MZKWuZ6HRX8E8nfAulG8aQlgx2wtmavlUta3iraKmqX6kq2_kJbfnggEV_AfATYHOa5-zD_2cxao45MKccmGMODOOm5ED8BWRlqGU |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3284390 crossref_primary_10_1007_s13198_021_01593_y crossref_primary_10_1007_s12553_023_00796_6 crossref_primary_10_1002_nem_2200 crossref_primary_10_1007_s13198_021_01195_8 crossref_primary_10_1007_s13198_023_01970_9 crossref_primary_10_1109_TCSS_2022_3170375 crossref_primary_10_1007_s11042_022_14165_4 crossref_primary_10_1007_s11277_021_08708_5 crossref_primary_10_1007_s13198_021_01174_z crossref_primary_10_1007_s11277_023_10350_2 crossref_primary_10_3390_electronics11172668 crossref_primary_10_1007_s11227_021_04056_0 crossref_primary_10_1049_cmu2_12501 crossref_primary_10_1111_exsy_13090 crossref_primary_10_1007_s13198_021_01226_4 crossref_primary_10_1145_3577926 crossref_primary_10_1007_s11082_023_05854_x crossref_primary_10_1049_tje2_12177 crossref_primary_10_1111_exsy_13605 crossref_primary_10_1049_tje2_12193 crossref_primary_10_1007_s11277_021_08714_7 crossref_primary_10_1007_s10586_023_03985_0 crossref_primary_10_1007_s00521_023_08258_w crossref_primary_10_1007_s41870_022_00922_z crossref_primary_10_1109_JIOT_2021_3125885 crossref_primary_10_1016_j_ins_2023_01_148 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 IMAI Software LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
Copyright_xml | – notice: COPYRIGHT 2021 IMAI Software – notice: LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI |
DBID | AAYXX CITATION AGMXS FKZ DOA |
DOI | 10.9781/ijimai.2020.12.004 |
DatabaseName | CrossRef Dialnet (Open Access Full Text) Dialnet Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1989-1660 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_ff807dba3dbe4ac3969d30339d257d01 oai_dialnet_unirioja_es_ART0001613898 A676152670 10_9781_ijimai_2020_12_004 |
GeographicLocations | Iran India |
GeographicLocations_xml | – name: Iran – name: India |
GroupedDBID | .4S .DC 29J 2WC 5GY 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV C1A CITATION E3Z GROUPED_DOAJ IAO ICD IPNFZ ITC KQ8 MK~ M~E OK1 RIG TR2 TUS Z7F AGMXS FKZ N95 |
ID | FETCH-LOGICAL-c477t-4001df07f0b49dcd5993d75dd2165e3e8aca8077fd9b6fde44dd533f14fb20343 |
IEDL.DBID | DOA |
ISSN | 1989-1660 |
IngestDate | Tue Oct 22 15:08:42 EDT 2024 Sun Jul 23 03:17:30 EDT 2023 Thu Feb 22 23:32:00 EST 2024 Wed Oct 25 09:53:02 EDT 2023 Fri Aug 23 03:19:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-4001df07f0b49dcd5993d75dd2165e3e8aca8077fd9b6fde44dd533f14fb20343 |
OpenAccessLink | https://doaj.org/article/ff807dba3dbe4ac3969d30339d257d01 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ff807dba3dbe4ac3969d30339d257d01 dialnet_primary_oai_dialnet_unirioja_es_ART0001613898 gale_infotracmisc_A676152670 gale_infotracacademiconefile_A676152670 crossref_primary_10_9781_ijimai_2020_12_004 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of interactive multimedia and artificial intelligence |
PublicationYear | 2021 |
Publisher | IMAI Software Universidad Internacional de La Rioja (UNIR) |
Publisher_xml | – name: IMAI Software – name: Universidad Internacional de La Rioja (UNIR) |
SSID | ssj0000314521 |
Score | 2.4907336 |
Snippet | In the recent scenario, the most challenging requirements are to handle the massive generation of multimedia data from the Internet of Things (IoT) devices... |
SourceID | doaj dialnet gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 7 |
SubjectTerms | Analysis Cloud Computing data segregation Data Segregation Scheme Fog Computing health Health care industry Health care reform Information storage and retrieval Latency Machine Learning Medical care Multimedia Healthcare Data Analytics Multimedia Transmission Quality management Quality Of Service |
Title | A Novel Fog Computing Approach for Minimization of Latency in Healthcare using Machine Learning |
URI | https://dialnet.unirioja.es/servlet/oaiart?codigo=9033992 https://doaj.org/article/ff807dba3dbe4ac3969d30339d257d01 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilbfqgbtOiQ6GHskSWZNk6bkuWpXRzaiA3YWmkxaGxw9Yp9N93xtaGzamXXCUL5E8zmm_seTD2idqqNiH6RZMkLLQR9H8X1d1HqX2rjAmacoc3F2Z9qb9fVVcHrb4oJmwuDzwDd5ZSI2rAZeCjboOyxgJeu8oCChvkzC1hD5yp6Q5WpUbDNGfJUFmns-66u2k7dAilmL7_5c5se0t0TGkafRxz6f58QR-YmtUL9ixzRL6c93bCnsT-JXu-77_Aszq-Ym7JL4Y_8RdfDVs-T6Mh4stcJpwjH-Wbru9ucq4lHxL_0RJJ_su7nq_vQ784Rb9v-WYKrIw811zdvmaXq_Of39aL3DBhEXRdj-gLihKSqJPw2kKACskH1BWALE0VVWza0CKadQLrTYKoNQDSvVTq5KVQWr1hR_3Qx7eMKxtbAYr8laQFBBvAW4EH4IWMCH7BvuzBc7dzXQyH_gRB7WaoHUHtSukQ6oJVGd_7h6ms9X7sru923XDduvjbIY2feSgyqaZgX-k0Hi6iAZQQlyXE_U9CCvaZztKRxo47hCAnHuCLUu0rtzQ10jppalGw0wdPoqaFg-l3j7Gb9-yppLCYKUztlB2Nu7v4AXnN6D9OIvwPyff2YA |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fog+Computing+Approach+for+Minimization+of+Latency+in+Healthcare+using+Machine+Learning&rft.jtitle=International+journal+of+interactive+multimedia+and+artificial+intelligence&rft.au=Kishor%2C+Amit&rft.au=Chakraborty%2C+Chinmay&rft.au=Jeberson%2C+Wilson&rft.date=2021-09-01&rft.pub=IMAI+Software&rft.issn=1989-1660&rft.eissn=1989-1660&rft.volume=6&rft.issue=7&rft.spage=7&rft_id=info:doi/10.9781%2Fijimai.2020.12.004&rft.externalDocID=A676152670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1989-1660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1989-1660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1989-1660&client=summon |