Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes
1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 2 National Institutes for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 3 Department of Zoology, Graduate School of Scie...
Saved in:
Published in | Physiological genomics Vol. 22; no. 3; pp. 269 - 282 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Am Physiological Soc
11.08.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi
2 National Institutes for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi
3 Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto
4 Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
5 Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
6 Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki
7 Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo
8 School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi, Japan
Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans , the fruit fly Drosophila melanogaster , and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment.
ascidian; homeostasis; embryogenesis |
---|---|
AbstractList | Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans, the fruit fly Drosophila melanogaster, and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment. 1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 2 National Institutes for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 3 Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 4 Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan 5 Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada 6 Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 7 Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 8 School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi, Japan Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans , the fruit fly Drosophila melanogaster , and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment. ascidian; homeostasis; embryogenesis |
Author | Ohtsuka, Yukio Nishida, Motohiro Murata, Yoshimichi Okado, Haruo Watari, Hirofumi Nishino, Atsuo Yoshida, Takashi Iwasaki, Hirohide Satoh, Nori Hara, Yuji Takahashi, Nobuyuki Mori, Yasuo Satou, Yutaka Okamura, Yasushi Meinertzhagen, Ian A Nakajo, Koichi Tanaka-Kunishima, Motoko Okada, Yasunobu Takahashi, Kunitaro |
Author_xml | – sequence: 1 fullname: Okamura, Yasushi – sequence: 2 fullname: Nishino, Atsuo – sequence: 3 fullname: Murata, Yoshimichi – sequence: 4 fullname: Nakajo, Koichi – sequence: 5 fullname: Iwasaki, Hirohide – sequence: 6 fullname: Ohtsuka, Yukio – sequence: 7 fullname: Tanaka-Kunishima, Motoko – sequence: 8 fullname: Takahashi, Nobuyuki – sequence: 9 fullname: Hara, Yuji – sequence: 10 fullname: Yoshida, Takashi – sequence: 11 fullname: Nishida, Motohiro – sequence: 12 fullname: Okado, Haruo – sequence: 13 fullname: Watari, Hirofumi – sequence: 14 fullname: Meinertzhagen, Ian A – sequence: 15 fullname: Satoh, Nori – sequence: 16 fullname: Takahashi, Kunitaro – sequence: 17 fullname: Satou, Yutaka – sequence: 18 fullname: Okada, Yasunobu – sequence: 19 fullname: Mori, Yasuo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15914577$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVuL1TAUhYOMOBf9C1J88K3HXJvGF5GDo8KAL-NzSNPd00ia1Katnn9vzmUQDohPewfW-tYm6xZdhRgAoTcEbwgR9N3Y75OLfgchDs6mDcaUqg3FmD9DN0QwUlJayau8Y8XLmnFyjW5T-oEx4bIWL9A1EYpwIeUNWrdxGCfoISS3QmGC8RmeitgVc5_fybrWmVAcw6CYYAXjUxHiCr5w2bTr55SXOR71Q_RgF2-mAtbol9nFcEAdhu1NCNmUSZBeoudd5sCr87xD3-8_PW6_lA_fPn_dfnwoLZdyLlkjsWpULSvFKGuYrVVFeataCRI3qhUN1JjZxmDBlOBEdYLXVaWswRZa0rI79PbEHaf4c4E068ElC96bAHFJuqq55JTx_wqJUpLVvMrC9yehnWJKE3R6nNxgpr0mWB_q0Rf16GM9-lBPNr8-pyzNAO1f67mPLPhwEvT5Y3-5CZ5ocbfX94v3j_B7vkygVDNNK6XHtssE9m_C5WlPTvYHikvANw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0000894 crossref_primary_10_1096_fj_07_100313 crossref_primary_10_1038_nrn2717 crossref_primary_10_1113_JP284422 crossref_primary_10_1126_sciadv_abn3264 crossref_primary_10_1186_1471_2202_11_6 crossref_primary_10_1088_1478_3975_aa9a6f crossref_primary_10_3354_meps12225 crossref_primary_10_4236_pp_2015_68036 crossref_primary_10_1534_genetics_114_161778 crossref_primary_10_3330_hikakuseiriseika_28_259 crossref_primary_10_1242_jeb_154641 crossref_primary_10_1073_pnas_1115086109 crossref_primary_10_1074_jbc_M701083200 crossref_primary_10_1371_journal_pbio_0040225 crossref_primary_10_1016_j_biotechadv_2011_05_007 crossref_primary_10_1016_j_nlm_2018_02_018 crossref_primary_10_3390_ijms222011075 crossref_primary_10_5983_nl2008jsce_46_119 crossref_primary_10_1002_jez_695 crossref_primary_10_1371_journal_pone_0047590 crossref_primary_10_1016_j_ydbio_2006_08_013 crossref_primary_10_1371_journal_pgen_1000317 crossref_primary_10_1016_j_ceca_2014_12_001 crossref_primary_10_1016_j_cub_2020_02_003 crossref_primary_10_1111_j_1440_169X_2009_01105_x crossref_primary_10_1007_s00424_007_0222_6 crossref_primary_10_1515_BC_2007_028 crossref_primary_10_18632_oncotarget_7831 crossref_primary_10_3389_fcell_2021_701779 crossref_primary_10_1242_jeb_02607 crossref_primary_10_1016_j_ydbio_2019_10_012 crossref_primary_10_1016_j_brainres_2012_05_065 crossref_primary_10_1111_j_1460_9568_2005_04420_x crossref_primary_10_1242_jeb_209320 crossref_primary_10_1242_jeb_026971 crossref_primary_10_5187_jast_2023_e133 crossref_primary_10_7717_peerj_1310 crossref_primary_10_1371_journal_pone_0003569 crossref_primary_10_1186_1471_2148_8_127 crossref_primary_10_1242_dev_084681 crossref_primary_10_1186_1471_2148_7_113 crossref_primary_10_1152_ajpregu_00835_2006 crossref_primary_10_1111_dgd_12801 crossref_primary_10_1002_bies_201800028 crossref_primary_10_1016_j_bbrc_2015_05_119 crossref_primary_10_1085_jgp_201110677 crossref_primary_10_1016_j_semcdb_2010_10_001 crossref_primary_10_1111_bph_15050 crossref_primary_10_1007_s11356_020_09781_2 crossref_primary_10_1002_bies_201300076 crossref_primary_10_1152_physiolgenomics_00212_2005 crossref_primary_10_1074_jbc_M112_362194 crossref_primary_10_1016_j_neuropharm_2021_108640 crossref_primary_10_7554_eLife_44753 crossref_primary_10_1016_j_bbamem_2018_01_004 crossref_primary_10_3330_hikakuseiriseika_34_12 crossref_primary_10_3390_ijms22041584 crossref_primary_10_1152_physiolgenomics_00142_2006 crossref_primary_10_3390_ijms222212111 crossref_primary_10_1016_j_celrep_2015_09_035 crossref_primary_10_1098_rspb_2017_0824 crossref_primary_10_1002_cne_24382 crossref_primary_10_1016_j_bbrc_2007_05_127 crossref_primary_10_1073_pnas_1612943114 crossref_primary_10_1152_physiolgenomics_00322_2005 crossref_primary_10_1371_journal_pone_0104451 crossref_primary_10_1016_j_neures_2013_03_002 crossref_primary_10_1080_10236240802360914 crossref_primary_10_1016_j_jbc_2021_100783 crossref_primary_10_1134_S0022093008060021 crossref_primary_10_1073_pnas_1013547108 crossref_primary_10_1016_j_ibmb_2009_09_006 crossref_primary_10_1152_physiol_00028_2022 |
Cites_doi | 10.1074/jbc.M205645200 10.1126/science.1080049 10.1016/S0959-4388(99)80029-4 10.1073/pnas.91.15.6943 10.1146/annurev.ne.14.030191.000301 10.1098/rstb.2001.0903 10.1007/BF00221748 10.1073/pnas.242611099 10.1038/35050128 10.1002/cne.903090402 10.1016/S0896-6273(00)81135-6 10.1146/annurev.physiol.61.1.283 10.1016/S1096-4959(02)00255-5 10.1126/science.294.5551.2506 10.1111/j.1463-6395.1997.tb01004.x 10.1242/jeb.202.9.1139 10.1007/s004270050147 10.1016/S0014-2999(03)01553-X 10.1016/S0065-2881(08)60457-5 10.1101/gr.2004004 10.1038/35000592 10.1002/jez.b.42 10.1038/nature02196 10.1016/0896-6273(94)90436-7 10.1016/S0014-5793(99)00082-4 10.1007/s00427-003-0330-z 10.1038/365388a0 10.1016/S0896-6273(04)00148-5 10.1006/bbrc.2000.3290 10.1007/s00427-003-0320-1 10.1113/jphysiol.1977.sp011900 10.1093/nar/gkh340 10.1016/S0092-8674(03)00511-7 10.1006/dbio.1998.9037 10.1098/rstb.1976.0086 10.1038/nature03066 10.1016/S0079-6123(01)31007-5 10.1016/S0143-4160(03)00062-9 10.1016/S0378-1119(01)00826-5 10.1016/S0959-4388(03)00062-X 10.1016/S0166-2236(00)01851-8 10.1016/0959-437X(93)90013-F 10.1126/science.1084370 10.1006/mcne.2001.1088 10.1073/pnas.131171798 10.1002/neu.10139 10.1007/BF00213825 10.1093/bioinformatics/18.3.502 10.1016/j.ydbio.2004.04.001 10.1093/nar/25.17.3389 10.1006/scdb.1999.0335 10.1097/00005053-193612000-00041 10.2307/1541186 10.1016/0014-5793(93)81186-4 10.1016/S0166-2236(03)00210-8 10.1016/0378-1119(88)90330-7 10.1152/physrev.1998.78.2.307 10.1046/j.1471-4159.1995.64052354.x 10.1007/s00427-002-0230-7 10.1016/0896-6273(94)90259-3 10.1093/icb/41.3.664 10.1016/S0962-8924(03)00169-7 10.1002/cne.10666 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SS 8FD FR3 P64 RC3 7X8 |
DOI | 10.1152/physiolgenomics.00229.2004 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Entomology Abstracts (Full archive) Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Entomology Abstracts Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Entomology Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1531-2267 |
EndPage | 282 |
ExternalDocumentID | 10_1152_physiolgenomics_00229_2004 15914577 physiolgenomics_22_3_269 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 123 2WC 39C 4.4 53G 5VS AAPBV ABPTK ACGFS ACPRK ADACO ADBBV AENEX AGCAB ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GJ H13 KQ8 O0- OK1 P2P R.V RAP RHF RHI WOQ --- .GJ AAFWJ ABJNI ABKWE ADFNX BTFSW CGR CUY CVF ECM EIF EMOBN ITBOX NPM RPRKH TR2 W8F XSW AAYXX CITATION 7SS 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c477t-3b709b98769323b3c89624d9d7e70b9d5be803cba05395419f548669ca0ced1d3 |
ISSN | 1094-8341 |
IngestDate | Fri Oct 25 21:26:04 EDT 2024 Fri Oct 25 12:19:42 EDT 2024 Thu Sep 12 19:29:18 EDT 2024 Sat Sep 28 07:43:55 EDT 2024 Mon May 06 12:29:40 EDT 2019 Tue Jan 05 18:11:56 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-3b709b98769323b3c89624d9d7e70b9d5be803cba05395419f548669ca0ced1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15914577 |
PQID | 19973846 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_68474234 pubmed_primary_15914577 proquest_miscellaneous_19973846 crossref_primary_10_1152_physiolgenomics_00229_2004 highwire_physiology_physiolgenomics_22_3_269 |
PublicationCentury | 2000 |
PublicationDate | 2005-08-11 |
PublicationDateYYYYMMDD | 2005-08-11 |
PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physiological genomics |
PublicationTitleAlternate | Physiol Genomics |
PublicationYear | 2005 |
Publisher | Am Physiological Soc |
Publisher_xml | – name: Am Physiological Soc |
References | R61 R60 R63 R62 R21 R65 R20 R64 R67 R22 R66 R69 R68 R27 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R70 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
References_xml | – ident: R28 doi: 10.1074/jbc.M205645200 – ident: R11 doi: 10.1126/science.1080049 – ident: R13 doi: 10.1016/S0959-4388(99)80029-4 – ident: R31 doi: 10.1073/pnas.91.15.6943 – ident: R3 doi: 10.1146/annurev.ne.14.030191.000301 – ident: R36 doi: 10.1098/rstb.2001.0903 – ident: R49 doi: 10.1007/BF00221748 – ident: R44 doi: 10.1073/pnas.242611099 – ident: R17 doi: 10.1038/35050128 – ident: R48 doi: 10.1002/cne.903090402 – ident: R38 doi: 10.1016/S0896-6273(00)81135-6 – ident: R68 doi: 10.1146/annurev.physiol.61.1.283 – ident: R32 doi: 10.1016/S1096-4959(02)00255-5 – ident: R61 doi: 10.1126/science.294.5551.2506 – ident: R66 doi: 10.1111/j.1463-6395.1997.tb01004.x – ident: R37 doi: 10.1242/jeb.202.9.1139 – ident: R65 doi: 10.1007/s004270050147 – ident: R54 doi: 10.1016/S0014-2999(03)01553-X – ident: R29 – ident: R16 doi: 10.1016/S0065-2881(08)60457-5 – ident: R47 doi: 10.1101/gr.2004004 – ident: R2 doi: 10.1038/35000592 – ident: R15 doi: 10.1002/jez.b.42 – ident: R8 doi: 10.1038/nature02196 – ident: R27 doi: 10.1016/0896-6273(94)90436-7 – ident: R35 doi: 10.1016/S0014-5793(99)00082-4 – ident: R19 – ident: R57 doi: 10.1007/s00427-003-0330-z – ident: R5 doi: 10.1038/365388a0 – ident: R70 doi: 10.1016/S0896-6273(04)00148-5 – ident: R46 doi: 10.1006/bbrc.2000.3290 – ident: R56 doi: 10.1007/s00427-003-0320-1 – ident: R51 doi: 10.1113/jphysiol.1977.sp011900 – ident: R12 doi: 10.1093/nar/gkh340 – ident: R41 doi: 10.1016/S0092-8674(03)00511-7 – ident: R69 doi: 10.1006/dbio.1998.9037 – ident: R67 doi: 10.1098/rstb.1976.0086 – ident: R10 doi: 10.1038/nature03066 – ident: R43 doi: 10.1016/S0079-6123(01)31007-5 – ident: R45 doi: 10.1016/S0143-4160(03)00062-9 – ident: R58 doi: 10.1016/S0378-1119(01)00826-5 – ident: R60 doi: 10.1016/S0959-4388(03)00062-X – ident: R42 doi: 10.1016/S0166-2236(00)01851-8 – ident: R52 doi: 10.1016/0959-437X(93)90013-F – ident: R62 doi: 10.1126/science.1084370 – ident: R21 doi: 10.1006/mcne.2001.1088 – ident: R40 doi: 10.1073/pnas.131171798 – ident: R63 doi: 10.1002/neu.10139 – ident: R14 doi: 10.1007/BF00213825 – ident: R59 doi: 10.1093/bioinformatics/18.3.502 – ident: R9 doi: 10.1016/j.ydbio.2004.04.001 – ident: R1 doi: 10.1093/nar/25.17.3389 – ident: R22 doi: 10.1006/scdb.1999.0335 – ident: R4 doi: 10.1097/00005053-193612000-00041 – ident: R30 doi: 10.2307/1541186 – ident: R39 doi: 10.1016/0014-5793(93)81186-4 – ident: R33 doi: 10.1016/S0166-2236(03)00210-8 – ident: R18 doi: 10.1016/0378-1119(88)90330-7 – ident: R64 doi: 10.1152/physrev.1998.78.2.307 – ident: R34 doi: 10.1046/j.1471-4159.1995.64052354.x – ident: R50 doi: 10.1007/s00427-002-0230-7 – ident: R53 doi: 10.1016/0896-6273(94)90259-3 – ident: R20 doi: 10.1093/icb/41.3.664 – ident: R6 doi: 10.1016/S0962-8924(03)00169-7 – ident: R7 doi: 10.1002/cne.10666 – ident: R55 |
SSID | ssj0014785 |
Score | 2.1077318 |
Snippet | 1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi
2 National... Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge... |
SourceID | proquest crossref pubmed highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 269 |
SubjectTerms | Animals Caenorhabditis elegans Chordata Ciona intestinalis Databases, Genetic Drosophila melanogaster Drosophila melanogaster - metabolism Electrolytes Evolution, Molecular Gap Junctions Gene Expression Regulation, Developmental Genome Genomics Humans Ion Channels - metabolism Ions - chemistry Ions - metabolism Models, Biological Models, Genetic Nematoda Phylogeny Potassium Channels - chemistry Receptors, Glutamate - metabolism Receptors, Nicotinic - metabolism Ryanodine Receptor Calcium Release Channel - metabolism Urochordata Water - chemistry |
Title | Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes |
URI | http://physiolgenomics.physiology.org/cgi/content/abstract/22/3/269 https://www.ncbi.nlm.nih.gov/pubmed/15914577 https://search.proquest.com/docview/19973846 https://search.proquest.com/docview/68474234 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIIXBOOrfPqBt5KRxM6HH9EEmpgAITppe4rsxKVjalKtTSX4c_lLuLPj1C2rxHhJoshOLvn9cr5zzneEvNY5UzHjecC4zgKwiHmgBE8DFcqq5LkWocLVyJ8-p0cn_ONpcjoY_PailtqlOih_Xbmu5H9QhXOAK66SvQay_UXhBBwDvrAFhGH7Txjjx3ypp10MuvTyi6A5KWF0M4kHMA_rDMujrDQmS66blcZMGwv0yzEcqzM_Z65S7kivOrFNQgnY4fLgGjp9R83o27MmgLTXn-ZGXvj8lws5a00ho9GZXLSL6bn3G2R6XtslNstF23i4S2vPnjXQAmdC133khfxhuhw3_Xk3YZHgDGzkBX_MRpuyfWu8gM8I3M0gZzYZ1oF2SjkKwEzMfK0dxx47ma-CbemXv4eGBFPNzu2t3fvA-bTYrFfifieAeT4zpAFrL-JJV2lmI1v31ijaxzZu3aGI44IVINQNcjMGZYha-Pjr-k8Xz0zZ2P65u8S4IO3b3bKaYlJWsE17yuW43u0vGbtpfI_c7Rwe-s6y9z4Z6Hqf3LIlUH_uk9uHruLgA7La4DN1fKbNhAI_qeMztXymHZ-p4TN1fKbIZ9O-5zPt-YyXwl3HZ2r4_JCcfHg_PjwKurogQcmzbBkwlYVCiRzLeMZMsTIXacwrUWU6C5WoEqXzkJVKwgAjEh6JCbjlaSpKGZa6iir2iOzVTa2fEConKU8rKTBJFK8miZRlyBS4DKmQGePpkDD3dou5Tf9SGLc5iYttoA08WNaVD0nugHCt4JUWOKk0BrJs93QMKebVZEjeXNV1F6mG5JXDuQCw8GefrHXTLgoMIGM5PsGuFikYpuBMgbSPLUHWT9hx6-n1hHlG7qy_9-dkb3nZ6hdgsi_VS8P5P4hE-5I |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+analysis+of+the+ascidian+genome+reveals+novel+insights+into+the+molecular+evolution+of+ion+channel+genes&rft.jtitle=Physiological+genomics&rft.au=Okamura%2C+Yasushi&rft.au=Nishino%2C+Atsuo&rft.au=Murata%2C+Yoshimichi&rft.au=Nakajo%2C+Koichi&rft.date=2005-08-11&rft.pub=Am+Physiological+Soc&rft.issn=1094-8341&rft.eissn=1531-2267&rft.volume=22&rft.issue=3&rft.spage=269&rft_id=info:doi/10.1152%2Fphysiolgenomics.00229.2004&rft_id=info%3Apmid%2F15914577&rft.externalDBID=n%2Fa&rft.externalDocID=physiolgenomics_22_3_269 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon |