Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes

1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 2 National Institutes for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 3 Department of Zoology, Graduate School of Scie...

Full description

Saved in:
Bibliographic Details
Published inPhysiological genomics Vol. 22; no. 3; pp. 269 - 282
Main Authors Okamura, Yasushi, Nishino, Atsuo, Murata, Yoshimichi, Nakajo, Koichi, Iwasaki, Hirohide, Ohtsuka, Yukio, Tanaka-Kunishima, Motoko, Takahashi, Nobuyuki, Hara, Yuji, Yoshida, Takashi, Nishida, Motohiro, Okado, Haruo, Watari, Hirofumi, Meinertzhagen, Ian A, Satoh, Nori, Takahashi, Kunitaro, Satou, Yutaka, Okada, Yasunobu, Mori, Yasuo
Format Journal Article
LanguageEnglish
Published United States Am Physiological Soc 11.08.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 2 National Institutes for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 3 Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 4 Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan 5 Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada 6 Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 7 Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 8 School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi, Japan Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans , the fruit fly Drosophila melanogaster , and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment. ascidian; homeostasis; embryogenesis
AbstractList Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans, the fruit fly Drosophila melanogaster, and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment.
1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 2 National Institutes for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 3 Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 4 Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan 5 Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada 6 Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 7 Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo 8 School of Life Science, Graduate University for Advanced Studies, Okazaki, Aichi, Japan Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160 putative ion channel genes in the genome of Ciona intestinalis and compare them with corresponding gene sets from the genomes of the nematode Chaenorhabditis elegans , the fruit fly Drosophila melanogaster , and the more closely related genomes of vertebrates. Ciona has a set of so-called "prototype" genes for ion channels regulating neuronal excitability, or for neurotransmitter receptors, suggesting that genes responsible for neuronal signaling in mammals appear to have diversified mainly via gene duplications of the more restricted members of ancestral genomes before the ascidian/vertebrate divergence. Most genes responsible for modulation of neuronal excitability and pain sensation are absent from the ascidian genome, suggesting that these genes arose after the divergence of urochordates. In contrast, the divergent genes encoding connexins, transient receptor potential-related channels and chloride channels, channels involved rather in homeostatic control, indicate gene duplication events unique to the ascidian lineage. Because several invertebrate-unique channel genes exist in Ciona genome, the crown group of extant vertebrates not only acquired novel channel genes via gene/genome duplications but also discarded some ancient genes that have persisted in invertebrates. Such genome-wide information of ion channel genes in basal chordates enables us to begin correlating the innovation and remodeling of genes with the adaptation of more recent chordates to their physical environment. ascidian; homeostasis; embryogenesis
Author Ohtsuka, Yukio
Nishida, Motohiro
Murata, Yoshimichi
Okado, Haruo
Watari, Hirofumi
Nishino, Atsuo
Yoshida, Takashi
Iwasaki, Hirohide
Satoh, Nori
Hara, Yuji
Takahashi, Nobuyuki
Mori, Yasuo
Satou, Yutaka
Okamura, Yasushi
Meinertzhagen, Ian A
Nakajo, Koichi
Tanaka-Kunishima, Motoko
Okada, Yasunobu
Takahashi, Kunitaro
Author_xml – sequence: 1
  fullname: Okamura, Yasushi
– sequence: 2
  fullname: Nishino, Atsuo
– sequence: 3
  fullname: Murata, Yoshimichi
– sequence: 4
  fullname: Nakajo, Koichi
– sequence: 5
  fullname: Iwasaki, Hirohide
– sequence: 6
  fullname: Ohtsuka, Yukio
– sequence: 7
  fullname: Tanaka-Kunishima, Motoko
– sequence: 8
  fullname: Takahashi, Nobuyuki
– sequence: 9
  fullname: Hara, Yuji
– sequence: 10
  fullname: Yoshida, Takashi
– sequence: 11
  fullname: Nishida, Motohiro
– sequence: 12
  fullname: Okado, Haruo
– sequence: 13
  fullname: Watari, Hirofumi
– sequence: 14
  fullname: Meinertzhagen, Ian A
– sequence: 15
  fullname: Satoh, Nori
– sequence: 16
  fullname: Takahashi, Kunitaro
– sequence: 17
  fullname: Satou, Yutaka
– sequence: 18
  fullname: Okada, Yasunobu
– sequence: 19
  fullname: Mori, Yasuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15914577$$D View this record in MEDLINE/PubMed
BookMark eNqFkVuL1TAUhYOMOBf9C1J88K3HXJvGF5GDo8KAL-NzSNPd00ia1Katnn9vzmUQDohPewfW-tYm6xZdhRgAoTcEbwgR9N3Y75OLfgchDs6mDcaUqg3FmD9DN0QwUlJayau8Y8XLmnFyjW5T-oEx4bIWL9A1EYpwIeUNWrdxGCfoISS3QmGC8RmeitgVc5_fybrWmVAcw6CYYAXjUxHiCr5w2bTr55SXOR71Q_RgF2-mAtbol9nFcEAdhu1NCNmUSZBeoudd5sCr87xD3-8_PW6_lA_fPn_dfnwoLZdyLlkjsWpULSvFKGuYrVVFeataCRI3qhUN1JjZxmDBlOBEdYLXVaWswRZa0rI79PbEHaf4c4E068ElC96bAHFJuqq55JTx_wqJUpLVvMrC9yehnWJKE3R6nNxgpr0mWB_q0Rf16GM9-lBPNr8-pyzNAO1f67mPLPhwEvT5Y3-5CZ5ocbfX94v3j_B7vkygVDNNK6XHtssE9m_C5WlPTvYHikvANw
CitedBy_id crossref_primary_10_1371_journal_pone_0000894
crossref_primary_10_1096_fj_07_100313
crossref_primary_10_1038_nrn2717
crossref_primary_10_1113_JP284422
crossref_primary_10_1126_sciadv_abn3264
crossref_primary_10_1186_1471_2202_11_6
crossref_primary_10_1088_1478_3975_aa9a6f
crossref_primary_10_3354_meps12225
crossref_primary_10_4236_pp_2015_68036
crossref_primary_10_1534_genetics_114_161778
crossref_primary_10_3330_hikakuseiriseika_28_259
crossref_primary_10_1242_jeb_154641
crossref_primary_10_1073_pnas_1115086109
crossref_primary_10_1074_jbc_M701083200
crossref_primary_10_1371_journal_pbio_0040225
crossref_primary_10_1016_j_biotechadv_2011_05_007
crossref_primary_10_1016_j_nlm_2018_02_018
crossref_primary_10_3390_ijms222011075
crossref_primary_10_5983_nl2008jsce_46_119
crossref_primary_10_1002_jez_695
crossref_primary_10_1371_journal_pone_0047590
crossref_primary_10_1016_j_ydbio_2006_08_013
crossref_primary_10_1371_journal_pgen_1000317
crossref_primary_10_1016_j_ceca_2014_12_001
crossref_primary_10_1016_j_cub_2020_02_003
crossref_primary_10_1111_j_1440_169X_2009_01105_x
crossref_primary_10_1007_s00424_007_0222_6
crossref_primary_10_1515_BC_2007_028
crossref_primary_10_18632_oncotarget_7831
crossref_primary_10_3389_fcell_2021_701779
crossref_primary_10_1242_jeb_02607
crossref_primary_10_1016_j_ydbio_2019_10_012
crossref_primary_10_1016_j_brainres_2012_05_065
crossref_primary_10_1111_j_1460_9568_2005_04420_x
crossref_primary_10_1242_jeb_209320
crossref_primary_10_1242_jeb_026971
crossref_primary_10_5187_jast_2023_e133
crossref_primary_10_7717_peerj_1310
crossref_primary_10_1371_journal_pone_0003569
crossref_primary_10_1186_1471_2148_8_127
crossref_primary_10_1242_dev_084681
crossref_primary_10_1186_1471_2148_7_113
crossref_primary_10_1152_ajpregu_00835_2006
crossref_primary_10_1111_dgd_12801
crossref_primary_10_1002_bies_201800028
crossref_primary_10_1016_j_bbrc_2015_05_119
crossref_primary_10_1085_jgp_201110677
crossref_primary_10_1016_j_semcdb_2010_10_001
crossref_primary_10_1111_bph_15050
crossref_primary_10_1007_s11356_020_09781_2
crossref_primary_10_1002_bies_201300076
crossref_primary_10_1152_physiolgenomics_00212_2005
crossref_primary_10_1074_jbc_M112_362194
crossref_primary_10_1016_j_neuropharm_2021_108640
crossref_primary_10_7554_eLife_44753
crossref_primary_10_1016_j_bbamem_2018_01_004
crossref_primary_10_3330_hikakuseiriseika_34_12
crossref_primary_10_3390_ijms22041584
crossref_primary_10_1152_physiolgenomics_00142_2006
crossref_primary_10_3390_ijms222212111
crossref_primary_10_1016_j_celrep_2015_09_035
crossref_primary_10_1098_rspb_2017_0824
crossref_primary_10_1002_cne_24382
crossref_primary_10_1016_j_bbrc_2007_05_127
crossref_primary_10_1073_pnas_1612943114
crossref_primary_10_1152_physiolgenomics_00322_2005
crossref_primary_10_1371_journal_pone_0104451
crossref_primary_10_1016_j_neures_2013_03_002
crossref_primary_10_1080_10236240802360914
crossref_primary_10_1016_j_jbc_2021_100783
crossref_primary_10_1134_S0022093008060021
crossref_primary_10_1073_pnas_1013547108
crossref_primary_10_1016_j_ibmb_2009_09_006
crossref_primary_10_1152_physiol_00028_2022
Cites_doi 10.1074/jbc.M205645200
10.1126/science.1080049
10.1016/S0959-4388(99)80029-4
10.1073/pnas.91.15.6943
10.1146/annurev.ne.14.030191.000301
10.1098/rstb.2001.0903
10.1007/BF00221748
10.1073/pnas.242611099
10.1038/35050128
10.1002/cne.903090402
10.1016/S0896-6273(00)81135-6
10.1146/annurev.physiol.61.1.283
10.1016/S1096-4959(02)00255-5
10.1126/science.294.5551.2506
10.1111/j.1463-6395.1997.tb01004.x
10.1242/jeb.202.9.1139
10.1007/s004270050147
10.1016/S0014-2999(03)01553-X
10.1016/S0065-2881(08)60457-5
10.1101/gr.2004004
10.1038/35000592
10.1002/jez.b.42
10.1038/nature02196
10.1016/0896-6273(94)90436-7
10.1016/S0014-5793(99)00082-4
10.1007/s00427-003-0330-z
10.1038/365388a0
10.1016/S0896-6273(04)00148-5
10.1006/bbrc.2000.3290
10.1007/s00427-003-0320-1
10.1113/jphysiol.1977.sp011900
10.1093/nar/gkh340
10.1016/S0092-8674(03)00511-7
10.1006/dbio.1998.9037
10.1098/rstb.1976.0086
10.1038/nature03066
10.1016/S0079-6123(01)31007-5
10.1016/S0143-4160(03)00062-9
10.1016/S0378-1119(01)00826-5
10.1016/S0959-4388(03)00062-X
10.1016/S0166-2236(00)01851-8
10.1016/0959-437X(93)90013-F
10.1126/science.1084370
10.1006/mcne.2001.1088
10.1073/pnas.131171798
10.1002/neu.10139
10.1007/BF00213825
10.1093/bioinformatics/18.3.502
10.1016/j.ydbio.2004.04.001
10.1093/nar/25.17.3389
10.1006/scdb.1999.0335
10.1097/00005053-193612000-00041
10.2307/1541186
10.1016/0014-5793(93)81186-4
10.1016/S0166-2236(03)00210-8
10.1016/0378-1119(88)90330-7
10.1152/physrev.1998.78.2.307
10.1046/j.1471-4159.1995.64052354.x
10.1007/s00427-002-0230-7
10.1016/0896-6273(94)90259-3
10.1093/icb/41.3.664
10.1016/S0962-8924(03)00169-7
10.1002/cne.10666
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SS
8FD
FR3
P64
RC3
7X8
DOI 10.1152/physiolgenomics.00229.2004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Entomology Abstracts (Full archive)
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Entomology Abstracts
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1531-2267
EndPage 282
ExternalDocumentID 10_1152_physiolgenomics_00229_2004
15914577
physiolgenomics_22_3_269
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
123
2WC
39C
4.4
53G
5VS
AAPBV
ABPTK
ACGFS
ACPRK
ADACO
ADBBV
AENEX
AGCAB
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GJ
H13
KQ8
O0-
OK1
P2P
R.V
RAP
RHF
RHI
WOQ
---
.GJ
AAFWJ
ABJNI
ABKWE
ADFNX
BTFSW
CGR
CUY
CVF
ECM
EIF
EMOBN
ITBOX
NPM
RPRKH
TR2
W8F
XSW
AAYXX
CITATION
7SS
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c477t-3b709b98769323b3c89624d9d7e70b9d5be803cba05395419f548669ca0ced1d3
ISSN 1094-8341
IngestDate Fri Oct 25 21:26:04 EDT 2024
Fri Oct 25 12:19:42 EDT 2024
Thu Sep 12 19:29:18 EDT 2024
Sat Sep 28 07:43:55 EDT 2024
Mon May 06 12:29:40 EDT 2019
Tue Jan 05 18:11:56 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-3b709b98769323b3c89624d9d7e70b9d5be803cba05395419f548669ca0ced1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15914577
PQID 19973846
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_68474234
pubmed_primary_15914577
proquest_miscellaneous_19973846
crossref_primary_10_1152_physiolgenomics_00229_2004
highwire_physiology_physiolgenomics_22_3_269
PublicationCentury 2000
PublicationDate 2005-08-11
PublicationDateYYYYMMDD 2005-08-11
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physiological genomics
PublicationTitleAlternate Physiol Genomics
PublicationYear 2005
Publisher Am Physiological Soc
Publisher_xml – name: Am Physiological Soc
References R61
R60
R63
R62
R21
R65
R20
R64
R67
R22
R66
R69
R68
R27
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R70
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R28
  doi: 10.1074/jbc.M205645200
– ident: R11
  doi: 10.1126/science.1080049
– ident: R13
  doi: 10.1016/S0959-4388(99)80029-4
– ident: R31
  doi: 10.1073/pnas.91.15.6943
– ident: R3
  doi: 10.1146/annurev.ne.14.030191.000301
– ident: R36
  doi: 10.1098/rstb.2001.0903
– ident: R49
  doi: 10.1007/BF00221748
– ident: R44
  doi: 10.1073/pnas.242611099
– ident: R17
  doi: 10.1038/35050128
– ident: R48
  doi: 10.1002/cne.903090402
– ident: R38
  doi: 10.1016/S0896-6273(00)81135-6
– ident: R68
  doi: 10.1146/annurev.physiol.61.1.283
– ident: R32
  doi: 10.1016/S1096-4959(02)00255-5
– ident: R61
  doi: 10.1126/science.294.5551.2506
– ident: R66
  doi: 10.1111/j.1463-6395.1997.tb01004.x
– ident: R37
  doi: 10.1242/jeb.202.9.1139
– ident: R65
  doi: 10.1007/s004270050147
– ident: R54
  doi: 10.1016/S0014-2999(03)01553-X
– ident: R29
– ident: R16
  doi: 10.1016/S0065-2881(08)60457-5
– ident: R47
  doi: 10.1101/gr.2004004
– ident: R2
  doi: 10.1038/35000592
– ident: R15
  doi: 10.1002/jez.b.42
– ident: R8
  doi: 10.1038/nature02196
– ident: R27
  doi: 10.1016/0896-6273(94)90436-7
– ident: R35
  doi: 10.1016/S0014-5793(99)00082-4
– ident: R19
– ident: R57
  doi: 10.1007/s00427-003-0330-z
– ident: R5
  doi: 10.1038/365388a0
– ident: R70
  doi: 10.1016/S0896-6273(04)00148-5
– ident: R46
  doi: 10.1006/bbrc.2000.3290
– ident: R56
  doi: 10.1007/s00427-003-0320-1
– ident: R51
  doi: 10.1113/jphysiol.1977.sp011900
– ident: R12
  doi: 10.1093/nar/gkh340
– ident: R41
  doi: 10.1016/S0092-8674(03)00511-7
– ident: R69
  doi: 10.1006/dbio.1998.9037
– ident: R67
  doi: 10.1098/rstb.1976.0086
– ident: R10
  doi: 10.1038/nature03066
– ident: R43
  doi: 10.1016/S0079-6123(01)31007-5
– ident: R45
  doi: 10.1016/S0143-4160(03)00062-9
– ident: R58
  doi: 10.1016/S0378-1119(01)00826-5
– ident: R60
  doi: 10.1016/S0959-4388(03)00062-X
– ident: R42
  doi: 10.1016/S0166-2236(00)01851-8
– ident: R52
  doi: 10.1016/0959-437X(93)90013-F
– ident: R62
  doi: 10.1126/science.1084370
– ident: R21
  doi: 10.1006/mcne.2001.1088
– ident: R40
  doi: 10.1073/pnas.131171798
– ident: R63
  doi: 10.1002/neu.10139
– ident: R14
  doi: 10.1007/BF00213825
– ident: R59
  doi: 10.1093/bioinformatics/18.3.502
– ident: R9
  doi: 10.1016/j.ydbio.2004.04.001
– ident: R1
  doi: 10.1093/nar/25.17.3389
– ident: R22
  doi: 10.1006/scdb.1999.0335
– ident: R4
  doi: 10.1097/00005053-193612000-00041
– ident: R30
  doi: 10.2307/1541186
– ident: R39
  doi: 10.1016/0014-5793(93)81186-4
– ident: R33
  doi: 10.1016/S0166-2236(03)00210-8
– ident: R18
  doi: 10.1016/0378-1119(88)90330-7
– ident: R64
  doi: 10.1152/physrev.1998.78.2.307
– ident: R34
  doi: 10.1046/j.1471-4159.1995.64052354.x
– ident: R50
  doi: 10.1007/s00427-002-0230-7
– ident: R53
  doi: 10.1016/0896-6273(94)90259-3
– ident: R20
  doi: 10.1093/icb/41.3.664
– ident: R6
  doi: 10.1016/S0962-8924(03)00169-7
– ident: R7
  doi: 10.1002/cne.10666
– ident: R55
SSID ssj0014785
Score 2.1077318
Snippet 1 Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 2 National...
Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms Animals
Caenorhabditis elegans
Chordata
Ciona intestinalis
Databases, Genetic
Drosophila melanogaster
Drosophila melanogaster - metabolism
Electrolytes
Evolution, Molecular
Gap Junctions
Gene Expression Regulation, Developmental
Genome
Genomics
Humans
Ion Channels - metabolism
Ions - chemistry
Ions - metabolism
Models, Biological
Models, Genetic
Nematoda
Phylogeny
Potassium Channels - chemistry
Receptors, Glutamate - metabolism
Receptors, Nicotinic - metabolism
Ryanodine Receptor Calcium Release Channel - metabolism
Urochordata
Water - chemistry
Title Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes
URI http://physiolgenomics.physiology.org/cgi/content/abstract/22/3/269
https://www.ncbi.nlm.nih.gov/pubmed/15914577
https://search.proquest.com/docview/19973846
https://search.proquest.com/docview/68474234
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIIXBOOrfPqBt5KRxM6HH9EEmpgAITppe4rsxKVjalKtTSX4c_lLuLPj1C2rxHhJoshOLvn9cr5zzneEvNY5UzHjecC4zgKwiHmgBE8DFcqq5LkWocLVyJ8-p0cn_ONpcjoY_PailtqlOih_Xbmu5H9QhXOAK66SvQay_UXhBBwDvrAFhGH7Txjjx3ypp10MuvTyi6A5KWF0M4kHMA_rDMujrDQmS66blcZMGwv0yzEcqzM_Z65S7kivOrFNQgnY4fLgGjp9R83o27MmgLTXn-ZGXvj8lws5a00ho9GZXLSL6bn3G2R6XtslNstF23i4S2vPnjXQAmdC133khfxhuhw3_Xk3YZHgDGzkBX_MRpuyfWu8gM8I3M0gZzYZ1oF2SjkKwEzMfK0dxx47ma-CbemXv4eGBFPNzu2t3fvA-bTYrFfifieAeT4zpAFrL-JJV2lmI1v31ijaxzZu3aGI44IVINQNcjMGZYha-Pjr-k8Xz0zZ2P65u8S4IO3b3bKaYlJWsE17yuW43u0vGbtpfI_c7Rwe-s6y9z4Z6Hqf3LIlUH_uk9uHruLgA7La4DN1fKbNhAI_qeMztXymHZ-p4TN1fKbIZ9O-5zPt-YyXwl3HZ2r4_JCcfHg_PjwKurogQcmzbBkwlYVCiRzLeMZMsTIXacwrUWU6C5WoEqXzkJVKwgAjEh6JCbjlaSpKGZa6iir2iOzVTa2fEConKU8rKTBJFK8miZRlyBS4DKmQGePpkDD3dou5Tf9SGLc5iYttoA08WNaVD0nugHCt4JUWOKk0BrJs93QMKebVZEjeXNV1F6mG5JXDuQCw8GefrHXTLgoMIGM5PsGuFikYpuBMgbSPLUHWT9hx6-n1hHlG7qy_9-dkb3nZ6hdgsi_VS8P5P4hE-5I
link.rule.ids 315,783,787,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+analysis+of+the+ascidian+genome+reveals+novel+insights+into+the+molecular+evolution+of+ion+channel+genes&rft.jtitle=Physiological+genomics&rft.au=Okamura%2C+Yasushi&rft.au=Nishino%2C+Atsuo&rft.au=Murata%2C+Yoshimichi&rft.au=Nakajo%2C+Koichi&rft.date=2005-08-11&rft.pub=Am+Physiological+Soc&rft.issn=1094-8341&rft.eissn=1531-2267&rft.volume=22&rft.issue=3&rft.spage=269&rft_id=info:doi/10.1152%2Fphysiolgenomics.00229.2004&rft_id=info%3Apmid%2F15914577&rft.externalDBID=n%2Fa&rft.externalDocID=physiolgenomics_22_3_269
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-8341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-8341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-8341&client=summon