Melatonin and its relationship to plant hormones

Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 121; no. 2; pp. 195 - 207
Main Authors Arnao, M B, Hernández-Ruiz, J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 12.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
AbstractList Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others.BACKGROUNDPlant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others.This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed.SCOPEThis review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed.Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.CONCLUSIONSMelatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen–plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.
Author Hernández-Ruiz, J
Arnao, M B
AuthorAffiliation Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
AuthorAffiliation_xml – name: Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
Author_xml – sequence: 1
  givenname: M B
  surname: Arnao
  fullname: Arnao, M B
– sequence: 2
  givenname: J
  surname: Hernández-Ruiz
  fullname: Hernández-Ruiz, J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29069281$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtLxDAQhYMo7kVf_AHSRxHqTi5NkxdBFm-w4os-h7RN3UibrE1X9N-bdXdFRfApMPPNyZk5I7TrvDMIHWE4wyDpRPti0pZvGLMdNIyVLBVEwi4aAoUszSlnAzQK4RkACJd4Hw1im0si8BDBnWl07511iXZVYvuQdKuK9S7M7SLpfbJotOuTue_a-G04QHu1boI53Lxj9Hh1-TC9SWf317fTi1lasjzvU6olFKTAjMqa4IKBLEhWmYrJShjKBCcEjGG5wbUUQlDOa14wzbSQdcRrOkbna93FsmhNVRrXd7pRi862untXXlv1s-PsXD35V5UJELmEKHCyEej8y9KEXrU2lKaJ2xi_DIpQnJEsj1f4F8Uy4yBzKbKIHn-39eVne9EIwBooOx9CZ2pV2v7zntGlbRQGtQpNxdDUOrQ4cvprZKv6B_wBEdmY-w
CitedBy_id crossref_primary_10_1016_j_postharvbio_2019_111066
crossref_primary_10_1016_j_scienta_2024_113776
crossref_primary_10_1111_jpi_12937
crossref_primary_10_3390_horticulturae10121352
crossref_primary_10_1007_s00344_022_10886_w
crossref_primary_10_1111_jpi_12810
crossref_primary_10_1016_j_jprot_2021_104264
crossref_primary_10_3390_agronomy9120795
crossref_primary_10_1016_j_postharvbio_2022_112055
crossref_primary_10_3389_fpls_2019_00136
crossref_primary_10_1002_jsfa_12179
crossref_primary_10_1186_s12870_019_1992_7
crossref_primary_10_3390_plants10091917
crossref_primary_10_3389_fpls_2022_1059482
crossref_primary_10_1016_j_envexpbot_2021_104756
crossref_primary_10_3389_fpls_2021_702874
crossref_primary_10_3389_fpls_2024_1379756
crossref_primary_10_3390_ijms242216228
crossref_primary_10_1111_jpi_12804
crossref_primary_10_3389_fpls_2021_686062
crossref_primary_10_1016_j_ecoenv_2021_112821
crossref_primary_10_1016_j_ecoenv_2020_111358
crossref_primary_10_1080_00380768_2024_2405834
crossref_primary_10_3390_ijms23020599
crossref_primary_10_1111_tpj_14477
crossref_primary_10_1021_acs_jafc_9b00058
crossref_primary_10_3389_fpls_2022_1120613
crossref_primary_10_1186_s12870_024_05725_x
crossref_primary_10_3390_antiox9090809
crossref_primary_10_3390_plants12040781
crossref_primary_10_1007_s00299_024_03332_6
crossref_primary_10_1111_ppl_13852
crossref_primary_10_3390_agronomy10020194
crossref_primary_10_1111_tpj_70078
crossref_primary_10_3390_ijms23031137
crossref_primary_10_1007_s44372_024_00020_3
crossref_primary_10_3390_ijms24108759
crossref_primary_10_1038_s41598_024_68894_7
crossref_primary_10_1094_PHYTO_07_23_0232_KC
crossref_primary_10_3390_foods14010064
crossref_primary_10_1007_s12355_022_01111_9
crossref_primary_10_1093_jxb_eraa235
crossref_primary_10_3390_plants14050824
crossref_primary_10_1021_acs_jafc_0c07457
crossref_primary_10_1016_j_scienta_2023_112482
crossref_primary_10_1111_jpi_12858
crossref_primary_10_3390_horticulturae10121310
crossref_primary_10_3389_fpls_2020_569779
crossref_primary_10_1007_s00344_023_10946_9
crossref_primary_10_1016_j_hpj_2024_08_006
crossref_primary_10_3390_plants13223134
crossref_primary_10_3390_plants13223255
crossref_primary_10_3389_fpls_2019_01388
crossref_primary_10_1016_j_jbiotec_2020_10_013
crossref_primary_10_1016_j_plaphy_2023_01_035
crossref_primary_10_1016_j_postharvbio_2024_112896
crossref_primary_10_1016_j_sajb_2023_10_042
crossref_primary_10_3390_ijms20246200
crossref_primary_10_3390_molecules24081514
crossref_primary_10_1016_j_sajb_2023_10_040
crossref_primary_10_1186_s12870_023_04325_5
crossref_primary_10_1016_j_plaphy_2021_12_018
crossref_primary_10_17660_ActaHortic_2022_1349_10
crossref_primary_10_3390_plants11091151
crossref_primary_10_1111_jpi_12841
crossref_primary_10_1007_s12298_020_00878_z
crossref_primary_10_3390_agriculture14050661
crossref_primary_10_3389_fpls_2018_00998
crossref_primary_10_3390_molecules27051523
crossref_primary_10_1007_s00344_022_10766_3
crossref_primary_10_1093_pcp_pcab175
crossref_primary_10_3389_fpls_2020_561903
crossref_primary_10_1007_s10725_024_01245_8
crossref_primary_10_1016_j_scienta_2023_112389
crossref_primary_10_1016_j_ecoenv_2023_115521
crossref_primary_10_1016_j_scienta_2024_113758
crossref_primary_10_17660_ActaHortic_2024_1407_9
crossref_primary_10_1016_j_plaphy_2019_07_024
crossref_primary_10_3390_antiox11081531
crossref_primary_10_1016_j_postharvbio_2023_112270
crossref_primary_10_1016_j_stress_2023_100293
crossref_primary_10_1007_s12298_020_00855_6
crossref_primary_10_1186_s12870_023_04226_7
crossref_primary_10_1111_jpi_12990
crossref_primary_10_1007_s11738_023_03643_3
crossref_primary_10_21273_JASHS04964_20
crossref_primary_10_3390_plants13101360
crossref_primary_10_1093_jxb_eraa486
crossref_primary_10_32604_phyton_2021_016692
crossref_primary_10_3389_fmicb_2023_1123632
crossref_primary_10_1186_s12870_020_02747_z
crossref_primary_10_3390_ijms25147830
crossref_primary_10_3390_ph13090236
crossref_primary_10_1016_j_envexpbot_2020_104291
crossref_primary_10_1111_jpi_12505
crossref_primary_10_7717_peerj_9450
crossref_primary_10_1080_15226514_2024_2448464
crossref_primary_10_1111_jpi_12500
crossref_primary_10_3389_fpls_2024_1304913
crossref_primary_10_1016_j_scienta_2023_112494
crossref_primary_10_1007_s10725_024_01256_5
crossref_primary_10_1016_j_ecoenv_2023_115519
crossref_primary_10_3390_biom9100589
crossref_primary_10_3390_seeds3030025
crossref_primary_10_1111_jpi_12861
crossref_primary_10_1007_s10725_021_00705_9
crossref_primary_10_3389_fgene_2020_591984
crossref_primary_10_1007_s11306_020_01684_0
crossref_primary_10_1016_j_scienta_2024_112845
crossref_primary_10_1111_jpi_12537
crossref_primary_10_1134_S102144372002003X
crossref_primary_10_1016_j_jhazmat_2020_123922
crossref_primary_10_1016_S2095_3119_20_63312_3
crossref_primary_10_3390_horticulturae8030241
crossref_primary_10_1111_jpi_12531
crossref_primary_10_1094_PHYTO_11_19_0435_R
crossref_primary_10_1007_s00344_020_10122_3
crossref_primary_10_1016_j_plaphy_2024_109055
crossref_primary_10_3390_ijms20030709
crossref_primary_10_3390_ijms222111445
crossref_primary_10_1111_jpi_12526
crossref_primary_10_1007_s11756_024_01670_0
crossref_primary_10_1111_tpj_15843
crossref_primary_10_3390_agronomy10010095
crossref_primary_10_1079_cabireviews_2024_0027
crossref_primary_10_3389_fpls_2018_01771
crossref_primary_10_3390_horticulturae9080851
crossref_primary_10_1111_ppl_14413
crossref_primary_10_24326_asphc_2021_3_10
crossref_primary_10_1016_j_tplants_2023_11_016
crossref_primary_10_1007_s10341_021_00616_z
crossref_primary_10_1071_CP18394
crossref_primary_10_1016_j_envexpbot_2022_104980
crossref_primary_10_1371_journal_pone_0221687
crossref_primary_10_1016_j_scienta_2022_111299
crossref_primary_10_1016_j_scienta_2024_112984
crossref_primary_10_1016_j_plaphy_2021_11_025
crossref_primary_10_1111_jpi_12797
crossref_primary_10_1016_j_scienta_2023_112340
crossref_primary_10_1016_j_indcrop_2021_113671
crossref_primary_10_3390_agronomy13092343
crossref_primary_10_1007_s00468_021_02134_7
crossref_primary_10_1016_j_sjbs_2022_01_039
crossref_primary_10_1007_s12229_024_09306_3
crossref_primary_10_1016_j_plaphy_2023_107723
crossref_primary_10_1371_journal_pone_0267594
crossref_primary_10_26693_jmbs06_05_045
crossref_primary_10_3390_plants10091778
crossref_primary_10_1590_0004_282x_anp_2019_0393
crossref_primary_10_1016_j_cj_2024_04_004
crossref_primary_10_1021_acs_jafc_0c01082
crossref_primary_10_1111_ppl_13589
crossref_primary_10_1007_s10343_022_00676_5
crossref_primary_10_1038_s41438_019_0197_4
crossref_primary_10_3390_agronomy12040949
crossref_primary_10_1007_s12298_022_01146_y
crossref_primary_10_3389_fpls_2024_1385165
crossref_primary_10_3389_fpls_2023_1108507
crossref_primary_10_1016_j_plaphy_2024_108398
crossref_primary_10_1016_j_scienta_2023_112526
crossref_primary_10_1016_j_envpol_2020_113957
crossref_primary_10_3389_fpls_2021_683047
crossref_primary_10_3390_horticulturae9080913
crossref_primary_10_3390_antiox8110547
crossref_primary_10_1016_j_biocontrol_2024_105530
crossref_primary_10_1016_j_postharvbio_2022_112133
crossref_primary_10_1111_jpi_12570
crossref_primary_10_1007_s00344_022_10713_2
crossref_primary_10_3389_fbioe_2023_1226907
crossref_primary_10_1080_07388551_2020_1808584
crossref_primary_10_3389_fpls_2021_686545
crossref_primary_10_1016_j_jhazmat_2020_122882
crossref_primary_10_3390_agronomy8040033
crossref_primary_10_7717_peerj_17286
crossref_primary_10_1038_s41598_023_49629_6
crossref_primary_10_3389_fpls_2021_673236
crossref_primary_10_3390_plants13182590
crossref_primary_10_1111_plb_13202
crossref_primary_10_3390_antiox12020319
crossref_primary_10_1016_j_envexpbot_2021_104407
crossref_primary_10_1016_j_scienta_2023_112508
crossref_primary_10_1007_s11540_023_09642_8
crossref_primary_10_1016_j_scienta_2023_112421
crossref_primary_10_1016_j_plaphy_2021_03_029
crossref_primary_10_1007_s10341_024_01244_z
crossref_primary_10_1016_j_plaphy_2020_02_021
crossref_primary_10_3390_agronomy13071727
crossref_primary_10_1111_tpj_14915
crossref_primary_10_1016_j_heliyon_2024_e32569
crossref_primary_10_1021_acs_jafc_8b06580
crossref_primary_10_1007_s00709_020_01491_3
crossref_primary_10_3390_ijms22189996
crossref_primary_10_3390_plants11070890
crossref_primary_10_1007_s44281_024_00039_2
crossref_primary_10_1016_j_foodres_2023_113357
crossref_primary_10_1111_ppl_13307
crossref_primary_10_3389_fpls_2021_817861
crossref_primary_10_1007_s10725_024_01128_y
crossref_primary_10_3389_fsufs_2022_1070108
crossref_primary_10_1016_j_envpol_2022_120639
crossref_primary_10_1186_s12870_019_2158_3
crossref_primary_10_3389_fpls_2022_938262
crossref_primary_10_1007_s00299_023_03013_w
crossref_primary_10_3389_fmicb_2021_746141
crossref_primary_10_1016_j_plaphy_2023_108194
crossref_primary_10_3389_fpls_2022_1057993
crossref_primary_10_1088_1755_1315_1158_4_042036
crossref_primary_10_1007_s00344_024_11257_3
crossref_primary_10_1371_journal_pone_0228241
crossref_primary_10_1111_jpi_12494
crossref_primary_10_1111_jpi_12495
crossref_primary_10_3389_fpls_2022_968315
crossref_primary_10_17221_135_2020_PSE
crossref_primary_10_3390_molecules23092352
crossref_primary_10_7717_peerj_5009
crossref_primary_10_1007_s11738_023_03586_9
crossref_primary_10_1088_1755_1315_1252_1_012080
crossref_primary_10_3390_foods12081723
crossref_primary_10_3390_agronomy14071454
crossref_primary_10_1002_jsfa_12619
crossref_primary_10_1016_j_tplants_2018_10_010
crossref_primary_10_1093_jxb_erac164
crossref_primary_10_1111_jfpp_17096
crossref_primary_10_1016_j_postharvbio_2025_113419
crossref_primary_10_1016_j_bbrc_2024_150489
crossref_primary_10_3390_ijms24087269
crossref_primary_10_1016_j_postharvbio_2025_113415
crossref_primary_10_31857_S0015330324040012
crossref_primary_10_3390_plants13091184
crossref_primary_10_1111_tpj_15099
crossref_primary_10_1016_j_plaphy_2021_08_002
crossref_primary_10_1007_s11738_020_03147_4
crossref_primary_10_1371_journal_pone_0307368
crossref_primary_10_3390_ijms24010738
crossref_primary_10_1016_j_scienta_2022_111570
crossref_primary_10_1007_s11103_021_01121_3
crossref_primary_10_1093_jxb_erac196
crossref_primary_10_1016_j_jplph_2022_153855
crossref_primary_10_3389_fpls_2020_618680
crossref_primary_10_1016_j_envexpbot_2018_10_033
crossref_primary_10_1111_ppl_70055
crossref_primary_10_1016_j_envexpbot_2018_08_016
crossref_primary_10_3390_molecules23010238
crossref_primary_10_3390_molecules26175116
crossref_primary_10_3389_fpls_2022_890613
crossref_primary_10_1093_fqsafe_fyab009
crossref_primary_10_1016_j_aac_2025_01_001
crossref_primary_10_1016_j_indcrop_2022_114538
crossref_primary_10_1016_j_plaphy_2021_03_057
crossref_primary_10_3390_genes15081077
crossref_primary_10_3390_ijms24108489
crossref_primary_10_1002_jsfa_11318
crossref_primary_10_1016_j_cofs_2024_101233
crossref_primary_10_3390_antiox9020158
crossref_primary_10_3389_fpls_2022_948901
crossref_primary_10_1016_j_bse_2023_104620
crossref_primary_10_1007_s44372_025_00102_w
crossref_primary_10_3390_ijms25084551
crossref_primary_10_3390_ijms251810025
crossref_primary_10_12677_HJAS_2019_94048
crossref_primary_10_3390_life14121606
crossref_primary_10_1186_s12870_022_03568_y
crossref_primary_10_3390_agronomy9100570
crossref_primary_10_3390_ijms25073651
crossref_primary_10_1007_s10725_021_00721_9
crossref_primary_10_1002_fft2_180
crossref_primary_10_1111_pbi_14170
crossref_primary_10_3390_plants10102143
crossref_primary_10_1007_s00344_022_10705_2
crossref_primary_10_2478_fhort_2018_0016
crossref_primary_10_3390_plants11010096
crossref_primary_10_1111_jipb_12993
crossref_primary_10_3390_ijms26030878
crossref_primary_10_1155_2022_7447024
crossref_primary_10_3390_plants12051156
crossref_primary_10_1016_j_sajb_2024_10_024
crossref_primary_10_1071_FP23199
crossref_primary_10_3390_plants11152000
crossref_primary_10_7717_peerj_10486
crossref_primary_10_1007_s00497_020_00388_8
crossref_primary_10_3389_fmolb_2024_1395677
crossref_primary_10_1134_S1021443722020133
crossref_primary_10_1016_j_plaphy_2024_109307
crossref_primary_10_3390_ijms25094592
crossref_primary_10_1016_j_hpj_2023_12_006
crossref_primary_10_1186_s42269_020_0275_7
crossref_primary_10_1016_j_jare_2020_06_004
crossref_primary_10_1016_j_ecoenv_2020_110877
crossref_primary_10_3390_ijms21072288
crossref_primary_10_1016_j_tplants_2020_08_009
crossref_primary_10_1080_01904167_2021_1927092
crossref_primary_10_1038_s41598_024_84472_3
crossref_primary_10_1111_ppl_13262
crossref_primary_10_1111_1462_2920_15408
crossref_primary_10_1111_ppl_13143
crossref_primary_10_1021_acs_jafc_2c08051
crossref_primary_10_1002_jsfa_13773
crossref_primary_10_1016_j_envexpbot_2023_105436
crossref_primary_10_36899_JAPS_2023_2_0640
crossref_primary_10_1016_j_envexpbot_2020_104063
crossref_primary_10_1007_s10725_024_01140_2
crossref_primary_10_3389_fpls_2022_961872
crossref_primary_10_1071_FP21154
crossref_primary_10_1007_s00344_021_10449_5
crossref_primary_10_3390_foods12152979
crossref_primary_10_1016_j_ijbiomac_2022_08_126
crossref_primary_10_1016_j_plantsci_2025_112407
crossref_primary_10_1016_j_plantsci_2022_111276
crossref_primary_10_18016_ksutarimdoga_vi_672685
crossref_primary_10_3389_fmicb_2023_1099098
crossref_primary_10_3390_agronomy13102459
crossref_primary_10_1007_s00344_021_10317_2
crossref_primary_10_3390_f12101404
crossref_primary_10_1016_j_indcrop_2019_111530
crossref_primary_10_1016_j_plaphy_2019_10_033
crossref_primary_10_3390_ijms222011034
crossref_primary_10_1016_j_envexpbot_2018_06_006
crossref_primary_10_3389_fpls_2022_847175
crossref_primary_10_1016_j_plaphy_2024_108762
crossref_primary_10_1093_jxb_eraa267
crossref_primary_10_1134_S1021443724606839
crossref_primary_10_1093_fqsafe_fyad037
crossref_primary_10_3389_fpls_2022_1039373
crossref_primary_10_3390_biom9010026
crossref_primary_10_3390_plants12234025
crossref_primary_10_3389_fpls_2019_01082
crossref_primary_10_1016_j_plantsci_2022_111287
crossref_primary_10_1021_acs_jafc_2c07147
crossref_primary_10_1007_s00425_023_04146_8
crossref_primary_10_3390_ijms20020353
crossref_primary_10_1016_j_postharvbio_2020_111136
crossref_primary_10_1016_j_plaphy_2019_05_008
crossref_primary_10_1016_j_scienta_2020_109205
crossref_primary_10_3390_biom10010054
crossref_primary_10_1016_j_plaphy_2019_05_007
crossref_primary_10_3390_app9245293
crossref_primary_10_1007_s00344_022_10784_1
crossref_primary_10_1016_j_lwt_2021_111582
crossref_primary_10_1093_jxb_erac233
crossref_primary_10_1016_j_sajb_2023_09_054
crossref_primary_10_1016_j_gene_2020_145082
crossref_primary_10_1093_jxb_erac230
crossref_primary_10_1007_s00344_021_10428_w
crossref_primary_10_1016_j_plaphy_2022_08_007
crossref_primary_10_1016_j_jia_2024_04_011
crossref_primary_10_3390_biom12020198
crossref_primary_10_1093_fqsafe_fyac064
crossref_primary_10_1007_s10529_022_03270_x
crossref_primary_10_1111_jph_13077
crossref_primary_10_3389_fpls_2024_1458296
crossref_primary_10_3390_genes13101699
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_1080_15592324_2020_1737450
crossref_primary_10_3390_ijms25126799
crossref_primary_10_3390_plants11223170
crossref_primary_10_1016_j_ecoenv_2019_05_043
crossref_primary_10_3390_ijms19071912
crossref_primary_10_3389_fpls_2023_1271137
crossref_primary_10_3389_fpls_2022_902694
crossref_primary_10_1007_s40626_022_00255_z
crossref_primary_10_3389_fgene_2022_892674
crossref_primary_10_1371_journal_pone_0269028
crossref_primary_10_1007_s40415_024_00983_3
crossref_primary_10_1002_clen_202400273
crossref_primary_10_1093_plphys_kiad595
crossref_primary_10_3390_foods11070948
crossref_primary_10_3389_fpls_2022_1091907
crossref_primary_10_1016_j_jplph_2020_153273
crossref_primary_10_1093_treephys_tpac112
crossref_primary_10_1371_journal_pone_0230755
crossref_primary_10_1038_s41598_024_67093_8
crossref_primary_10_3389_fpls_2022_921021
crossref_primary_10_1016_j_stress_2023_100235
crossref_primary_10_3390_metabo13010072
crossref_primary_10_3390_ijms24054782
crossref_primary_10_1177_0960327120959417
crossref_primary_10_3390_biom10010141
crossref_primary_10_1016_j_pmpp_2024_102367
crossref_primary_10_52586_4998
crossref_primary_10_3390_biom13060908
crossref_primary_10_3389_fpls_2022_936747
crossref_primary_10_1186_s12870_021_02957_z
crossref_primary_10_1007_s11756_022_01275_5
crossref_primary_10_1007_s13197_023_05819_8
crossref_primary_10_3390_molecules25051072
crossref_primary_10_1016_j_sajb_2023_08_003
crossref_primary_10_3389_fpls_2019_00906
crossref_primary_10_1007_s11356_019_04517_3
crossref_primary_10_1007_s00344_021_10349_8
crossref_primary_10_1093_jxb_erac009
crossref_primary_10_1007_s00344_022_10740_z
crossref_primary_10_1007_s12298_020_00789_z
crossref_primary_10_1016_j_postharvbio_2021_111554
crossref_primary_10_1016_j_plaphy_2024_108601
crossref_primary_10_3390_plants9070809
crossref_primary_10_3390_antiox10111728
crossref_primary_10_1093_jxb_erac158
crossref_primary_10_1093_jxb_erac159
crossref_primary_10_1016_j_scienta_2021_110683
crossref_primary_10_1186_s12870_025_06313_3
crossref_primary_10_3389_fpls_2020_572087
crossref_primary_10_3390_molecules24091826
crossref_primary_10_3389_fpls_2024_1371895
crossref_primary_10_1038_s41438_021_00478_2
crossref_primary_10_3390_ijms23126646
crossref_primary_10_1007_s10341_024_01216_3
crossref_primary_10_1016_j_envexpbot_2024_105942
crossref_primary_10_3390_plants8020034
crossref_primary_10_7554_eLife_83361
crossref_primary_10_1016_j_foodchem_2020_126498
crossref_primary_10_3390_ijms23169456
crossref_primary_10_3390_su13010294
crossref_primary_10_1016_j_molp_2018_12_012
crossref_primary_10_1021_acsomega_3c07404
crossref_primary_10_1107_S2059798320006841
crossref_primary_10_3389_fpls_2021_763755
crossref_primary_10_1134_S1021443720050052
crossref_primary_10_1016_j_scienta_2019_109070
crossref_primary_10_1016_j_postharvbio_2020_111351
crossref_primary_10_3390_agronomy12051116
crossref_primary_10_1016_j_fcr_2023_109217
crossref_primary_10_1016_j_algal_2021_102196
crossref_primary_10_1016_j_scienta_2023_112090
crossref_primary_10_1016_j_plaphy_2024_108509
crossref_primary_10_1016_j_plaphy_2024_108504
crossref_primary_10_1016_j_carbpol_2020_115973
Cites_doi 10.1111/j.1600-079X.2011.00934.x
10.1093/aob/mci083
10.1111/j.1600-079X.2006.00396.x
10.1111/jpi.12314
10.1111/jpi.12244
10.1111/jpi.12315
10.1111/jpi.12167
10.1111/jpi.12243
10.1007/978-1-4020-6014-4_21
10.1034/j.1600-079X.2003.00085.x
10.1021/acs.jafc.5b03128
10.1111/j.1600-079X.2008.00625.x
10.1111/j.1600-079X.2008.00660.x
10.3389/fpls.2016.00316
10.1104/pp.104.054494
10.1111/jpi.12095
10.3389/fpls.2016.01731
10.1111/j.1600-079X.2005.00276.x
10.1104/pp.004036
10.3389/fpls.2016.01387
10.1093/jxb/eru476
10.1016/j.actatropica.2014.04.021
10.1111/jpi.12364
10.1111/j.1600-079X.2011.00914.x
10.3390/molecules201018886
10.3389/fpls.2016.00718
10.3390/molecules20047396
10.1002/jobm.201500223
10.1007/s00299-015-1767-z
10.3389/fpls.2012.00225
10.1016/j.scienta.2017.03.029
10.1007/s00425-003-1172-7
10.1159/000014635
10.1111/jpi.12160
10.3389/fpls.2016.01823
10.20286/focsci-020227
10.1093/aob/mcv160
10.1093/jxb/eru332
10.1016/j.foodchem.2016.10.123
10.1111/jpi.12214
10.3389/fpls.2017.00134
10.3390/ijms17111777
10.3389/fpls.2016.00975
10.1111/j.1600-079X.1995.tb00136.x
10.1016/j.tplants.2014.07.006
10.1038/srep39865
10.1111/jpi.12188
10.1111/j.1600-079X.2010.00825.x
10.1021/jf8022063
10.1111/pce.12715
10.1371/journal.pone.0093462
10.3389/fpls.2016.01882
10.3390/ijms14048638
10.1093/aob/mcv116
10.3389/fpls.2016.00454
10.1111/j.1600-079X.2012.00996.x
10.3389/fpls.2013.00398
10.1016/j.jplph.2008.06.002
10.1016/j.scienta.2016.05.003
10.3389/fpls.2016.01124
10.1016/j.plaphy.2016.01.018
10.1093/jxb/erv011
10.4161/psb.1.3.2640
10.1111/jpi.12038
10.1007/s11356-016-7947-8
10.1104/pp.103.038554
10.1111/jpi.12336
10.1111/j.1365-313X.2011.04895.x
10.1016/j.envexpbot.2017.02.012
10.3389/fpls.2016.00570
10.1111/jpi.12105
10.1203/00006450-200112000-00021
10.1111/jpi.12262
10.3389/fpls.2016.00736
10.1111/jpi.12350
10.1111/jeu.12080
10.1007/s00709-011-0277-2
10.4161/psb.1.1.2398
10.1111/jpi.12253
10.1038/srep37945
10.1007/s00425-004-1317-3
10.1016/j.postharvbio.2016.03.006
10.1038/srep15815
10.3389/fpls.2016.00229
10.1111/jpi.12017
10.1079/9781780642635.0390
10.1016/j.foodchem.2012.10.077
10.3389/fpls.2017.00203
10.1111/jpi.12165
10.1093/jxb/eru373
10.1111/jpi.12115
10.3389/fpls.2016.02068
10.1111/ppl.12218
10.1111/jpi.12403
10.1046/j.1600-079X.2003.00105.x
10.1111/j.1600-079X.2011.00966.x
10.1093/pcp/pcu171
10.1016/j.jplph.2015.11.009
10.3906/bot-1302-55
10.1016/j.pneurobio.2008.04.001
10.1111/jpi.12055
10.3389/fpls.2016.01500
10.1111/j.1600-079X.2012.01015.x
10.1007/s11738-017-2428-3
10.1093/aob/mct067
10.3389/fpls.2015.01230
10.1046/j.1600-079X.2003.00106.x
10.1111/jpi.12180
10.1111/jpi.12342
10.1007/s11103-005-2498-2
10.3389/fpls.2017.00785
10.1038/srep40858
10.1021/ja01543a060
10.1111/jpi.12379
10.1093/pcp/pce133
10.1016/j.plaphy.2012.10.001
ContentType Journal Article
Copyright The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
Copyright_xml – notice: The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
– notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1093/aob/mcx114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 207
ExternalDocumentID PMC5808790
29069281
10_1093_aob_mcx114
Genre Journal Article
Review
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
AAYXX
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DATOO
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SA0
SV3
TCN
TEORI
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ACHIC
AQVQM
NVLIB
ID FETCH-LOGICAL-c477t-3a90b2b1439f21b409b25ded49d8e3486220ee47e1f9888366f6b4a4a89f1b4f3
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 18:19:53 EDT 2025
Thu Jul 10 18:23:31 EDT 2025
Fri Jul 11 04:55:13 EDT 2025
Mon Jul 21 05:55:19 EDT 2025
Tue Jul 01 03:04:12 EDT 2025
Thu Apr 24 22:59:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ABA
plant hormone
plant pathogen
auxin
phytomelatonin
tropism
ethylene
SA
senescence
cytokinin
gibberellin
JA
melatonin
rhizogenesis
plant stress
post-harvest
Language English
License The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c477t-3a90b2b1439f21b409b25ded49d8e3486220ee47e1f9888366f6b4a4a89f1b4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://academic.oup.com/aob/article-pdf/121/2/195/23881912/mcx114.pdf
PMID 29069281
PQID 1956097985
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5808790
proquest_miscellaneous_2315257281
proquest_miscellaneous_1956097985
pubmed_primary_29069281
crossref_citationtrail_10_1093_aob_mcx114
crossref_primary_10_1093_aob_mcx114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-12
PublicationDateYYYYMMDD 2018-02-12
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-12
  day: 12
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: US
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tan ( key 20180212065852_CIT0100) 2000; 9
Arnao ( key 20180212065852_CIT0006) 2009; 46
Zuo ( key 20180212065852_CIT0125) 2014; 57
Nawaz ( key 20180212065852_CIT0071) 2016; 6
Zhang ( key 20180212065852_CIT0120) 2016; 7
del Rio ( key 20180212065852_CIT0082) 2016; 57
Pucciariello ( key 20180212065852_CIT0077) 2017; 40
Kim ( key 20180212065852_CIT0047) 2001; 42
Pattison ( key 20180212065852_CIT0075) 2012; 70
Swarup ( key 20180212065852_CIT0099) 2012; 3
Arnao ( key 20180212065852_CIT0008) 2013; 55
Wang ( key 20180212065852_CIT0106) 2013; 54
Zhang ( key 20180212065852_CIT0119) 2014; 56
Pelagio-Flores ( key 20180212065852_CIT0076) 2012; 53
Reiter ( key 20180212065852_CIT0080) 2014; 56
León ( key 20180212065852_CIT0057) 2016; 6
Li ( key 20180212065852_CIT0060) 2016; 61
Shi ( key 20180212065852_CIT0088) 2015; 59
Shi ( key 20180212065852_CIT0089) 2015; 66
Arnao ( key 20180212065852_CIT0014) 2015
Zhou ( key 20180212065852_CIT0123) 2016; 7
Lerner ( key 20180212065852_CIT0058) 1958; 80
Lombardo ( key 20180212065852_CIT0067) 2006; 1
Zhu ( key 20180212065852_CIT0124) 2015; 56
Aguilera ( key 20180212065852_CIT0002) 2015; 63
Kolar ( key 20180212065852_CIT0049) 2005; 39
Li ( key 20180212065852_CIT0061) 2017; 7
Kim ( key 20180212065852_CIT0048) 2016; 190
Ding ( key 20180212065852_CIT0031) 2017; 219
Hu ( key 20180212065852_CIT0044) 2005; 137
Shi ( key 20180212065852_CIT0092) 2016; 7
Arnao ( key 20180212065852_CIT0007) 2009; 46
Lee ( key 20180212065852_CIT0053) 2017; 62
Molassiotis ( key 20180212065852_CIT0069) 2016; 7
Reiter ( key 20180212065852_CIT0079) 2007; 97
Hernández-Ruiz ( key 20180212065852_CIT0041) 2016; 2
Shi ( key 20180212065852_CIT0093) 2016; 100
Sarrou ( key 20180212065852_CIT0086) 2014; 38
Ma ( key 20180212065852_CIT0068) 2017; 7
Zhang ( key 20180212065852_CIT0117) 2017; 138
Fu ( key 20180212065852_CIT0034) 2017; 7
Bajwa ( key 20180212065852_CIT0020) 2014; 56
Lee ( key 20180212065852_CIT0055) 2015; 58
Romero-Puertas ( key 20180212065852_CIT0083) 2016; 7
Zhang ( key 20180212065852_CIT0118) 2013; 54
Zhang ( key 20180212065852_CIT0116) 2016; 7
Arnao ( key 20180212065852_CIT0012) 2015
Hernández-Ruiz ( key 20180212065852_CIT0040) 2008; 56
Slovak ( key 20180212065852_CIT0096) 2016; 117
Han ( key 20180212065852_CIT0037) 2017; 8
Chen ( key 20180212065852_CIT0024) 2009; 166
Lei ( key 20180212065852_CIT0056) 2004; 36
Hernández-Ruiz ( key 20180212065852_CIT0042) 2004; 220
Korkmaz ( key 20180212065852_CIT0050) 2017; 23
Reiter ( key 20180212065852_CIT0081) 2015; 20
Wasternack ( key 20180212065852_CIT0109) 2013; 111
Hardeland ( key 20180212065852_CIT0038) 2012; 52
Byeon ( key 20180212065852_CIT0022) 2014; 57
Pagnussat ( key 20180212065852_CIT0072) 2004; 135
Arnao ( key 20180212065852_CIT0003) 2006; 1
Skinner ( key 20180212065852_CIT0095) 2005; 59
Lee ( key 20180212065852_CIT0052) 2016; 60
Koyama ( key 20180212065852_CIT0051) 2013; 60
Wen ( key 20180212065852_CIT0111) 2016; 7
Asgher ( key 20180212065852_CIT0017) 2017; 24
Zhang ( key 20180212065852_CIT0121) 2017; 62
Hussain ( key 20180212065852_CIT0045) 2016; 7
Sun ( key 20180212065852_CIT0097) 2015; 66
Correa-Aragunde ( key 20180212065852_CIT0027) 2015; 116
Arnao ( key 20180212065852_CIT0010) 2014
Pandi-Perumal ( key 20180212065852_CIT0074) 2008; 85
Lee ( key 20180212065852_CIT0054) 2014; 57
Sarropoulou ( key 20180212065852_CIT0084) 2012; 52
Li ( key 20180212065852_CIT0059) 2015; 66
Back ( key 20180212065852_CIT0019) 2016; 61
Wang ( key 20180212065852_CIT0105) 2014; 56
Mukherjee ( key 20180212065852_CIT0070) 2014; 152
Shi ( key 20180212065852_CIT0091) 2015; 58
Chen ( key 20180212065852_CIT0025) 2012; 249
Woodward ( key 20180212065852_CIT0112) 2005; 95
Zhang ( key 20180212065852_CIT0115) 2014; 57
Saxena ( key 20180212065852_CIT0087) 2016; 7
Freschi ( key 20180212065852_CIT0033) 2013; 4
Tan ( key 20180212065852_CIT0101) 2015; 20
Wang ( key 20180212065852_CIT0107) 2012; 53
Vielma ( key 20180212065852_CIT0104) 2014; 137
Li ( key 20180212065852_CIT0062) 2016; 61
Gao ( key 20180212065852_CIT0035) 2016; 118
Hattori ( key 20180212065852_CIT0039) 1995; 35
Sarropoulou ( key 20180212065852_CIT0085) 2012; 61
Aghdam ( key 20180212065852_CIT0001) 2017; 221
Arnao ( key 20180212065852_CIT0011) 2014; 19
Weeda ( key 20180212065852_CIT0110) 2014; 9
Liang ( key 20180212065852_CIT0063) 2015; 59
Hu ( key 20180212065852_CIT0043) 2016; 7
Wang ( key 20180212065852_CIT0108) 2016; 7
Arnao ( key 20180212065852_CIT0004) 2007; 42
Liu ( key 20180212065852_CIT0066) 2016; 56
Arnao ( key 20180212065852_CIT0009) 2013; 138
Shyu ( key 20180212065852_CIT0094) 2015; 66
Shi ( key 20180212065852_CIT0090) 2015; 59
Arnao ( key 20180212065852_CIT0015) 2017; 39
Diao ( key 20180212065852_CIT0030) 2017; 8
Qian ( key 20180212065852_CIT0078) 2015; 5
Liu ( key 20180212065852_CIT0065) 2016; 207
Pagnussat ( key 20180212065852_CIT0073) 2002; 129
Teixeira ( key 20180212065852_CIT0103) 2003; 35
Correa-Aragunde ( key 20180212065852_CIT0026) 2004; 218
Jiao ( key 20180212065852_CIT0046) 2016; 7
Wu ( key 20180212065852_CIT0113) 2011; 50
Bonilla ( key 20180212065852_CIT0021) 2004; 36
Damiani ( key 20180212065852_CIT0028) 2016; 7
Arnao ( key 20180212065852_CIT0016) 2017
Yin ( key 20180212065852_CIT0114) 2013; 54
Dubbels ( key 20180212065852_CIT0032) 1995; 18
Arnao ( key 20180212065852_CIT0005) 2007
Gitto ( key 20180212065852_CIT0036) 2001; 50
Astier ( key 20180212065852_CIT0018) 2016; 7
Carrillo-Vico ( key 20180212065852_CIT0023) 2013; 14
Arnao ( key 20180212065852_CIT0013) 2015; 59
Di ( key 20180212065852_CIT0029) 2015; 34
Liang ( key 20180212065852_CIT0064) 2017; 8
Sun ( key 20180212065852_CIT0098) 2016; 61
Tan ( key 20180212065852_CIT0102) 2016; 61
Zhou ( key 20180212065852_CIT0122) 2016; 17
References_xml – volume: 52
  start-page: 139
  year: 2012
  ident: key 20180212065852_CIT0038
  article-title: Melatonin, the circadian multioscillator system and health: the need for detailed analysis of peripheral melatonin signal
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2011.00934.x
– volume: 95
  start-page: 707
  year: 2005
  ident: key 20180212065852_CIT0112
  article-title: Auxin: regulation, action, and interaction
  publication-title: Annals of Botany
  doi: 10.1093/aob/mci083
– volume: 42
  start-page: 147
  year: 2007
  ident: key 20180212065852_CIT0004
  article-title: Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2006.00396.x
– volume: 60
  start-page: 327
  year: 2016
  ident: key 20180212065852_CIT0052
  article-title: Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12314
– volume: 59
  start-page: 102
  year: 2015
  ident: key 20180212065852_CIT0088
  article-title: Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12244
– volume: 61
  start-page: 138
  year: 2016
  ident: key 20180212065852_CIT0098
  article-title: A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12315
– volume: 57
  start-page: 269
  year: 2014
  ident: key 20180212065852_CIT0115
  article-title: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.)
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12167
– volume: 59
  start-page: 91
  year: 2015
  ident: key 20180212065852_CIT0063
  article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12243
– start-page: 101
  volume-title: Advances in plant ethylene research
  year: 2007
  ident: key 20180212065852_CIT0005
  article-title: Inhibition of ACC oxidase activity by melatonin and IAA in etiolated lupin hypocotyls
  doi: 10.1007/978-1-4020-6014-4_21
– volume: 35
  start-page: 262
  year: 2003
  ident: key 20180212065852_CIT0103
  article-title: Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite
  publication-title: Journal of Pineal Research
  doi: 10.1034/j.1600-079X.2003.00085.x
– volume: 63
  start-page: 7967
  year: 2015
  ident: key 20180212065852_CIT0002
  article-title: Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.5b03128
– volume: 46
  start-page: 58
  year: 2009
  ident: key 20180212065852_CIT0007
  article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2008.00625.x
– volume: 46
  start-page: 295
  year: 2009
  ident: key 20180212065852_CIT0006
  article-title: Chemical stress by different agents affects the melatonin content of barley roots
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2008.00660.x
– volume: 7
  start-page: 316
  year: 2016
  ident: key 20180212065852_CIT0083
  article-title: Nitric oxide level is self-regulating and also regulates its ROS partners
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00316
– volume: 137
  start-page: 663
  year: 2005
  ident: key 20180212065852_CIT0044
  article-title: Nitric oxide mediates gravitropic bending in soybean roots
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.054494
– volume: 56
  start-page: 39
  year: 2014
  ident: key 20180212065852_CIT0119
  article-title: The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12095
– volume: 7
  start-page: 1731
  year: 2016
  ident: key 20180212065852_CIT0018
  article-title: Editorial: interplay between NO signaling, ROS, and the antioxidant system in plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01731
– volume: 39
  start-page: 333
  year: 2005
  ident: key 20180212065852_CIT0049
  article-title: Melatonin in higher plants: occurrence and possible functions
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2005.00276.x
– volume: 129
  start-page: 954
  year: 2002
  ident: key 20180212065852_CIT0073
  article-title: Nitric oxide is required for root organogenesis
  publication-title: Plant Physiology
  doi: 10.1104/pp.004036
– volume: 7
  start-page: 1387
  year: 2016
  ident: key 20180212065852_CIT0046
  article-title: Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01387
– volume: 66
  start-page: 669
  year: 2015
  ident: key 20180212065852_CIT0059
  article-title: Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behavior in two Malus species under drought stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru476
– volume: 137
  start-page: 31
  year: 2014
  ident: key 20180212065852_CIT0104
  article-title: Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: a review
  publication-title: Acta Tropica
  doi: 10.1016/j.actatropica.2014.04.021
– volume: 61
  start-page: 426
  year: 2016
  ident: key 20180212065852_CIT0019
  article-title: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12364
– volume: 52
  start-page: 38
  year: 2012
  ident: key 20180212065852_CIT0084
  article-title: Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus×P. canescens), and MxM 60 (P. avium×P.mahaleb)
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2011.00914.x
– volume: 20
  start-page: 18886
  year: 2015
  ident: key 20180212065852_CIT0101
  article-title: Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism
  publication-title: Molecules
  doi: 10.3390/molecules201018886
– volume: 7
  start-page: 718
  year: 2016
  ident: key 20180212065852_CIT0111
  article-title: Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00718
– volume: 20
  start-page: 7396
  year: 2015
  ident: key 20180212065852_CIT0081
  article-title: Phytomelatonin: assisting plants to survive and thrive
  publication-title: Molecules
  doi: 10.3390/molecules20047396
– volume: 56
  start-page: 843
  year: 2016
  ident: key 20180212065852_CIT0066
  article-title: Identification of melatonin in Trichoderma spp. and detection of melatonin content under controlled-stress growth conditions from T. asperellum
  publication-title: Journal of Basic Microbiology
  doi: 10.1002/jobm.201500223
– volume: 34
  start-page: 895
  year: 2015
  ident: key 20180212065852_CIT0029
  article-title: Involvement of secondary messengers and small organic molecules in auxin perception and signaling
  publication-title: Plant Cell Reports
  doi: 10.1007/s00299-015-1767-z
– volume: 3
  start-page: 225
  year: 2012
  ident: key 20180212065852_CIT0099
  article-title: AUX/LAX family of auxin influx carriers – an overview
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2012.00225
– volume: 219
  start-page: 264
  year: 2017
  ident: key 20180212065852_CIT0031
  article-title: Exogenous melatonin ameliorates cold-induced damage in tomato plants
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2017.03.029
– volume: 218
  start-page: 900
  year: 2004
  ident: key 20180212065852_CIT0026
  article-title: Nitric oxide plays a central role in determining lateral root development in tomato
  publication-title: Planta
  doi: 10.1007/s00425-003-1172-7
– start-page: 123
  volume-title: Nutraceuticals: prospects, sources and role in health and disease
  year: 2017
  ident: key 20180212065852_CIT0016
  article-title: Phyto-melatonin: a natural substance from plants with interesting nutraceutical properties
– volume: 9
  start-page: 137
  year: 2000
  ident: key 20180212065852_CIT0100
  article-title: Significance of melatonin in antioxidative defense system: reactions and products
  publication-title: Biological Signals and Receptors
  doi: 10.1159/000014635
– volume: 57
  start-page: 219
  year: 2014
  ident: key 20180212065852_CIT0022
  article-title: Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12160
– volume: 7
  start-page: 1823
  year: 2016
  ident: key 20180212065852_CIT0123
  article-title: Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01823
– volume: 2
  start-page: 1
  year: 2016
  ident: key 20180212065852_CIT0041
  article-title: Phytomelatonin, an interesting tool for agricultural crops
  publication-title: Focus on Science
  doi: 10.20286/focsci-020227
– volume: 117
  start-page: 9
  year: 2016
  ident: key 20180212065852_CIT0096
  article-title: Genetic control of root growth: from genes to networks
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcv160
– volume: 66
  start-page: 657
  year: 2015
  ident: key 20180212065852_CIT0097
  article-title: Melatonin promotes ripening and improves quality of tomato fruit during postharvest life
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru332
– volume: 221
  start-page: 1650
  year: 2017
  ident: key 20180212065852_CIT0001
  article-title: Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria×anannasa cv. Selva) by enhancing GABA shunt activity
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.10.123
– volume: 58
  start-page: 291
  year: 2015
  ident: key 20180212065852_CIT0055
  article-title: Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12214
– volume: 8
  start-page: 134
  year: 2017
  ident: key 20180212065852_CIT0064
  article-title: Melatonin regulates root architecture by modulating auxin response in rice
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00134
– volume: 17
  start-page: 1777
  year: 2016
  ident: key 20180212065852_CIT0122
  article-title: Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms17111777
– volume: 56
  start-page: 371
  year: 2014
  ident: key 20180212065852_CIT0080
  article-title: Melatonin: exceeding expectations
  publication-title: Physiology (Bethesda)
– volume: 7
  start-page: 975
  year: 2016
  ident: key 20180212065852_CIT0045
  article-title: Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00975
– volume: 18
  start-page: 28
  year: 1995
  ident: key 20180212065852_CIT0032
  article-title: Melatonin in edible plants identified by radioimmunoassay and by HPLC-MS
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.1995.tb00136.x
– volume: 19
  start-page: 789
  year: 2014
  ident: key 20180212065852_CIT0011
  article-title: Melatonin: plant growth regulator and/or biostimulator during stress
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2014.07.006
– volume: 7
  start-page: 39865
  year: 2017
  ident: key 20180212065852_CIT0034
  article-title: Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways
  publication-title: Scientific Reports
  doi: 10.1038/srep39865
– volume: 58
  start-page: 26
  year: 2015
  ident: key 20180212065852_CIT0091
  article-title: INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12188
– volume: 50
  start-page: 159
  year: 2011
  ident: key 20180212065852_CIT0113
  article-title: Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2010.00825.x
– volume: 56
  start-page: 10567
  year: 2008
  ident: key 20180212065852_CIT0040
  article-title: Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf8022063
– volume: 40
  start-page: 473
  year: 2017
  ident: key 20180212065852_CIT0077
  article-title: New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants
  publication-title: Plant, Cell and Environment
  doi: 10.1111/pce.12715
– volume: 9
  start-page: e93462
  year: 2014
  ident: key 20180212065852_CIT0110
  article-title: Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093462
– volume: 7
  start-page: 1882
  year: 2016
  ident: key 20180212065852_CIT0108
  article-title: Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01882
– volume: 14
  start-page: 8638
  year: 2013
  ident: key 20180212065852_CIT0023
  article-title: Melatonin: buffering the immune system
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms14048638
– start-page: 519
  volume-title: Studies in Natural products chemistry (Bioactive natural products)
  year: 2015
  ident: key 20180212065852_CIT0014
  article-title: Phytomelatonin: searching for plants with high levels as a natural source of nutraceuticals
– volume: 116
  start-page: 695
  year: 2015
  ident: key 20180212065852_CIT0027
  article-title: Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcv116
– volume: 7
  start-page: 454
  year: 2016
  ident: key 20180212065852_CIT0028
  article-title: Reactive oxygen species and nitric oxide control early steps of the legume–Rhizobium symbiotic interaction
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00454
– volume: 53
  start-page: 279
  year: 2012
  ident: key 20180212065852_CIT0076
  article-title: Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2012.00996.x
– volume: 4
  start-page: 398
  year: 2013
  ident: key 20180212065852_CIT0033
  article-title: Nitric oxide and phytohormone interactions: current status and perspectives
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00398
– volume: 166
  start-page: 324
  year: 2009
  ident: key 20180212065852_CIT0024
  article-title: Exogenously applied melatonin stimulates root growth and raises endogenous IAA in roots of etiolated seedling of Brassica juncea
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2008.06.002
– volume: 207
  start-page: 14
  year: 2016
  ident: key 20180212065852_CIT0065
  article-title: The beneficial effects of exogenous melatonin on tomato fruit properties
  publication-title: Scientia Horticulturae
  doi: 10.1016/j.scienta.2016.05.003
– volume: 7
  start-page: 1124
  year: 2016
  ident: key 20180212065852_CIT0092
  article-title: Fundamental issues of melatonin-mediated stress signaling in plants
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01124
– volume: 100
  start-page: 150
  year: 2016
  ident: key 20180212065852_CIT0093
  article-title: Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2016.01.018
– volume: 66
  start-page: 4165
  year: 2015
  ident: key 20180212065852_CIT0094
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erv011
– volume: 1
  start-page: 89
  year: 2006
  ident: key 20180212065852_CIT0003
  article-title: The physiological function of melatonin in plants
  publication-title: Plant Signaling and Behavior
  doi: 10.4161/psb.1.3.2640
– volume: 54
  start-page: 426
  year: 2013
  ident: key 20180212065852_CIT0114
  article-title: Exogenous melatonin improves Malus resistance to Marssonina apple blotch
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12038
– volume: 24
  start-page: 2273
  year: 2017
  ident: key 20180212065852_CIT0017
  article-title: Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-016-7947-8
– volume: 135
  start-page: 179
  year: 2004
  ident: key 20180212065852_CIT0072
  article-title: Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.038554
– volume: 61
  start-page: 27
  year: 2016
  ident: key 20180212065852_CIT0102
  article-title: On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12336
– volume: 57
  start-page: 1364
  year: 2016
  ident: key 20180212065852_CIT0082
  article-title: ROS generation in peroxisomes and its role in cell signaling
  publication-title: Plant, Cell and Environment
– volume: 70
  start-page: 585
  year: 2012
  ident: key 20180212065852_CIT0075
  article-title: Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2011.04895.x
– volume: 138
  start-page: 36
  year: 2017
  ident: key 20180212065852_CIT0117
  article-title: Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.)
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/j.envexpbot.2017.02.012
– volume: 7
  start-page: 570
  year: 2016
  ident: key 20180212065852_CIT0087
  article-title: Cross talk between H2O2 and interacting signal molecules under plant stress response
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00570
– volume: 56
  start-page: 134
  year: 2014
  ident: key 20180212065852_CIT0105
  article-title: Changes in melatonin levels in transgenic Micro-Tom tomato overexpressing ovine AANAT and ovine HIOMT genes
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12105
– volume: 50
  start-page: 756
  year: 2001
  ident: key 20180212065852_CIT0036
  article-title: Effects of melatonin treatment in septic newborns
  publication-title: Pediatric Research
  doi: 10.1203/00006450-200112000-00021
– volume: 59
  start-page: 334
  year: 2015
  ident: key 20180212065852_CIT0090
  article-title: Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12262
– volume: 7
  start-page: 736
  year: 2016
  ident: key 20180212065852_CIT0043
  article-title: Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00736
– volume: 61
  start-page: 328
  year: 2016
  ident: key 20180212065852_CIT0062
  article-title: Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12350
– volume: 60
  start-page: 646
  year: 2013
  ident: key 20180212065852_CIT0051
  article-title: The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum
  publication-title: Journal of Eukaryotic Microbiology
  doi: 10.1111/jeu.12080
– volume: 249
  start-page: 187
  year: 2012
  ident: key 20180212065852_CIT0025
  article-title: Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice
  publication-title: Protoplasma
  doi: 10.1007/s00709-011-0277-2
– volume: 1
  start-page: 28
  year: 2006
  ident: key 20180212065852_CIT0067
  article-title: Nitric oxide functions as a positive regulator of root hair development
  publication-title: Plant Signaling and Behavior
  doi: 10.4161/psb.1.1.2398
– volume: 59
  start-page: 133
  year: 2015
  ident: key 20180212065852_CIT0013
  article-title: Functions of melatonin in plants: a review
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12253
– volume: 6
  start-page: 37945
  year: 2016
  ident: key 20180212065852_CIT0057
  article-title: Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis
  publication-title: Scientific Reports
  doi: 10.1038/srep37945
– volume: 220
  start-page: 140
  year: 2004
  ident: key 20180212065852_CIT0042
  article-title: Melatonin: growth-stimulating compound present in lupin tissues
  publication-title: Planta
  doi: 10.1007/s00425-004-1317-3
– volume: 118
  start-page: 103
  year: 2016
  ident: key 20180212065852_CIT0035
  article-title: Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit
  publication-title: Postharvest Biology and Technology
  doi: 10.1016/j.postharvbio.2016.03.006
– volume: 5
  start-page: 15815
  year: 2015
  ident: key 20180212065852_CIT0078
  article-title: Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis
  publication-title: Scientific Reports
  doi: 10.1038/srep15815
– volume: 7
  start-page: 197
  year: 2016
  ident: key 20180212065852_CIT0120
  article-title: Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 229
  year: 2016
  ident: key 20180212065852_CIT0069
  article-title: Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.00229
– volume: 97
  start-page: 211
  year: 2007
  ident: key 20180212065852_CIT0079
  article-title: Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions
  publication-title: World Review of Nutrition & Dietetics
– volume: 54
  start-page: 292
  year: 2013
  ident: key 20180212065852_CIT0106
  article-title: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12017
– start-page: 390
  volume-title: Amino acids in higher plants
  year: 2015
  ident: key 20180212065852_CIT0012
  article-title: Melatonin: synthesis from tryptophan and its role in higher plants
  doi: 10.1079/9781780642635.0390
– volume: 138
  start-page: 1212
  year: 2013
  ident: key 20180212065852_CIT0009
  article-title: Growth conditions influence the melatonin content of tomato plants
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.10.077
– volume: 8
  start-page: 203
  year: 2017
  ident: key 20180212065852_CIT0030
  article-title: Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00203
– volume: 57
  start-page: 262
  year: 2014
  ident: key 20180212065852_CIT0054
  article-title: Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12165
– volume: 66
  start-page: 681
  year: 2015
  ident: key 20180212065852_CIT0089
  article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru373
– volume: 56
  start-page: 238
  year: 2014
  ident: key 20180212065852_CIT0020
  article-title: Role of melatonin in alleviating cold stress in Arabidopsis thaliana
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12115
– volume: 7
  start-page: 2068
  year: 2017
  ident: key 20180212065852_CIT0068
  article-title: Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.02068
– volume: 152
  start-page: 714
  year: 2014
  ident: key 20180212065852_CIT0070
  article-title: Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons
  publication-title: Physiologia Plantarum
  doi: 10.1111/ppl.12218
– volume: 62
  start-page: e12403
  year: 2017
  ident: key 20180212065852_CIT0121
  article-title: Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12403
– volume: 36
  start-page: 73
  year: 2004
  ident: key 20180212065852_CIT0021
  article-title: Melatonin and viral infections
  publication-title: Journal of Pineal Research
  doi: 10.1046/j.1600-079X.2003.00105.x
– volume: 53
  start-page: 11
  year: 2012
  ident: key 20180212065852_CIT0107
  article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2011.00966.x
– volume: 56
  start-page: 414
  year: 2015
  ident: key 20180212065852_CIT0124
  article-title: Friends or foes: new insights in jasmonate and ethylene co-actions
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pcu171
– volume: 190
  start-page: 67
  year: 2016
  ident: key 20180212065852_CIT0048
  article-title: Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2015.11.009
– volume: 38
  start-page: 293
  year: 2014
  ident: key 20180212065852_CIT0086
  article-title: Melatonin and other factors that promote rooting and sprouting of shoot cuttings in Punica granatum cv. Wonderful
  publication-title: Turkist Journal of Botany
  doi: 10.3906/bot-1302-55
– volume: 85
  start-page: 335
  year: 2008
  ident: key 20180212065852_CIT0074
  article-title: Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways
  publication-title: Progress in Neurobiology
  doi: 10.1016/j.pneurobio.2008.04.001
– volume: 55
  start-page: 149
  year: 2013
  ident: key 20180212065852_CIT0008
  article-title: Growth conditions determine different melatonin levels in Lupinus albus L
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12055
– volume: 7
  start-page: 1500
  year: 2016
  ident: key 20180212065852_CIT0116
  article-title: Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase–catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.)
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2016.01500
– volume: 54
  start-page: 15
  year: 2013
  ident: key 20180212065852_CIT0118
  article-title: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.)
  publication-title: Journal of Pineal Research
  doi: 10.1111/j.1600-079X.2012.01015.x
– volume: 39
  start-page: 127
  year: 2017
  ident: key 20180212065852_CIT0015
  article-title: Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-017-2428-3
– volume: 111
  start-page: 1021
  year: 2013
  ident: key 20180212065852_CIT0109
  article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany
  publication-title: Annals of Botany
  doi: 10.1093/aob/mct067
– volume: 35
  start-page: 627
  year: 1995
  ident: key 20180212065852_CIT0039
  article-title: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates
  publication-title: Biochemistry and Molecular Biology International
– volume: 6
  start-page: 1230
  year: 2016
  ident: key 20180212065852_CIT0071
  article-title: Melatonin: current status and future perspectives in plant science
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2015.01230
– volume: 36
  start-page: 126
  year: 2004
  ident: key 20180212065852_CIT0056
  article-title: Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines
  publication-title: Journal of Pineal Research
  doi: 10.1046/j.1600-079X.2003.00106.x
– volume: 57
  start-page: 408
  year: 2014
  ident: key 20180212065852_CIT0125
  article-title: Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12180
– volume: 61
  start-page: 218
  year: 2016
  ident: key 20180212065852_CIT0060
  article-title: Exogenous melatonin improved potassium content in Malus under different stress conditions
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12342
– volume: 59
  start-page: 533
  year: 2005
  ident: key 20180212065852_CIT0095
  article-title: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-005-2498-2
– volume: 8
  start-page: 785
  year: 2017
  ident: key 20180212065852_CIT0037
  article-title: Effects of melatonin on anti-oxidative systems and Photosystem II in cold-stressed rice seedlings
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2017.00785
– volume: 7
  start-page: 40858
  year: 2017
  ident: key 20180212065852_CIT0061
  article-title: Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport
  publication-title: Scientific Reports
  doi: 10.1038/srep40858
– start-page: 79
  volume-title: UV radiation: properties, effects, and applications
  year: 2014
  ident: key 20180212065852_CIT0010
  article-title: Melatonin: possible role as light-protector in plants
– volume: 80
  start-page: 2587
  year: 1958
  ident: key 20180212065852_CIT0058
  article-title: Isolation of melatonin, a pineal factor that lightens melanocytes
  publication-title: Journal of American Chemical Society
  doi: 10.1021/ja01543a060
– volume: 23
  start-page: 167
  year: 2017
  ident: key 20180212065852_CIT0050
  article-title: The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress
  publication-title: Journal of Agricultural Sciences
– volume: 62
  start-page: e12379
  year: 2017
  ident: key 20180212065852_CIT0053
  article-title: Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana
  publication-title: Journal of Pineal Research
  doi: 10.1111/jpi.12379
– volume: 42
  start-page: 1056
  year: 2001
  ident: key 20180212065852_CIT0047
  article-title: IAA and N6-benzyladenine inhibit ethylene-regulated expression of ACC oxidase and ACC synthase genes in mungbean hypocotyls
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pce133
– volume: 61
  start-page: 162
  year: 2012
  ident: key 20180212065852_CIT0085
  article-title: Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium×Prunus cerasus)
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2012.10.001
SSID ssj0002691
Score 2.66138
SecondaryResourceType review_article
Snippet Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 195
SubjectTerms abiotic stress
abscisic acid
adventitious roots
biosynthesis
biotic stress
cytokinins
drought
endophytes
ethylene
gibberellins
hormones
host plants
immune response
indole acetic acid
jasmonic acid
melatonin
Melatonin - pharmacology
Melatonin - physiology
nitric oxide
photosynthesis
Plant Growth Regulators - physiology
Plant Physiological Phenomena - drug effects
plant physiology
Plants - drug effects
pollution
receptors
regulator genes
Review
ripening
salicylic acid
salinity
shoots
temperature
transcription factors
transport proteins
ultraviolet radiation
Title Melatonin and its relationship to plant hormones
URI https://www.ncbi.nlm.nih.gov/pubmed/29069281
https://www.proquest.com/docview/1956097985
https://www.proquest.com/docview/2315257281
https://pubmed.ncbi.nlm.nih.gov/PMC5808790
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbuoe9lK37aLa2eGwvY3i1PmxJj83aEEbTwUggb0ayZVpondI5UPrX9yT5K2sGXV-EkYVs7medf3fS3SH0BdZQESusQxppMFDyPA6lAGUIzNjERidgRFt_x_QsmczZz0W86IpfuuiSSn_P7jbGlTwFVegDXG2U7H8g204KHXAN-EILCEP7KIyn9iSb9af2tgDqs232DBbQyutLkNy3cyCmNid_n4l2mZP1smo0gkO-VM59Ou0KMk_MTel21LH1OIe_Vxd33Y5S7TLAInQFTHpaDnhVaHdQ_U9gQ1-jGn30cv0NkJ6iw7405gMF7JNTqaWG9iq7xT5CdD3P9dmvdDw_PU1nJ4vZc7RFgOCTAdo6Gh2Pxu1flCSu2mH7Wk1qWUkPYfZDP_c6mXhgIfx90LXHHGav0HZN-YMjj99r9MyUO-jFyEn9DYpaEAMAMQAQgz6IQbUMHIhBA-JbNB-fzH5MwrqMRZgxzquQKhlpooGYyoJgDQa1JnFuciZzYSgDk5JExjBucCGFEDRJikQzxZSQBQwv6Ds0KGH-XRQkiuewgjKa4ZxlQC3iiCheACXllMnCDNHXRh5pVud4t6VGLlN_1oCmILvUy26IPrdjr31mk42jPjViTUHx2N0kVZrl6k9qA00jyaWI_z0GjAebbZcIPETvPRTts2ydAenu8DWQ2gE28fn6nfLi3CVAj0UkuIw-POLdPqKX3QrYQ4PqZmX2gUZW-qD-4u4BrT91fA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+and+its+relationship+to+plant+hormones&rft.jtitle=Annals+of+botany&rft.au=Arnao%2C+M+B&rft.au=Hern%C3%A1ndez-Ruiz%2C+J&rft.date=2018-02-12&rft.issn=1095-8290&rft.eissn=1095-8290&rft.volume=121&rft.issue=2&rft.spage=195&rft_id=info:doi/10.1093%2Faob%2Fmcx114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon