Melatonin and its relationship to plant hormones
Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its...
Saved in:
Published in | Annals of botany Vol. 121; no. 2; pp. 195 - 207 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
12.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others.
This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed.
Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin. |
---|---|
AbstractList | Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others.
This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed.
Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin. Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others.BACKGROUNDPlant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others.This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed.SCOPEThis review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed.Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin.CONCLUSIONSMelatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen-plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin. Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent years, the number of studies on melatonin in plants has increased significantly. One of the most studied actions of melatonin in plants is its effect on biotic and abiotic stress, such as that produced by drought, extreme temperatures, salinity, chemical pollution and UV radiation, among others. This review looks at studies in which some aspects of the relationship between melatonin and the plant hormones auxin, cytokinin, gibberellins, abscisic acid, ethylene, jasmonic acid and salicylic acid are presented. The effects that some melatonin treatments have on endogenous plant hormone levels, their related genes (biosynthesis, catabolism, receptors and transcription factors) and the physiological actions induced by melatonin, mainly in stress conditions, are discussed. Melatonin is an important modulator of gene expression related to plant hormones, e.g. in auxin carrier proteins, as well as in metabolism of indole-3-acetic acid (IAA), gibberellins, cytokinins, abscisic acid and ethylene. Most of the studies performed have dealt with the auxin-like activity of melatonin which, in a similar way to IAA, is able to induce growth in shoots and roots and stimulate root generation, giving rise to new lateral and adventitious roots. Melatonin is also able to delay senescence, protecting photosynthetic systems and related sub-cellular structures and processes. Also, its role in fruit ripening and post-harvest processes as a gene regulator of ethylene-related factors is relevant. Another decisive aspect is its role in the pathogen–plant interaction. Melatonin appears to act as a key molecule in the plant immune response, together with other well-known molecules such as nitric oxide and hormones, such as jasmonic acid and salicylic acid. In this sense, the discovery of elevated levels of melatonin in endophytic organisms associated with plants has thrown light on a possible novel form of communication between beneficial endophytes and host plants via melatonin. |
Author | Hernández-Ruiz, J Arnao, M B |
AuthorAffiliation | Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain |
AuthorAffiliation_xml | – name: Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain |
Author_xml | – sequence: 1 givenname: M B surname: Arnao fullname: Arnao, M B – sequence: 2 givenname: J surname: Hernández-Ruiz fullname: Hernández-Ruiz, J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29069281$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtLxDAQhYMo7kVf_AHSRxHqTi5NkxdBFm-w4os-h7RN3UibrE1X9N-bdXdFRfApMPPNyZk5I7TrvDMIHWE4wyDpRPti0pZvGLMdNIyVLBVEwi4aAoUszSlnAzQK4RkACJd4Hw1im0si8BDBnWl07511iXZVYvuQdKuK9S7M7SLpfbJotOuTue_a-G04QHu1boI53Lxj9Hh1-TC9SWf317fTi1lasjzvU6olFKTAjMqa4IKBLEhWmYrJShjKBCcEjGG5wbUUQlDOa14wzbSQdcRrOkbna93FsmhNVRrXd7pRi862untXXlv1s-PsXD35V5UJELmEKHCyEej8y9KEXrU2lKaJ2xi_DIpQnJEsj1f4F8Uy4yBzKbKIHn-39eVne9EIwBooOx9CZ2pV2v7zntGlbRQGtQpNxdDUOrQ4cvprZKv6B_wBEdmY-w |
CitedBy_id | crossref_primary_10_1016_j_postharvbio_2019_111066 crossref_primary_10_1016_j_scienta_2024_113776 crossref_primary_10_1111_jpi_12937 crossref_primary_10_3390_horticulturae10121352 crossref_primary_10_1007_s00344_022_10886_w crossref_primary_10_1111_jpi_12810 crossref_primary_10_1016_j_jprot_2021_104264 crossref_primary_10_3390_agronomy9120795 crossref_primary_10_1016_j_postharvbio_2022_112055 crossref_primary_10_3389_fpls_2019_00136 crossref_primary_10_1002_jsfa_12179 crossref_primary_10_1186_s12870_019_1992_7 crossref_primary_10_3390_plants10091917 crossref_primary_10_3389_fpls_2022_1059482 crossref_primary_10_1016_j_envexpbot_2021_104756 crossref_primary_10_3389_fpls_2021_702874 crossref_primary_10_3389_fpls_2024_1379756 crossref_primary_10_3390_ijms242216228 crossref_primary_10_1111_jpi_12804 crossref_primary_10_3389_fpls_2021_686062 crossref_primary_10_1016_j_ecoenv_2021_112821 crossref_primary_10_1016_j_ecoenv_2020_111358 crossref_primary_10_1080_00380768_2024_2405834 crossref_primary_10_3390_ijms23020599 crossref_primary_10_1111_tpj_14477 crossref_primary_10_1021_acs_jafc_9b00058 crossref_primary_10_3389_fpls_2022_1120613 crossref_primary_10_1186_s12870_024_05725_x crossref_primary_10_3390_antiox9090809 crossref_primary_10_3390_plants12040781 crossref_primary_10_1007_s00299_024_03332_6 crossref_primary_10_1111_ppl_13852 crossref_primary_10_3390_agronomy10020194 crossref_primary_10_1111_tpj_70078 crossref_primary_10_3390_ijms23031137 crossref_primary_10_1007_s44372_024_00020_3 crossref_primary_10_3390_ijms24108759 crossref_primary_10_1038_s41598_024_68894_7 crossref_primary_10_1094_PHYTO_07_23_0232_KC crossref_primary_10_3390_foods14010064 crossref_primary_10_1007_s12355_022_01111_9 crossref_primary_10_1093_jxb_eraa235 crossref_primary_10_3390_plants14050824 crossref_primary_10_1021_acs_jafc_0c07457 crossref_primary_10_1016_j_scienta_2023_112482 crossref_primary_10_1111_jpi_12858 crossref_primary_10_3390_horticulturae10121310 crossref_primary_10_3389_fpls_2020_569779 crossref_primary_10_1007_s00344_023_10946_9 crossref_primary_10_1016_j_hpj_2024_08_006 crossref_primary_10_3390_plants13223134 crossref_primary_10_3390_plants13223255 crossref_primary_10_3389_fpls_2019_01388 crossref_primary_10_1016_j_jbiotec_2020_10_013 crossref_primary_10_1016_j_plaphy_2023_01_035 crossref_primary_10_1016_j_postharvbio_2024_112896 crossref_primary_10_1016_j_sajb_2023_10_042 crossref_primary_10_3390_ijms20246200 crossref_primary_10_3390_molecules24081514 crossref_primary_10_1016_j_sajb_2023_10_040 crossref_primary_10_1186_s12870_023_04325_5 crossref_primary_10_1016_j_plaphy_2021_12_018 crossref_primary_10_17660_ActaHortic_2022_1349_10 crossref_primary_10_3390_plants11091151 crossref_primary_10_1111_jpi_12841 crossref_primary_10_1007_s12298_020_00878_z crossref_primary_10_3390_agriculture14050661 crossref_primary_10_3389_fpls_2018_00998 crossref_primary_10_3390_molecules27051523 crossref_primary_10_1007_s00344_022_10766_3 crossref_primary_10_1093_pcp_pcab175 crossref_primary_10_3389_fpls_2020_561903 crossref_primary_10_1007_s10725_024_01245_8 crossref_primary_10_1016_j_scienta_2023_112389 crossref_primary_10_1016_j_ecoenv_2023_115521 crossref_primary_10_1016_j_scienta_2024_113758 crossref_primary_10_17660_ActaHortic_2024_1407_9 crossref_primary_10_1016_j_plaphy_2019_07_024 crossref_primary_10_3390_antiox11081531 crossref_primary_10_1016_j_postharvbio_2023_112270 crossref_primary_10_1016_j_stress_2023_100293 crossref_primary_10_1007_s12298_020_00855_6 crossref_primary_10_1186_s12870_023_04226_7 crossref_primary_10_1111_jpi_12990 crossref_primary_10_1007_s11738_023_03643_3 crossref_primary_10_21273_JASHS04964_20 crossref_primary_10_3390_plants13101360 crossref_primary_10_1093_jxb_eraa486 crossref_primary_10_32604_phyton_2021_016692 crossref_primary_10_3389_fmicb_2023_1123632 crossref_primary_10_1186_s12870_020_02747_z crossref_primary_10_3390_ijms25147830 crossref_primary_10_3390_ph13090236 crossref_primary_10_1016_j_envexpbot_2020_104291 crossref_primary_10_1111_jpi_12505 crossref_primary_10_7717_peerj_9450 crossref_primary_10_1080_15226514_2024_2448464 crossref_primary_10_1111_jpi_12500 crossref_primary_10_3389_fpls_2024_1304913 crossref_primary_10_1016_j_scienta_2023_112494 crossref_primary_10_1007_s10725_024_01256_5 crossref_primary_10_1016_j_ecoenv_2023_115519 crossref_primary_10_3390_biom9100589 crossref_primary_10_3390_seeds3030025 crossref_primary_10_1111_jpi_12861 crossref_primary_10_1007_s10725_021_00705_9 crossref_primary_10_3389_fgene_2020_591984 crossref_primary_10_1007_s11306_020_01684_0 crossref_primary_10_1016_j_scienta_2024_112845 crossref_primary_10_1111_jpi_12537 crossref_primary_10_1134_S102144372002003X crossref_primary_10_1016_j_jhazmat_2020_123922 crossref_primary_10_1016_S2095_3119_20_63312_3 crossref_primary_10_3390_horticulturae8030241 crossref_primary_10_1111_jpi_12531 crossref_primary_10_1094_PHYTO_11_19_0435_R crossref_primary_10_1007_s00344_020_10122_3 crossref_primary_10_1016_j_plaphy_2024_109055 crossref_primary_10_3390_ijms20030709 crossref_primary_10_3390_ijms222111445 crossref_primary_10_1111_jpi_12526 crossref_primary_10_1007_s11756_024_01670_0 crossref_primary_10_1111_tpj_15843 crossref_primary_10_3390_agronomy10010095 crossref_primary_10_1079_cabireviews_2024_0027 crossref_primary_10_3389_fpls_2018_01771 crossref_primary_10_3390_horticulturae9080851 crossref_primary_10_1111_ppl_14413 crossref_primary_10_24326_asphc_2021_3_10 crossref_primary_10_1016_j_tplants_2023_11_016 crossref_primary_10_1007_s10341_021_00616_z crossref_primary_10_1071_CP18394 crossref_primary_10_1016_j_envexpbot_2022_104980 crossref_primary_10_1371_journal_pone_0221687 crossref_primary_10_1016_j_scienta_2022_111299 crossref_primary_10_1016_j_scienta_2024_112984 crossref_primary_10_1016_j_plaphy_2021_11_025 crossref_primary_10_1111_jpi_12797 crossref_primary_10_1016_j_scienta_2023_112340 crossref_primary_10_1016_j_indcrop_2021_113671 crossref_primary_10_3390_agronomy13092343 crossref_primary_10_1007_s00468_021_02134_7 crossref_primary_10_1016_j_sjbs_2022_01_039 crossref_primary_10_1007_s12229_024_09306_3 crossref_primary_10_1016_j_plaphy_2023_107723 crossref_primary_10_1371_journal_pone_0267594 crossref_primary_10_26693_jmbs06_05_045 crossref_primary_10_3390_plants10091778 crossref_primary_10_1590_0004_282x_anp_2019_0393 crossref_primary_10_1016_j_cj_2024_04_004 crossref_primary_10_1021_acs_jafc_0c01082 crossref_primary_10_1111_ppl_13589 crossref_primary_10_1007_s10343_022_00676_5 crossref_primary_10_1038_s41438_019_0197_4 crossref_primary_10_3390_agronomy12040949 crossref_primary_10_1007_s12298_022_01146_y crossref_primary_10_3389_fpls_2024_1385165 crossref_primary_10_3389_fpls_2023_1108507 crossref_primary_10_1016_j_plaphy_2024_108398 crossref_primary_10_1016_j_scienta_2023_112526 crossref_primary_10_1016_j_envpol_2020_113957 crossref_primary_10_3389_fpls_2021_683047 crossref_primary_10_3390_horticulturae9080913 crossref_primary_10_3390_antiox8110547 crossref_primary_10_1016_j_biocontrol_2024_105530 crossref_primary_10_1016_j_postharvbio_2022_112133 crossref_primary_10_1111_jpi_12570 crossref_primary_10_1007_s00344_022_10713_2 crossref_primary_10_3389_fbioe_2023_1226907 crossref_primary_10_1080_07388551_2020_1808584 crossref_primary_10_3389_fpls_2021_686545 crossref_primary_10_1016_j_jhazmat_2020_122882 crossref_primary_10_3390_agronomy8040033 crossref_primary_10_7717_peerj_17286 crossref_primary_10_1038_s41598_023_49629_6 crossref_primary_10_3389_fpls_2021_673236 crossref_primary_10_3390_plants13182590 crossref_primary_10_1111_plb_13202 crossref_primary_10_3390_antiox12020319 crossref_primary_10_1016_j_envexpbot_2021_104407 crossref_primary_10_1016_j_scienta_2023_112508 crossref_primary_10_1007_s11540_023_09642_8 crossref_primary_10_1016_j_scienta_2023_112421 crossref_primary_10_1016_j_plaphy_2021_03_029 crossref_primary_10_1007_s10341_024_01244_z crossref_primary_10_1016_j_plaphy_2020_02_021 crossref_primary_10_3390_agronomy13071727 crossref_primary_10_1111_tpj_14915 crossref_primary_10_1016_j_heliyon_2024_e32569 crossref_primary_10_1021_acs_jafc_8b06580 crossref_primary_10_1007_s00709_020_01491_3 crossref_primary_10_3390_ijms22189996 crossref_primary_10_3390_plants11070890 crossref_primary_10_1007_s44281_024_00039_2 crossref_primary_10_1016_j_foodres_2023_113357 crossref_primary_10_1111_ppl_13307 crossref_primary_10_3389_fpls_2021_817861 crossref_primary_10_1007_s10725_024_01128_y crossref_primary_10_3389_fsufs_2022_1070108 crossref_primary_10_1016_j_envpol_2022_120639 crossref_primary_10_1186_s12870_019_2158_3 crossref_primary_10_3389_fpls_2022_938262 crossref_primary_10_1007_s00299_023_03013_w crossref_primary_10_3389_fmicb_2021_746141 crossref_primary_10_1016_j_plaphy_2023_108194 crossref_primary_10_3389_fpls_2022_1057993 crossref_primary_10_1088_1755_1315_1158_4_042036 crossref_primary_10_1007_s00344_024_11257_3 crossref_primary_10_1371_journal_pone_0228241 crossref_primary_10_1111_jpi_12494 crossref_primary_10_1111_jpi_12495 crossref_primary_10_3389_fpls_2022_968315 crossref_primary_10_17221_135_2020_PSE crossref_primary_10_3390_molecules23092352 crossref_primary_10_7717_peerj_5009 crossref_primary_10_1007_s11738_023_03586_9 crossref_primary_10_1088_1755_1315_1252_1_012080 crossref_primary_10_3390_foods12081723 crossref_primary_10_3390_agronomy14071454 crossref_primary_10_1002_jsfa_12619 crossref_primary_10_1016_j_tplants_2018_10_010 crossref_primary_10_1093_jxb_erac164 crossref_primary_10_1111_jfpp_17096 crossref_primary_10_1016_j_postharvbio_2025_113419 crossref_primary_10_1016_j_bbrc_2024_150489 crossref_primary_10_3390_ijms24087269 crossref_primary_10_1016_j_postharvbio_2025_113415 crossref_primary_10_31857_S0015330324040012 crossref_primary_10_3390_plants13091184 crossref_primary_10_1111_tpj_15099 crossref_primary_10_1016_j_plaphy_2021_08_002 crossref_primary_10_1007_s11738_020_03147_4 crossref_primary_10_1371_journal_pone_0307368 crossref_primary_10_3390_ijms24010738 crossref_primary_10_1016_j_scienta_2022_111570 crossref_primary_10_1007_s11103_021_01121_3 crossref_primary_10_1093_jxb_erac196 crossref_primary_10_1016_j_jplph_2022_153855 crossref_primary_10_3389_fpls_2020_618680 crossref_primary_10_1016_j_envexpbot_2018_10_033 crossref_primary_10_1111_ppl_70055 crossref_primary_10_1016_j_envexpbot_2018_08_016 crossref_primary_10_3390_molecules23010238 crossref_primary_10_3390_molecules26175116 crossref_primary_10_3389_fpls_2022_890613 crossref_primary_10_1093_fqsafe_fyab009 crossref_primary_10_1016_j_aac_2025_01_001 crossref_primary_10_1016_j_indcrop_2022_114538 crossref_primary_10_1016_j_plaphy_2021_03_057 crossref_primary_10_3390_genes15081077 crossref_primary_10_3390_ijms24108489 crossref_primary_10_1002_jsfa_11318 crossref_primary_10_1016_j_cofs_2024_101233 crossref_primary_10_3390_antiox9020158 crossref_primary_10_3389_fpls_2022_948901 crossref_primary_10_1016_j_bse_2023_104620 crossref_primary_10_1007_s44372_025_00102_w crossref_primary_10_3390_ijms25084551 crossref_primary_10_3390_ijms251810025 crossref_primary_10_12677_HJAS_2019_94048 crossref_primary_10_3390_life14121606 crossref_primary_10_1186_s12870_022_03568_y crossref_primary_10_3390_agronomy9100570 crossref_primary_10_3390_ijms25073651 crossref_primary_10_1007_s10725_021_00721_9 crossref_primary_10_1002_fft2_180 crossref_primary_10_1111_pbi_14170 crossref_primary_10_3390_plants10102143 crossref_primary_10_1007_s00344_022_10705_2 crossref_primary_10_2478_fhort_2018_0016 crossref_primary_10_3390_plants11010096 crossref_primary_10_1111_jipb_12993 crossref_primary_10_3390_ijms26030878 crossref_primary_10_1155_2022_7447024 crossref_primary_10_3390_plants12051156 crossref_primary_10_1016_j_sajb_2024_10_024 crossref_primary_10_1071_FP23199 crossref_primary_10_3390_plants11152000 crossref_primary_10_7717_peerj_10486 crossref_primary_10_1007_s00497_020_00388_8 crossref_primary_10_3389_fmolb_2024_1395677 crossref_primary_10_1134_S1021443722020133 crossref_primary_10_1016_j_plaphy_2024_109307 crossref_primary_10_3390_ijms25094592 crossref_primary_10_1016_j_hpj_2023_12_006 crossref_primary_10_1186_s42269_020_0275_7 crossref_primary_10_1016_j_jare_2020_06_004 crossref_primary_10_1016_j_ecoenv_2020_110877 crossref_primary_10_3390_ijms21072288 crossref_primary_10_1016_j_tplants_2020_08_009 crossref_primary_10_1080_01904167_2021_1927092 crossref_primary_10_1038_s41598_024_84472_3 crossref_primary_10_1111_ppl_13262 crossref_primary_10_1111_1462_2920_15408 crossref_primary_10_1111_ppl_13143 crossref_primary_10_1021_acs_jafc_2c08051 crossref_primary_10_1002_jsfa_13773 crossref_primary_10_1016_j_envexpbot_2023_105436 crossref_primary_10_36899_JAPS_2023_2_0640 crossref_primary_10_1016_j_envexpbot_2020_104063 crossref_primary_10_1007_s10725_024_01140_2 crossref_primary_10_3389_fpls_2022_961872 crossref_primary_10_1071_FP21154 crossref_primary_10_1007_s00344_021_10449_5 crossref_primary_10_3390_foods12152979 crossref_primary_10_1016_j_ijbiomac_2022_08_126 crossref_primary_10_1016_j_plantsci_2025_112407 crossref_primary_10_1016_j_plantsci_2022_111276 crossref_primary_10_18016_ksutarimdoga_vi_672685 crossref_primary_10_3389_fmicb_2023_1099098 crossref_primary_10_3390_agronomy13102459 crossref_primary_10_1007_s00344_021_10317_2 crossref_primary_10_3390_f12101404 crossref_primary_10_1016_j_indcrop_2019_111530 crossref_primary_10_1016_j_plaphy_2019_10_033 crossref_primary_10_3390_ijms222011034 crossref_primary_10_1016_j_envexpbot_2018_06_006 crossref_primary_10_3389_fpls_2022_847175 crossref_primary_10_1016_j_plaphy_2024_108762 crossref_primary_10_1093_jxb_eraa267 crossref_primary_10_1134_S1021443724606839 crossref_primary_10_1093_fqsafe_fyad037 crossref_primary_10_3389_fpls_2022_1039373 crossref_primary_10_3390_biom9010026 crossref_primary_10_3390_plants12234025 crossref_primary_10_3389_fpls_2019_01082 crossref_primary_10_1016_j_plantsci_2022_111287 crossref_primary_10_1021_acs_jafc_2c07147 crossref_primary_10_1007_s00425_023_04146_8 crossref_primary_10_3390_ijms20020353 crossref_primary_10_1016_j_postharvbio_2020_111136 crossref_primary_10_1016_j_plaphy_2019_05_008 crossref_primary_10_1016_j_scienta_2020_109205 crossref_primary_10_3390_biom10010054 crossref_primary_10_1016_j_plaphy_2019_05_007 crossref_primary_10_3390_app9245293 crossref_primary_10_1007_s00344_022_10784_1 crossref_primary_10_1016_j_lwt_2021_111582 crossref_primary_10_1093_jxb_erac233 crossref_primary_10_1016_j_sajb_2023_09_054 crossref_primary_10_1016_j_gene_2020_145082 crossref_primary_10_1093_jxb_erac230 crossref_primary_10_1007_s00344_021_10428_w crossref_primary_10_1016_j_plaphy_2022_08_007 crossref_primary_10_1016_j_jia_2024_04_011 crossref_primary_10_3390_biom12020198 crossref_primary_10_1093_fqsafe_fyac064 crossref_primary_10_1007_s10529_022_03270_x crossref_primary_10_1111_jph_13077 crossref_primary_10_3389_fpls_2024_1458296 crossref_primary_10_3390_genes13101699 crossref_primary_10_1093_jxb_erac224 crossref_primary_10_1080_15592324_2020_1737450 crossref_primary_10_3390_ijms25126799 crossref_primary_10_3390_plants11223170 crossref_primary_10_1016_j_ecoenv_2019_05_043 crossref_primary_10_3390_ijms19071912 crossref_primary_10_3389_fpls_2023_1271137 crossref_primary_10_3389_fpls_2022_902694 crossref_primary_10_1007_s40626_022_00255_z crossref_primary_10_3389_fgene_2022_892674 crossref_primary_10_1371_journal_pone_0269028 crossref_primary_10_1007_s40415_024_00983_3 crossref_primary_10_1002_clen_202400273 crossref_primary_10_1093_plphys_kiad595 crossref_primary_10_3390_foods11070948 crossref_primary_10_3389_fpls_2022_1091907 crossref_primary_10_1016_j_jplph_2020_153273 crossref_primary_10_1093_treephys_tpac112 crossref_primary_10_1371_journal_pone_0230755 crossref_primary_10_1038_s41598_024_67093_8 crossref_primary_10_3389_fpls_2022_921021 crossref_primary_10_1016_j_stress_2023_100235 crossref_primary_10_3390_metabo13010072 crossref_primary_10_3390_ijms24054782 crossref_primary_10_1177_0960327120959417 crossref_primary_10_3390_biom10010141 crossref_primary_10_1016_j_pmpp_2024_102367 crossref_primary_10_52586_4998 crossref_primary_10_3390_biom13060908 crossref_primary_10_3389_fpls_2022_936747 crossref_primary_10_1186_s12870_021_02957_z crossref_primary_10_1007_s11756_022_01275_5 crossref_primary_10_1007_s13197_023_05819_8 crossref_primary_10_3390_molecules25051072 crossref_primary_10_1016_j_sajb_2023_08_003 crossref_primary_10_3389_fpls_2019_00906 crossref_primary_10_1007_s11356_019_04517_3 crossref_primary_10_1007_s00344_021_10349_8 crossref_primary_10_1093_jxb_erac009 crossref_primary_10_1007_s00344_022_10740_z crossref_primary_10_1007_s12298_020_00789_z crossref_primary_10_1016_j_postharvbio_2021_111554 crossref_primary_10_1016_j_plaphy_2024_108601 crossref_primary_10_3390_plants9070809 crossref_primary_10_3390_antiox10111728 crossref_primary_10_1093_jxb_erac158 crossref_primary_10_1093_jxb_erac159 crossref_primary_10_1016_j_scienta_2021_110683 crossref_primary_10_1186_s12870_025_06313_3 crossref_primary_10_3389_fpls_2020_572087 crossref_primary_10_3390_molecules24091826 crossref_primary_10_3389_fpls_2024_1371895 crossref_primary_10_1038_s41438_021_00478_2 crossref_primary_10_3390_ijms23126646 crossref_primary_10_1007_s10341_024_01216_3 crossref_primary_10_1016_j_envexpbot_2024_105942 crossref_primary_10_3390_plants8020034 crossref_primary_10_7554_eLife_83361 crossref_primary_10_1016_j_foodchem_2020_126498 crossref_primary_10_3390_ijms23169456 crossref_primary_10_3390_su13010294 crossref_primary_10_1016_j_molp_2018_12_012 crossref_primary_10_1021_acsomega_3c07404 crossref_primary_10_1107_S2059798320006841 crossref_primary_10_3389_fpls_2021_763755 crossref_primary_10_1134_S1021443720050052 crossref_primary_10_1016_j_scienta_2019_109070 crossref_primary_10_1016_j_postharvbio_2020_111351 crossref_primary_10_3390_agronomy12051116 crossref_primary_10_1016_j_fcr_2023_109217 crossref_primary_10_1016_j_algal_2021_102196 crossref_primary_10_1016_j_scienta_2023_112090 crossref_primary_10_1016_j_plaphy_2024_108509 crossref_primary_10_1016_j_plaphy_2024_108504 crossref_primary_10_1016_j_carbpol_2020_115973 |
Cites_doi | 10.1111/j.1600-079X.2011.00934.x 10.1093/aob/mci083 10.1111/j.1600-079X.2006.00396.x 10.1111/jpi.12314 10.1111/jpi.12244 10.1111/jpi.12315 10.1111/jpi.12167 10.1111/jpi.12243 10.1007/978-1-4020-6014-4_21 10.1034/j.1600-079X.2003.00085.x 10.1021/acs.jafc.5b03128 10.1111/j.1600-079X.2008.00625.x 10.1111/j.1600-079X.2008.00660.x 10.3389/fpls.2016.00316 10.1104/pp.104.054494 10.1111/jpi.12095 10.3389/fpls.2016.01731 10.1111/j.1600-079X.2005.00276.x 10.1104/pp.004036 10.3389/fpls.2016.01387 10.1093/jxb/eru476 10.1016/j.actatropica.2014.04.021 10.1111/jpi.12364 10.1111/j.1600-079X.2011.00914.x 10.3390/molecules201018886 10.3389/fpls.2016.00718 10.3390/molecules20047396 10.1002/jobm.201500223 10.1007/s00299-015-1767-z 10.3389/fpls.2012.00225 10.1016/j.scienta.2017.03.029 10.1007/s00425-003-1172-7 10.1159/000014635 10.1111/jpi.12160 10.3389/fpls.2016.01823 10.20286/focsci-020227 10.1093/aob/mcv160 10.1093/jxb/eru332 10.1016/j.foodchem.2016.10.123 10.1111/jpi.12214 10.3389/fpls.2017.00134 10.3390/ijms17111777 10.3389/fpls.2016.00975 10.1111/j.1600-079X.1995.tb00136.x 10.1016/j.tplants.2014.07.006 10.1038/srep39865 10.1111/jpi.12188 10.1111/j.1600-079X.2010.00825.x 10.1021/jf8022063 10.1111/pce.12715 10.1371/journal.pone.0093462 10.3389/fpls.2016.01882 10.3390/ijms14048638 10.1093/aob/mcv116 10.3389/fpls.2016.00454 10.1111/j.1600-079X.2012.00996.x 10.3389/fpls.2013.00398 10.1016/j.jplph.2008.06.002 10.1016/j.scienta.2016.05.003 10.3389/fpls.2016.01124 10.1016/j.plaphy.2016.01.018 10.1093/jxb/erv011 10.4161/psb.1.3.2640 10.1111/jpi.12038 10.1007/s11356-016-7947-8 10.1104/pp.103.038554 10.1111/jpi.12336 10.1111/j.1365-313X.2011.04895.x 10.1016/j.envexpbot.2017.02.012 10.3389/fpls.2016.00570 10.1111/jpi.12105 10.1203/00006450-200112000-00021 10.1111/jpi.12262 10.3389/fpls.2016.00736 10.1111/jpi.12350 10.1111/jeu.12080 10.1007/s00709-011-0277-2 10.4161/psb.1.1.2398 10.1111/jpi.12253 10.1038/srep37945 10.1007/s00425-004-1317-3 10.1016/j.postharvbio.2016.03.006 10.1038/srep15815 10.3389/fpls.2016.00229 10.1111/jpi.12017 10.1079/9781780642635.0390 10.1016/j.foodchem.2012.10.077 10.3389/fpls.2017.00203 10.1111/jpi.12165 10.1093/jxb/eru373 10.1111/jpi.12115 10.3389/fpls.2016.02068 10.1111/ppl.12218 10.1111/jpi.12403 10.1046/j.1600-079X.2003.00105.x 10.1111/j.1600-079X.2011.00966.x 10.1093/pcp/pcu171 10.1016/j.jplph.2015.11.009 10.3906/bot-1302-55 10.1016/j.pneurobio.2008.04.001 10.1111/jpi.12055 10.3389/fpls.2016.01500 10.1111/j.1600-079X.2012.01015.x 10.1007/s11738-017-2428-3 10.1093/aob/mct067 10.3389/fpls.2015.01230 10.1046/j.1600-079X.2003.00106.x 10.1111/jpi.12180 10.1111/jpi.12342 10.1007/s11103-005-2498-2 10.3389/fpls.2017.00785 10.1038/srep40858 10.1021/ja01543a060 10.1111/jpi.12379 10.1093/pcp/pce133 10.1016/j.plaphy.2012.10.001 |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1093/aob/mcx114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 207 |
ExternalDocumentID | PMC5808790 29069281 10_1093_aob_mcx114 |
Genre | Journal Article Review |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN AAYXX ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CITATION COF CS3 CZ4 DAKXR DATOO DILTD D~K E3Z EBD EBS EDH EE~ EJD EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NU- O-L O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RPM RUSNO RW1 RXO SA0 SV3 TCN TEORI TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ACHIC AQVQM NVLIB |
ID | FETCH-LOGICAL-c477t-3a90b2b1439f21b409b25ded49d8e3486220ee47e1f9888366f6b4a4a89f1b4f3 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 18:19:53 EDT 2025 Thu Jul 10 18:23:31 EDT 2025 Fri Jul 11 04:55:13 EDT 2025 Mon Jul 21 05:55:19 EDT 2025 Tue Jul 01 03:04:12 EDT 2025 Thu Apr 24 22:59:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ABA plant hormone plant pathogen auxin phytomelatonin tropism ethylene SA senescence cytokinin gibberellin JA melatonin rhizogenesis plant stress post-harvest |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c477t-3a90b2b1439f21b409b25ded49d8e3486220ee47e1f9888366f6b4a4a89f1b4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/121/2/195/23881912/mcx114.pdf |
PMID | 29069281 |
PQID | 1956097985 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5808790 proquest_miscellaneous_2315257281 proquest_miscellaneous_1956097985 pubmed_primary_29069281 crossref_citationtrail_10_1093_aob_mcx114 crossref_primary_10_1093_aob_mcx114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-12 |
PublicationDateYYYYMMDD | 2018-02-12 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: US |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Tan ( key 20180212065852_CIT0100) 2000; 9 Arnao ( key 20180212065852_CIT0006) 2009; 46 Zuo ( key 20180212065852_CIT0125) 2014; 57 Nawaz ( key 20180212065852_CIT0071) 2016; 6 Zhang ( key 20180212065852_CIT0120) 2016; 7 del Rio ( key 20180212065852_CIT0082) 2016; 57 Pucciariello ( key 20180212065852_CIT0077) 2017; 40 Kim ( key 20180212065852_CIT0047) 2001; 42 Pattison ( key 20180212065852_CIT0075) 2012; 70 Swarup ( key 20180212065852_CIT0099) 2012; 3 Arnao ( key 20180212065852_CIT0008) 2013; 55 Wang ( key 20180212065852_CIT0106) 2013; 54 Zhang ( key 20180212065852_CIT0119) 2014; 56 Pelagio-Flores ( key 20180212065852_CIT0076) 2012; 53 Reiter ( key 20180212065852_CIT0080) 2014; 56 León ( key 20180212065852_CIT0057) 2016; 6 Li ( key 20180212065852_CIT0060) 2016; 61 Shi ( key 20180212065852_CIT0088) 2015; 59 Shi ( key 20180212065852_CIT0089) 2015; 66 Arnao ( key 20180212065852_CIT0014) 2015 Zhou ( key 20180212065852_CIT0123) 2016; 7 Lerner ( key 20180212065852_CIT0058) 1958; 80 Lombardo ( key 20180212065852_CIT0067) 2006; 1 Zhu ( key 20180212065852_CIT0124) 2015; 56 Aguilera ( key 20180212065852_CIT0002) 2015; 63 Kolar ( key 20180212065852_CIT0049) 2005; 39 Li ( key 20180212065852_CIT0061) 2017; 7 Kim ( key 20180212065852_CIT0048) 2016; 190 Ding ( key 20180212065852_CIT0031) 2017; 219 Hu ( key 20180212065852_CIT0044) 2005; 137 Shi ( key 20180212065852_CIT0092) 2016; 7 Arnao ( key 20180212065852_CIT0007) 2009; 46 Lee ( key 20180212065852_CIT0053) 2017; 62 Molassiotis ( key 20180212065852_CIT0069) 2016; 7 Reiter ( key 20180212065852_CIT0079) 2007; 97 Hernández-Ruiz ( key 20180212065852_CIT0041) 2016; 2 Shi ( key 20180212065852_CIT0093) 2016; 100 Sarrou ( key 20180212065852_CIT0086) 2014; 38 Ma ( key 20180212065852_CIT0068) 2017; 7 Zhang ( key 20180212065852_CIT0117) 2017; 138 Fu ( key 20180212065852_CIT0034) 2017; 7 Bajwa ( key 20180212065852_CIT0020) 2014; 56 Lee ( key 20180212065852_CIT0055) 2015; 58 Romero-Puertas ( key 20180212065852_CIT0083) 2016; 7 Zhang ( key 20180212065852_CIT0118) 2013; 54 Zhang ( key 20180212065852_CIT0116) 2016; 7 Arnao ( key 20180212065852_CIT0012) 2015 Hernández-Ruiz ( key 20180212065852_CIT0040) 2008; 56 Slovak ( key 20180212065852_CIT0096) 2016; 117 Han ( key 20180212065852_CIT0037) 2017; 8 Chen ( key 20180212065852_CIT0024) 2009; 166 Lei ( key 20180212065852_CIT0056) 2004; 36 Hernández-Ruiz ( key 20180212065852_CIT0042) 2004; 220 Korkmaz ( key 20180212065852_CIT0050) 2017; 23 Reiter ( key 20180212065852_CIT0081) 2015; 20 Wasternack ( key 20180212065852_CIT0109) 2013; 111 Hardeland ( key 20180212065852_CIT0038) 2012; 52 Byeon ( key 20180212065852_CIT0022) 2014; 57 Pagnussat ( key 20180212065852_CIT0072) 2004; 135 Arnao ( key 20180212065852_CIT0003) 2006; 1 Skinner ( key 20180212065852_CIT0095) 2005; 59 Lee ( key 20180212065852_CIT0052) 2016; 60 Koyama ( key 20180212065852_CIT0051) 2013; 60 Wen ( key 20180212065852_CIT0111) 2016; 7 Asgher ( key 20180212065852_CIT0017) 2017; 24 Zhang ( key 20180212065852_CIT0121) 2017; 62 Hussain ( key 20180212065852_CIT0045) 2016; 7 Sun ( key 20180212065852_CIT0097) 2015; 66 Correa-Aragunde ( key 20180212065852_CIT0027) 2015; 116 Arnao ( key 20180212065852_CIT0010) 2014 Pandi-Perumal ( key 20180212065852_CIT0074) 2008; 85 Lee ( key 20180212065852_CIT0054) 2014; 57 Sarropoulou ( key 20180212065852_CIT0084) 2012; 52 Li ( key 20180212065852_CIT0059) 2015; 66 Back ( key 20180212065852_CIT0019) 2016; 61 Wang ( key 20180212065852_CIT0105) 2014; 56 Mukherjee ( key 20180212065852_CIT0070) 2014; 152 Shi ( key 20180212065852_CIT0091) 2015; 58 Chen ( key 20180212065852_CIT0025) 2012; 249 Woodward ( key 20180212065852_CIT0112) 2005; 95 Zhang ( key 20180212065852_CIT0115) 2014; 57 Saxena ( key 20180212065852_CIT0087) 2016; 7 Freschi ( key 20180212065852_CIT0033) 2013; 4 Tan ( key 20180212065852_CIT0101) 2015; 20 Wang ( key 20180212065852_CIT0107) 2012; 53 Vielma ( key 20180212065852_CIT0104) 2014; 137 Li ( key 20180212065852_CIT0062) 2016; 61 Gao ( key 20180212065852_CIT0035) 2016; 118 Hattori ( key 20180212065852_CIT0039) 1995; 35 Sarropoulou ( key 20180212065852_CIT0085) 2012; 61 Aghdam ( key 20180212065852_CIT0001) 2017; 221 Arnao ( key 20180212065852_CIT0011) 2014; 19 Weeda ( key 20180212065852_CIT0110) 2014; 9 Liang ( key 20180212065852_CIT0063) 2015; 59 Hu ( key 20180212065852_CIT0043) 2016; 7 Wang ( key 20180212065852_CIT0108) 2016; 7 Arnao ( key 20180212065852_CIT0004) 2007; 42 Liu ( key 20180212065852_CIT0066) 2016; 56 Arnao ( key 20180212065852_CIT0009) 2013; 138 Shyu ( key 20180212065852_CIT0094) 2015; 66 Shi ( key 20180212065852_CIT0090) 2015; 59 Arnao ( key 20180212065852_CIT0015) 2017; 39 Diao ( key 20180212065852_CIT0030) 2017; 8 Qian ( key 20180212065852_CIT0078) 2015; 5 Liu ( key 20180212065852_CIT0065) 2016; 207 Pagnussat ( key 20180212065852_CIT0073) 2002; 129 Teixeira ( key 20180212065852_CIT0103) 2003; 35 Correa-Aragunde ( key 20180212065852_CIT0026) 2004; 218 Jiao ( key 20180212065852_CIT0046) 2016; 7 Wu ( key 20180212065852_CIT0113) 2011; 50 Bonilla ( key 20180212065852_CIT0021) 2004; 36 Damiani ( key 20180212065852_CIT0028) 2016; 7 Arnao ( key 20180212065852_CIT0016) 2017 Yin ( key 20180212065852_CIT0114) 2013; 54 Dubbels ( key 20180212065852_CIT0032) 1995; 18 Arnao ( key 20180212065852_CIT0005) 2007 Gitto ( key 20180212065852_CIT0036) 2001; 50 Astier ( key 20180212065852_CIT0018) 2016; 7 Carrillo-Vico ( key 20180212065852_CIT0023) 2013; 14 Arnao ( key 20180212065852_CIT0013) 2015; 59 Di ( key 20180212065852_CIT0029) 2015; 34 Liang ( key 20180212065852_CIT0064) 2017; 8 Sun ( key 20180212065852_CIT0098) 2016; 61 Tan ( key 20180212065852_CIT0102) 2016; 61 Zhou ( key 20180212065852_CIT0122) 2016; 17 |
References_xml | – volume: 52 start-page: 139 year: 2012 ident: key 20180212065852_CIT0038 article-title: Melatonin, the circadian multioscillator system and health: the need for detailed analysis of peripheral melatonin signal publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2011.00934.x – volume: 95 start-page: 707 year: 2005 ident: key 20180212065852_CIT0112 article-title: Auxin: regulation, action, and interaction publication-title: Annals of Botany doi: 10.1093/aob/mci083 – volume: 42 start-page: 147 year: 2007 ident: key 20180212065852_CIT0004 article-title: Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2006.00396.x – volume: 60 start-page: 327 year: 2016 ident: key 20180212065852_CIT0052 article-title: Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants publication-title: Journal of Pineal Research doi: 10.1111/jpi.12314 – volume: 59 start-page: 102 year: 2015 ident: key 20180212065852_CIT0088 article-title: Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis publication-title: Journal of Pineal Research doi: 10.1111/jpi.12244 – volume: 61 start-page: 138 year: 2016 ident: key 20180212065852_CIT0098 article-title: A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato publication-title: Journal of Pineal Research doi: 10.1111/jpi.12315 – volume: 57 start-page: 269 year: 2014 ident: key 20180212065852_CIT0115 article-title: Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.) publication-title: Journal of Pineal Research doi: 10.1111/jpi.12167 – volume: 59 start-page: 91 year: 2015 ident: key 20180212065852_CIT0063 article-title: Melatonin delays leaf senescence and enhances salt stress tolerance in rice publication-title: Journal of Pineal Research doi: 10.1111/jpi.12243 – start-page: 101 volume-title: Advances in plant ethylene research year: 2007 ident: key 20180212065852_CIT0005 article-title: Inhibition of ACC oxidase activity by melatonin and IAA in etiolated lupin hypocotyls doi: 10.1007/978-1-4020-6014-4_21 – volume: 35 start-page: 262 year: 2003 ident: key 20180212065852_CIT0103 article-title: Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite publication-title: Journal of Pineal Research doi: 10.1034/j.1600-079X.2003.00085.x – volume: 63 start-page: 7967 year: 2015 ident: key 20180212065852_CIT0002 article-title: Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.5b03128 – volume: 46 start-page: 58 year: 2009 ident: key 20180212065852_CIT0007 article-title: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2008.00625.x – volume: 46 start-page: 295 year: 2009 ident: key 20180212065852_CIT0006 article-title: Chemical stress by different agents affects the melatonin content of barley roots publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2008.00660.x – volume: 7 start-page: 316 year: 2016 ident: key 20180212065852_CIT0083 article-title: Nitric oxide level is self-regulating and also regulates its ROS partners publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00316 – volume: 137 start-page: 663 year: 2005 ident: key 20180212065852_CIT0044 article-title: Nitric oxide mediates gravitropic bending in soybean roots publication-title: Plant Physiology doi: 10.1104/pp.104.054494 – volume: 56 start-page: 39 year: 2014 ident: key 20180212065852_CIT0119 article-title: The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation publication-title: Journal of Pineal Research doi: 10.1111/jpi.12095 – volume: 7 start-page: 1731 year: 2016 ident: key 20180212065852_CIT0018 article-title: Editorial: interplay between NO signaling, ROS, and the antioxidant system in plants publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01731 – volume: 39 start-page: 333 year: 2005 ident: key 20180212065852_CIT0049 article-title: Melatonin in higher plants: occurrence and possible functions publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2005.00276.x – volume: 129 start-page: 954 year: 2002 ident: key 20180212065852_CIT0073 article-title: Nitric oxide is required for root organogenesis publication-title: Plant Physiology doi: 10.1104/pp.004036 – volume: 7 start-page: 1387 year: 2016 ident: key 20180212065852_CIT0046 article-title: Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01387 – volume: 66 start-page: 669 year: 2015 ident: key 20180212065852_CIT0059 article-title: Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behavior in two Malus species under drought stress publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eru476 – volume: 137 start-page: 31 year: 2014 ident: key 20180212065852_CIT0104 article-title: Effects of melatonin on oxidative stress, and resistance to bacterial, parasitic, and viral infections: a review publication-title: Acta Tropica doi: 10.1016/j.actatropica.2014.04.021 – volume: 61 start-page: 426 year: 2016 ident: key 20180212065852_CIT0019 article-title: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts publication-title: Journal of Pineal Research doi: 10.1111/jpi.12364 – volume: 52 start-page: 38 year: 2012 ident: key 20180212065852_CIT0084 article-title: Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus×P. canescens), and MxM 60 (P. avium×P.mahaleb) publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2011.00914.x – volume: 20 start-page: 18886 year: 2015 ident: key 20180212065852_CIT0101 article-title: Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism publication-title: Molecules doi: 10.3390/molecules201018886 – volume: 7 start-page: 718 year: 2016 ident: key 20180212065852_CIT0111 article-title: Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00718 – volume: 20 start-page: 7396 year: 2015 ident: key 20180212065852_CIT0081 article-title: Phytomelatonin: assisting plants to survive and thrive publication-title: Molecules doi: 10.3390/molecules20047396 – volume: 56 start-page: 843 year: 2016 ident: key 20180212065852_CIT0066 article-title: Identification of melatonin in Trichoderma spp. and detection of melatonin content under controlled-stress growth conditions from T. asperellum publication-title: Journal of Basic Microbiology doi: 10.1002/jobm.201500223 – volume: 34 start-page: 895 year: 2015 ident: key 20180212065852_CIT0029 article-title: Involvement of secondary messengers and small organic molecules in auxin perception and signaling publication-title: Plant Cell Reports doi: 10.1007/s00299-015-1767-z – volume: 3 start-page: 225 year: 2012 ident: key 20180212065852_CIT0099 article-title: AUX/LAX family of auxin influx carriers – an overview publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2012.00225 – volume: 219 start-page: 264 year: 2017 ident: key 20180212065852_CIT0031 article-title: Exogenous melatonin ameliorates cold-induced damage in tomato plants publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2017.03.029 – volume: 218 start-page: 900 year: 2004 ident: key 20180212065852_CIT0026 article-title: Nitric oxide plays a central role in determining lateral root development in tomato publication-title: Planta doi: 10.1007/s00425-003-1172-7 – start-page: 123 volume-title: Nutraceuticals: prospects, sources and role in health and disease year: 2017 ident: key 20180212065852_CIT0016 article-title: Phyto-melatonin: a natural substance from plants with interesting nutraceutical properties – volume: 9 start-page: 137 year: 2000 ident: key 20180212065852_CIT0100 article-title: Significance of melatonin in antioxidative defense system: reactions and products publication-title: Biological Signals and Receptors doi: 10.1159/000014635 – volume: 57 start-page: 219 year: 2014 ident: key 20180212065852_CIT0022 article-title: Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis publication-title: Journal of Pineal Research doi: 10.1111/jpi.12160 – volume: 7 start-page: 1823 year: 2016 ident: key 20180212065852_CIT0123 article-title: Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01823 – volume: 2 start-page: 1 year: 2016 ident: key 20180212065852_CIT0041 article-title: Phytomelatonin, an interesting tool for agricultural crops publication-title: Focus on Science doi: 10.20286/focsci-020227 – volume: 117 start-page: 9 year: 2016 ident: key 20180212065852_CIT0096 article-title: Genetic control of root growth: from genes to networks publication-title: Annals of Botany doi: 10.1093/aob/mcv160 – volume: 66 start-page: 657 year: 2015 ident: key 20180212065852_CIT0097 article-title: Melatonin promotes ripening and improves quality of tomato fruit during postharvest life publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eru332 – volume: 221 start-page: 1650 year: 2017 ident: key 20180212065852_CIT0001 article-title: Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria×anannasa cv. Selva) by enhancing GABA shunt activity publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.10.123 – volume: 58 start-page: 291 year: 2015 ident: key 20180212065852_CIT0055 article-title: Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen publication-title: Journal of Pineal Research doi: 10.1111/jpi.12214 – volume: 8 start-page: 134 year: 2017 ident: key 20180212065852_CIT0064 article-title: Melatonin regulates root architecture by modulating auxin response in rice publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00134 – volume: 17 start-page: 1777 year: 2016 ident: key 20180212065852_CIT0122 article-title: Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms17111777 – volume: 56 start-page: 371 year: 2014 ident: key 20180212065852_CIT0080 article-title: Melatonin: exceeding expectations publication-title: Physiology (Bethesda) – volume: 7 start-page: 975 year: 2016 ident: key 20180212065852_CIT0045 article-title: Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00975 – volume: 18 start-page: 28 year: 1995 ident: key 20180212065852_CIT0032 article-title: Melatonin in edible plants identified by radioimmunoassay and by HPLC-MS publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.1995.tb00136.x – volume: 19 start-page: 789 year: 2014 ident: key 20180212065852_CIT0011 article-title: Melatonin: plant growth regulator and/or biostimulator during stress publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2014.07.006 – volume: 7 start-page: 39865 year: 2017 ident: key 20180212065852_CIT0034 article-title: Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways publication-title: Scientific Reports doi: 10.1038/srep39865 – volume: 58 start-page: 26 year: 2015 ident: key 20180212065852_CIT0091 article-title: INDOLE-3-ACETIC ACID INDUCIBLE 17 positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis publication-title: Journal of Pineal Research doi: 10.1111/jpi.12188 – volume: 50 start-page: 159 year: 2011 ident: key 20180212065852_CIT0113 article-title: Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2010.00825.x – volume: 56 start-page: 10567 year: 2008 ident: key 20180212065852_CIT0040 article-title: Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf8022063 – volume: 40 start-page: 473 year: 2017 ident: key 20180212065852_CIT0077 article-title: New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants publication-title: Plant, Cell and Environment doi: 10.1111/pce.12715 – volume: 9 start-page: e93462 year: 2014 ident: key 20180212065852_CIT0110 article-title: Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems publication-title: PLoS One doi: 10.1371/journal.pone.0093462 – volume: 7 start-page: 1882 year: 2016 ident: key 20180212065852_CIT0108 article-title: Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01882 – volume: 14 start-page: 8638 year: 2013 ident: key 20180212065852_CIT0023 article-title: Melatonin: buffering the immune system publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms14048638 – start-page: 519 volume-title: Studies in Natural products chemistry (Bioactive natural products) year: 2015 ident: key 20180212065852_CIT0014 article-title: Phytomelatonin: searching for plants with high levels as a natural source of nutraceuticals – volume: 116 start-page: 695 year: 2015 ident: key 20180212065852_CIT0027 article-title: Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis publication-title: Annals of Botany doi: 10.1093/aob/mcv116 – volume: 7 start-page: 454 year: 2016 ident: key 20180212065852_CIT0028 article-title: Reactive oxygen species and nitric oxide control early steps of the legume–Rhizobium symbiotic interaction publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00454 – volume: 53 start-page: 279 year: 2012 ident: key 20180212065852_CIT0076 article-title: Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2012.00996.x – volume: 4 start-page: 398 year: 2013 ident: key 20180212065852_CIT0033 article-title: Nitric oxide and phytohormone interactions: current status and perspectives publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2013.00398 – volume: 166 start-page: 324 year: 2009 ident: key 20180212065852_CIT0024 article-title: Exogenously applied melatonin stimulates root growth and raises endogenous IAA in roots of etiolated seedling of Brassica juncea publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2008.06.002 – volume: 207 start-page: 14 year: 2016 ident: key 20180212065852_CIT0065 article-title: The beneficial effects of exogenous melatonin on tomato fruit properties publication-title: Scientia Horticulturae doi: 10.1016/j.scienta.2016.05.003 – volume: 7 start-page: 1124 year: 2016 ident: key 20180212065852_CIT0092 article-title: Fundamental issues of melatonin-mediated stress signaling in plants publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01124 – volume: 100 start-page: 150 year: 2016 ident: key 20180212065852_CIT0093 article-title: Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2016.01.018 – volume: 66 start-page: 4165 year: 2015 ident: key 20180212065852_CIT0094 publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erv011 – volume: 1 start-page: 89 year: 2006 ident: key 20180212065852_CIT0003 article-title: The physiological function of melatonin in plants publication-title: Plant Signaling and Behavior doi: 10.4161/psb.1.3.2640 – volume: 54 start-page: 426 year: 2013 ident: key 20180212065852_CIT0114 article-title: Exogenous melatonin improves Malus resistance to Marssonina apple blotch publication-title: Journal of Pineal Research doi: 10.1111/jpi.12038 – volume: 24 start-page: 2273 year: 2017 ident: key 20180212065852_CIT0017 article-title: Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-016-7947-8 – volume: 135 start-page: 179 year: 2004 ident: key 20180212065852_CIT0072 article-title: Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development publication-title: Plant Physiology doi: 10.1104/pp.103.038554 – volume: 61 start-page: 27 year: 2016 ident: key 20180212065852_CIT0102 article-title: On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species publication-title: Journal of Pineal Research doi: 10.1111/jpi.12336 – volume: 57 start-page: 1364 year: 2016 ident: key 20180212065852_CIT0082 article-title: ROS generation in peroxisomes and its role in cell signaling publication-title: Plant, Cell and Environment – volume: 70 start-page: 585 year: 2012 ident: key 20180212065852_CIT0075 article-title: Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2011.04895.x – volume: 138 start-page: 36 year: 2017 ident: key 20180212065852_CIT0117 article-title: Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.) publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2017.02.012 – volume: 7 start-page: 570 year: 2016 ident: key 20180212065852_CIT0087 article-title: Cross talk between H2O2 and interacting signal molecules under plant stress response publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00570 – volume: 56 start-page: 134 year: 2014 ident: key 20180212065852_CIT0105 article-title: Changes in melatonin levels in transgenic Micro-Tom tomato overexpressing ovine AANAT and ovine HIOMT genes publication-title: Journal of Pineal Research doi: 10.1111/jpi.12105 – volume: 50 start-page: 756 year: 2001 ident: key 20180212065852_CIT0036 article-title: Effects of melatonin treatment in septic newborns publication-title: Pediatric Research doi: 10.1203/00006450-200112000-00021 – volume: 59 start-page: 334 year: 2015 ident: key 20180212065852_CIT0090 article-title: Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis publication-title: Journal of Pineal Research doi: 10.1111/jpi.12262 – volume: 7 start-page: 736 year: 2016 ident: key 20180212065852_CIT0043 article-title: Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00736 – volume: 61 start-page: 328 year: 2016 ident: key 20180212065852_CIT0062 article-title: Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley publication-title: Journal of Pineal Research doi: 10.1111/jpi.12350 – volume: 60 start-page: 646 year: 2013 ident: key 20180212065852_CIT0051 article-title: The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum publication-title: Journal of Eukaryotic Microbiology doi: 10.1111/jeu.12080 – volume: 249 start-page: 187 year: 2012 ident: key 20180212065852_CIT0025 article-title: Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice publication-title: Protoplasma doi: 10.1007/s00709-011-0277-2 – volume: 1 start-page: 28 year: 2006 ident: key 20180212065852_CIT0067 article-title: Nitric oxide functions as a positive regulator of root hair development publication-title: Plant Signaling and Behavior doi: 10.4161/psb.1.1.2398 – volume: 59 start-page: 133 year: 2015 ident: key 20180212065852_CIT0013 article-title: Functions of melatonin in plants: a review publication-title: Journal of Pineal Research doi: 10.1111/jpi.12253 – volume: 6 start-page: 37945 year: 2016 ident: key 20180212065852_CIT0057 article-title: Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis publication-title: Scientific Reports doi: 10.1038/srep37945 – volume: 220 start-page: 140 year: 2004 ident: key 20180212065852_CIT0042 article-title: Melatonin: growth-stimulating compound present in lupin tissues publication-title: Planta doi: 10.1007/s00425-004-1317-3 – volume: 118 start-page: 103 year: 2016 ident: key 20180212065852_CIT0035 article-title: Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit publication-title: Postharvest Biology and Technology doi: 10.1016/j.postharvbio.2016.03.006 – volume: 5 start-page: 15815 year: 2015 ident: key 20180212065852_CIT0078 article-title: Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis publication-title: Scientific Reports doi: 10.1038/srep15815 – volume: 7 start-page: 197 year: 2016 ident: key 20180212065852_CIT0120 article-title: Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage publication-title: Frontiers in Plant Science – volume: 7 start-page: 229 year: 2016 ident: key 20180212065852_CIT0069 article-title: Citrus plants: a model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.00229 – volume: 97 start-page: 211 year: 2007 ident: key 20180212065852_CIT0079 article-title: Melatonin in edible plants (phytomelatonin): identification, concentrations, bioavailability and proposed functions publication-title: World Review of Nutrition & Dietetics – volume: 54 start-page: 292 year: 2013 ident: key 20180212065852_CIT0106 article-title: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple publication-title: Journal of Pineal Research doi: 10.1111/jpi.12017 – start-page: 390 volume-title: Amino acids in higher plants year: 2015 ident: key 20180212065852_CIT0012 article-title: Melatonin: synthesis from tryptophan and its role in higher plants doi: 10.1079/9781780642635.0390 – volume: 138 start-page: 1212 year: 2013 ident: key 20180212065852_CIT0009 article-title: Growth conditions influence the melatonin content of tomato plants publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.10.077 – volume: 8 start-page: 203 year: 2017 ident: key 20180212065852_CIT0030 article-title: Interaction of polyamines, abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00203 – volume: 57 start-page: 262 year: 2014 ident: key 20180212065852_CIT0054 article-title: Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco publication-title: Journal of Pineal Research doi: 10.1111/jpi.12165 – volume: 66 start-page: 681 year: 2015 ident: key 20180212065852_CIT0089 article-title: Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eru373 – volume: 56 start-page: 238 year: 2014 ident: key 20180212065852_CIT0020 article-title: Role of melatonin in alleviating cold stress in Arabidopsis thaliana publication-title: Journal of Pineal Research doi: 10.1111/jpi.12115 – volume: 7 start-page: 2068 year: 2017 ident: key 20180212065852_CIT0068 article-title: Endophytic bacterium Pseudomonas fluorescens RG11 may transform tryptophan to melatonin and promote endogenous melatonin levels in the roots of four grape cultivars publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.02068 – volume: 152 start-page: 714 year: 2014 ident: key 20180212065852_CIT0070 article-title: Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons publication-title: Physiologia Plantarum doi: 10.1111/ppl.12218 – volume: 62 start-page: e12403 year: 2017 ident: key 20180212065852_CIT0121 article-title: Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress publication-title: Journal of Pineal Research doi: 10.1111/jpi.12403 – volume: 36 start-page: 73 year: 2004 ident: key 20180212065852_CIT0021 article-title: Melatonin and viral infections publication-title: Journal of Pineal Research doi: 10.1046/j.1600-079X.2003.00105.x – volume: 53 start-page: 11 year: 2012 ident: key 20180212065852_CIT0107 article-title: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2011.00966.x – volume: 56 start-page: 414 year: 2015 ident: key 20180212065852_CIT0124 article-title: Friends or foes: new insights in jasmonate and ethylene co-actions publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pcu171 – volume: 190 start-page: 67 year: 2016 ident: key 20180212065852_CIT0048 article-title: Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2015.11.009 – volume: 38 start-page: 293 year: 2014 ident: key 20180212065852_CIT0086 article-title: Melatonin and other factors that promote rooting and sprouting of shoot cuttings in Punica granatum cv. Wonderful publication-title: Turkist Journal of Botany doi: 10.3906/bot-1302-55 – volume: 85 start-page: 335 year: 2008 ident: key 20180212065852_CIT0074 article-title: Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways publication-title: Progress in Neurobiology doi: 10.1016/j.pneurobio.2008.04.001 – volume: 55 start-page: 149 year: 2013 ident: key 20180212065852_CIT0008 article-title: Growth conditions determine different melatonin levels in Lupinus albus L publication-title: Journal of Pineal Research doi: 10.1111/jpi.12055 – volume: 7 start-page: 1500 year: 2016 ident: key 20180212065852_CIT0116 article-title: Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase–catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.) publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2016.01500 – volume: 54 start-page: 15 year: 2013 ident: key 20180212065852_CIT0118 article-title: Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.) publication-title: Journal of Pineal Research doi: 10.1111/j.1600-079X.2012.01015.x – volume: 39 start-page: 127 year: 2017 ident: key 20180212065852_CIT0015 article-title: Growth activity, rooting capacity, and tropism: three auxinic precepts fulfilled by melatonin publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-017-2428-3 – volume: 111 start-page: 1021 year: 2013 ident: key 20180212065852_CIT0109 article-title: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany publication-title: Annals of Botany doi: 10.1093/aob/mct067 – volume: 35 start-page: 627 year: 1995 ident: key 20180212065852_CIT0039 article-title: Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates publication-title: Biochemistry and Molecular Biology International – volume: 6 start-page: 1230 year: 2016 ident: key 20180212065852_CIT0071 article-title: Melatonin: current status and future perspectives in plant science publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2015.01230 – volume: 36 start-page: 126 year: 2004 ident: key 20180212065852_CIT0056 article-title: Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines publication-title: Journal of Pineal Research doi: 10.1046/j.1600-079X.2003.00106.x – volume: 57 start-page: 408 year: 2014 ident: key 20180212065852_CIT0125 article-title: Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants publication-title: Journal of Pineal Research doi: 10.1111/jpi.12180 – volume: 61 start-page: 218 year: 2016 ident: key 20180212065852_CIT0060 article-title: Exogenous melatonin improved potassium content in Malus under different stress conditions publication-title: Journal of Pineal Research doi: 10.1111/jpi.12342 – volume: 59 start-page: 533 year: 2005 ident: key 20180212065852_CIT0095 article-title: Structural, functional, and phylogenetic characterization of a large CBF gene family in barley publication-title: Plant Molecular Biology doi: 10.1007/s11103-005-2498-2 – volume: 8 start-page: 785 year: 2017 ident: key 20180212065852_CIT0037 article-title: Effects of melatonin on anti-oxidative systems and Photosystem II in cold-stressed rice seedlings publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2017.00785 – volume: 7 start-page: 40858 year: 2017 ident: key 20180212065852_CIT0061 article-title: Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport publication-title: Scientific Reports doi: 10.1038/srep40858 – start-page: 79 volume-title: UV radiation: properties, effects, and applications year: 2014 ident: key 20180212065852_CIT0010 article-title: Melatonin: possible role as light-protector in plants – volume: 80 start-page: 2587 year: 1958 ident: key 20180212065852_CIT0058 article-title: Isolation of melatonin, a pineal factor that lightens melanocytes publication-title: Journal of American Chemical Society doi: 10.1021/ja01543a060 – volume: 23 start-page: 167 year: 2017 ident: key 20180212065852_CIT0050 article-title: The effects of seed treatment with melatonin on germination and emergence performance of pepper seeds under chilling stress publication-title: Journal of Agricultural Sciences – volume: 62 start-page: e12379 year: 2017 ident: key 20180212065852_CIT0053 article-title: Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana publication-title: Journal of Pineal Research doi: 10.1111/jpi.12379 – volume: 42 start-page: 1056 year: 2001 ident: key 20180212065852_CIT0047 article-title: IAA and N6-benzyladenine inhibit ethylene-regulated expression of ACC oxidase and ACC synthase genes in mungbean hypocotyls publication-title: Plant and Cell Physiology doi: 10.1093/pcp/pce133 – volume: 61 start-page: 162 year: 2012 ident: key 20180212065852_CIT0085 article-title: Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium×Prunus cerasus) publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2012.10.001 |
SSID | ssj0002691 |
Score | 2.66138 |
SecondaryResourceType | review_article |
Snippet | Plant melatonin appears to be a multi-regulatory molecule, similar to those observed in animals, with many specific functions in plant physiology. In recent... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 195 |
SubjectTerms | abiotic stress abscisic acid adventitious roots biosynthesis biotic stress cytokinins drought endophytes ethylene gibberellins hormones host plants immune response indole acetic acid jasmonic acid melatonin Melatonin - pharmacology Melatonin - physiology nitric oxide photosynthesis Plant Growth Regulators - physiology Plant Physiological Phenomena - drug effects plant physiology Plants - drug effects pollution receptors regulator genes Review ripening salicylic acid salinity shoots temperature transcription factors transport proteins ultraviolet radiation |
Title | Melatonin and its relationship to plant hormones |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29069281 https://www.proquest.com/docview/1956097985 https://www.proquest.com/docview/2315257281 https://pubmed.ncbi.nlm.nih.gov/PMC5808790 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbuoe9lK37aLa2eGwvY3i1PmxJj83aEEbTwUggb0ayZVpondI5UPrX9yT5K2sGXV-EkYVs7medf3fS3SH0BdZQESusQxppMFDyPA6lAGUIzNjERidgRFt_x_QsmczZz0W86IpfuuiSSn_P7jbGlTwFVegDXG2U7H8g204KHXAN-EILCEP7KIyn9iSb9af2tgDqs232DBbQyutLkNy3cyCmNid_n4l2mZP1smo0gkO-VM59Ou0KMk_MTel21LH1OIe_Vxd33Y5S7TLAInQFTHpaDnhVaHdQ_U9gQ1-jGn30cv0NkJ6iw7405gMF7JNTqaWG9iq7xT5CdD3P9dmvdDw_PU1nJ4vZc7RFgOCTAdo6Gh2Pxu1flCSu2mH7Wk1qWUkPYfZDP_c6mXhgIfx90LXHHGav0HZN-YMjj99r9MyUO-jFyEn9DYpaEAMAMQAQgz6IQbUMHIhBA-JbNB-fzH5MwrqMRZgxzquQKhlpooGYyoJgDQa1JnFuciZzYSgDk5JExjBucCGFEDRJikQzxZSQBQwv6Ds0KGH-XRQkiuewgjKa4ZxlQC3iiCheACXllMnCDNHXRh5pVud4t6VGLlN_1oCmILvUy26IPrdjr31mk42jPjViTUHx2N0kVZrl6k9qA00jyaWI_z0GjAebbZcIPETvPRTts2ydAenu8DWQ2gE28fn6nfLi3CVAj0UkuIw-POLdPqKX3QrYQ4PqZmX2gUZW-qD-4u4BrT91fA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melatonin+and+its+relationship+to+plant+hormones&rft.jtitle=Annals+of+botany&rft.au=Arnao%2C+M+B&rft.au=Hern%C3%A1ndez-Ruiz%2C+J&rft.date=2018-02-12&rft.issn=1095-8290&rft.eissn=1095-8290&rft.volume=121&rft.issue=2&rft.spage=195&rft_id=info:doi/10.1093%2Faob%2Fmcx114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |