Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen

In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 33; no. 8; pp. 1592 - 1600
Main Authors Qingyu Zhao, Chen-Rui Chou, Mageras, Gig, Pizer, Stephen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2014.2319193

Cover

Loading…
Abstract In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach.
AbstractList In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach.
In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach.In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach.
Author Mageras, Gig
Chen-Rui Chou
Pizer, Stephen
Qingyu Zhao
Author_xml – sequence: 1
  surname: Qingyu Zhao
  fullname: Qingyu Zhao
  organization: Comput. Sci. Dept., Univ. of Carolina, Chapel Hill, NC, USA
– sequence: 2
  surname: Chen-Rui Chou
  fullname: Chen-Rui Chou
  organization: Comput. Sci. Dept., Univ. of Carolina, Chapel Hill, NC, USA
– sequence: 3
  givenname: Gig
  surname: Mageras
  fullname: Mageras, Gig
  organization: Memorial Sloan-Kettering Cancer Center, New York, NY, USA
– sequence: 4
  givenname: Stephen
  surname: Pizer
  fullname: Pizer, Stephen
  organization: Comput. Sci. Dept., Univ. of Carolina, Chapel Hill, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24771575$$D View this record in MEDLINE/PubMed
BookMark eNqNkktr3DAUhUVJaSZp94VCMXTTjSdXkmVLm8KQ6SMwoVDSx07I8vWMgi1NJE-h_75KZhLaLEpXAuk7h3Ovzgk58sEjIS8pzCkFdXZ1eTFnQKs541RRxZ-QGRVClkxUP47IDFgjS4CaHZOTlK4hkwLUM3LMqqahohEz8m0VrBmKS5yis8UKTfTOrwvnC7Y848tiiX2Io2kHLL7g2qUpmskFX3x306ZYbLeDs_uLrJg2WCzaLozon5OnvRkSvjicp-Trh_dX55_K1eePF-eLVWlzgqlklWyZgq6lShlppBLQi6YHg20NtkMreNtUVEoqoK561ndGda3gYBvsRY38lLzb-2537YidRZ8DDnob3WjiLx2M03-_eLfR6_BTV5zRhols8PZgEMPNDtOkR5csDoPxGHZJU1EDpTWr2H-ggkqq8mAZffMIvQ676PMm7igmuYQ6U6__DP-Q-v53MlDvARtDShF7bd10t-48ixs0BX1bA51roG9roA81yEJ4JLz3_ofk1V7iEPEBryVwxSX_DXyCu2s
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_TRPMS_2024_3439585
crossref_primary_10_1109_TMI_2024_3456251
crossref_primary_10_1088_0031_9155_61_6_2372
crossref_primary_10_1007_s40846_018_0390_1
crossref_primary_10_1088_1361_6560_abc303
crossref_primary_10_1109_TUFFC_2022_3229903
Cites_doi 10.1109/IJCNN.2002.1007761
10.1118/1.3426002
10.1016/j.cviu.2013.02.009
10.1118/1.4795336
10.1109/TMI.2005.856749
10.1118/1.2192621
10.3109/0284186X.2013.814152
10.1016/j.media.2010.03.005
10.1088/0031-9155/50/24/008
10.1118/1.2804576
10.1016/j.media.2005.06.002
10.1016/j.radonc.2011.07.031
10.1109/10.495283
10.1023/A:1006559212014
10.1109/ICCV.2003.1238376
10.1109/MMBIA.2000.852376
10.1109/IEMBS.2010.5628038
10.1016/j.imavis.2007.04.003
10.1364/JOSAA.1.000612
10.1088/0031-9155/56/18/015
10.1118/1.3582693
10.1088/0031-9155/57/15/4771
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
2014 IEEE. 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
– notice: 2014 IEEE. 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2014.2319193
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE

MEDLINE - Academic
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1600
ExternalDocumentID PMC4321725
3393373951
24771575
10_1109_TMI_2014_2319193
6803938
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA126993
– fundername: NCI NIH HHS
  grantid: R01-CA126993
– fundername: NCI NIH HHS
  grantid: R01-CA126993-02S1
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c477t-248b290db199a8a8950f57f0aeb60cdec53b7418815064f2fda9db530c7ef56e3
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 18:18:20 EDT 2025
Thu Jul 10 22:19:03 EDT 2025
Fri Jul 11 02:10:36 EDT 2025
Sun Jun 29 15:49:39 EDT 2025
Mon Jul 21 06:00:50 EDT 2025
Tue Jul 01 03:15:54 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Tue Aug 26 16:49:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-248b290db199a8a8950f57f0aeb60cdec53b7418815064f2fda9db530c7ef56e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1109/TMI.2014.2319193
PMID 24771575
PQID 1551283806
PQPubID 85460
PageCount 9
ParticipantIDs proquest_miscellaneous_1560116242
crossref_citationtrail_10_1109_TMI_2014_2319193
crossref_primary_10_1109_TMI_2014_2319193
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4321725
proquest_miscellaneous_1551819477
ieee_primary_6803938
proquest_journals_1551283806
pubmed_primary_24771575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
chou (ref19) 2013; 8331
ref1
ref16
ref18
chou (ref2) 2012; 7766
ref24
ref23
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
chou (ref17) 2011
ref5
cachier (ref25) 2000
22772042 - Phys Med Biol. 2012 Aug 7;57(15):4771-86
20452269 - Med Image Anal. 2012 Apr;16(3):642-61
24058278 - Comput Vis Image Underst. 2013 Sep 1;117(9):1095-1106
16752576 - Med Phys. 2006 May;33(5):1398-411
8987268 - IEEE Trans Biomed Eng. 1996 Jun;43(6):638-49
21885144 - Radiother Oncol. 2012 Feb;102(2):274-80
21776815 - Med Phys. 2011 May;38(5):2783-94
23556887 - Med Phys. 2013 Apr;40(4):041717
18196805 - Med Phys. 2007 Dec;34(12):4772-81
16333161 - Phys Med Biol. 2005 Dec 21;50(24):5869-92
16150629 - Med Image Anal. 2006 Feb;10(1):96-112
21865624 - Phys Med Biol. 2011 Sep 21;56(18):6009-30
23879647 - Acta Oncol. 2013 Oct;52(7):1464-71
21097303 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5624-7
16279081 - IEEE Trans Med Imaging. 2005 Nov;24(11):1441-54
20632593 - Med Phys. 2010 Jun;37(6):2822-6
References_xml – ident: ref16
  doi: 10.1109/IJCNN.2002.1007761
– ident: ref11
  doi: 10.1118/1.3426002
– ident: ref18
  doi: 10.1016/j.cviu.2013.02.009
– ident: ref23
  doi: 10.1118/1.4795336
– ident: ref4
  doi: 10.1109/TMI.2005.856749
– ident: ref6
  doi: 10.1118/1.2192621
– volume: 8331
  start-page: 24
  year: 2013
  ident: ref19
  article-title: Local regression learning via forest classification for 2d/3d deformable registration
  publication-title: MICCAI Workshop on Medical Computer Vision
– ident: ref8
  doi: 10.3109/0284186X.2013.814152
– volume: 7766
  start-page: 1
  year: 2012
  ident: ref2
  article-title: Real-time 2D/3D deformable registration using metric learning
  publication-title: MCV Recognit Techniq Appl Med Imag
– ident: ref1
  doi: 10.1016/j.media.2010.03.005
– ident: ref20
  doi: 10.1088/0031-9155/50/24/008
– ident: ref9
  doi: 10.1118/1.2804576
– ident: ref5
  doi: 10.1016/j.media.2005.06.002
– ident: ref7
  doi: 10.1016/j.radonc.2011.07.031
– ident: ref13
  doi: 10.1109/10.495283
– start-page: 113
  year: 2011
  ident: ref17
  article-title: CLARET: A fast deformable registration method applied to lung radiation therapy
  publication-title: Proc 4th Int MICCAI Workshop Pulmonary Image Anal
– ident: ref22
  doi: 10.1023/A:1006559212014
– ident: ref3
  doi: 10.1109/ICCV.2003.1238376
– start-page: 182
  year: 2000
  ident: ref25
  article-title: 3D non-rigid registration by gradient descent on a gaussianwindowed similarity measure using convolutions
  publication-title: Proc Math Methods Biomed Image Anal
  doi: 10.1109/MMBIA.2000.852376
– ident: ref14
  doi: 10.1109/IEMBS.2010.5628038
– ident: ref15
  doi: 10.1016/j.imavis.2007.04.003
– ident: ref24
  doi: 10.1364/JOSAA.1.000612
– ident: ref12
  doi: 10.1088/0031-9155/56/18/015
– ident: ref10
  doi: 10.1118/1.3582693
– ident: ref21
  doi: 10.1088/0031-9155/57/15/4771
– reference: 24058278 - Comput Vis Image Underst. 2013 Sep 1;117(9):1095-1106
– reference: 20452269 - Med Image Anal. 2012 Apr;16(3):642-61
– reference: 18196805 - Med Phys. 2007 Dec;34(12):4772-81
– reference: 21776815 - Med Phys. 2011 May;38(5):2783-94
– reference: 16752576 - Med Phys. 2006 May;33(5):1398-411
– reference: 21885144 - Radiother Oncol. 2012 Feb;102(2):274-80
– reference: 22772042 - Phys Med Biol. 2012 Aug 7;57(15):4771-86
– reference: 21865624 - Phys Med Biol. 2011 Sep 21;56(18):6009-30
– reference: 23556887 - Med Phys. 2013 Apr;40(4):041717
– reference: 16279081 - IEEE Trans Med Imaging. 2005 Nov;24(11):1441-54
– reference: 21097303 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5624-7
– reference: 8987268 - IEEE Trans Biomed Eng. 1996 Jun;43(6):638-49
– reference: 23879647 - Acta Oncol. 2013 Oct;52(7):1464-71
– reference: 16333161 - Phys Med Biol. 2005 Dec 21;50(24):5869-92
– reference: 20632593 - Med Phys. 2010 Jun;37(6):2822-6
– reference: 16150629 - Med Image Anal. 2006 Feb;10(1):96-112
SSID ssj0014509
Score 2.2473142
Snippet In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1592
SubjectTerms 2D/3D registration
Abdomen
Accuracy
Algorithms
Computed tomography
Deformation
Humans
image-guided radiotherapy (IGRT)
Imaging, Three-Dimensional - methods
Kernel
Measurement
radiation oncology
Radiography, Abdominal - methods
Radiotherapy, Image-Guided - methods
Respiration
Shape
Three-dimensional displays
Tomography, X-Ray Computed - methods
Training
Vectors
Title Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen
URI https://ieeexplore.ieee.org/document/6803938
https://www.ncbi.nlm.nih.gov/pubmed/24771575
https://www.proquest.com/docview/1551283806
https://www.proquest.com/docview/1551819477
https://www.proquest.com/docview/1560116242
https://pubmed.ncbi.nlm.nih.gov/PMC4321725
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6o99AF9hNLKlXqp1OyaxE7i44otolXTQwUtt8h2JrAqyiKavfTXM5MXC0KotygZK7FnHH_2zHwD8NEQZkftVJiaqgxVKdPQRCj5ID-rKk8LFnLucP4jOTpR30716QZ8HnNhELENPsMJX7a-_HLpV3xUNk0yziTNNmGTNm5drtboMVC6C-eImDFWJtHgkpRmepx_5RguNSEsYwiwMAGwStN9zcGFa6tRW17lPqR5N2BybQU6fAb58O1d4MmfyapxE__vDq3j_3buOTztoaiYdbbzAjaw3oYnawSF2_Ao713vO_DrO696IucKXF70tKxnYlGLaD6N52KOLfx1Fyh-4tlIxyt-L5pzMbtxk3MLAp1i5komf3gJJ4dfjg-Owr4oQ-hpzBpSYuYiI0u3b4zNbGa0rHRaSYsukb5Er2PHjDgZUxeqKqpKa0qnY-lTrHSC8SvYqpc1vgFh4yStlDU2VqgSaa0ncJMRXqAbln4VAUwH5RS-ZyznwhkXRbtzkaYgzRas2aLXbACfxhaXHVvHA7I7rIRRrh__APYG_Rf9dP5bMK4kHJbJJIAP42OaiOxdsTUuV50MwSsapIdkEnZ8ESwK4HVnUuP7B5MMIL1lbKMAE4HfflIvzltCcBVzmTG9e3-P3sJj7ncXtbgHW83VCt8Rkmrc-3YKXQMYoRbP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5BAoYiQsS2fUmdhIfVyzVFjY9oC30FtmO3a6osgiyF349M3mxraqKWxSPlXjGznzxjL8BeKcQsztpRJgqX4ai5GmoIsdpIz_z3qLDcnR2OD9O5ifi86k83YEPw1kY51yTfOZGdNnE8su13dBW2TjJ6CRpdgtuo9-Xk_a01hAzELJN6IiIM5YnUR-U5Gq8zI8oi0uMEM0ohCxEASzSdCIpvXDLHzUFVq7DmldTJrd80OFDyPu3b1NPfow2tRnZP1eIHf93eI_gQQdG2bSdPY9hx1V7cH-LonAP7uRd8H0fvi3I77GcanBZ1hGznrFVxaLZOJ6xmWsAsLlw7Ks7Gwh52fdVfc6m_wLl1ANhJ5uakugfnsDJ4aflx3nYlWUILeqsRjNmJlK8NBOldKYzJbmXqefamYTb0lkZG-LEyYi8UPjIl1qVRsbcps7LxMVPYbdaV-45MB0nqRda6Vg4kXCtLcKbDBED3tD4sQhg3BunsB1nOZXOuCiafxeuCrRsQZYtOssG8H7o8bPl67hBdp-MMMh1-g_goLd_0S3o3wUhS0RiGU8CeDs041Kk-Iqu3HrTyiDAQiXdJJNQ6AuBUQDP2ik1PL-fkgGklybbIEBU4JdbqtV5QwkuYio0Jl9cP6I3cHe-zBfF4uj4y0u4RzpocxgPYLf-tXGvEFfV5nWznP4CwUgaGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Metric+Learning+in+2D%2F3D+Deformable+Registration+With+Application+in+the+Abdomen&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Qingyu+Zhao&rft.au=Chen-Rui+Chou&rft.au=Mageras%2C+Gig&rft.au=Pizer%2C+Stephen&rft.date=2014-08-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=33&rft.issue=8&rft.spage=1592&rft.epage=1600&rft_id=info:doi/10.1109%2FTMI.2014.2319193&rft_id=info%3Apmid%2F24771575&rft.externalDocID=6803938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon