Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen
In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency a...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 33; no. 8; pp. 1592 - 1600 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2014.2319193 |
Cover
Loading…
Abstract | In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach. |
---|---|
AbstractList | In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach. In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach.In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach. |
Author | Mageras, Gig Chen-Rui Chou Pizer, Stephen Qingyu Zhao |
Author_xml | – sequence: 1 surname: Qingyu Zhao fullname: Qingyu Zhao organization: Comput. Sci. Dept., Univ. of Carolina, Chapel Hill, NC, USA – sequence: 2 surname: Chen-Rui Chou fullname: Chen-Rui Chou organization: Comput. Sci. Dept., Univ. of Carolina, Chapel Hill, NC, USA – sequence: 3 givenname: Gig surname: Mageras fullname: Mageras, Gig organization: Memorial Sloan-Kettering Cancer Center, New York, NY, USA – sequence: 4 givenname: Stephen surname: Pizer fullname: Pizer, Stephen organization: Comput. Sci. Dept., Univ. of Carolina, Chapel Hill, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24771575$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktr3DAUhUVJaSZp94VCMXTTjSdXkmVLm8KQ6SMwoVDSx07I8vWMgi1NJE-h_75KZhLaLEpXAuk7h3Ovzgk58sEjIS8pzCkFdXZ1eTFnQKs541RRxZ-QGRVClkxUP47IDFgjS4CaHZOTlK4hkwLUM3LMqqahohEz8m0VrBmKS5yis8UKTfTOrwvnC7Y848tiiX2Io2kHLL7g2qUpmskFX3x306ZYbLeDs_uLrJg2WCzaLozon5OnvRkSvjicp-Trh_dX55_K1eePF-eLVWlzgqlklWyZgq6lShlppBLQi6YHg20NtkMreNtUVEoqoK561ndGda3gYBvsRY38lLzb-2537YidRZ8DDnob3WjiLx2M03-_eLfR6_BTV5zRhols8PZgEMPNDtOkR5csDoPxGHZJU1EDpTWr2H-ggkqq8mAZffMIvQ676PMm7igmuYQ6U6__DP-Q-v53MlDvARtDShF7bd10t-48ixs0BX1bA51roG9roA81yEJ4JLz3_ofk1V7iEPEBryVwxSX_DXyCu2s |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_TRPMS_2024_3439585 crossref_primary_10_1109_TMI_2024_3456251 crossref_primary_10_1088_0031_9155_61_6_2372 crossref_primary_10_1007_s40846_018_0390_1 crossref_primary_10_1088_1361_6560_abc303 crossref_primary_10_1109_TUFFC_2022_3229903 |
Cites_doi | 10.1109/IJCNN.2002.1007761 10.1118/1.3426002 10.1016/j.cviu.2013.02.009 10.1118/1.4795336 10.1109/TMI.2005.856749 10.1118/1.2192621 10.3109/0284186X.2013.814152 10.1016/j.media.2010.03.005 10.1088/0031-9155/50/24/008 10.1118/1.2804576 10.1016/j.media.2005.06.002 10.1016/j.radonc.2011.07.031 10.1109/10.495283 10.1023/A:1006559212014 10.1109/ICCV.2003.1238376 10.1109/MMBIA.2000.852376 10.1109/IEMBS.2010.5628038 10.1016/j.imavis.2007.04.003 10.1364/JOSAA.1.000612 10.1088/0031-9155/56/18/015 10.1118/1.3582693 10.1088/0031-9155/57/15/4771 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 2014 IEEE. 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 – notice: 2014 IEEE. 2014 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TMI.2014.2319193 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 1600 |
ExternalDocumentID | PMC4321725 3393373951 24771575 10_1109_TMI_2014_2319193 6803938 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA126993 – fundername: NCI NIH HHS grantid: R01-CA126993 – fundername: NCI NIH HHS grantid: R01-CA126993-02S1 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c477t-248b290db199a8a8950f57f0aeb60cdec53b7418815064f2fda9db530c7ef56e3 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Thu Aug 21 18:18:20 EDT 2025 Thu Jul 10 22:19:03 EDT 2025 Fri Jul 11 02:10:36 EDT 2025 Sun Jun 29 15:49:39 EDT 2025 Mon Jul 21 06:00:50 EDT 2025 Tue Jul 01 03:15:54 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Tue Aug 26 16:49:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-248b290db199a8a8950f57f0aeb60cdec53b7418815064f2fda9db530c7ef56e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TMI.2014.2319193 |
PMID | 24771575 |
PQID | 1551283806 |
PQPubID | 85460 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1560116242 crossref_citationtrail_10_1109_TMI_2014_2319193 crossref_primary_10_1109_TMI_2014_2319193 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4321725 proquest_miscellaneous_1551819477 ieee_primary_6803938 proquest_journals_1551283806 pubmed_primary_24771575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 chou (ref19) 2013; 8331 ref1 ref16 ref18 chou (ref2) 2012; 7766 ref24 ref23 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 chou (ref17) 2011 ref5 cachier (ref25) 2000 22772042 - Phys Med Biol. 2012 Aug 7;57(15):4771-86 20452269 - Med Image Anal. 2012 Apr;16(3):642-61 24058278 - Comput Vis Image Underst. 2013 Sep 1;117(9):1095-1106 16752576 - Med Phys. 2006 May;33(5):1398-411 8987268 - IEEE Trans Biomed Eng. 1996 Jun;43(6):638-49 21885144 - Radiother Oncol. 2012 Feb;102(2):274-80 21776815 - Med Phys. 2011 May;38(5):2783-94 23556887 - Med Phys. 2013 Apr;40(4):041717 18196805 - Med Phys. 2007 Dec;34(12):4772-81 16333161 - Phys Med Biol. 2005 Dec 21;50(24):5869-92 16150629 - Med Image Anal. 2006 Feb;10(1):96-112 21865624 - Phys Med Biol. 2011 Sep 21;56(18):6009-30 23879647 - Acta Oncol. 2013 Oct;52(7):1464-71 21097303 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5624-7 16279081 - IEEE Trans Med Imaging. 2005 Nov;24(11):1441-54 20632593 - Med Phys. 2010 Jun;37(6):2822-6 |
References_xml | – ident: ref16 doi: 10.1109/IJCNN.2002.1007761 – ident: ref11 doi: 10.1118/1.3426002 – ident: ref18 doi: 10.1016/j.cviu.2013.02.009 – ident: ref23 doi: 10.1118/1.4795336 – ident: ref4 doi: 10.1109/TMI.2005.856749 – ident: ref6 doi: 10.1118/1.2192621 – volume: 8331 start-page: 24 year: 2013 ident: ref19 article-title: Local regression learning via forest classification for 2d/3d deformable registration publication-title: MICCAI Workshop on Medical Computer Vision – ident: ref8 doi: 10.3109/0284186X.2013.814152 – volume: 7766 start-page: 1 year: 2012 ident: ref2 article-title: Real-time 2D/3D deformable registration using metric learning publication-title: MCV Recognit Techniq Appl Med Imag – ident: ref1 doi: 10.1016/j.media.2010.03.005 – ident: ref20 doi: 10.1088/0031-9155/50/24/008 – ident: ref9 doi: 10.1118/1.2804576 – ident: ref5 doi: 10.1016/j.media.2005.06.002 – ident: ref7 doi: 10.1016/j.radonc.2011.07.031 – ident: ref13 doi: 10.1109/10.495283 – start-page: 113 year: 2011 ident: ref17 article-title: CLARET: A fast deformable registration method applied to lung radiation therapy publication-title: Proc 4th Int MICCAI Workshop Pulmonary Image Anal – ident: ref22 doi: 10.1023/A:1006559212014 – ident: ref3 doi: 10.1109/ICCV.2003.1238376 – start-page: 182 year: 2000 ident: ref25 article-title: 3D non-rigid registration by gradient descent on a gaussianwindowed similarity measure using convolutions publication-title: Proc Math Methods Biomed Image Anal doi: 10.1109/MMBIA.2000.852376 – ident: ref14 doi: 10.1109/IEMBS.2010.5628038 – ident: ref15 doi: 10.1016/j.imavis.2007.04.003 – ident: ref24 doi: 10.1364/JOSAA.1.000612 – ident: ref12 doi: 10.1088/0031-9155/56/18/015 – ident: ref10 doi: 10.1118/1.3582693 – ident: ref21 doi: 10.1088/0031-9155/57/15/4771 – reference: 24058278 - Comput Vis Image Underst. 2013 Sep 1;117(9):1095-1106 – reference: 20452269 - Med Image Anal. 2012 Apr;16(3):642-61 – reference: 18196805 - Med Phys. 2007 Dec;34(12):4772-81 – reference: 21776815 - Med Phys. 2011 May;38(5):2783-94 – reference: 16752576 - Med Phys. 2006 May;33(5):1398-411 – reference: 21885144 - Radiother Oncol. 2012 Feb;102(2):274-80 – reference: 22772042 - Phys Med Biol. 2012 Aug 7;57(15):4771-86 – reference: 21865624 - Phys Med Biol. 2011 Sep 21;56(18):6009-30 – reference: 23556887 - Med Phys. 2013 Apr;40(4):041717 – reference: 16279081 - IEEE Trans Med Imaging. 2005 Nov;24(11):1441-54 – reference: 21097303 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5624-7 – reference: 8987268 - IEEE Trans Biomed Eng. 1996 Jun;43(6):638-49 – reference: 23879647 - Acta Oncol. 2013 Oct;52(7):1464-71 – reference: 16333161 - Phys Med Biol. 2005 Dec 21;50(24):5869-92 – reference: 20632593 - Med Phys. 2010 Jun;37(6):2822-6 – reference: 16150629 - Med Image Anal. 2006 Feb;10(1):96-112 |
SSID | ssj0014509 |
Score | 2.2473142 |
Snippet | In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1592 |
SubjectTerms | 2D/3D registration Abdomen Accuracy Algorithms Computed tomography Deformation Humans image-guided radiotherapy (IGRT) Imaging, Three-Dimensional - methods Kernel Measurement radiation oncology Radiography, Abdominal - methods Radiotherapy, Image-Guided - methods Respiration Shape Three-dimensional displays Tomography, X-Ray Computed - methods Training Vectors |
Title | Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen |
URI | https://ieeexplore.ieee.org/document/6803938 https://www.ncbi.nlm.nih.gov/pubmed/24771575 https://www.proquest.com/docview/1551283806 https://www.proquest.com/docview/1551819477 https://www.proquest.com/docview/1560116242 https://pubmed.ncbi.nlm.nih.gov/PMC4321725 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4Bh6o99AF9hNLKlXqp1OyaxE7i44otolXTQwUtt8h2JrAqyiKavfTXM5MXC0KotygZK7FnHH_2zHwD8NEQZkftVJiaqgxVKdPQRCj5ID-rKk8LFnLucP4jOTpR30716QZ8HnNhELENPsMJX7a-_HLpV3xUNk0yziTNNmGTNm5drtboMVC6C-eImDFWJtHgkpRmepx_5RguNSEsYwiwMAGwStN9zcGFa6tRW17lPqR5N2BybQU6fAb58O1d4MmfyapxE__vDq3j_3buOTztoaiYdbbzAjaw3oYnawSF2_Ao713vO_DrO696IucKXF70tKxnYlGLaD6N52KOLfx1Fyh-4tlIxyt-L5pzMbtxk3MLAp1i5komf3gJJ4dfjg-Owr4oQ-hpzBpSYuYiI0u3b4zNbGa0rHRaSYsukb5Er2PHjDgZUxeqKqpKa0qnY-lTrHSC8SvYqpc1vgFh4yStlDU2VqgSaa0ncJMRXqAbln4VAUwH5RS-ZyznwhkXRbtzkaYgzRas2aLXbACfxhaXHVvHA7I7rIRRrh__APYG_Rf9dP5bMK4kHJbJJIAP42OaiOxdsTUuV50MwSsapIdkEnZ8ESwK4HVnUuP7B5MMIL1lbKMAE4HfflIvzltCcBVzmTG9e3-P3sJj7ncXtbgHW83VCt8Rkmrc-3YKXQMYoRbP |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5BAoYiQsS2fUmdhIfVyzVFjY9oC30FtmO3a6osgiyF349M3mxraqKWxSPlXjGznzxjL8BeKcQsztpRJgqX4ai5GmoIsdpIz_z3qLDcnR2OD9O5ifi86k83YEPw1kY51yTfOZGdNnE8su13dBW2TjJ6CRpdgtuo9-Xk_a01hAzELJN6IiIM5YnUR-U5Gq8zI8oi0uMEM0ohCxEASzSdCIpvXDLHzUFVq7DmldTJrd80OFDyPu3b1NPfow2tRnZP1eIHf93eI_gQQdG2bSdPY9hx1V7cH-LonAP7uRd8H0fvi3I77GcanBZ1hGznrFVxaLZOJ6xmWsAsLlw7Ks7Gwh52fdVfc6m_wLl1ANhJ5uakugfnsDJ4aflx3nYlWUILeqsRjNmJlK8NBOldKYzJbmXqefamYTb0lkZG-LEyYi8UPjIl1qVRsbcps7LxMVPYbdaV-45MB0nqRda6Vg4kXCtLcKbDBED3tD4sQhg3BunsB1nOZXOuCiafxeuCrRsQZYtOssG8H7o8bPl67hBdp-MMMh1-g_goLd_0S3o3wUhS0RiGU8CeDs041Kk-Iqu3HrTyiDAQiXdJJNQ6AuBUQDP2ik1PL-fkgGklybbIEBU4JdbqtV5QwkuYio0Jl9cP6I3cHe-zBfF4uj4y0u4RzpocxgPYLf-tXGvEFfV5nWznP4CwUgaGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Metric+Learning+in+2D%2F3D+Deformable+Registration+With+Application+in+the+Abdomen&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Qingyu+Zhao&rft.au=Chen-Rui+Chou&rft.au=Mageras%2C+Gig&rft.au=Pizer%2C+Stephen&rft.date=2014-08-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=33&rft.issue=8&rft.spage=1592&rft.epage=1600&rft_id=info:doi/10.1109%2FTMI.2014.2319193&rft_id=info%3Apmid%2F24771575&rft.externalDocID=6803938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |