Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes
In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus pres...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 17; pp. E3376 - E3384 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
25.04.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. |
---|---|
AbstractList | In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology and require formation of saddle surfaces. The energetic cost associated with such deformations is described by the Gaussian curvature modulus. We show that flat 2D colloidal membranes composed of achiral rods are unstable and spontaneously form scalloped edges. Quantitative analysis of such instability estimates the Gaussian curvature modulus of colloidal membranes. The measured sign and magnitude of the modulus can be explained by a simple excluded volume argument that was originally developed for polymeric surfactants. In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology and require formation of saddle surfaces. The energetic cost associated with such deformations is described by the Gaussian curvature modulus. We show that flat 2D colloidal membranes composed of achiral rods are unstable and spontaneously form scalloped edges. Quantitative analysis of such instability estimates the Gaussian curvature modulus of colloidal membranes. The measured sign and magnitude of the modulus can be explained by a simple excluded volume argument that was originally developed for polymeric surfactants. A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology and require formation of saddle surfaces. The energetic cost associated with such deformations is described by the Gaussian curvature modulus. We show that flat 2D colloidal membranes composed of achiral rods are unstable and spontaneously form scalloped edges. Quantitative analysis of such instability estimates the Gaussian curvature modulus of colloidal membranes. The measured sign and magnitude of the modulus can be explained by a simple excluded volume argument that was originally developed for polymeric surfactants. In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes. |
Author | Sharma, Prerna Zakhary, Mark J. Powers, Thomas R. Kamien, Randall D. Ward, Andrew Kaplan, C. Nadir Oldenbourg, Rudolf Dogic, Zvonimir Meyer, Robert B. Gibaud, Thomas |
Author_xml | – sequence: 1 givenname: Thomas surname: Gibaud fullname: Gibaud, Thomas organization: Université de Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France – sequence: 2 givenname: C. Nadir surname: Kaplan fullname: Kaplan, C. Nadir organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 – sequence: 3 givenname: Prerna surname: Sharma fullname: Sharma, Prerna organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 – sequence: 4 givenname: Mark J. surname: Zakhary fullname: Zakhary, Mark J. organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 – sequence: 5 givenname: Andrew surname: Ward fullname: Ward, Andrew organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 – sequence: 6 givenname: Rudolf surname: Oldenbourg fullname: Oldenbourg, Rudolf organization: Marine Biological Laboratory, Woods Hole, MA 02543 – sequence: 7 givenname: Robert B. surname: Meyer fullname: Meyer, Robert B. organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 – sequence: 8 givenname: Randall D. surname: Kamien fullname: Kamien, Randall D. organization: Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 – sequence: 9 givenname: Thomas R. surname: Powers fullname: Powers, Thomas R. organization: School of Engineering, Brown University, Providence, RI 02912 – sequence: 10 givenname: Zvonimir surname: Dogic fullname: Dogic, Zvonimir organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28411214$$D View this record in MEDLINE/PubMed https://hal.science/hal-04245486$$DView record in HAL |
BookMark | eNpdkUtv1DAUhS1URKeFNStQJDawSHvt-LmpNKpoizQSG1giy_GjkyGJBzsZaf49Hk0f0JUt3--e63vOGToZ4-gReo_hAoNoLrejyReYYwG0wZi-QgsMCtecKjhBCwAiakkJPUVnOW8AQDEJb9ApkRRjgukC_VradZdMX-X9MPgp7as2efO7G-8rM7pqG3M3dTtf3Zo5586M1RDd3M-56r1x1RSrbE3fx613lY3l0rmiNfihTWb0-S16HUyf_buH8xz9vPn64_quXn2__Xa9XNWWCjHVmPhGtdyRQGwbBAirHGOKOodDkMFgJkjrnGWBCaG4d-BCoNwxQhinzDXn6Oqou53bwTvrx6nspLepG0za62g6_X9l7Nb6Pu40o8VGBUXgy1Fg_aLtbrnShzcoLjIq-Q4X9vPDsBT_zD5Peuiy9X1fNo5z1lhKySUhIAv66QW6iXMaixUaKyCgeAMHwcsjZVPMOfnw9AMM-hCzPsSsn2MuHR__3feJf8y1AB-OwCZPMT3XOZUgZNP8BQgIsE4 |
CitedBy_id | crossref_primary_10_1103_PhysRevX_9_041058 crossref_primary_10_1039_D0SM01276A crossref_primary_10_1103_PhysRevX_12_010501 crossref_primary_10_1021_acsnano_0c00718 crossref_primary_10_1103_PhysRevE_102_032608 crossref_primary_10_1016_j_cocis_2018_08_004 crossref_primary_10_1103_PhysRevLett_125_018002 crossref_primary_10_1039_C8SM01503A crossref_primary_10_1021_acs_langmuir_1c01896 crossref_primary_10_1103_PhysRevLett_119_068002 crossref_primary_10_1103_PhysRevE_97_062409 crossref_primary_10_1039_D0SM02184A crossref_primary_10_1039_D3SM01158E crossref_primary_10_1073_pnas_2204453119 crossref_primary_10_1007_s00526_022_02188_6 crossref_primary_10_1038_s41467_017_01441_3 crossref_primary_10_1039_D1SM01510A crossref_primary_10_1007_s00332_021_09679_4 crossref_primary_10_1039_D1SM00629K crossref_primary_10_1126_sciadv_aba2331 crossref_primary_10_1039_D4SM00197D crossref_primary_10_1016_j_difgeo_2022_101971 crossref_primary_10_1088_1361_648X_aa97f9 crossref_primary_10_1039_C9SM02111F crossref_primary_10_1039_D2SM00819J crossref_primary_10_1073_pnas_1900615116 crossref_primary_10_1039_D1SM00827G crossref_primary_10_1039_D2NR05230J |
Cites_doi | 10.1039/C4SM00803K 10.1038/349475a0 10.1529/biophysj.104.049692 10.1016/S0006-3495(00)76295-3 10.1038/nature13694 10.1021/jp8067377 10.1063/1.458267 10.1039/C1SM06201H 10.1051/jphys:0197500360110103500 10.1051/jphys:0198800490110195100 10.1103/PhysRevLett.90.074302 10.1103/PhysRevE.87.032504 10.1529/biophysj.108.140152 10.1103/PhysRevLett.100.088101 10.1021/ja005659j 10.1080/00018739700101488 10.1111/j.1365-2818.2008.02053.x 10.1038/368440a0 10.1021/jp044215x 10.1063/1.1740347 10.1073/pnas.1423220112 10.1051/jphys:0197600370110133500 10.1073/pnas.1315121111 10.1016/j.bpj.2012.02.013 10.1039/c3sm50488c 10.1103/PhysRevLett.96.258302 10.1021/la000446t 10.1126/sciadv.1500608 10.1103/PhysRevE.82.021701 10.1111/j.1365-2818.1995.tb03669.x 10.1039/C5SM02038G 10.1103/PhysRevLett.64.2094 10.1126/science.278.5345.1924 10.1103/PhysRevA.39.5280 10.1529/biophysj.104.040782 10.1063/1.4808077 10.1038/ncomms4063 10.1209/epl/i2005-10127-x 10.1073/pnas.1201201109 10.1126/science.1170027 10.1126/science.1170028 10.1103/RevModPhys.74.953 10.1073/pnas.1000406107 10.1016/S0006-3495(98)74031-7 10.1103/PhysRevE.84.041704 10.1073/pnas.1100087108 10.1126/science.1154069 10.1016/S0091-679X(08)60410-0 10.1038/nature10769 10.1103/PhysRevE.67.031708 10.1016/0375-9601(74)90899-8 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Apr 25, 2017 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Apr 25, 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
DOI | 10.1073/pnas.1617043114 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
DocumentTitleAlternate | Assembly of scalloped colloidal membranes |
EISSN | 1091-6490 |
EndPage | E3384 |
ExternalDocumentID | oai_HAL_hal_04245486v1 10_1073_pnas_1617043114 28411214 26480783 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM114274 – fundername: National Science Foundation (NSF) grantid: MRSEC-1420382 – fundername: Agence Nationale de la Recherche (L' Agence Nationale de la Recherche) grantid: ANR-11-PDOC-027 – fundername: National Science Foundation (NSF) grantid: CMMI-1634552 – fundername: National Science Foundation (NSF) grantid: DMR-1262047 – fundername: National Science Foundation (NSF) grantid: DMR-1609742 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c477t-12e39b6d2f2cbf707c9d5594dd1ff8fa1572bddc5f57796ed0dff46d5225645d3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:09:47 EDT 2024 Tue Oct 15 15:31:37 EDT 2024 Sat Oct 05 05:05:38 EDT 2024 Thu Oct 10 15:38:50 EDT 2024 Fri Aug 23 01:52:34 EDT 2024 Wed Oct 16 00:59:10 EDT 2024 Fri Feb 02 08:05:03 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | membranes self-assembly liquid crystals chirality Gaussian curvature |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c477t-12e39b6d2f2cbf707c9d5594dd1ff8fa1572bddc5f57796ed0dff46d5225645d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 13, 2017 (received for review October 20, 2016) Author contributions: T.G., R.B.M., and Z.D. designed research; C.N.K. developed the theoretical model of defect interactions; R.D.K. and T.R.P. provided theoretical estimate of the Gaussian curvature modulus; R.B.M. contributed to the theoretical model; T.G., C.N.K., P.S., M.J.Z., and A.W. performed research; R.O. contributed new reagents/analytic tools; P.S. acquired coalescence movies; A.W. contributed optical-tweezer measurements; R.O. contributed microscopy expertise; T.G., C.N.K., and T.R.P. analyzed data; and T.G., C.N.K., T.R.P., and Z.D. wrote the paper. |
ORCID | 0000-0003-4826-8025 |
OpenAccessLink | https://www.pnas.org/content/pnas/114/17/E3376.full.pdf |
PMID | 28411214 |
PQID | 1902096301 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410790 hal_primary_oai_HAL_hal_04245486v1 proquest_miscellaneous_1888682208 proquest_journals_1902096301 crossref_primary_10_1073_pnas_1617043114 pubmed_primary_28411214 jstor_primary_26480783 |
PublicationCentury | 2000 |
PublicationDate | 2017-04-25 |
PublicationDateYYYYMMDD | 2017-04-25 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | 24419160 - Nat Commun. 2014;5:3063 18487188 - Science. 2008 May 16;320(5878):912-6 25825733 - Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1837-44 18754996 - J Microsc. 2008 Sep;231(3):419-32 25186901 - Nature. 2014 Sep 4;513(7516):77-80 23139699 - Soft Matter. 2012 Jan 1;8(3):707-714 1992351 - Nature. 1991 Feb 7;349(6309):475-81 22217941 - Nature. 2012 Jan 04;481(7381):348-51 12633231 - Phys Rev Lett. 2003 Feb 21;90(7):074302 22181154 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041704 10041575 - Phys Rev Lett. 1990 Apr 23;64(17):2094-2097 21402929 - Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5163-8 20866826 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021701 15240471 - Biophys J. 2004 Jul;87(1):366-74 15894634 - Biophys J. 2005 Aug;89(2):1067-80 20498095 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10348-53 24852267 - Soft Matter. 2014 Jul 14;10(26):4700-10 8537959 - J Microsc. 1995 Nov;180(Pt 2):140-7 10866959 - Biophys J. 2000 Jul;79(1):328-39 16907351 - Phys Rev Lett. 2006 Jun 30;96(25):258302 19628864 - Science. 2009 Jul 24;325(5939):456-60 22679292 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9716-20 18805927 - Biophys J. 2008 Dec;95(11):5200-15 11456650 - J Am Chem Soc. 2001 Feb 7;123(5):1010-1 18352667 - Phys Rev Lett. 2008 Feb 29;100(8):088101 16852170 - J Phys Chem B. 2005 May 19;109(19):9712-8 22455923 - Biophys J. 2012 Mar 21;102(6):1403-10 19628863 - Science. 2009 Jul 24;325(5939):452-6 9352519 - Methods Cell Biol. 1998;55:205-16 18975886 - J Phys Chem B. 2009 Mar 26;113(12):3910-3 26472139 - Soft Matter. 2016 Jan 14;12(2):386-401 26601296 - Sci Adv. 2015 Oct 16;1(9):e1500608 9901091 - Phys Rev A Gen Phys. 1989 May 15;39(10):5280-5288 23758361 - J Chem Phys. 2013 Jun 7;138(21):214110 12689089 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031708 9533719 - Biophys J. 1998 Feb;74(2 Pt 1):1074-85 24449880 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1742-7 9395390 - Science. 1997 Dec 12;278(5345):1924-7 e_1_3_3_50_2 Nitsche J (e_1_3_3_57_2) 1989 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 Forsythe GE (e_1_3_3_59_2) 1976 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Millman RS (e_1_3_3_56_2) 1977 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 Stoker J (e_1_3_3_58_2) 1969 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 Safran SA (e_1_3_3_33_2) 1994 e_1_3_3_53_2 Barry E (e_1_3_3_24_2) 2009; 5 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 Senti FR (e_1_3_3_36_2) 1955; 17 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_15_2 doi: 10.1039/C4SM00803K – ident: e_1_3_3_1_2 doi: 10.1038/349475a0 – ident: e_1_3_3_11_2 doi: 10.1529/biophysj.104.049692 – ident: e_1_3_3_6_2 doi: 10.1016/S0006-3495(00)76295-3 – ident: e_1_3_3_29_2 doi: 10.1038/nature13694 – volume: 17 start-page: 527 year: 1955 ident: e_1_3_3_36_2 article-title: Viscosity, sedimentation, and light‐scattering properties of fraction of an acid‐hydrolyzed dextran publication-title: J Polym Sci, Polym Phys Ed contributor: fullname: Senti FR – ident: e_1_3_3_18_2 doi: 10.1021/jp8067377 – ident: e_1_3_3_35_2 doi: 10.1063/1.458267 – ident: e_1_3_3_14_2 doi: 10.1039/C1SM06201H – ident: e_1_3_3_5_2 doi: 10.1051/jphys:0197500360110103500 – ident: e_1_3_3_37_2 doi: 10.1051/jphys:0198800490110195100 – ident: e_1_3_3_47_2 doi: 10.1103/PhysRevLett.90.074302 – ident: e_1_3_3_32_2 doi: 10.1103/PhysRevE.87.032504 – ident: e_1_3_3_9_2 doi: 10.1529/biophysj.108.140152 – ident: e_1_3_3_10_2 doi: 10.1103/PhysRevLett.100.088101 – ident: e_1_3_3_21_2 doi: 10.1021/ja005659j – ident: e_1_3_3_2_2 doi: 10.1080/00018739700101488 – start-page: 23 volume-title: Lectures on Minimal Surfaces year: 1989 ident: e_1_3_3_57_2 contributor: fullname: Nitsche J – ident: e_1_3_3_28_2 doi: 10.1111/j.1365-2818.2008.02053.x – ident: e_1_3_3_39_2 doi: 10.1038/368440a0 – ident: e_1_3_3_46_2 doi: 10.1021/jp044215x – ident: e_1_3_3_34_2 doi: 10.1063/1.1740347 – volume: 5 start-page: 2563 year: 2009 ident: e_1_3_3_24_2 article-title: A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length publication-title: Soft Matter contributor: fullname: Barry E – ident: e_1_3_3_45_2 doi: 10.1073/pnas.1423220112 – ident: e_1_3_3_31_2 doi: 10.1051/jphys:0197600370110133500 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.1315121111 – ident: e_1_3_3_7_2 doi: 10.1016/j.bpj.2012.02.013 – ident: e_1_3_3_30_2 doi: 10.1039/c3sm50488c – volume-title: Elements of Differential Geometry year: 1977 ident: e_1_3_3_56_2 contributor: fullname: Millman RS – ident: e_1_3_3_23_2 doi: 10.1103/PhysRevLett.96.258302 – ident: e_1_3_3_25_2 doi: 10.1021/la000446t – ident: e_1_3_3_50_2 doi: 10.1126/sciadv.1500608 – ident: e_1_3_3_13_2 doi: 10.1103/PhysRevE.82.021701 – ident: e_1_3_3_27_2 doi: 10.1111/j.1365-2818.1995.tb03669.x – ident: e_1_3_3_16_2 doi: 10.1039/C5SM02038G – ident: e_1_3_3_4_2 doi: 10.1103/PhysRevLett.64.2094 – ident: e_1_3_3_40_2 doi: 10.1126/science.278.5345.1924 – ident: e_1_3_3_54_2 doi: 10.1103/PhysRevA.39.5280 – ident: e_1_3_3_38_2 doi: 10.1529/biophysj.104.040782 – ident: e_1_3_3_8_2 doi: 10.1063/1.4808077 – ident: e_1_3_3_26_2 doi: 10.1038/ncomms4063 – volume-title: Computer Methods for Mathematical Computations year: 1976 ident: e_1_3_3_59_2 contributor: fullname: Forsythe GE – ident: e_1_3_3_51_2 doi: 10.1209/epl/i2005-10127-x – ident: e_1_3_3_48_2 doi: 10.1073/pnas.1201201109 – ident: e_1_3_3_41_2 doi: 10.1126/science.1170027 – ident: e_1_3_3_42_2 doi: 10.1126/science.1170028 – ident: e_1_3_3_3_2 doi: 10.1103/RevModPhys.74.953 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.1000406107 – ident: e_1_3_3_55_2 – ident: e_1_3_3_53_2 doi: 10.1016/S0006-3495(98)74031-7 – volume-title: Differential Geometry year: 1969 ident: e_1_3_3_58_2 contributor: fullname: Stoker J – ident: e_1_3_3_22_2 doi: 10.1103/PhysRevE.84.041704 – ident: e_1_3_3_43_2 doi: 10.1073/pnas.1100087108 – ident: e_1_3_3_49_2 doi: 10.1126/science.1154069 – ident: e_1_3_3_52_2 doi: 10.1016/S0091-679X(08)60410-0 – ident: e_1_3_3_19_2 doi: 10.1038/nature10769 – volume-title: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes year: 1994 ident: e_1_3_3_33_2 contributor: fullname: Safran SA – ident: e_1_3_3_20_2 doi: 10.1103/PhysRevE.67.031708 – ident: e_1_3_3_17_2 doi: 10.1016/0375-9601(74)90899-8 |
SSID | ssj0009580 |
Score | 2.4910696 |
Snippet | In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like... In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like... Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the... Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the... A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology... |
SourceID | pubmedcentral hal proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E3376 |
SubjectTerms | Bilayers Broken symmetry Colloids Comparative analysis Curvature Cusps Deformation Disks Elasticity Handedness Membrane elasticity Membranes Monolayers Normal distribution Physical Sciences Physics PNAS Plus Point defects Polymers Rods |
Title | Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes |
URI | https://www.jstor.org/stable/26480783 https://www.ncbi.nlm.nih.gov/pubmed/28411214 https://www.proquest.com/docview/1902096301 https://search.proquest.com/docview/1888682208 https://hal.science/hal-04245486 https://pubmed.ncbi.nlm.nih.gov/PMC5410790 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW6PXFBtFAIlMogDuWQ3cQfsXNcVZQVAsSBSr2gKP7SrrRJVk1Sqf-esZNsWcSJW5Q4juUZT95onp8R-iBM5iyVOraOiJhRDXHQMRsziJLMUC-QEtQ-v2erG_bllt8eIT7thQmkfa0283pbzevNOnArd5VeTDyxxY9vV5xB0pInixmagYNOKfpeaVcO-07g25IRNun5CLrY1WU794DeK8qk_kgeCM4AOFJ28FearT0ncqAn_gt4_s2f_OOHdP0MPR2RJF4OIz5BR7Y-RSfjWm3x5Sgo_fE5-rXU6w1c4vahqmx394AhDw6nUOGyNnjgbd1b_LnsW7-nEleN6bd9i7fgALhrcKt9eX5nDfZu02wM9FXZChJtCJQv0M31p59Xq3g8ViHWTIguTomlucoMcUQrJxKhcwN5BTMmdU66MuWCKGM0d1yIPLMmMc6xzABS89Izhp6h47qp7SuEy0RlVNiEqTJnpeLSlooKpnLCHSWaR-hymtZiN6hnFKHqLWjhjVE8GiNC72Ha96286vVq-bXw90J1lsnsPo3QWbDKvpnn5_lCZITOJzMV4yKEznPAwhBgEnjv3f4xLB9fE4EJanpoI6XMACQlMkIvB6s-dj46R4TEgb0PBnn4BDw2SHSPHvr6v998g54QDyASFhN-jo67u96-BfjTqYvg7r8BJ24D2A |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXSoGWQAGDOJRDsnnYcXJcVZQFthWHFvWCovilXbHJrpqkUvvrGeexZSsucItix3nMePKN5vNngA9cxUZHiXS1CblLI4lx0FDtUoySVEVWIKVV-zyLJxf06yW73AI2rIVpSftSzL1yUXjlfNZyK1eFHA08sdH302NGMWlJ_dE2PMD56sdDkr7W2k26lSd494SGdFD04dFoVeaVZyG91ZQJ7KY8GJ4RcgR047-0PbOsyI6g-DfoeZ9B-ccv6WQXfgwv0zFRfnlNLTx5e0_n8Z_f9gk87kEqGXfNe7Cly6ew14eBihz1WtUfn8HPsZzN8ZBUN0Wh66sbgil2u8EVyUtFOkrYtSaf86ayyzVJsVTNoqnIAn2L1EtSSVv5X2lFrEcu5wrHKnSBOTzG4OdwcfLp_Hji9js2uJJyXrtBqKNUxCo0oRSG-1ymClMWqlRgTGLygPFQKCWZYZynsVa-MobGCkGgVbVR0T7slMtSvwCS-yKOuPapyFOaC5boXEScijRkJgolc-BosFe26oQ5sragzqPMWjm7s7ID79Ge615WUHsynmb2XFv4pUl8HTiw35p73c1S_2yN04HDwf5ZP79x8BRhNsYuH697t27GmWnLLfiBlg32SZIkRvzlJw4cdO5yN3jvdQ7wDUfaeMjNFnSPVv27d4eX_33lW3g4OT-dZtMvZ99ewaPQ4hSfuiE7hJ36qtGvEWXV4k07p34DswElyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXSoGW0AIGcSiHPO3EznFVWBYoVQ9UqpBQFL-0KzbJqkkqlV_POI9tt-LUW5TYlp0Zj7-RP39G6ANTidGES1ebiLmUSIiDhmqXQpSkiliBlE7t8zSZndNvF_HFrau-OtK-FAuvXBZeuZh33MpVIf2RJ-af_TiOKSQtaeCvlPG30EOYswEfE_W13i7vT59ADziN6Kjqw4i_KvPas7De6sqE9mIeCNEAO0K6sTZtzS0zsicp_g9-3mVR3lqWpjvo1zigno3yx2sb4cm_d7Qe7zXip-jJAFbxpC-yix7o8hnaHcJBjY8GzeqPz9HviZwv4BHX10Whm8trDKl2d9EVzkuFe2rYlcZf8ra2xzZxUal22dZ4CT6GmwrX0jIAVlph65nVQkFbhS4gl4dY_AKdTz__PJ65w80NrqSMNW4YaZKKREUmksKwgMlUQepClQqN4SYPYxYJpWRsYsbSRKtAGUMTBWDQqtsosoe2y6rULxHOA5EQpgMq8pTmIuY6F4RRkUaxIZGMHXQ02ixb9QIdWbexzkhmLZ3dWNpB78Gm61JWWHs2Ocnsu24DmPLkKnTQXmfydTFLAbR7nQ46HH0gG-Y5NJ4C3IYYFkC9d-vPMEPttgv8oKqFMpzzBHBYwB2037vMTeOD5zmIbTjTRic3v4CLdCrgg0u8unfNt-jR2adpdvL19PsBehxZuBJQN4oP0XZz2erXALYa8aabVv8A4BQoSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achiral+symmetry+breaking+and+positive+Gaussian+modulus+lead+to+scalloped+colloidal+membranes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gibaud%2C+Thomas&rft.au=Kaplan%2C+C+Nadir&rft.au=Sharma%2C+Prerna&rft.au=Zakhary%2C+Mark+J&rft.date=2017-04-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=17&rft.spage=E3376&rft_id=info:doi/10.1073%2Fpnas.1617043114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |