Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes

In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus pres...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 17; pp. E3376 - E3384
Main Authors Gibaud, Thomas, Kaplan, C. Nadir, Sharma, Prerna, Zakhary, Mark J., Ward, Andrew, Oldenbourg, Rudolf, Meyer, Robert B., Kamien, Randall D., Powers, Thomas R., Dogic, Zvonimir
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.04.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.
AbstractList In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.
Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology and require formation of saddle surfaces. The energetic cost associated with such deformations is described by the Gaussian curvature modulus. We show that flat 2D colloidal membranes composed of achiral rods are unstable and spontaneously form scalloped edges. Quantitative analysis of such instability estimates the Gaussian curvature modulus of colloidal membranes. The measured sign and magnitude of the modulus can be explained by a simple excluded volume argument that was originally developed for polymeric surfactants. In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.
Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology and require formation of saddle surfaces. The energetic cost associated with such deformations is described by the Gaussian curvature modulus. We show that flat 2D colloidal membranes composed of achiral rods are unstable and spontaneously form scalloped edges. Quantitative analysis of such instability estimates the Gaussian curvature modulus of colloidal membranes. The measured sign and magnitude of the modulus can be explained by a simple excluded volume argument that was originally developed for polymeric surfactants.
A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology and require formation of saddle surfaces. The energetic cost associated with such deformations is described by the Gaussian curvature modulus. We show that flat 2D colloidal membranes composed of achiral rods are unstable and spontaneously form scalloped edges. Quantitative analysis of such instability estimates the Gaussian curvature modulus of colloidal membranes. The measured sign and magnitude of the modulus can be explained by a simple excluded volume argument that was originally developed for polymeric surfactants. In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.
Author Sharma, Prerna
Zakhary, Mark J.
Powers, Thomas R.
Kamien, Randall D.
Ward, Andrew
Kaplan, C. Nadir
Oldenbourg, Rudolf
Dogic, Zvonimir
Meyer, Robert B.
Gibaud, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Gibaud
  fullname: Gibaud, Thomas
  organization: Université de Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
– sequence: 2
  givenname: C. Nadir
  surname: Kaplan
  fullname: Kaplan, C. Nadir
  organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454
– sequence: 3
  givenname: Prerna
  surname: Sharma
  fullname: Sharma, Prerna
  organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454
– sequence: 4
  givenname: Mark J.
  surname: Zakhary
  fullname: Zakhary, Mark J.
  organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454
– sequence: 5
  givenname: Andrew
  surname: Ward
  fullname: Ward, Andrew
  organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454
– sequence: 6
  givenname: Rudolf
  surname: Oldenbourg
  fullname: Oldenbourg, Rudolf
  organization: Marine Biological Laboratory, Woods Hole, MA 02543
– sequence: 7
  givenname: Robert B.
  surname: Meyer
  fullname: Meyer, Robert B.
  organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454
– sequence: 8
  givenname: Randall D.
  surname: Kamien
  fullname: Kamien, Randall D.
  organization: Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
– sequence: 9
  givenname: Thomas R.
  surname: Powers
  fullname: Powers, Thomas R.
  organization: School of Engineering, Brown University, Providence, RI 02912
– sequence: 10
  givenname: Zvonimir
  surname: Dogic
  fullname: Dogic, Zvonimir
  organization: The Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28411214$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04245486$$DView record in HAL
BookMark eNpdkUtv1DAUhS1URKeFNStQJDawSHvt-LmpNKpoizQSG1giy_GjkyGJBzsZaf49Hk0f0JUt3--e63vOGToZ4-gReo_hAoNoLrejyReYYwG0wZi-QgsMCtecKjhBCwAiakkJPUVnOW8AQDEJb9ApkRRjgukC_VradZdMX-X9MPgp7as2efO7G-8rM7pqG3M3dTtf3Zo5586M1RDd3M-56r1x1RSrbE3fx613lY3l0rmiNfihTWb0-S16HUyf_buH8xz9vPn64_quXn2__Xa9XNWWCjHVmPhGtdyRQGwbBAirHGOKOodDkMFgJkjrnGWBCaG4d-BCoNwxQhinzDXn6Oqou53bwTvrx6nspLepG0za62g6_X9l7Nb6Pu40o8VGBUXgy1Fg_aLtbrnShzcoLjIq-Q4X9vPDsBT_zD5Peuiy9X1fNo5z1lhKySUhIAv66QW6iXMaixUaKyCgeAMHwcsjZVPMOfnw9AMM-hCzPsSsn2MuHR__3feJf8y1AB-OwCZPMT3XOZUgZNP8BQgIsE4
CitedBy_id crossref_primary_10_1103_PhysRevX_9_041058
crossref_primary_10_1039_D0SM01276A
crossref_primary_10_1103_PhysRevX_12_010501
crossref_primary_10_1021_acsnano_0c00718
crossref_primary_10_1103_PhysRevE_102_032608
crossref_primary_10_1016_j_cocis_2018_08_004
crossref_primary_10_1103_PhysRevLett_125_018002
crossref_primary_10_1039_C8SM01503A
crossref_primary_10_1021_acs_langmuir_1c01896
crossref_primary_10_1103_PhysRevLett_119_068002
crossref_primary_10_1103_PhysRevE_97_062409
crossref_primary_10_1039_D0SM02184A
crossref_primary_10_1039_D3SM01158E
crossref_primary_10_1073_pnas_2204453119
crossref_primary_10_1007_s00526_022_02188_6
crossref_primary_10_1038_s41467_017_01441_3
crossref_primary_10_1039_D1SM01510A
crossref_primary_10_1007_s00332_021_09679_4
crossref_primary_10_1039_D1SM00629K
crossref_primary_10_1126_sciadv_aba2331
crossref_primary_10_1039_D4SM00197D
crossref_primary_10_1016_j_difgeo_2022_101971
crossref_primary_10_1088_1361_648X_aa97f9
crossref_primary_10_1039_C9SM02111F
crossref_primary_10_1039_D2SM00819J
crossref_primary_10_1073_pnas_1900615116
crossref_primary_10_1039_D1SM00827G
crossref_primary_10_1039_D2NR05230J
Cites_doi 10.1039/C4SM00803K
10.1038/349475a0
10.1529/biophysj.104.049692
10.1016/S0006-3495(00)76295-3
10.1038/nature13694
10.1021/jp8067377
10.1063/1.458267
10.1039/C1SM06201H
10.1051/jphys:0197500360110103500
10.1051/jphys:0198800490110195100
10.1103/PhysRevLett.90.074302
10.1103/PhysRevE.87.032504
10.1529/biophysj.108.140152
10.1103/PhysRevLett.100.088101
10.1021/ja005659j
10.1080/00018739700101488
10.1111/j.1365-2818.2008.02053.x
10.1038/368440a0
10.1021/jp044215x
10.1063/1.1740347
10.1073/pnas.1423220112
10.1051/jphys:0197600370110133500
10.1073/pnas.1315121111
10.1016/j.bpj.2012.02.013
10.1039/c3sm50488c
10.1103/PhysRevLett.96.258302
10.1021/la000446t
10.1126/sciadv.1500608
10.1103/PhysRevE.82.021701
10.1111/j.1365-2818.1995.tb03669.x
10.1039/C5SM02038G
10.1103/PhysRevLett.64.2094
10.1126/science.278.5345.1924
10.1103/PhysRevA.39.5280
10.1529/biophysj.104.040782
10.1063/1.4808077
10.1038/ncomms4063
10.1209/epl/i2005-10127-x
10.1073/pnas.1201201109
10.1126/science.1170027
10.1126/science.1170028
10.1103/RevModPhys.74.953
10.1073/pnas.1000406107
10.1016/S0006-3495(98)74031-7
10.1103/PhysRevE.84.041704
10.1073/pnas.1100087108
10.1126/science.1154069
10.1016/S0091-679X(08)60410-0
10.1038/nature10769
10.1103/PhysRevE.67.031708
10.1016/0375-9601(74)90899-8
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 25, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 25, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.1073/pnas.1617043114
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
CrossRef

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
DocumentTitleAlternate Assembly of scalloped colloidal membranes
EISSN 1091-6490
EndPage E3384
ExternalDocumentID oai_HAL_hal_04245486v1
10_1073_pnas_1617043114
28411214
26480783
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM114274
– fundername: National Science Foundation (NSF)
  grantid: MRSEC-1420382
– fundername: Agence Nationale de la Recherche (L' Agence Nationale de la Recherche)
  grantid: ANR-11-PDOC-027
– fundername: National Science Foundation (NSF)
  grantid: CMMI-1634552
– fundername: National Science Foundation (NSF)
  grantid: DMR-1262047
– fundername: National Science Foundation (NSF)
  grantid: DMR-1609742
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c477t-12e39b6d2f2cbf707c9d5594dd1ff8fa1572bddc5f57796ed0dff46d5225645d3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:09:47 EDT 2024
Tue Oct 15 15:31:37 EDT 2024
Sat Oct 05 05:05:38 EDT 2024
Thu Oct 10 15:38:50 EDT 2024
Fri Aug 23 01:52:34 EDT 2024
Wed Oct 16 00:59:10 EDT 2024
Fri Feb 02 08:05:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords membranes
self-assembly
liquid crystals
chirality
Gaussian curvature
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c477t-12e39b6d2f2cbf707c9d5594dd1ff8fa1572bddc5f57796ed0dff46d5225645d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 13, 2017 (received for review October 20, 2016)
Author contributions: T.G., R.B.M., and Z.D. designed research; C.N.K. developed the theoretical model of defect interactions; R.D.K. and T.R.P. provided theoretical estimate of the Gaussian curvature modulus; R.B.M. contributed to the theoretical model; T.G., C.N.K., P.S., M.J.Z., and A.W. performed research; R.O. contributed new reagents/analytic tools; P.S. acquired coalescence movies; A.W. contributed optical-tweezer measurements; R.O. contributed microscopy expertise; T.G., C.N.K., and T.R.P. analyzed data; and T.G., C.N.K., T.R.P., and Z.D. wrote the paper.
ORCID 0000-0003-4826-8025
OpenAccessLink https://www.pnas.org/content/pnas/114/17/E3376.full.pdf
PMID 28411214
PQID 1902096301
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410790
hal_primary_oai_HAL_hal_04245486v1
proquest_miscellaneous_1888682208
proquest_journals_1902096301
crossref_primary_10_1073_pnas_1617043114
pubmed_primary_28411214
jstor_primary_26480783
PublicationCentury 2000
PublicationDate 2017-04-25
PublicationDateYYYYMMDD 2017-04-25
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 24419160 - Nat Commun. 2014;5:3063
18487188 - Science. 2008 May 16;320(5878):912-6
25825733 - Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1837-44
18754996 - J Microsc. 2008 Sep;231(3):419-32
25186901 - Nature. 2014 Sep 4;513(7516):77-80
23139699 - Soft Matter. 2012 Jan 1;8(3):707-714
1992351 - Nature. 1991 Feb 7;349(6309):475-81
22217941 - Nature. 2012 Jan 04;481(7381):348-51
12633231 - Phys Rev Lett. 2003 Feb 21;90(7):074302
22181154 - Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041704
10041575 - Phys Rev Lett. 1990 Apr 23;64(17):2094-2097
21402929 - Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5163-8
20866826 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Aug;82(2 Pt 1):021701
15240471 - Biophys J. 2004 Jul;87(1):366-74
15894634 - Biophys J. 2005 Aug;89(2):1067-80
20498095 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10348-53
24852267 - Soft Matter. 2014 Jul 14;10(26):4700-10
8537959 - J Microsc. 1995 Nov;180(Pt 2):140-7
10866959 - Biophys J. 2000 Jul;79(1):328-39
16907351 - Phys Rev Lett. 2006 Jun 30;96(25):258302
19628864 - Science. 2009 Jul 24;325(5939):456-60
22679292 - Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9716-20
18805927 - Biophys J. 2008 Dec;95(11):5200-15
11456650 - J Am Chem Soc. 2001 Feb 7;123(5):1010-1
18352667 - Phys Rev Lett. 2008 Feb 29;100(8):088101
16852170 - J Phys Chem B. 2005 May 19;109(19):9712-8
22455923 - Biophys J. 2012 Mar 21;102(6):1403-10
19628863 - Science. 2009 Jul 24;325(5939):452-6
9352519 - Methods Cell Biol. 1998;55:205-16
18975886 - J Phys Chem B. 2009 Mar 26;113(12):3910-3
26472139 - Soft Matter. 2016 Jan 14;12(2):386-401
26601296 - Sci Adv. 2015 Oct 16;1(9):e1500608
9901091 - Phys Rev A Gen Phys. 1989 May 15;39(10):5280-5288
23758361 - J Chem Phys. 2013 Jun 7;138(21):214110
12689089 - Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031708
9533719 - Biophys J. 1998 Feb;74(2 Pt 1):1074-85
24449880 - Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1742-7
9395390 - Science. 1997 Dec 12;278(5345):1924-7
e_1_3_3_50_2
Nitsche J (e_1_3_3_57_2) 1989
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
Forsythe GE (e_1_3_3_59_2) 1976
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Millman RS (e_1_3_3_56_2) 1977
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
Stoker J (e_1_3_3_58_2) 1969
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
Safran SA (e_1_3_3_33_2) 1994
e_1_3_3_53_2
Barry E (e_1_3_3_24_2) 2009; 5
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
Senti FR (e_1_3_3_36_2) 1955; 17
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_15_2
  doi: 10.1039/C4SM00803K
– ident: e_1_3_3_1_2
  doi: 10.1038/349475a0
– ident: e_1_3_3_11_2
  doi: 10.1529/biophysj.104.049692
– ident: e_1_3_3_6_2
  doi: 10.1016/S0006-3495(00)76295-3
– ident: e_1_3_3_29_2
  doi: 10.1038/nature13694
– volume: 17
  start-page: 527
  year: 1955
  ident: e_1_3_3_36_2
  article-title: Viscosity, sedimentation, and light‐scattering properties of fraction of an acid‐hydrolyzed dextran
  publication-title: J Polym Sci, Polym Phys Ed
  contributor:
    fullname: Senti FR
– ident: e_1_3_3_18_2
  doi: 10.1021/jp8067377
– ident: e_1_3_3_35_2
  doi: 10.1063/1.458267
– ident: e_1_3_3_14_2
  doi: 10.1039/C1SM06201H
– ident: e_1_3_3_5_2
  doi: 10.1051/jphys:0197500360110103500
– ident: e_1_3_3_37_2
  doi: 10.1051/jphys:0198800490110195100
– ident: e_1_3_3_47_2
  doi: 10.1103/PhysRevLett.90.074302
– ident: e_1_3_3_32_2
  doi: 10.1103/PhysRevE.87.032504
– ident: e_1_3_3_9_2
  doi: 10.1529/biophysj.108.140152
– ident: e_1_3_3_10_2
  doi: 10.1103/PhysRevLett.100.088101
– ident: e_1_3_3_21_2
  doi: 10.1021/ja005659j
– ident: e_1_3_3_2_2
  doi: 10.1080/00018739700101488
– start-page: 23
  volume-title: Lectures on Minimal Surfaces
  year: 1989
  ident: e_1_3_3_57_2
  contributor:
    fullname: Nitsche J
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1365-2818.2008.02053.x
– ident: e_1_3_3_39_2
  doi: 10.1038/368440a0
– ident: e_1_3_3_46_2
  doi: 10.1021/jp044215x
– ident: e_1_3_3_34_2
  doi: 10.1063/1.1740347
– volume: 5
  start-page: 2563
  year: 2009
  ident: e_1_3_3_24_2
  article-title: A model liquid crystalline system based on rodlike viruses with variable chirality and persistence length
  publication-title: Soft Matter
  contributor:
    fullname: Barry E
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.1423220112
– ident: e_1_3_3_31_2
  doi: 10.1051/jphys:0197600370110133500
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.1315121111
– ident: e_1_3_3_7_2
  doi: 10.1016/j.bpj.2012.02.013
– ident: e_1_3_3_30_2
  doi: 10.1039/c3sm50488c
– volume-title: Elements of Differential Geometry
  year: 1977
  ident: e_1_3_3_56_2
  contributor:
    fullname: Millman RS
– ident: e_1_3_3_23_2
  doi: 10.1103/PhysRevLett.96.258302
– ident: e_1_3_3_25_2
  doi: 10.1021/la000446t
– ident: e_1_3_3_50_2
  doi: 10.1126/sciadv.1500608
– ident: e_1_3_3_13_2
  doi: 10.1103/PhysRevE.82.021701
– ident: e_1_3_3_27_2
  doi: 10.1111/j.1365-2818.1995.tb03669.x
– ident: e_1_3_3_16_2
  doi: 10.1039/C5SM02038G
– ident: e_1_3_3_4_2
  doi: 10.1103/PhysRevLett.64.2094
– ident: e_1_3_3_40_2
  doi: 10.1126/science.278.5345.1924
– ident: e_1_3_3_54_2
  doi: 10.1103/PhysRevA.39.5280
– ident: e_1_3_3_38_2
  doi: 10.1529/biophysj.104.040782
– ident: e_1_3_3_8_2
  doi: 10.1063/1.4808077
– ident: e_1_3_3_26_2
  doi: 10.1038/ncomms4063
– volume-title: Computer Methods for Mathematical Computations
  year: 1976
  ident: e_1_3_3_59_2
  contributor:
    fullname: Forsythe GE
– ident: e_1_3_3_51_2
  doi: 10.1209/epl/i2005-10127-x
– ident: e_1_3_3_48_2
  doi: 10.1073/pnas.1201201109
– ident: e_1_3_3_41_2
  doi: 10.1126/science.1170027
– ident: e_1_3_3_42_2
  doi: 10.1126/science.1170028
– ident: e_1_3_3_3_2
  doi: 10.1103/RevModPhys.74.953
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.1000406107
– ident: e_1_3_3_55_2
– ident: e_1_3_3_53_2
  doi: 10.1016/S0006-3495(98)74031-7
– volume-title: Differential Geometry
  year: 1969
  ident: e_1_3_3_58_2
  contributor:
    fullname: Stoker J
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevE.84.041704
– ident: e_1_3_3_43_2
  doi: 10.1073/pnas.1100087108
– ident: e_1_3_3_49_2
  doi: 10.1126/science.1154069
– ident: e_1_3_3_52_2
  doi: 10.1016/S0091-679X(08)60410-0
– ident: e_1_3_3_19_2
  doi: 10.1038/nature10769
– volume-title: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes
  year: 1994
  ident: e_1_3_3_33_2
  contributor:
    fullname: Safran SA
– ident: e_1_3_3_20_2
  doi: 10.1103/PhysRevE.67.031708
– ident: e_1_3_3_17_2
  doi: 10.1016/0375-9601(74)90899-8
SSID ssj0009580
Score 2.4910696
Snippet In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length–thick liquid-like...
In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like...
Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the...
Significance A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the...
A number of essential processes in biology and materials science, such as vesicle fusion and fission as well as pore formation, change the membrane topology...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E3376
SubjectTerms Bilayers
Broken symmetry
Colloids
Comparative analysis
Curvature
Cusps
Deformation
Disks
Elasticity
Handedness
Membrane elasticity
Membranes
Monolayers
Normal distribution
Physical Sciences
Physics
PNAS Plus
Point defects
Polymers
Rods
Title Achiral symmetry breaking and positive Gaussian modulus lead to scalloped colloidal membranes
URI https://www.jstor.org/stable/26480783
https://www.ncbi.nlm.nih.gov/pubmed/28411214
https://www.proquest.com/docview/1902096301
https://search.proquest.com/docview/1888682208
https://hal.science/hal-04245486
https://pubmed.ncbi.nlm.nih.gov/PMC5410790
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW6PXFBtFAIlMogDuWQ3cQfsXNcVZQVAsSBSr2gKP7SrrRJVk1Sqf-esZNsWcSJW5Q4juUZT95onp8R-iBM5iyVOraOiJhRDXHQMRsziJLMUC-QEtQ-v2erG_bllt8eIT7thQmkfa0283pbzevNOnArd5VeTDyxxY9vV5xB0pInixmagYNOKfpeaVcO-07g25IRNun5CLrY1WU794DeK8qk_kgeCM4AOFJ28FearT0ncqAn_gt4_s2f_OOHdP0MPR2RJF4OIz5BR7Y-RSfjWm3x5Sgo_fE5-rXU6w1c4vahqmx394AhDw6nUOGyNnjgbd1b_LnsW7-nEleN6bd9i7fgALhrcKt9eX5nDfZu02wM9FXZChJtCJQv0M31p59Xq3g8ViHWTIguTomlucoMcUQrJxKhcwN5BTMmdU66MuWCKGM0d1yIPLMmMc6xzABS89Izhp6h47qp7SuEy0RlVNiEqTJnpeLSlooKpnLCHSWaR-hymtZiN6hnFKHqLWjhjVE8GiNC72Ha96286vVq-bXw90J1lsnsPo3QWbDKvpnn5_lCZITOJzMV4yKEznPAwhBgEnjv3f4xLB9fE4EJanpoI6XMACQlMkIvB6s-dj46R4TEgb0PBnn4BDw2SHSPHvr6v998g54QDyASFhN-jo67u96-BfjTqYvg7r8BJ24D2A
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615QAXSoGWQAGDOJRDsnnYcXJcVZQFthWHFvWCovilXbHJrpqkUvvrGeexZSsucItix3nMePKN5vNngA9cxUZHiXS1CblLI4lx0FDtUoySVEVWIKVV-zyLJxf06yW73AI2rIVpSftSzL1yUXjlfNZyK1eFHA08sdH302NGMWlJ_dE2PMD56sdDkr7W2k26lSd494SGdFD04dFoVeaVZyG91ZQJ7KY8GJ4RcgR047-0PbOsyI6g-DfoeZ9B-ccv6WQXfgwv0zFRfnlNLTx5e0_n8Z_f9gk87kEqGXfNe7Cly6ew14eBihz1WtUfn8HPsZzN8ZBUN0Wh66sbgil2u8EVyUtFOkrYtSaf86ayyzVJsVTNoqnIAn2L1EtSSVv5X2lFrEcu5wrHKnSBOTzG4OdwcfLp_Hji9js2uJJyXrtBqKNUxCo0oRSG-1ymClMWqlRgTGLygPFQKCWZYZynsVa-MobGCkGgVbVR0T7slMtSvwCS-yKOuPapyFOaC5boXEScijRkJgolc-BosFe26oQ5sragzqPMWjm7s7ID79Ge615WUHsynmb2XFv4pUl8HTiw35p73c1S_2yN04HDwf5ZP79x8BRhNsYuH697t27GmWnLLfiBlg32SZIkRvzlJw4cdO5yN3jvdQ7wDUfaeMjNFnSPVv27d4eX_33lW3g4OT-dZtMvZ99ewaPQ4hSfuiE7hJ36qtGvEWXV4k07p34DswElyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokRAXSoGW0AIGcSiHPO3EznFVWBYoVQ9UqpBQFL-0KzbJqkkqlV_POI9tt-LUW5TYlp0Zj7-RP39G6ANTidGES1ebiLmUSIiDhmqXQpSkiliBlE7t8zSZndNvF_HFrau-OtK-FAuvXBZeuZh33MpVIf2RJ-af_TiOKSQtaeCvlPG30EOYswEfE_W13i7vT59ADziN6Kjqw4i_KvPas7De6sqE9mIeCNEAO0K6sTZtzS0zsicp_g9-3mVR3lqWpjvo1zigno3yx2sb4cm_d7Qe7zXip-jJAFbxpC-yix7o8hnaHcJBjY8GzeqPz9HviZwv4BHX10Whm8trDKl2d9EVzkuFe2rYlcZf8ra2xzZxUal22dZ4CT6GmwrX0jIAVlph65nVQkFbhS4gl4dY_AKdTz__PJ65w80NrqSMNW4YaZKKREUmksKwgMlUQepClQqN4SYPYxYJpWRsYsbSRKtAGUMTBWDQqtsosoe2y6rULxHOA5EQpgMq8pTmIuY6F4RRkUaxIZGMHXQ02ixb9QIdWbexzkhmLZ3dWNpB78Gm61JWWHs2Ocnsu24DmPLkKnTQXmfydTFLAbR7nQ46HH0gG-Y5NJ4C3IYYFkC9d-vPMEPttgv8oKqFMpzzBHBYwB2037vMTeOD5zmIbTjTRic3v4CLdCrgg0u8unfNt-jR2adpdvL19PsBehxZuBJQN4oP0XZz2erXALYa8aabVv8A4BQoSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achiral+symmetry+breaking+and+positive+Gaussian+modulus+lead+to+scalloped+colloidal+membranes&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gibaud%2C+Thomas&rft.au=Kaplan%2C+C+Nadir&rft.au=Sharma%2C+Prerna&rft.au=Zakhary%2C+Mark+J&rft.date=2017-04-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=17&rft.spage=E3376&rft_id=info:doi/10.1073%2Fpnas.1617043114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon