How to assess Drosophila heat tolerance Unifying static and dynamic tolerance assays to predict heat distribution limits

Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics o...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 33; no. 4; pp. 629 - 642
Main Authors Jørgensen, Lisa Bjerregaard, Malte, Hans, Overgaard, Johannes
Format Journal Article
LanguageEnglish
Published London Wiley 01.04.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
DOI10.1111/1365-2435.13279

Cover

Loading…
Abstract Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments. A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R2 = 0.98). Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation. Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species. Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R2 = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids. A plain language summary is available for this article. Plain Language Summary
AbstractList Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments. A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R 2  = 0.98). Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation. Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species. Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined ( R 2  = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids. A plain language summary is available for this article.
Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments.A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R2 = 0.98).Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation.Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species.Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R2 = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids.A plain language summary is available for this article.
Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments. A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R² = 0.98). Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation. Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species. Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R² = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids. A plain language summary is available for this article.
Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments. A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R2 = 0.98). Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation. Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species. Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R2 = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids. A plain language summary is available for this article. Plain Language Summary
Author Jørgensen, Lisa Bjerregaard
Overgaard, Johannes
Malte, Hans
Author_xml – sequence: 1
  givenname: Lisa Bjerregaard
  surname: Jørgensen
  fullname: Jørgensen, Lisa Bjerregaard
– sequence: 2
  givenname: Hans
  surname: Malte
  fullname: Malte, Hans
– sequence: 3
  givenname: Johannes
  surname: Overgaard
  fullname: Overgaard, Johannes
BookMark eNqFkM9PwjAUxxuDiYCePZks8aCXQX-s7Xo0CGJC4kXPTbe9hpGxYjtC-O8tohy48C5NXj-fvtfvAPVa1wJC9wSPSKwxYYKnNGN8RBiV6gr1T50e6mMqVJpngt2gQQgrjLHilPbR09ztks4lJgQIIXn1LrjNsm5MsgTTxZsGvGlLuEXX1jQB7v7OIfqaTT8n83Tx8fY-eVmkZSalSgtGVJUbUllLOGEgc0xzKSxYXmEpZcmJzQosWKmAQWELQqWlRgrDRV5Rwobo-fjuxrvvLYROr-tQQtOYFtw2aEqZ5JwrzCL6eIau3Na3cbtIYaoEJUJFanykyvi14MHqja_Xxu81wfoQnD7EpA8x6d_gosHPjLLuTFe7tvOmbi57u7qB_aUxejad_HsPR28VOudPXpbznCqm2A9S4IkA
CitedBy_id crossref_primary_10_1016_j_jinsphys_2024_104619
crossref_primary_10_1038_s41559_022_01686_2
crossref_primary_10_1007_s13592_020_00824_8
crossref_primary_10_3354_meps13916
crossref_primary_10_1016_j_pedobi_2023_150876
crossref_primary_10_1007_s10682_022_10157_w
crossref_primary_10_1093_iob_obac016
crossref_primary_10_1242_jeb_246548
crossref_primary_10_1016_j_jinsphys_2020_104056
crossref_primary_10_1242_jeb_240960
crossref_primary_10_1111_gcb_15294
crossref_primary_10_1016_j_jtherbio_2023_103485
crossref_primary_10_1242_jeb_227801
crossref_primary_10_1073_pnas_2418199122
crossref_primary_10_1242_jeb_245195
crossref_primary_10_1242_jeb_218750
crossref_primary_10_1038_s42003_023_05196_0
crossref_primary_10_1016_j_cbpa_2023_111388
crossref_primary_10_1242_jeb_245749
crossref_primary_10_1111_1365_2435_14620
crossref_primary_10_1242_jeb_242479
crossref_primary_10_1111_1365_2435_14622
crossref_primary_10_1038_s41586_022_05334_4
crossref_primary_10_3920_JIFF2021_0092
crossref_primary_10_1038_s41598_021_92004_6
crossref_primary_10_1016_j_jinsphys_2020_104157
crossref_primary_10_1111_1365_2435_13829
crossref_primary_10_1093_jxb_erae096
crossref_primary_10_1111_ele_14421
crossref_primary_10_1016_j_jtherbio_2023_103583
crossref_primary_10_1111_1365_2435_13279
crossref_primary_10_1086_716176
crossref_primary_10_1111_gcb_16710
crossref_primary_10_1016_j_jinsphys_2021_104323
crossref_primary_10_1038_s41558_021_01047_0
crossref_primary_10_3389_fphys_2022_897174
crossref_primary_10_3389_fgene_2021_734255
crossref_primary_10_1016_j_baae_2023_01_002
crossref_primary_10_1242_jeb_230797
crossref_primary_10_1111_1365_2656_13653
crossref_primary_10_1111_1744_7917_12742
crossref_primary_10_1093_genetics_iyae040
crossref_primary_10_1016_j_cbpa_2023_111522
crossref_primary_10_1242_jeb_247706
crossref_primary_10_1016_j_jtherbio_2022_103338
crossref_primary_10_1098_rstb_2022_0490
crossref_primary_10_1016_j_jtherbio_2022_103339
crossref_primary_10_1242_jeb_245645
crossref_primary_10_1016_j_envpol_2021_117019
crossref_primary_10_1098_rstb_2022_0011
crossref_primary_10_1016_j_tree_2022_08_008
crossref_primary_10_1016_j_jspr_2022_101979
crossref_primary_10_1016_j_tree_2021_07_001
crossref_primary_10_1016_j_jinsphys_2019_103946
crossref_primary_10_1098_rsbl_2019_0613
crossref_primary_10_1016_j_envpol_2021_118333
crossref_primary_10_3354_meps14414
crossref_primary_10_1002_bes2_1607
crossref_primary_10_1242_jeb_244729
crossref_primary_10_1002_ecm_1597
crossref_primary_10_1016_j_oneear_2023_09_001
crossref_primary_10_1093_conphys_coaa038
crossref_primary_10_1086_716577
crossref_primary_10_1002_ps_6494
crossref_primary_10_1186_s12915_024_02072_z
crossref_primary_10_1111_gcb_14713
crossref_primary_10_1098_rspb_2023_0507
crossref_primary_10_1111_ele_14416
crossref_primary_10_1111_geb_13106
crossref_primary_10_1007_s13592_020_00811_z
crossref_primary_10_1016_j_jinsphys_2021_104268
crossref_primary_10_1071_MF22260
crossref_primary_10_1002_ece3_6229
crossref_primary_10_1093_biosci_biac080
crossref_primary_10_1016_j_tree_2020_05_006
crossref_primary_10_1016_j_jtherbio_2022_103439
crossref_primary_10_1111_phen_12454
crossref_primary_10_1002_ecy_3134
crossref_primary_10_1111_gcb_15761
crossref_primary_10_1111_gcb_16453
crossref_primary_10_1086_715012
crossref_primary_10_1098_rsbl_2023_0106
crossref_primary_10_1002_1873_3468_14701
crossref_primary_10_1016_j_jinsphys_2022_104362
crossref_primary_10_1016_j_rsma_2024_103467
crossref_primary_10_1371_journal_pntd_0009548
crossref_primary_10_1242_jeb_247221
crossref_primary_10_1371_journal_pone_0265361
crossref_primary_10_1111_1462_2920_16609
crossref_primary_10_1002_ecy_3629
crossref_primary_10_1098_rspb_2023_1305
crossref_primary_10_1007_s10682_022_10154_z
crossref_primary_10_1098_rspb_2019_0174
crossref_primary_10_1016_j_cbpa_2019_110626
crossref_primary_10_1111_ecog_06884
crossref_primary_10_3390_insects11080537
crossref_primary_10_1242_jeb_213405
crossref_primary_10_1016_j_jinsphys_2020_104075
crossref_primary_10_1111_icad_12541
crossref_primary_10_1111_geb_13570
crossref_primary_10_1038_s41597_024_04191_2
crossref_primary_10_1126_science_aba9287
crossref_primary_10_1016_j_scitotenv_2024_176120
crossref_primary_10_1111_1365_2656_14149
crossref_primary_10_1073_pnas_2119872119
crossref_primary_10_1111_ele_14083
crossref_primary_10_1093_evolut_qpae126
crossref_primary_10_1016_j_envpol_2021_117217
crossref_primary_10_1016_j_jtherbio_2021_103110
crossref_primary_10_1242_jeb_244514
crossref_primary_10_1016_j_cris_2020_100005
crossref_primary_10_1016_j_jtherbio_2023_103673
crossref_primary_10_1242_jeb_249402
Cites_doi 10.1111/gcb.12521
10.1007/s00442-012-2262-7
10.1111/j.1365-2435.2012.02013.x
10.1371/journal.pone.0032758
10.1016/j.jinsphys.2017.07.005
10.1242/jeb.171629
10.1038/nclimate1539
10.1111/j.1420-9101.2004.00876.x
10.1371/journal.pone.0032083
10.1034/j.1600-0706.2000.890211.x
10.1016/j.agrformet.2011.03.002
10.1073/pnas.1207553109
10.1242/jeb.076356
10.1016/S0065-2806(06)33002-0
10.1098/rspb.2000.1065
10.1603/029.102.0342
10.1111/j.1420-9101.2010.02110.x
10.1016/j.jtherbio.2008.04.001
10.1111/1365-2435.12310
10.1086/661780
10.1139/z97-783
10.1111/j.1365-2435.2011.01908.x
10.1093/jee/97.6.1868
10.1111/j.1365-2435.2008.01481.x
10.1046/j.1461-0248.2002.00367.x
10.1098/rspb.2010.1295
10.1016/j.jtherbio.2011.07.005
10.1002/joc.5086
10.1093/infdis/29.5.528
10.1111/1365-2435.13279
10.1086/668851
10.1016/j.jinsphys.2018.09.002
10.1242/jeb.204.9.1659
10.1007/BF00001494
10.1086/physzool.59.6.30158609
10.1126/science.289.5487.2068
10.1098/rspb.2007.0985
10.1242/jeb.167858
10.1086/284423
10.1111/j.1365-2435.2009.01666.x
10.1242/jeb.061283
10.1111/evo.12757
10.1111/1365-2435.12499
10.1007/978-0-387-21706-2
10.1007/978-94-009-3127-5
10.1111/1365-2435.12268
ContentType Journal Article
Copyright 2019 The Authors. © 2019 British Ecological Society
2019 The Authors. Functional Ecology © 2019 British Ecological Society
Functional Ecology © 2019 British Ecological Society
Copyright_xml – notice: 2019 The Authors. © 2019 British Ecological Society
– notice: 2019 The Authors. Functional Ecology © 2019 British Ecological Society
– notice: Functional Ecology © 2019 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13279
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Entomology Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 642
ExternalDocumentID 10_1111_1365_2435_13279
FEC13279
48582939
Genre article
GrantInformation_xml – fundername: The Danish National Council for Independent Research - Natural Sciences
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTLG
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ABXSQ
ACCFJ
ACCMX
ACHIC
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
LW6
MVM
VOH
WRC
ZY4
AAYXX
ABSQW
AGUYK
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4779-b319d8a1dff1513e7802876fef5d0777c51f4b063c9e3ebfb127f2a76a568d213
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:24:38 EDT 2025
Sun Jul 13 05:23:58 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 01:15:49 EDT 2025
Wed Jan 22 16:51:18 EST 2025
Thu Jul 03 21:33:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4779-b319d8a1dff1513e7802876fef5d0777c51f4b063c9e3ebfb127f2a76a568d213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4438-4558
0000-0003-3460-1819
0000-0002-2851-4551
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13279
PQID 2202962169
PQPubID 1066355
PageCount 14
ParticipantIDs proquest_miscellaneous_2237555903
proquest_journals_2202962169
crossref_primary_10_1111_1365_2435_13279
crossref_citationtrail_10_1111_1365_2435_13279
wiley_primary_10_1111_1365_2435_13279_FEC13279
jstor_primary_48582939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2019
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2011; 278
1982; 16
2000; 89
2006; 33
2016; 30
1985; 126
2008; 33
2014; 28
2012; 169
2011; 151
2014; 20
2010; 23
2010; 24
2000; 289
1990
1987
2012; 26
2011; 25
2009; 23
2011; 214
2018; 221
2002; 5
2013; 86
1921; 29
1986; 59
2008
1986; 17
2011; 36
2002
2011; 178
2012; 109
2001; 204
2018; 111
2015; 69
2004; 97
2012; 2
2015; 29
2000; 267
1997; 75
2013; 216
2007; 274
2019
2017
2009; 102
2016
2013
2017; 101
2012; 7
2005; 18
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
Kelty J. D. (e_1_2_9_21_1) 2001; 204
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Kirtman B. (e_1_2_9_24_1) 2013
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Johnston I. A. (e_1_2_9_18_1) 2008
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Willmer P. G. (e_1_2_9_52_1) 1982; 16
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
Schmidt‐Nielsen K. (e_1_2_9_39_1) 1990
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
R Core Team (e_1_2_9_35_1) 2016
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 126
  start-page: 362
  issue: 3
  year: 1985
  end-page: 386
  article-title: The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms
  publication-title: The American Naturalist
– volume: 89
  start-page: 301
  issue: 2
  year: 2000
  end-page: 304
  article-title: Correlations between measures of thermal stress resistance within and between species
  publication-title: Oikos
– volume: 278
  start-page: 1823
  issue: 1713
  year: 2011
  end-page: 1830
  article-title: Global analysis of thermal tolerance and latitude in ectotherms
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 7
  start-page: e32758
  issue: 3
  year: 2012
  article-title: Validity of thermal ramping assays used to assess thermal tolerance in Arthropods
  publication-title: PLoS ONE
– volume: 216
  start-page: 809
  issue: 5
  year: 2013
  end-page: 814
  article-title: Cellular damage as induced by high temperature is dependent on rate of temperature change ‐ investigating consequences of ramping rates on molecular and organismal phenotypes in
  publication-title: Journal of Experimental Biology
– volume: 23
  start-page: 2484
  issue: 11
  year: 2010
  end-page: 2493
  article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia
  publication-title: Journal of Evolutionary Biology
– volume: 109
  start-page: 16228
  issue: 40
  year: 2012
  end-page: 16233
  article-title: Upper thermal limits of are linked to species distributions and strongly constrained phylogenetically
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 97
  start-page: 1868
  issue: 6
  year: 2004
  end-page: 1873
  article-title: Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae)
  publication-title: Journal of Economic Entomology
– volume: 111
  start-page: 629
  year: 2018
  end-page: 7
  article-title: How much starvation, desiccation and oxygen depletion can tolerate before its upper thermal limits are affected?
  publication-title: Journal of Insect Physiology
– volume: 289
  start-page: 2068
  issue: 5487
  year: 2000
  end-page: 2074
  article-title: Climate extremes: Observations, modeling, and impacts
  publication-title: Science
– volume: 20
  start-page: 1738
  issue: 6
  year: 2014
  end-page: 1750
  article-title: Sensitivity to thermal extremes in Australian implies similar impacts of climate change on the distribution of widespread and tropical species
  publication-title: Global Change Biology
– volume: 178
  start-page: S80
  issue: S1
  year: 2011
  end-page: S96
  article-title: Thermal tolerance in widespread and tropical species: Does phenotypic plasticity increase with latitude?
  publication-title: The American Naturalist
– year: 1990
– volume: 5
  start-page: 614
  year: 2002
  end-page: 618
  article-title: Opposing clines for high and low temperature resistance in
  publication-title: Ecology Letters
– volume: 26
  start-page: 844
  issue: 4
  year: 2012
  end-page: 853
  article-title: Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf‐dwelling organisms
  publication-title: Functional Ecology
– volume: 24
  start-page: 694
  issue: 3
  year: 2010
  end-page: 700
  article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in
  publication-title: Functional Ecology
– volume: 23
  start-page: 133
  issue: 1
  year: 2009
  end-page: 140
  article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context
  publication-title: Functional Ecology
– volume: 221
  start-page: jeb171629
  issue: 8
  year: 2018
  article-title: Thermal strategies vary with life history stage
  publication-title: Journal of Experimental Biology
– volume: 2
  start-page: 686
  issue: 9
  year: 2012
  end-page: 690
  article-title: Thermal tolerance and the global redistribution of animals
  publication-title: Nature Climate Change
– year: 2008
– volume: 7
  start-page: e32083
  issue: 2
  year: 2012
  article-title: Considerations for assessing maximum critical temperatures in small ectothermic animals: Insights from leaf‐cutting ants
  publication-title: PLoS ONE
– volume: 25
  start-page: 1169
  issue: 6
  year: 2011
  end-page: 1180
  article-title: Making sense of heat tolerance estimates in ectotherms: Lessons from
  publication-title: Functional Ecology
– volume: 29
  start-page: 528
  issue: 5
  year: 1921
  end-page: 536
  article-title: The logarithmic nature of thermal death time curves
  publication-title: Journal of Infectious Diseases
– volume: 17
  start-page: 281
  issue: 4
  year: 1986
  end-page: 290
  article-title: Reconciling the two methods of measuring upper lethal temperatures in fishes
  publication-title: Environmental Biology of Fishes
– volume: 30
  start-page: 442
  year: 2016
  end-page: 452
  article-title: Evolutionary potential of multiple measures of upper thermal tolerance in
  publication-title: Functional Ecology
– year: 2019
– volume: 102
  start-page: 1182
  issue: 3
  year: 2009
  end-page: 1188
  article-title: Lethal effects of heat and use of localized heat treatment for control of bed bug infestations
  publication-title: Journal of Economic Entomology
– volume: 16
  start-page: 629
  issue: 1
  year: 1982
  end-page: 57
  article-title: Microclimate and the environmental physiology of insects
  publication-title: Advances in Insect Physiology
– volume: 151
  start-page: 1417
  issue: 11
  year: 2011
  end-page: 1428
  article-title: A sub‐continental scale living laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern Australia
  publication-title: Agricultural and Forest Meteorology
– volume: 214
  start-page: 3713
  year: 2011
  end-page: 3725
  article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures
  publication-title: Journal of Experimental Biology
– year: 1987
– volume: 267
  start-page: 739
  issue: 1445
  year: 2000
  end-page: 745
  article-title: Thermal tolerance, climatic variability and latitude
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
– volume: 204
  start-page: 1659
  year: 2001
  end-page: 1666
  article-title: Rapid cold‐hardening of (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles
  publication-title: The Journal of Experimental Biology
– volume: 169
  start-page: 1063
  issue: 4
  year: 2012
  end-page: 1074
  article-title: Assembling an ant community: Species functional traits reflect environmental filtering
  publication-title: Oecologia
– volume: 33
  start-page: 320
  issue: 6
  year: 2008
  end-page: 323
  article-title: Unifying indices of heat tolerance in ectotherms
  publication-title: Journal of Thermal Biology
– volume: 59
  start-page: 616
  issue: 6
  year: 1986
  end-page: 626
  article-title: Comparative thermoregulation of four montane butterflies of different mass
  publication-title: Physiological Zoology
– volume: 101
  start-page: 97
  issue: May
  year: 2017
  end-page: 106
  article-title: A critical test of anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO
  publication-title: Journal of Insect Physiology
– year: 2016
– volume: 33
  start-page: 50
  year: 2006
  end-page: 152
  article-title: Physiological diversity in insects: Ecological and evolutionary contexts
  publication-title: Advances in Insect Physiology
– volume: 86
  start-page: 73
  issue: 1
  year: 2013
  end-page: 81
  article-title: Thermal resistance and performance correlate with climate in populations of a widespread mosquito
  publication-title: Physiological and Biochemical Zoology
– volume: 18
  start-page: 829
  issue: 4
  year: 2005
  end-page: 837
  article-title: Altitudinal variation for stress resistance traits and thermal adaptation in adult from the New World
  publication-title: Journal of Evolutionary Biology
– volume: 29
  start-page: 55
  issue: 1
  year: 2015
  end-page: 65
  article-title: How to assess cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits
  publication-title: Functional Ecology
– volume: 75
  start-page: 1561
  issue: 10
  year: 1997
  end-page: 1574
  article-title: The critical thermal maximum: History and critique
  publication-title: Canadian Journal of Zoology
– year: 2017
  article-title: Worldclim2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 36
  start-page: 409
  issue: 7
  year: 2011
  end-page: 416
  article-title: Assessing population and environmental effects on thermal resistance in using ecologically relevant assays
  publication-title: Journal of Thermal Biology
– volume: 274
  start-page: 2935
  issue: 1628
  year: 2007
  end-page: 2942
  article-title: Critical thermal limits depend on methodological context
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– year: 2002
– volume: 221
  issue: 12
  year: 2018
  article-title: The analysis and interpretation of critical temperatures
  publication-title: Journal of Experimental Biology
– volume: 28
  start-page: 799
  issue: 4
  year: 2014
  end-page: 809
  article-title: Tolerance landscapes in thermal ecology
  publication-title: Functional Ecology
– start-page: 953
  year: 2013
  end-page: 1028
– volume: 69
  start-page: 2721
  issue: 10
  year: 2015
  end-page: 2734
  article-title: Heat tolerance in along a latitudinal gradient: Contrasting patterns between plastic and genetic responses
  publication-title: Evolution
– ident: e_1_2_9_30_1
  doi: 10.1111/gcb.12521
– ident: e_1_2_9_51_1
  doi: 10.1007/s00442-012-2262-7
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1365-2435.2012.02013.x
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0032758
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jinsphys.2017.07.005
– volume-title: Animal physiology: Adaptation and environment
  year: 1990
  ident: e_1_2_9_39_1
– ident: e_1_2_9_48_1
  doi: 10.1242/jeb.171629
– ident: e_1_2_9_45_1
  doi: 10.1038/nclimate1539
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1420-9101.2004.00876.x
– ident: e_1_2_9_37_1
  doi: 10.1371/journal.pone.0032083
– ident: e_1_2_9_4_1
  doi: 10.1034/j.1600-0706.2000.890211.x
– ident: e_1_2_9_16_1
  doi: 10.1016/j.agrformet.2011.03.002
– ident: e_1_2_9_20_1
  doi: 10.1073/pnas.1207553109
– ident: e_1_2_9_41_1
  doi: 10.1242/jeb.076356
– ident: e_1_2_9_8_1
  doi: 10.1016/S0065-2806(06)33002-0
– ident: e_1_2_9_2_1
  doi: 10.1098/rspb.2000.1065
– ident: e_1_2_9_33_1
  doi: 10.1603/029.102.0342
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1420-9101.2010.02110.x
– volume-title: Animals and temperature: Phenotypic and evolutionary adaptation (Vol. 59)
  year: 2008
  ident: e_1_2_9_18_1
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jtherbio.2008.04.001
– ident: e_1_2_9_3_1
  doi: 10.1111/1365-2435.12310
– ident: e_1_2_9_31_1
  doi: 10.1086/661780
– ident: e_1_2_9_25_1
  doi: 10.1139/z97-783
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1365-2435.2011.01908.x
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: e_1_2_9_35_1
– ident: e_1_2_9_17_1
  doi: 10.1093/jee/97.6.1868
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1365-2435.2008.01481.x
– start-page: 953
  volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_9_24_1
– ident: e_1_2_9_15_1
  doi: 10.1046/j.1461-0248.2002.00367.x
– ident: e_1_2_9_44_1
  doi: 10.1098/rspb.2010.1295
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jtherbio.2011.07.005
– ident: e_1_2_9_12_1
  doi: 10.1002/joc.5086
– ident: e_1_2_9_5_1
  doi: 10.1093/infdis/29.5.528
– ident: e_1_2_9_19_1
  doi: 10.1111/1365-2435.13279
– ident: e_1_2_9_50_1
  doi: 10.1086/668851
– ident: e_1_2_9_27_1
  doi: 10.1016/j.jinsphys.2018.09.002
– volume: 204
  start-page: 1659
  year: 2001
  ident: e_1_2_9_21_1
  article-title: Rapid cold‐hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.204.9.1659
– ident: e_1_2_9_22_1
  doi: 10.1007/BF00001494
– ident: e_1_2_9_14_1
  doi: 10.1086/physzool.59.6.30158609
– ident: e_1_2_9_11_1
  doi: 10.1126/science.289.5487.2068
– ident: e_1_2_9_46_1
  doi: 10.1098/rspb.2007.0985
– volume: 16
  start-page: 629
  issue: 1
  year: 1982
  ident: e_1_2_9_52_1
  article-title: Microclimate and the environmental physiology of insects
  publication-title: Advances in Insect Physiology
– ident: e_1_2_9_23_1
  doi: 10.1242/jeb.167858
– ident: e_1_2_9_43_1
  doi: 10.1086/284423
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1365-2435.2009.01666.x
– ident: e_1_2_9_47_1
  doi: 10.1242/jeb.061283
– ident: e_1_2_9_6_1
  doi: 10.1111/evo.12757
– ident: e_1_2_9_13_1
  doi: 10.1111/1365-2435.12499
– ident: e_1_2_9_49_1
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_9_10_1
  doi: 10.1007/978-94-009-3127-5
– ident: e_1_2_9_36_1
  doi: 10.1111/1365-2435.12268
SSID ssj0009522
Score 2.5892365
Snippet Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 629
SubjectTerms ANIMAL PHYSIOLOGICAL ECOLOGY
animals
Assaying
Climate change
Correlation analysis
critical thermal maximum
CTmax
Data collection
distribution predictions
Drosophila
Ecological monitoring
Ecotypes
ectothermy
Environmental gradient
Heat
heat coma
heat death
Heat distribution
Heat stress
Heat tolerance
Insects
Landscape
Mathematical models
Niches
Species
Temperature
Temperature effects
Temperature scales
Temperature tolerance
thermal death time curves
Thermal environments
Thermal stress
Subtitle Unifying static and dynamic tolerance assays to predict heat distribution limits
Title How to assess Drosophila heat tolerance
URI https://www.jstor.org/stable/48582939
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13279
https://www.proquest.com/docview/2202962169
https://www.proquest.com/docview/2237555903
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBejMOil7daGfqRDgx56cYjlD1m9lS4h7LDDaGE3o08oTZ0SO5Tsr997ku0mgVHGbg_rScjye9LvWe-DkCslnGZMyCi1zkQpANpI2CSOCiV5bIQSRnsv3x_57CH9_ivrvAkxFibkh-h_uKFm-P0aFVyqekPJg38WnPYjMKg4hvDhE4RFP9lG2t1wj8ByEcFJm7TJfdCXZ6f_1rkUXBO3QOcmdPVnz_SQqG7WweXkabRq1Ej_3kno-F-vdUQOWmRKb4MofSIfbPWZfAy1KtdATXRLDSZvwXHQod0d6mOyni1eabOg0l8k029LXyPhcS4p7vjQMrdYxsPeUEC6Pr6KYjzTo6ayMtSsK_kMdM-G48h1jSO-LPE-qQnjGMz125bponMM0KpPyMN0cn83i9rSDpFOOReRAs03hYyNcwA5EssLwDk8d9ZlZsw511nsUgXwSYPkWOVUzLhjkucyywvD4mRA9qpFZU8JFYBgs1w5ZmWBYcRFoozRYyG1lAqMyTMy6j5sqdu851h-Y1529g8ueYlLXvolPyPXfYeXkPLj76wDLyk9X1pkBQAoaBh2olO2m0JdMjZmImdxDs1f-2ZQZ7yjkZVdrJAn4RlYeeME5u3l5L05lNPJnSfO_7XDBdkH-CeCH9KQ7DXLlb0EiNWoL16L_gCreBpZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZoqqq9QGkbFQjUlTj0slHW-_CaWwWJQqEcEEjcVn5KiHSDko2q9Nd3xt5sAxKqEDdLY1te7zw-2_Mg5FAJpxkTMkqtM1EKgDYSNomjQkkeG6GE0d7L9yIfX6c_brKbtViYkB-ivXBDyfD6GgUcL6TXpDw4aIG578OJiotX5DXW9cYqBieXbC3xbnhJYLmIwNYmTXof9OZ5NMEDyxScEx_AznXw6q3PaIvo1bqD08ldf1Grvv7zKKXjyz7sPdlswCn9Hrhpm2zY6gN5E8pVLqE11E2rO_wXHwcDGgUx_0iW4-lvWk-p9G_J9GTmyyTcTiRFpQ-UicVKHvaIAtj1IVYUQ5puNZWVoWZZyV_QbrvhPHI5xxnvZ_ikVId5DKb7bSp10QnGaM0_kevR8Op4HDXVHSKdci4iBcJvChkb5wB1JJYXAHV47qzLzIBzrrPYpQoQlAbmscqpmHHHJM9llheGxUmXdKppZT8TKgDEZrlyzMoCI4mLRBmjB0JqKRWcJ3dIf_VnS92kPscKHJNydQTCLS9xy0u_5TvkWzvgPmT9eLpr17NK2y8tsgIwFBB6K94pG70wLxkbMJGzOAfy15YMEo3PNLKy0wX2SXgGB71BAuv2jPK_NZSj4bFv7D53wBfydnz187w8P7042yPvAA2K4JbUI516trD7gLhqdeBF6i9OHR5z
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddy0Zf9h3arts02MNeHGLZlqy9jTYh7UYZY4W9GX1CWeaExKGkf33vJNtLC2OMvQlOOhTl7vST74uQ91p6w5hUSe68TXIAtIl0WZqUWonUSi2tCVG-F3x6mZ__KLpoQsyFifUh-g9uqBnBXqOCL6zfUvIYnwW3_RAeVEI-IHs5B5VBXPSNbdXdjY4ExmUCV23WVvfBYJ57DO5cTDE28Q7q3Mau4fKZPCG623aMOfk5XDd6aG7uVXT8r9_1lDxuoSn9FGXpGdlx9XPyMDar3MBobNrRYPw7Ow4WtOZh9YJspvNr2sypCp5keroMTRKuZoqiyQfKzGEfD_eRAtQNCVYUE5quDFW1pXZTq18w7qchH7VZIcfFEh1KTeRjsdhv26eLzjBDa_WSXE7G30-mSdvbITG5EDLRoPq2VKn1HjBH5kQJQEdw73xhR0IIU6Q-14CfDIiO016nTHimBFcFLy1LswHZree1OyBUAoQtuPbMqRLziMtMW2tGUhmlNLwmD8mw-2Mr0xY-x_4bs6p7AOGRV3jkVTjyQ_KhX7CINT_-PHUQJKWfl5dFCQgKCMed6FStVVhVjI2Y5CzlQH7Xk0Gf0Umjajdf45xMFPDMG2Ww7yAnf9tDNRmfhMHRvy54Sx59PZ1UX84uPr8i-wAFZYxJOia7zXLtXgPcavSboFC36gQdKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+assess+Drosophila+heat+tolerance%3A+Unifying+static+and+dynamic+tolerance+assays+to+predict+heat+distribution+limits&rft.jtitle=Functional+ecology&rft.au=J%C3%B8rgensen%2C+Lisa+Bjerregaard&rft.au=Malte%2C+Hans&rft.au=Overgaard%2C+Johannes&rft.au=White%2C+Craig&rft.date=2019-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=33&rft.issue=4&rft.spage=629&rft.epage=642&rft_id=info:doi/10.1111%2F1365-2435.13279&rft.externalDBID=10.1111%252F1365-2435.13279&rft.externalDocID=FEC13279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon