How to assess Drosophila heat tolerance Unifying static and dynamic tolerance assays to predict heat distribution limits
Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics o...
Saved in:
Published in | Functional ecology Vol. 33; no. 4; pp. 629 - 642 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.04.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0269-8463 1365-2435 |
DOI | 10.1111/1365-2435.13279 |
Cover
Loading…
Abstract | Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments.
A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R2 = 0.98).
Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation.
Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species.
Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R2 = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids.
A plain language summary is available for this article.
Plain Language Summary |
---|---|
AbstractList | Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments.
A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11
Drosophila
species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average
R
2
= 0.98).
Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation.
Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species.
Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (
R
2
= 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids.
A
plain language summary
is available for this article. Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments.A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R2 = 0.98).Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation.Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species.Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R2 = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids.A plain language summary is available for this article. Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments. A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R² = 0.98). Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation. Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species. Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R² = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids. A plain language summary is available for this article. Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such distributional changes, simple and comparable measures of heat tolerance are needed and these measures should ideally correlate with the characteristics of the species current thermal environments. A recent model (thermal tolerance landscapes—TTLs) uses the exponential relation between temperature and knockdown time to describe the thermal tolerance of ectotherms across time/temperature scales. Here, we established TTLs for 11 Drosophila species representing different thermal ecotypes by measuring knockdown time at 9–17 stressful temperatures (0.5°C intervals). These temperatures caused knockdown times ranging from <10 min to >12 hrs and all species displayed the expected exponential relation between temperature and knockdown time (average R2 = 0.98). Previous studies using TTLs have reported a trade‐off between tolerance to acute and chronic heat stress in ectotherms. The present study did not find evidence to support this trade‐off in drosophilids. Instead, we show how this “trade‐off” can arise as an analytical artefact caused by insufficient data collection and excessive data extrapolation. Dynamic assays represent an alternative method to describe heat tolerance of ectotherms, where animals are exposed to gradually increasing temperatures until knockdown. The comparability of static and dynamic assays has previously been questioned, but here we show that static and dynamic assays give comparable information on heat tolerance. Using the constants derived from static TTLs, we mathematically model the expected dynamic knockdown temperature and subsequently confirm this model by comparison to empirically obtained knockdown temperatures from all 11 species. Characterisation of heat tolerance in laboratory settings is an important tool in thermal biology, but more so if the measures correlate with the environmental gradients that characterise the fundamental niche of species. Here, we show that both static and dynamic assays were characterised by strong correlations to precipitation of the driest month and maximum temperature of the warmest month combined (R2 = 0.68–0.71). This demonstrates that both assay types offer simple measures of heat tolerance that are ecologically relevant for the tested drosophilids. A plain language summary is available for this article. Plain Language Summary |
Author | Jørgensen, Lisa Bjerregaard Overgaard, Johannes Malte, Hans |
Author_xml | – sequence: 1 givenname: Lisa Bjerregaard surname: Jørgensen fullname: Jørgensen, Lisa Bjerregaard – sequence: 2 givenname: Hans surname: Malte fullname: Malte, Hans – sequence: 3 givenname: Johannes surname: Overgaard fullname: Overgaard, Johannes |
BookMark | eNqFkM9PwjAUxxuDiYCePZks8aCXQX-s7Xo0CGJC4kXPTbe9hpGxYjtC-O8tohy48C5NXj-fvtfvAPVa1wJC9wSPSKwxYYKnNGN8RBiV6gr1T50e6mMqVJpngt2gQQgrjLHilPbR09ztks4lJgQIIXn1LrjNsm5MsgTTxZsGvGlLuEXX1jQB7v7OIfqaTT8n83Tx8fY-eVmkZSalSgtGVJUbUllLOGEgc0xzKSxYXmEpZcmJzQosWKmAQWELQqWlRgrDRV5Rwobo-fjuxrvvLYROr-tQQtOYFtw2aEqZ5JwrzCL6eIau3Na3cbtIYaoEJUJFanykyvi14MHqja_Xxu81wfoQnD7EpA8x6d_gosHPjLLuTFe7tvOmbi57u7qB_aUxejad_HsPR28VOudPXpbznCqm2A9S4IkA |
CitedBy_id | crossref_primary_10_1016_j_jinsphys_2024_104619 crossref_primary_10_1038_s41559_022_01686_2 crossref_primary_10_1007_s13592_020_00824_8 crossref_primary_10_3354_meps13916 crossref_primary_10_1016_j_pedobi_2023_150876 crossref_primary_10_1007_s10682_022_10157_w crossref_primary_10_1093_iob_obac016 crossref_primary_10_1242_jeb_246548 crossref_primary_10_1016_j_jinsphys_2020_104056 crossref_primary_10_1242_jeb_240960 crossref_primary_10_1111_gcb_15294 crossref_primary_10_1016_j_jtherbio_2023_103485 crossref_primary_10_1242_jeb_227801 crossref_primary_10_1073_pnas_2418199122 crossref_primary_10_1242_jeb_245195 crossref_primary_10_1242_jeb_218750 crossref_primary_10_1038_s42003_023_05196_0 crossref_primary_10_1016_j_cbpa_2023_111388 crossref_primary_10_1242_jeb_245749 crossref_primary_10_1111_1365_2435_14620 crossref_primary_10_1242_jeb_242479 crossref_primary_10_1111_1365_2435_14622 crossref_primary_10_1038_s41586_022_05334_4 crossref_primary_10_3920_JIFF2021_0092 crossref_primary_10_1038_s41598_021_92004_6 crossref_primary_10_1016_j_jinsphys_2020_104157 crossref_primary_10_1111_1365_2435_13829 crossref_primary_10_1093_jxb_erae096 crossref_primary_10_1111_ele_14421 crossref_primary_10_1016_j_jtherbio_2023_103583 crossref_primary_10_1111_1365_2435_13279 crossref_primary_10_1086_716176 crossref_primary_10_1111_gcb_16710 crossref_primary_10_1016_j_jinsphys_2021_104323 crossref_primary_10_1038_s41558_021_01047_0 crossref_primary_10_3389_fphys_2022_897174 crossref_primary_10_3389_fgene_2021_734255 crossref_primary_10_1016_j_baae_2023_01_002 crossref_primary_10_1242_jeb_230797 crossref_primary_10_1111_1365_2656_13653 crossref_primary_10_1111_1744_7917_12742 crossref_primary_10_1093_genetics_iyae040 crossref_primary_10_1016_j_cbpa_2023_111522 crossref_primary_10_1242_jeb_247706 crossref_primary_10_1016_j_jtherbio_2022_103338 crossref_primary_10_1098_rstb_2022_0490 crossref_primary_10_1016_j_jtherbio_2022_103339 crossref_primary_10_1242_jeb_245645 crossref_primary_10_1016_j_envpol_2021_117019 crossref_primary_10_1098_rstb_2022_0011 crossref_primary_10_1016_j_tree_2022_08_008 crossref_primary_10_1016_j_jspr_2022_101979 crossref_primary_10_1016_j_tree_2021_07_001 crossref_primary_10_1016_j_jinsphys_2019_103946 crossref_primary_10_1098_rsbl_2019_0613 crossref_primary_10_1016_j_envpol_2021_118333 crossref_primary_10_3354_meps14414 crossref_primary_10_1002_bes2_1607 crossref_primary_10_1242_jeb_244729 crossref_primary_10_1002_ecm_1597 crossref_primary_10_1016_j_oneear_2023_09_001 crossref_primary_10_1093_conphys_coaa038 crossref_primary_10_1086_716577 crossref_primary_10_1002_ps_6494 crossref_primary_10_1186_s12915_024_02072_z crossref_primary_10_1111_gcb_14713 crossref_primary_10_1098_rspb_2023_0507 crossref_primary_10_1111_ele_14416 crossref_primary_10_1111_geb_13106 crossref_primary_10_1007_s13592_020_00811_z crossref_primary_10_1016_j_jinsphys_2021_104268 crossref_primary_10_1071_MF22260 crossref_primary_10_1002_ece3_6229 crossref_primary_10_1093_biosci_biac080 crossref_primary_10_1016_j_tree_2020_05_006 crossref_primary_10_1016_j_jtherbio_2022_103439 crossref_primary_10_1111_phen_12454 crossref_primary_10_1002_ecy_3134 crossref_primary_10_1111_gcb_15761 crossref_primary_10_1111_gcb_16453 crossref_primary_10_1086_715012 crossref_primary_10_1098_rsbl_2023_0106 crossref_primary_10_1002_1873_3468_14701 crossref_primary_10_1016_j_jinsphys_2022_104362 crossref_primary_10_1016_j_rsma_2024_103467 crossref_primary_10_1371_journal_pntd_0009548 crossref_primary_10_1242_jeb_247221 crossref_primary_10_1371_journal_pone_0265361 crossref_primary_10_1111_1462_2920_16609 crossref_primary_10_1002_ecy_3629 crossref_primary_10_1098_rspb_2023_1305 crossref_primary_10_1007_s10682_022_10154_z crossref_primary_10_1098_rspb_2019_0174 crossref_primary_10_1016_j_cbpa_2019_110626 crossref_primary_10_1111_ecog_06884 crossref_primary_10_3390_insects11080537 crossref_primary_10_1242_jeb_213405 crossref_primary_10_1016_j_jinsphys_2020_104075 crossref_primary_10_1111_icad_12541 crossref_primary_10_1111_geb_13570 crossref_primary_10_1038_s41597_024_04191_2 crossref_primary_10_1126_science_aba9287 crossref_primary_10_1016_j_scitotenv_2024_176120 crossref_primary_10_1111_1365_2656_14149 crossref_primary_10_1073_pnas_2119872119 crossref_primary_10_1111_ele_14083 crossref_primary_10_1093_evolut_qpae126 crossref_primary_10_1016_j_envpol_2021_117217 crossref_primary_10_1016_j_jtherbio_2021_103110 crossref_primary_10_1242_jeb_244514 crossref_primary_10_1016_j_cris_2020_100005 crossref_primary_10_1016_j_jtherbio_2023_103673 crossref_primary_10_1242_jeb_249402 |
Cites_doi | 10.1111/gcb.12521 10.1007/s00442-012-2262-7 10.1111/j.1365-2435.2012.02013.x 10.1371/journal.pone.0032758 10.1016/j.jinsphys.2017.07.005 10.1242/jeb.171629 10.1038/nclimate1539 10.1111/j.1420-9101.2004.00876.x 10.1371/journal.pone.0032083 10.1034/j.1600-0706.2000.890211.x 10.1016/j.agrformet.2011.03.002 10.1073/pnas.1207553109 10.1242/jeb.076356 10.1016/S0065-2806(06)33002-0 10.1098/rspb.2000.1065 10.1603/029.102.0342 10.1111/j.1420-9101.2010.02110.x 10.1016/j.jtherbio.2008.04.001 10.1111/1365-2435.12310 10.1086/661780 10.1139/z97-783 10.1111/j.1365-2435.2011.01908.x 10.1093/jee/97.6.1868 10.1111/j.1365-2435.2008.01481.x 10.1046/j.1461-0248.2002.00367.x 10.1098/rspb.2010.1295 10.1016/j.jtherbio.2011.07.005 10.1002/joc.5086 10.1093/infdis/29.5.528 10.1111/1365-2435.13279 10.1086/668851 10.1016/j.jinsphys.2018.09.002 10.1242/jeb.204.9.1659 10.1007/BF00001494 10.1086/physzool.59.6.30158609 10.1126/science.289.5487.2068 10.1098/rspb.2007.0985 10.1242/jeb.167858 10.1086/284423 10.1111/j.1365-2435.2009.01666.x 10.1242/jeb.061283 10.1111/evo.12757 10.1111/1365-2435.12499 10.1007/978-0-387-21706-2 10.1007/978-94-009-3127-5 10.1111/1365-2435.12268 |
ContentType | Journal Article |
Copyright | 2019 The Authors. © 2019 British Ecological Society 2019 The Authors. Functional Ecology © 2019 British Ecological Society Functional Ecology © 2019 British Ecological Society |
Copyright_xml | – notice: 2019 The Authors. © 2019 British Ecological Society – notice: 2019 The Authors. Functional Ecology © 2019 British Ecological Society – notice: Functional Ecology © 2019 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.13279 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 642 |
ExternalDocumentID | 10_1111_1365_2435_13279 FEC13279 48582939 |
Genre | article |
GrantInformation_xml | – fundername: The Danish National Council for Independent Research - Natural Sciences |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABTLG ACAHQ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ABXSQ ACCFJ ACCMX ACHIC ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD LW6 MVM VOH WRC ZY4 AAYXX ABSQW AGUYK CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4779-b319d8a1dff1513e7802876fef5d0777c51f4b063c9e3ebfb127f2a76a568d213 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:24:38 EDT 2025 Sun Jul 13 05:23:58 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 01:15:49 EDT 2025 Wed Jan 22 16:51:18 EST 2025 Thu Jul 03 21:33:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4779-b319d8a1dff1513e7802876fef5d0777c51f4b063c9e3ebfb127f2a76a568d213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4438-4558 0000-0003-3460-1819 0000-0002-2851-4551 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13279 |
PQID | 2202962169 |
PQPubID | 1066355 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2237555903 proquest_journals_2202962169 crossref_primary_10_1111_1365_2435_13279 crossref_citationtrail_10_1111_1365_2435_13279 wiley_primary_10_1111_1365_2435_13279_FEC13279 jstor_primary_48582939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2011; 278 1982; 16 2000; 89 2006; 33 2016; 30 1985; 126 2008; 33 2014; 28 2012; 169 2011; 151 2014; 20 2010; 23 2010; 24 2000; 289 1990 1987 2012; 26 2011; 25 2009; 23 2011; 214 2018; 221 2002; 5 2013; 86 1921; 29 1986; 59 2008 1986; 17 2011; 36 2002 2011; 178 2012; 109 2001; 204 2018; 111 2015; 69 2004; 97 2012; 2 2015; 29 2000; 267 1997; 75 2013; 216 2007; 274 2019 2017 2009; 102 2016 2013 2017; 101 2012; 7 2005; 18 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 Kelty J. D. (e_1_2_9_21_1) 2001; 204 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Kirtman B. (e_1_2_9_24_1) 2013 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Johnston I. A. (e_1_2_9_18_1) 2008 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Willmer P. G. (e_1_2_9_52_1) 1982; 16 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 Schmidt‐Nielsen K. (e_1_2_9_39_1) 1990 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 R Core Team (e_1_2_9_35_1) 2016 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 126 start-page: 362 issue: 3 year: 1985 end-page: 386 article-title: The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms publication-title: The American Naturalist – volume: 89 start-page: 301 issue: 2 year: 2000 end-page: 304 article-title: Correlations between measures of thermal stress resistance within and between species publication-title: Oikos – volume: 278 start-page: 1823 issue: 1713 year: 2011 end-page: 1830 article-title: Global analysis of thermal tolerance and latitude in ectotherms publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 7 start-page: e32758 issue: 3 year: 2012 article-title: Validity of thermal ramping assays used to assess thermal tolerance in Arthropods publication-title: PLoS ONE – volume: 216 start-page: 809 issue: 5 year: 2013 end-page: 814 article-title: Cellular damage as induced by high temperature is dependent on rate of temperature change ‐ investigating consequences of ramping rates on molecular and organismal phenotypes in publication-title: Journal of Experimental Biology – volume: 23 start-page: 2484 issue: 11 year: 2010 end-page: 2493 article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia publication-title: Journal of Evolutionary Biology – volume: 109 start-page: 16228 issue: 40 year: 2012 end-page: 16233 article-title: Upper thermal limits of are linked to species distributions and strongly constrained phylogenetically publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 97 start-page: 1868 issue: 6 year: 2004 end-page: 1873 article-title: Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae) publication-title: Journal of Economic Entomology – volume: 111 start-page: 629 year: 2018 end-page: 7 article-title: How much starvation, desiccation and oxygen depletion can tolerate before its upper thermal limits are affected? publication-title: Journal of Insect Physiology – volume: 289 start-page: 2068 issue: 5487 year: 2000 end-page: 2074 article-title: Climate extremes: Observations, modeling, and impacts publication-title: Science – volume: 20 start-page: 1738 issue: 6 year: 2014 end-page: 1750 article-title: Sensitivity to thermal extremes in Australian implies similar impacts of climate change on the distribution of widespread and tropical species publication-title: Global Change Biology – volume: 178 start-page: S80 issue: S1 year: 2011 end-page: S96 article-title: Thermal tolerance in widespread and tropical species: Does phenotypic plasticity increase with latitude? publication-title: The American Naturalist – year: 1990 – volume: 5 start-page: 614 year: 2002 end-page: 618 article-title: Opposing clines for high and low temperature resistance in publication-title: Ecology Letters – volume: 26 start-page: 844 issue: 4 year: 2012 end-page: 853 article-title: Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf‐dwelling organisms publication-title: Functional Ecology – volume: 24 start-page: 694 issue: 3 year: 2010 end-page: 700 article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in publication-title: Functional Ecology – volume: 23 start-page: 133 issue: 1 year: 2009 end-page: 140 article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context publication-title: Functional Ecology – volume: 221 start-page: jeb171629 issue: 8 year: 2018 article-title: Thermal strategies vary with life history stage publication-title: Journal of Experimental Biology – volume: 2 start-page: 686 issue: 9 year: 2012 end-page: 690 article-title: Thermal tolerance and the global redistribution of animals publication-title: Nature Climate Change – year: 2008 – volume: 7 start-page: e32083 issue: 2 year: 2012 article-title: Considerations for assessing maximum critical temperatures in small ectothermic animals: Insights from leaf‐cutting ants publication-title: PLoS ONE – volume: 25 start-page: 1169 issue: 6 year: 2011 end-page: 1180 article-title: Making sense of heat tolerance estimates in ectotherms: Lessons from publication-title: Functional Ecology – volume: 29 start-page: 528 issue: 5 year: 1921 end-page: 536 article-title: The logarithmic nature of thermal death time curves publication-title: Journal of Infectious Diseases – volume: 17 start-page: 281 issue: 4 year: 1986 end-page: 290 article-title: Reconciling the two methods of measuring upper lethal temperatures in fishes publication-title: Environmental Biology of Fishes – volume: 30 start-page: 442 year: 2016 end-page: 452 article-title: Evolutionary potential of multiple measures of upper thermal tolerance in publication-title: Functional Ecology – year: 2019 – volume: 102 start-page: 1182 issue: 3 year: 2009 end-page: 1188 article-title: Lethal effects of heat and use of localized heat treatment for control of bed bug infestations publication-title: Journal of Economic Entomology – volume: 16 start-page: 629 issue: 1 year: 1982 end-page: 57 article-title: Microclimate and the environmental physiology of insects publication-title: Advances in Insect Physiology – volume: 151 start-page: 1417 issue: 11 year: 2011 end-page: 1428 article-title: A sub‐continental scale living laboratory: Spatial patterns of savanna vegetation over a rainfall gradient in northern Australia publication-title: Agricultural and Forest Meteorology – volume: 214 start-page: 3713 year: 2011 end-page: 3725 article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures publication-title: Journal of Experimental Biology – year: 1987 – volume: 267 start-page: 739 issue: 1445 year: 2000 end-page: 745 article-title: Thermal tolerance, climatic variability and latitude publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences – volume: 204 start-page: 1659 year: 2001 end-page: 1666 article-title: Rapid cold‐hardening of (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles publication-title: The Journal of Experimental Biology – volume: 169 start-page: 1063 issue: 4 year: 2012 end-page: 1074 article-title: Assembling an ant community: Species functional traits reflect environmental filtering publication-title: Oecologia – volume: 33 start-page: 320 issue: 6 year: 2008 end-page: 323 article-title: Unifying indices of heat tolerance in ectotherms publication-title: Journal of Thermal Biology – volume: 59 start-page: 616 issue: 6 year: 1986 end-page: 626 article-title: Comparative thermoregulation of four montane butterflies of different mass publication-title: Physiological Zoology – volume: 101 start-page: 97 issue: May year: 2017 end-page: 106 article-title: A critical test of anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO publication-title: Journal of Insect Physiology – year: 2016 – volume: 33 start-page: 50 year: 2006 end-page: 152 article-title: Physiological diversity in insects: Ecological and evolutionary contexts publication-title: Advances in Insect Physiology – volume: 86 start-page: 73 issue: 1 year: 2013 end-page: 81 article-title: Thermal resistance and performance correlate with climate in populations of a widespread mosquito publication-title: Physiological and Biochemical Zoology – volume: 18 start-page: 829 issue: 4 year: 2005 end-page: 837 article-title: Altitudinal variation for stress resistance traits and thermal adaptation in adult from the New World publication-title: Journal of Evolutionary Biology – volume: 29 start-page: 55 issue: 1 year: 2015 end-page: 65 article-title: How to assess cold tolerance: Chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits publication-title: Functional Ecology – volume: 75 start-page: 1561 issue: 10 year: 1997 end-page: 1574 article-title: The critical thermal maximum: History and critique publication-title: Canadian Journal of Zoology – year: 2017 article-title: Worldclim2: New 1‐km spatial resolution climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 36 start-page: 409 issue: 7 year: 2011 end-page: 416 article-title: Assessing population and environmental effects on thermal resistance in using ecologically relevant assays publication-title: Journal of Thermal Biology – volume: 274 start-page: 2935 issue: 1628 year: 2007 end-page: 2942 article-title: Critical thermal limits depend on methodological context publication-title: Proceedings of the Royal Society B: Biological Sciences – year: 2002 – volume: 221 issue: 12 year: 2018 article-title: The analysis and interpretation of critical temperatures publication-title: Journal of Experimental Biology – volume: 28 start-page: 799 issue: 4 year: 2014 end-page: 809 article-title: Tolerance landscapes in thermal ecology publication-title: Functional Ecology – start-page: 953 year: 2013 end-page: 1028 – volume: 69 start-page: 2721 issue: 10 year: 2015 end-page: 2734 article-title: Heat tolerance in along a latitudinal gradient: Contrasting patterns between plastic and genetic responses publication-title: Evolution – ident: e_1_2_9_30_1 doi: 10.1111/gcb.12521 – ident: e_1_2_9_51_1 doi: 10.1007/s00442-012-2262-7 – ident: e_1_2_9_34_1 doi: 10.1111/j.1365-2435.2012.02013.x – ident: e_1_2_9_32_1 doi: 10.1371/journal.pone.0032758 – ident: e_1_2_9_26_1 doi: 10.1016/j.jinsphys.2017.07.005 – volume-title: Animal physiology: Adaptation and environment year: 1990 ident: e_1_2_9_39_1 – ident: e_1_2_9_48_1 doi: 10.1242/jeb.171629 – ident: e_1_2_9_45_1 doi: 10.1038/nclimate1539 – ident: e_1_2_9_42_1 doi: 10.1111/j.1420-9101.2004.00876.x – ident: e_1_2_9_37_1 doi: 10.1371/journal.pone.0032083 – ident: e_1_2_9_4_1 doi: 10.1034/j.1600-0706.2000.890211.x – ident: e_1_2_9_16_1 doi: 10.1016/j.agrformet.2011.03.002 – ident: e_1_2_9_20_1 doi: 10.1073/pnas.1207553109 – ident: e_1_2_9_41_1 doi: 10.1242/jeb.076356 – ident: e_1_2_9_8_1 doi: 10.1016/S0065-2806(06)33002-0 – ident: e_1_2_9_2_1 doi: 10.1098/rspb.2000.1065 – ident: e_1_2_9_33_1 doi: 10.1603/029.102.0342 – ident: e_1_2_9_40_1 doi: 10.1111/j.1420-9101.2010.02110.x – volume-title: Animals and temperature: Phenotypic and evolutionary adaptation (Vol. 59) year: 2008 ident: e_1_2_9_18_1 – ident: e_1_2_9_9_1 doi: 10.1016/j.jtherbio.2008.04.001 – ident: e_1_2_9_3_1 doi: 10.1111/1365-2435.12310 – ident: e_1_2_9_31_1 doi: 10.1086/661780 – ident: e_1_2_9_25_1 doi: 10.1139/z97-783 – ident: e_1_2_9_38_1 doi: 10.1111/j.1365-2435.2011.01908.x – volume-title: R: A language and environment for statistical computing year: 2016 ident: e_1_2_9_35_1 – ident: e_1_2_9_17_1 doi: 10.1093/jee/97.6.1868 – ident: e_1_2_9_7_1 doi: 10.1111/j.1365-2435.2008.01481.x – start-page: 953 volume-title: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_9_24_1 – ident: e_1_2_9_15_1 doi: 10.1046/j.1461-0248.2002.00367.x – ident: e_1_2_9_44_1 doi: 10.1098/rspb.2010.1295 – ident: e_1_2_9_29_1 doi: 10.1016/j.jtherbio.2011.07.005 – ident: e_1_2_9_12_1 doi: 10.1002/joc.5086 – ident: e_1_2_9_5_1 doi: 10.1093/infdis/29.5.528 – ident: e_1_2_9_19_1 doi: 10.1111/1365-2435.13279 – ident: e_1_2_9_50_1 doi: 10.1086/668851 – ident: e_1_2_9_27_1 doi: 10.1016/j.jinsphys.2018.09.002 – volume: 204 start-page: 1659 year: 2001 ident: e_1_2_9_21_1 article-title: Rapid cold‐hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.204.9.1659 – ident: e_1_2_9_22_1 doi: 10.1007/BF00001494 – ident: e_1_2_9_14_1 doi: 10.1086/physzool.59.6.30158609 – ident: e_1_2_9_11_1 doi: 10.1126/science.289.5487.2068 – ident: e_1_2_9_46_1 doi: 10.1098/rspb.2007.0985 – volume: 16 start-page: 629 issue: 1 year: 1982 ident: e_1_2_9_52_1 article-title: Microclimate and the environmental physiology of insects publication-title: Advances in Insect Physiology – ident: e_1_2_9_23_1 doi: 10.1242/jeb.167858 – ident: e_1_2_9_43_1 doi: 10.1086/284423 – ident: e_1_2_9_28_1 doi: 10.1111/j.1365-2435.2009.01666.x – ident: e_1_2_9_47_1 doi: 10.1242/jeb.061283 – ident: e_1_2_9_6_1 doi: 10.1111/evo.12757 – ident: e_1_2_9_13_1 doi: 10.1111/1365-2435.12499 – ident: e_1_2_9_49_1 doi: 10.1007/978-0-387-21706-2 – ident: e_1_2_9_10_1 doi: 10.1007/978-94-009-3127-5 – ident: e_1_2_9_36_1 doi: 10.1111/1365-2435.12268 |
SSID | ssj0009522 |
Score | 2.5892365 |
Snippet | Thermal tolerance is a critical determinant of ectotherm distribution, which is likely to be influenced by future climate change. To predict such... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 629 |
SubjectTerms | ANIMAL PHYSIOLOGICAL ECOLOGY animals Assaying Climate change Correlation analysis critical thermal maximum CTmax Data collection distribution predictions Drosophila Ecological monitoring Ecotypes ectothermy Environmental gradient Heat heat coma heat death Heat distribution Heat stress Heat tolerance Insects Landscape Mathematical models Niches Species Temperature Temperature effects Temperature scales Temperature tolerance thermal death time curves Thermal environments Thermal stress |
Subtitle | Unifying static and dynamic tolerance assays to predict heat distribution limits |
Title | How to assess Drosophila heat tolerance |
URI | https://www.jstor.org/stable/48582939 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13279 https://www.proquest.com/docview/2202962169 https://www.proquest.com/docview/2237555903 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBejMOil7daGfqRDgx56cYjlD1m9lS4h7LDDaGE3o08oTZ0SO5Tsr997ku0mgVHGbg_rScjye9LvWe-DkCslnGZMyCi1zkQpANpI2CSOCiV5bIQSRnsv3x_57CH9_ivrvAkxFibkh-h_uKFm-P0aFVyqekPJg38WnPYjMKg4hvDhE4RFP9lG2t1wj8ByEcFJm7TJfdCXZ6f_1rkUXBO3QOcmdPVnz_SQqG7WweXkabRq1Ej_3kno-F-vdUQOWmRKb4MofSIfbPWZfAy1KtdATXRLDSZvwXHQod0d6mOyni1eabOg0l8k029LXyPhcS4p7vjQMrdYxsPeUEC6Pr6KYjzTo6ayMtSsK_kMdM-G48h1jSO-LPE-qQnjGMz125bponMM0KpPyMN0cn83i9rSDpFOOReRAs03hYyNcwA5EssLwDk8d9ZlZsw511nsUgXwSYPkWOVUzLhjkucyywvD4mRA9qpFZU8JFYBgs1w5ZmWBYcRFoozRYyG1lAqMyTMy6j5sqdu851h-Y1529g8ueYlLXvolPyPXfYeXkPLj76wDLyk9X1pkBQAoaBh2olO2m0JdMjZmImdxDs1f-2ZQZ7yjkZVdrJAn4RlYeeME5u3l5L05lNPJnSfO_7XDBdkH-CeCH9KQ7DXLlb0EiNWoL16L_gCreBpZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZoqqq9QGkbFQjUlTj0slHW-_CaWwWJQqEcEEjcVn5KiHSDko2q9Nd3xt5sAxKqEDdLY1te7zw-2_Mg5FAJpxkTMkqtM1EKgDYSNomjQkkeG6GE0d7L9yIfX6c_brKbtViYkB-ivXBDyfD6GgUcL6TXpDw4aIG578OJiotX5DXW9cYqBieXbC3xbnhJYLmIwNYmTXof9OZ5NMEDyxScEx_AznXw6q3PaIvo1bqD08ldf1Grvv7zKKXjyz7sPdlswCn9Hrhpm2zY6gN5E8pVLqE11E2rO_wXHwcDGgUx_0iW4-lvWk-p9G_J9GTmyyTcTiRFpQ-UicVKHvaIAtj1IVYUQ5puNZWVoWZZyV_QbrvhPHI5xxnvZ_ikVId5DKb7bSp10QnGaM0_kevR8Op4HDXVHSKdci4iBcJvChkb5wB1JJYXAHV47qzLzIBzrrPYpQoQlAbmscqpmHHHJM9llheGxUmXdKppZT8TKgDEZrlyzMoCI4mLRBmjB0JqKRWcJ3dIf_VnS92kPscKHJNydQTCLS9xy0u_5TvkWzvgPmT9eLpr17NK2y8tsgIwFBB6K94pG70wLxkbMJGzOAfy15YMEo3PNLKy0wX2SXgGB71BAuv2jPK_NZSj4bFv7D53wBfydnz187w8P7042yPvAA2K4JbUI516trD7gLhqdeBF6i9OHR5z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddy0Zf9h3arts02MNeHGLZlqy9jTYh7UYZY4W9GX1CWeaExKGkf33vJNtLC2OMvQlOOhTl7vST74uQ91p6w5hUSe68TXIAtIl0WZqUWonUSi2tCVG-F3x6mZ__KLpoQsyFifUh-g9uqBnBXqOCL6zfUvIYnwW3_RAeVEI-IHs5B5VBXPSNbdXdjY4ExmUCV23WVvfBYJ57DO5cTDE28Q7q3Mau4fKZPCG623aMOfk5XDd6aG7uVXT8r9_1lDxuoSn9FGXpGdlx9XPyMDar3MBobNrRYPw7Ow4WtOZh9YJspvNr2sypCp5keroMTRKuZoqiyQfKzGEfD_eRAtQNCVYUE5quDFW1pXZTq18w7qchH7VZIcfFEh1KTeRjsdhv26eLzjBDa_WSXE7G30-mSdvbITG5EDLRoPq2VKn1HjBH5kQJQEdw73xhR0IIU6Q-14CfDIiO016nTHimBFcFLy1LswHZree1OyBUAoQtuPbMqRLziMtMW2tGUhmlNLwmD8mw-2Mr0xY-x_4bs6p7AOGRV3jkVTjyQ_KhX7CINT_-PHUQJKWfl5dFCQgKCMed6FStVVhVjI2Y5CzlQH7Xk0Gf0Umjajdf45xMFPDMG2Ww7yAnf9tDNRmfhMHRvy54Sx59PZ1UX84uPr8i-wAFZYxJOia7zXLtXgPcavSboFC36gQdKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+assess+Drosophila+heat+tolerance%3A+Unifying+static+and+dynamic+tolerance+assays+to+predict+heat+distribution+limits&rft.jtitle=Functional+ecology&rft.au=J%C3%B8rgensen%2C+Lisa+Bjerregaard&rft.au=Malte%2C+Hans&rft.au=Overgaard%2C+Johannes&rft.au=White%2C+Craig&rft.date=2019-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=33&rft.issue=4&rft.spage=629&rft.epage=642&rft_id=info:doi/10.1111%2F1365-2435.13279&rft.externalDBID=10.1111%252F1365-2435.13279&rft.externalDocID=FEC13279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |