Engineering Single‐Atom Cobalt Catalysts toward Improved Electrocatalysis

The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐ato...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 15; pp. e1704319 - n/a
Main Authors Wan, Gang, Yu, Pengfei, Chen, Hangrong, Wen, Jianguo, Sun, Cheng‐jun, Zhou, Hua, Zhang, Nian, Li, Qianru, Zhao, Wanpeng, Xie, Bing, Li, Tao, Shi, Jianlin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications. A paradigm of coordination design and electronic engineering of single‐atom dispersed cobalt catalysts (SAC) is demonstrated, which leads to significantly enhanced electrocatalytic activities and selectivity, therefore presenting new oxygen electrocatalysis pathways via achieving the favored site–adsorbate interactions, and the illustration of the active sites in SAC indicates the metal‐natured catalytic sites and a media‐dependent catalytic pathway.
AbstractList The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications.
In this paper, the development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications.
The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications.The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications.
The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications. A paradigm of coordination design and electronic engineering of single‐atom dispersed cobalt catalysts (SAC) is demonstrated, which leads to significantly enhanced electrocatalytic activities and selectivity, therefore presenting new oxygen electrocatalysis pathways via achieving the favored site–adsorbate interactions, and the illustration of the active sites in SAC indicates the metal‐natured catalytic sites and a media‐dependent catalytic pathway.
Author Wan, Gang
Shi, Jianlin
Li, Qianru
Zhou, Hua
Zhang, Nian
Li, Tao
Wen, Jianguo
Sun, Cheng‐jun
Xie, Bing
Zhao, Wanpeng
Yu, Pengfei
Chen, Hangrong
Author_xml – sequence: 1
  givenname: Gang
  surname: Wan
  fullname: Wan, Gang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Pengfei
  surname: Yu
  fullname: Yu, Pengfei
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Hangrong
  surname: Chen
  fullname: Chen, Hangrong
  email: hrchen@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jianguo
  surname: Wen
  fullname: Wen, Jianguo
  organization: Argonne National Laboratory
– sequence: 5
  givenname: Cheng‐jun
  surname: Sun
  fullname: Sun, Cheng‐jun
  organization: Argonne National Laboratory
– sequence: 6
  givenname: Hua
  surname: Zhou
  fullname: Zhou, Hua
  organization: Argonne National Laboratory
– sequence: 7
  givenname: Nian
  surname: Zhang
  fullname: Zhang, Nian
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Qianru
  surname: Li
  fullname: Li, Qianru
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Wanpeng
  surname: Zhao
  fullname: Zhao, Wanpeng
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Bing
  surname: Xie
  fullname: Xie, Bing
  organization: Illinois Institute of Technology
– sequence: 11
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  email: taoli@aps.anl.gov
  organization: Northern Illinois University
– sequence: 12
  givenname: Jianlin
  orcidid: 0000-0001-8790-195X
  surname: Shi
  fullname: Shi, Jianlin
  email: jlshi@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29504227$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1474147$$D View this record in Osti.gov
BookMark eNqFkU9vFCEYh4lpY9vVq0cz0Usvu8ILMzDHZrOtjdv0UD0ThmEqDQMVWJu99SP4Gf0kspm6TZoYD_w5PA-87_s7QQc-eIPQO4IXBGP4lEbnFoAJx4yS9hU6Jg2h80ZAe7C_E3yETlK6w5gSYPw1OoK2xgyAH6MvK39rvTHR-tvqpmzO_H78dZbDWC1Dp1yuliort005VTk8qNhXl-N9DD9NX62c0TkGPQE2vUGHg3LJvH06Z-jb-err8vN8fX1xuTxbzzXjvJ1Tw0RXKwAQvaHdAKQeQAEXIFRNQQzNYBrV0bpnjBPSkabmRGAgom-6Qbd0hj5M74aUrUzaZqO_6-B9KUcSxllZBTqdoFLsj41JWY42aeOc8iZskiwzw4IKCjv04wv0LmyiLy0UCmpWC1rAGXr_RG260fTyPtpRxa38O8sCLCZAx5BSNMMeIVjuwpK7sOQ-rCKwF0JpRWUbfI7Kun9r7aQ9WGe2__lE3lyt18_uH3EwqEw
CitedBy_id crossref_primary_10_1016_j_fuproc_2023_107879
crossref_primary_10_1039_C9TA11852G
crossref_primary_10_1039_C9EE01722D
crossref_primary_10_1016_j_cej_2021_131011
crossref_primary_10_1021_acscatal_8b02556
crossref_primary_10_1021_acs_jpcc_1c04718
crossref_primary_10_1002_ange_201806936
crossref_primary_10_1021_acsanm_4c02723
crossref_primary_10_1002_smll_201804524
crossref_primary_10_1016_j_electacta_2020_135696
crossref_primary_10_1007_s40843_019_1286_1
crossref_primary_10_1016_j_ijhydene_2021_12_118
crossref_primary_10_1002_adsu_202100281
crossref_primary_10_1002_anie_202115503
crossref_primary_10_1016_j_joule_2019_09_015
crossref_primary_10_1002_smtd_201800354
crossref_primary_10_1039_C8NR09300H
crossref_primary_10_1002_smm2_1085
crossref_primary_10_1002_smtd_201800501
crossref_primary_10_1021_jacs_9b09234
crossref_primary_10_1021_acs_accounts_1c00248
crossref_primary_10_1039_D2TA08808H
crossref_primary_10_1039_D0GC03498C
crossref_primary_10_1002_adma_201905622
crossref_primary_10_1016_j_ijhydene_2023_05_055
crossref_primary_10_1002_anie_201806936
crossref_primary_10_1039_D1MA00720C
crossref_primary_10_1021_acsami_0c05481
crossref_primary_10_1021_acs_analchem_3c05053
crossref_primary_10_1039_D2NR02989H
crossref_primary_10_1002_adma_202000966
crossref_primary_10_1016_j_ccr_2022_214710
crossref_primary_10_1021_acsami_9b19980
crossref_primary_10_1021_acsaem_8b00490
crossref_primary_10_1021_acsami_2c19713
crossref_primary_10_1016_j_apcatb_2024_124903
crossref_primary_10_1002_aenm_201801226
crossref_primary_10_1016_j_electacta_2023_142060
crossref_primary_10_1002_smll_202303263
crossref_primary_10_1039_D2QI00668E
crossref_primary_10_1002_adfm_201804497
crossref_primary_10_1002_smtd_201800450
crossref_primary_10_1002_adfm_202003870
crossref_primary_10_1088_1361_6528_ab1d01
crossref_primary_10_1039_D1TA04511C
crossref_primary_10_1002_adfm_202000768
crossref_primary_10_1002_sstr_202100169
crossref_primary_10_1016_j_coelec_2020_01_002
crossref_primary_10_1039_D1EE02884G
crossref_primary_10_1039_D4CC00265B
crossref_primary_10_1016_j_coelec_2022_101206
crossref_primary_10_1002_ange_202115503
crossref_primary_10_1002_adfm_202103857
crossref_primary_10_1002_aenm_202100303
crossref_primary_10_1016_j_apsusc_2020_147362
crossref_primary_10_1016_j_ccr_2021_213954
crossref_primary_10_1007_s12274_021_3479_8
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1002_smtd_202000315
crossref_primary_10_1002_cey2_74
crossref_primary_10_1039_D0TA08732G
crossref_primary_10_1039_D2CY00930G
crossref_primary_10_1016_j_coelec_2020_100646
crossref_primary_10_1002_smll_202308530
crossref_primary_10_1002_smll_202207675
crossref_primary_10_1002_smtd_201900159
crossref_primary_10_1021_acs_jpcc_0c05998
crossref_primary_10_1016_j_jpcs_2021_109989
crossref_primary_10_1021_acsestwater_4c00229
crossref_primary_10_1016_j_enconman_2022_115754
crossref_primary_10_1016_j_jpowsour_2021_230143
crossref_primary_10_1016_j_jelechem_2019_03_056
crossref_primary_10_1016_j_mtener_2021_100761
crossref_primary_10_1002_celc_202000595
crossref_primary_10_1039_C9TA12468C
crossref_primary_10_1016_j_jcis_2022_03_083
crossref_primary_10_1002_aenm_201900375
crossref_primary_10_1002_adma_201905548
crossref_primary_10_1002_smll_201905363
crossref_primary_10_1002_asia_201901571
crossref_primary_10_1016_j_carbon_2018_12_051
crossref_primary_10_1002_cssc_202002137
crossref_primary_10_1039_D1TA03019A
crossref_primary_10_1002_anie_201811099
crossref_primary_10_1016_j_jelechem_2019_113478
crossref_primary_10_1002_smtd_202100947
crossref_primary_10_1002_adfm_202103360
crossref_primary_10_1002_aenm_201803689
crossref_primary_10_1039_C9CS00869A
crossref_primary_10_3390_bios13070748
crossref_primary_10_1002_adts_201800158
crossref_primary_10_1039_C9TA03011E
crossref_primary_10_1088_1674_1056_ab5d04
crossref_primary_10_1002_adma_202001848
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1002_ange_201811099
crossref_primary_10_1021_acscatal_0c05479
crossref_primary_10_1021_acscatal_0c01950
crossref_primary_10_1039_D3TA03923D
Cites_doi 10.1038/nchem.1069
10.1016/S1872-2067(16)62520-2
10.1039/c3ee43463j
10.1021/nl070586o
10.1021/jacs.7b10385
10.1002/anie.201505236
10.1038/s41467-017-01100-7
10.1038/nmat4367
10.1149/2.1091506jes
10.1126/science.aan2255
10.1038/1921068a0
10.1002/celc.201500385
10.1002/anie.201308896
10.1039/c0sc00281j
10.1021/jacs.7b01602
10.1039/c0cp00018c
10.1021/ar400011z
10.1557/mrs.2016.113
10.1039/C0EE00011F
10.1002/anie.201703864
10.1038/ncomms9668
10.1021/jacs.7b05130
10.1021/jacs.7b06514
10.1039/B509853J
10.1021/jacs.6b13100
10.1002/adma.201304676
10.1002/adma.201306328
10.1021/acscatal.5b01223
10.1038/nnano.2012.72
10.1021/cm500805c
10.1039/c1cp23029h
10.1002/anie.201500569
10.1021/am900219g
10.1021/ja054812c
10.1038/nchem.1095
10.1021/ar300361m
10.1002/adma.201304238
10.1002/aenm.201301415
10.1021/jp810792d
10.1039/C2CP42609A
10.1039/c2ee21802j
10.1039/C6SC02105K
10.1021/ic00262a027
10.1021/jp906408y
10.1126/science.aaf8800
10.1007/s11244-007-9000-0
10.1039/b806783j
10.1016/j.nanoen.2017.03.027
10.1038/srep09286
10.1002/anie.201307319
10.1021/acs.chemrev.5b00462
10.1002/adma.201502315
10.1002/anie.200462473
10.1021/ic501080c
10.1021/jp103859w
10.1002/chem.201003080
10.1021/acscatal.6b01534
10.1126/science.1170051
10.1016/j.ccr.2004.03.018
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OIOZB
OTOTI
DOI 10.1002/smll.201704319
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 1474147
29504227
10_1002_smll_201704319
SMLL201704319
Genre article
Journal Article
GrantInformation_xml – fundername: National Key Basic Research Program of China
  funderid: 2013CB933200
– fundername: Shanghai International Cooperation project
  funderid: 16520710200
– fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences
  funderid: DE‐AC02‐06CH11357; DE‐AC02‐06CH11357
– fundername: China National Funds for Distinguished Young Scientists
  funderid: 51225202
– fundername: Canadian Light Source
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
NPM
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
7X8
AAPBV
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c4779-3e48b5a2228de3bf215f2a27828a5328f6fe6ab35d44711b1657180218d6bfc93
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu May 18 22:51:04 EDT 2023
Fri Jul 11 13:20:46 EDT 2025
Fri Jul 25 12:13:14 EDT 2025
Wed Feb 19 02:34:47 EST 2025
Tue Jul 01 02:10:34 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Wed Jan 22 16:54:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords selectivity
single-atom dispersed catalysts
media dependence
metal-adsorbate interactions
electrocatalysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4779-3e48b5a2228de3bf215f2a27828a5328f6fe6ab35d44711b1657180218d6bfc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357
USDOE
National Key Basic Research Program of China
ORCID 0000-0001-8790-195X
000000018790195X
OpenAccessLink https://www.osti.gov/servlets/purl/1474147
PMID 29504227
PQID 2025458338
PQPubID 1046358
PageCount 7
ParticipantIDs osti_scitechconnect_1474147
proquest_miscellaneous_2010838327
proquest_journals_2025458338
pubmed_primary_29504227
crossref_primary_10_1002_smll_201704319
crossref_citationtrail_10_1002_smll_201704319
wiley_primary_10_1002_smll_201704319_SMLL201704319
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Apr
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-Apr
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 2
2015; 162
2017; 8
2005 2006; 249 35
2015; 5
2014 2016; 26 41
2011 2015; 3 14
2005 2013 2015 2016 2017 2015 2017 2017; 44 46 6 353 7 5 139 139
2009; 113
2011; 13
2011; 3
1961; 192
2016; 37
2017; 357
2017; 139
2007 2008; 7 10
2016; 7
2013; 15
2015; 27
2010; 1
2012 2014 2014; 5 26 53
2010; 114
2017 2017 2017 2017; 139 139 35 56
2013 2014; 46 4
2009 2011 2014 2015 2011 2015; 1 17 26 54 4 54
2016; 116
2005 2010; 127 12
2012; 7
2014; 7
2014 2014; 53 26
2007; 46
2009; 324
1987; 26
2014; 53
e_1_2_4_21_1
e_1_2_4_23_1
e_1_2_4_25_1
e_1_2_4_23_2
e_1_2_4_27_1
e_1_2_4_29_1
e_1_2_4_29_2
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_7_3
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_7_5
e_1_2_4_7_4
e_1_2_4_7_6
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_33_2
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_12_2
e_1_2_4_12_3
e_1_2_4_14_1
e_1_2_4_33_3
e_1_2_4_35_1
e_1_2_4_12_4
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_20_1
e_1_2_4_22_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_28_1
e_1_2_4_2_2
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_30_2
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_11_2
e_1_2_4_11_3
e_1_2_4_13_1
e_1_2_4_11_4
e_1_2_4_13_2
e_1_2_4_34_2
e_1_2_4_11_5
e_1_2_4_15_1
e_1_2_4_11_6
e_1_2_4_11_7
e_1_2_4_11_8
e_1_2_4_17_1
e_1_2_4_19_2
e_1_2_4_19_1
References_xml – volume: 324
  start-page: 71
  year: 2009
  publication-title: Science
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 2
  start-page: 1408
  year: 2015
  publication-title: ChemElectroChem
– volume: 7
  start-page: 5758
  year: 2016
  publication-title: Chem. Sci.
– volume: 8
  start-page: 957
  year: 2017
  publication-title: Nat. Commun.
– volume: 5 26 53
  start-page: 7936 3460 1570
  year: 2012 2014 2014
  publication-title: Energy Environ. Sci. Chem. Mater. Angew. Chem. Int. Ed.
– volume: 113
  start-page: 21629
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 2477
  year: 1987
  publication-title: Inorg. Chem.
– volume: 116
  start-page: 3594
  year: 2016
  publication-title: Chem. Rev.
– volume: 44 46 6 353 7 5 139 139
  start-page: 6456 1740 8668 150 34 6563 10790 14143
  year: 2005 2013 2015 2016 2017 2015 2017 2017
  publication-title: Angew. Chem., Int. Ed. Acc. Chem. Res. Nat. Commun. Science ACS Catal. ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 15
  start-page: 148
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 113
  start-page: 20689
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 27
  start-page: 5010
  year: 2015
  publication-title: Adv. Mater.
– volume: 139 139 35 56
  start-page: 6190 17281 9 13944
  year: 2017 2017 2017 2017
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Nano Energy Angew. Chem., Int. Ed.
– volume: 7
  start-page: 576
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 192
  start-page: 1068
  year: 1961
  publication-title: Nature
– volume: 46 4
  start-page: 1878 1301415
  year: 2013 2014
  publication-title: Acc. Chem. Res. Adv. Energy Mater.
– volume: 139
  start-page: 3336
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 285
  year: 2007
  publication-title: Top. Catal.
– volume: 5
  start-page: 4
  year: 2015
  publication-title: Sci. Rep.
– volume: 13
  start-page: 21437
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 162
  start-page: H403
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 394
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 3 14
  start-page: 546 937
  year: 2011 2015
  publication-title: Nat. Chem. Nat. Mater.
– volume: 1
  start-page: 411
  year: 2010
  publication-title: Chem. Sci.
– volume: 1 17 26 54 4 54
  start-page: 1623 2063 1093 14080 114 10102
  year: 2009 2011 2014 2015 2011 2015
  publication-title: ACS Appl. Mater. Inter. Chem. ‐ Eur. J. Adv. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci. Angew. Chem., Int. Ed.
– volume: 37
  start-page: 1443
  year: 2016
  publication-title: Chin. J. Catal.
– volume: 127 12
  start-page: 17576 10235
  year: 2005 2010
  publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys.
– volume: 7 10
  start-page: 1919 5882
  year: 2007 2008
  publication-title: Nano Lett. Phys. Chem. Chem. Phys.
– volume: 114
  start-page: 15190
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 634
  year: 2011
  publication-title: Nat. Chem.
– volume: 53
  start-page: 8505
  year: 2014
  publication-title: Inorg. Chem.
– volume: 249 35
  start-page: 31 1244
  year: 2005 2006
  publication-title: Coord. Chem. Rev. Chem. Soc. Rev.
– volume: 53 26
  start-page: 2433 3315
  year: 2014 2014
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 26 41
  start-page: 7710 466
  year: 2014 2016
  publication-title: Adv. Mater. MRS Bull.
– ident: e_1_2_4_2_1
  doi: 10.1038/nchem.1069
– ident: e_1_2_4_10_1
  doi: 10.1016/S1872-2067(16)62520-2
– ident: e_1_2_4_21_1
  doi: 10.1039/c3ee43463j
– ident: e_1_2_4_34_1
  doi: 10.1021/nl070586o
– ident: e_1_2_4_12_2
  doi: 10.1021/jacs.7b10385
– ident: e_1_2_4_7_4
  doi: 10.1002/anie.201505236
– ident: e_1_2_4_14_1
  doi: 10.1038/s41467-017-01100-7
– ident: e_1_2_4_2_2
  doi: 10.1038/nmat4367
– ident: e_1_2_4_17_1
  doi: 10.1149/2.1091506jes
– ident: e_1_2_4_35_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_4_20_1
  doi: 10.1038/1921068a0
– ident: e_1_2_4_3_1
  doi: 10.1002/celc.201500385
– ident: e_1_2_4_23_1
  doi: 10.1002/anie.201308896
– ident: e_1_2_4_28_1
  doi: 10.1039/c0sc00281j
– ident: e_1_2_4_12_1
  doi: 10.1021/jacs.7b01602
– ident: e_1_2_4_19_2
  doi: 10.1039/c0cp00018c
– ident: e_1_2_4_13_1
  doi: 10.1021/ar400011z
– ident: e_1_2_4_29_2
  doi: 10.1557/mrs.2016.113
– ident: e_1_2_4_7_5
  doi: 10.1039/C0EE00011F
– ident: e_1_2_4_12_4
  doi: 10.1002/anie.201703864
– ident: e_1_2_4_11_3
  doi: 10.1038/ncomms9668
– ident: e_1_2_4_11_7
  doi: 10.1021/jacs.7b05130
– ident: e_1_2_4_11_8
  doi: 10.1021/jacs.7b06514
– ident: e_1_2_4_30_2
  doi: 10.1039/B509853J
– ident: e_1_2_4_22_1
  doi: 10.1021/jacs.6b13100
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201304676
– ident: e_1_2_4_23_2
  doi: 10.1002/adma.201306328
– ident: e_1_2_4_11_6
  doi: 10.1021/acscatal.5b01223
– ident: e_1_2_4_32_1
  doi: 10.1038/nnano.2012.72
– ident: e_1_2_4_33_2
  doi: 10.1021/cm500805c
– ident: e_1_2_4_8_1
  doi: 10.1039/c1cp23029h
– ident: e_1_2_4_7_6
  doi: 10.1002/anie.201500569
– ident: e_1_2_4_7_1
  doi: 10.1021/am900219g
– ident: e_1_2_4_19_1
  doi: 10.1021/ja054812c
– ident: e_1_2_4_9_1
  doi: 10.1038/nchem.1095
– ident: e_1_2_4_11_2
  doi: 10.1021/ar300361m
– ident: e_1_2_4_7_3
  doi: 10.1002/adma.201304238
– ident: e_1_2_4_13_2
  doi: 10.1002/aenm.201301415
– ident: e_1_2_4_4_1
  doi: 10.1021/jp810792d
– ident: e_1_2_4_5_1
  doi: 10.1039/C2CP42609A
– ident: e_1_2_4_33_1
  doi: 10.1039/c2ee21802j
– ident: e_1_2_4_25_1
  doi: 10.1039/C6SC02105K
– ident: e_1_2_4_24_1
  doi: 10.1021/ic00262a027
– ident: e_1_2_4_15_1
  doi: 10.1021/jp906408y
– ident: e_1_2_4_11_4
  doi: 10.1126/science.aaf8800
– ident: e_1_2_4_6_1
  doi: 10.1007/s11244-007-9000-0
– ident: e_1_2_4_34_2
  doi: 10.1039/b806783j
– ident: e_1_2_4_12_3
  doi: 10.1016/j.nanoen.2017.03.027
– ident: e_1_2_4_31_1
  doi: 10.1038/srep09286
– ident: e_1_2_4_33_3
  doi: 10.1002/anie.201307319
– ident: e_1_2_4_27_1
  doi: 10.1021/acs.chemrev.5b00462
– ident: e_1_2_4_26_1
  doi: 10.1002/adma.201502315
– ident: e_1_2_4_11_1
  doi: 10.1002/anie.200462473
– ident: e_1_2_4_18_1
  doi: 10.1021/ic501080c
– ident: e_1_2_4_16_1
  doi: 10.1021/jp103859w
– ident: e_1_2_4_7_2
  doi: 10.1002/chem.201003080
– ident: e_1_2_4_11_5
  doi: 10.1021/acscatal.6b01534
– ident: e_1_2_4_1_1
  doi: 10.1126/science.1170051
– ident: e_1_2_4_30_1
  doi: 10.1016/j.ccr.2004.03.018
SSID ssj0031247
Score 2.5536666
Snippet The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive...
The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive...
In this paper, the development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy,...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1704319
SubjectTerms Adsorbates
Catalysis
Catalytic activity
Cobalt
Design optimization
Dispersion
electrocatalysis
Electronic engineering
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
media dependence
metal-adsorbate interactions
Nanotechnology
Noble metals
Oxygen reduction reactions
selectivity
Single atom catalysts
single-atom dispersed catalysts
Title Engineering Single‐Atom Cobalt Catalysts toward Improved Electrocatalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201704319
https://www.ncbi.nlm.nih.gov/pubmed/29504227
https://www.proquest.com/docview/2025458338
https://www.proquest.com/docview/2010838327
https://www.osti.gov/servlets/purl/1474147
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgX8qmICFxSku8ZDmiqlUFhQOLxC2yHUdClAaR9AAnPoFv5EuYiZvQIhASXKJYtiPH4_E8j8fPhBwqXynli8Q13FCX-yx1wQhGrpQhU14gBS_pms4v_P4NP70Vt1On-C0_RO1wQ80o52tUcKny9idpaP4wxK0DL0B6GDzBhwFbiIoua_4oBsarvF0FbJaLxFsVa-Mxbc9Wn7FKjQy06zvEOQtgSwvUWyKyarsNPLlvjQvV0i9faB3_83PLZHECT50TO55WyJwZrZKFKdLCNXI2lXKu4DE0769vJ0X24HSQXKRwOugSes6L3CnKoFzHei5M4nTtpTvaFrjL18lNr3vd6buTKxlczQMQITM8VEKi2ygxTKUAGFIqKcCMUApGw9RPjS8VEwkHq-cpzxcBcsx5YeKrVEdsgzRG2chsEUcqLrUwifI0LOrSIPISHqUhzLeJlpLxJnErkcR6wleO12YMY8u0TGPspLjupCY5qss_WqaOH0vuoIRjwBhIlKsxokgXsAgCdMWDJtmtBB9P9DmHuhR3GGE93yQHdTZoIm6vyJHJxljGAzwLMyR8YtMOmLohNBJItgY5tBT7Ly2Mr84Hgzq1_ZdKO2Qe3kMbZLRLGsXT2OwBfirUfqkjH1z4EkI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UA5tDwKLI82SEicwjZ-5HFEK9ACuxx4SNwi23Ek1GUXkewBTv0J_Y39JczEm5RFoErtJZJjO3I8Gc_n8eQbgD0daq1DmflWWOaLkOc-GsHEVyrmOoiUFBVd0-A87F2L0xtZRxPSvzCOH6JxuJFmVOs1KTg5pDt_WEOLuyGdHQQR8cMkH2Ce0npXu6qLhkGKo_mq8qug1fKJeqvmbfzOOrP9Z-xSa4z69RbmnIWwlQ06_gy6Hr0LPflxMCn1gXl6Rez4X6-3BJ-mCNU7dJ_UMszZ0QosvuAtXIWzFyXvEi9D-_vnr8NyfOd1iV-k9LrkFXosysIrq7hczzkvbOYdubw7xjW4Lb7A9fHRVbfnT7My-EZEKEVuRaylIs9RZrnOETPkTDFEGrGSnMV5mNtQaS4zgYYv0EEoI6KZC-Is1LlJ-Bq0RuOR3QBPaaGMtJkODO7r8igJMpHkMS65mVGKizb4tUxSM6Usp8wZw9SRLbOUJiltJqkN-037e0fW8W7LLRJxijCDuHINBRWZEvdBCLBE1IbtWvLpVKUL7MvokBG39G3YbapRGemERY3seEJtAoS0uEjiI9bdF9MMhCWS-NawhlVy_8sI08tBv9-UNv-l0zdY6F0N-mn_5PxsCz7i_djFHG1Dq3yY2B2EU6X-WinMM3gnFl0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkBA9lHcJLWAkJE5u633ZPlZpo0LTClEq9WbtU0JNk6p2DvTET-A38kuY8SYmQSAkuFiyd9Za7-zsfLs7_gbgjVHGGCVd6oVnqVA8pOgEy1Trgpss11K0dE3HJ-rwTLw_l-dLf_FHfohuw40so52vycCvXNj5SRpaX47p6CDLiR6mvA13hNotaFzvf-wIpDh6rza9CjqtlJi3FrSNu2xntf6KW-pN0bx-BzlXEWzrgob3QS8aHyNPLrZnjdm2N7_wOv7P1z2A9Tk-TfbigHoIt_zkEawtsRY-hqOlu-QUL2P__eu3vWZ6mQyIXaRJBrQn9KVu6qRpo3KTuHXhXXIQs-7YKPC5fgJnw4NPg8N0npMhtSJHHXIvCiM17Rs5z01AxBCYZogzCi05K4IKXmnDpRPo9jKTKZkTyVxWOGWCLflT6E2mE_8MEm2EttI7k1lc1YW8zJwoQ4ETrrNac9GHdKGSys4JyylvxriKVMusok6quk7qw9tO_ipSdfxRcpM0XCHIIKZcSyFFtsFVEMIrkfdha6H4am7QNdZldMSIC_o-vO6K0RTpfEVP_HRGMhkCWpwi8RUbccB0DWGlJLY1LGGt2v_Swur0eDTq7p7_S6VXcPfD_rAavTs52oR7-LiIAUdb0GuuZ_4FYqnGvGzN5Qc82hUV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Single%E2%80%90Atom+Cobalt+Catalysts+toward+Improved+Electrocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wan%2C+Gang&rft.au=Yu%2C+Pengfei&rft.au=Chen%2C+Hangrong&rft.au=Wen%2C+Jianguo&rft.date=2018-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=15&rft_id=info:doi/10.1002%2Fsmll.201704319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201704319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon