Engineering Single‐Atom Cobalt Catalysts toward Improved Electrocatalysis
The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐ato...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 15; pp. e1704319 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications.
A paradigm of coordination design and electronic engineering of single‐atom dispersed cobalt catalysts (SAC) is demonstrated, which leads to significantly enhanced electrocatalytic activities and selectivity, therefore presenting new oxygen electrocatalysis pathways via achieving the favored site–adsorbate interactions, and the illustration of the active sites in SAC indicates the metal‐natured catalytic sites and a media‐dependent catalytic pathway. |
---|---|
AbstractList | The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications. In this paper, the development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications.The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition-metal sites in carbon as noble-metal-free candidates. Recently, the discovery of single-atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal-adsorbates interactions in single-atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X-ray spectroscopic and electrochemical studies. The as-designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt-based catalysts. More importantly, the illustration of the active sites in SAC indicates metal-natured catalytic sites and a media-dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single-atom catalysts design and electrocatalytic applications. The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications. A paradigm of coordination design and electronic engineering of single‐atom dispersed cobalt catalysts (SAC) is demonstrated, which leads to significantly enhanced electrocatalytic activities and selectivity, therefore presenting new oxygen electrocatalysis pathways via achieving the favored site–adsorbate interactions, and the illustration of the active sites in SAC indicates the metal‐natured catalytic sites and a media‐dependent catalytic pathway. |
Author | Wan, Gang Shi, Jianlin Li, Qianru Zhou, Hua Zhang, Nian Li, Tao Wen, Jianguo Sun, Cheng‐jun Xie, Bing Zhao, Wanpeng Yu, Pengfei Chen, Hangrong |
Author_xml | – sequence: 1 givenname: Gang surname: Wan fullname: Wan, Gang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Pengfei surname: Yu fullname: Yu, Pengfei organization: Chinese Academy of Sciences – sequence: 3 givenname: Hangrong surname: Chen fullname: Chen, Hangrong email: hrchen@mail.sic.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Jianguo surname: Wen fullname: Wen, Jianguo organization: Argonne National Laboratory – sequence: 5 givenname: Cheng‐jun surname: Sun fullname: Sun, Cheng‐jun organization: Argonne National Laboratory – sequence: 6 givenname: Hua surname: Zhou fullname: Zhou, Hua organization: Argonne National Laboratory – sequence: 7 givenname: Nian surname: Zhang fullname: Zhang, Nian organization: Chinese Academy of Sciences – sequence: 8 givenname: Qianru surname: Li fullname: Li, Qianru organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Wanpeng surname: Zhao fullname: Zhao, Wanpeng organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Bing surname: Xie fullname: Xie, Bing organization: Illinois Institute of Technology – sequence: 11 givenname: Tao surname: Li fullname: Li, Tao email: taoli@aps.anl.gov organization: Northern Illinois University – sequence: 12 givenname: Jianlin orcidid: 0000-0001-8790-195X surname: Shi fullname: Shi, Jianlin email: jlshi@mail.sic.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29504227$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1474147$$D View this record in Osti.gov |
BookMark | eNqFkU9vFCEYh4lpY9vVq0cz0Usvu8ILMzDHZrOtjdv0UD0ThmEqDQMVWJu99SP4Gf0kspm6TZoYD_w5PA-87_s7QQc-eIPQO4IXBGP4lEbnFoAJx4yS9hU6Jg2h80ZAe7C_E3yETlK6w5gSYPw1OoK2xgyAH6MvK39rvTHR-tvqpmzO_H78dZbDWC1Dp1yuliort005VTk8qNhXl-N9DD9NX62c0TkGPQE2vUGHg3LJvH06Z-jb-err8vN8fX1xuTxbzzXjvJ1Tw0RXKwAQvaHdAKQeQAEXIFRNQQzNYBrV0bpnjBPSkabmRGAgom-6Qbd0hj5M74aUrUzaZqO_6-B9KUcSxllZBTqdoFLsj41JWY42aeOc8iZskiwzw4IKCjv04wv0LmyiLy0UCmpWC1rAGXr_RG260fTyPtpRxa38O8sCLCZAx5BSNMMeIVjuwpK7sOQ-rCKwF0JpRWUbfI7Kun9r7aQ9WGe2__lE3lyt18_uH3EwqEw |
CitedBy_id | crossref_primary_10_1016_j_fuproc_2023_107879 crossref_primary_10_1039_C9TA11852G crossref_primary_10_1039_C9EE01722D crossref_primary_10_1016_j_cej_2021_131011 crossref_primary_10_1021_acscatal_8b02556 crossref_primary_10_1021_acs_jpcc_1c04718 crossref_primary_10_1002_ange_201806936 crossref_primary_10_1021_acsanm_4c02723 crossref_primary_10_1002_smll_201804524 crossref_primary_10_1016_j_electacta_2020_135696 crossref_primary_10_1007_s40843_019_1286_1 crossref_primary_10_1016_j_ijhydene_2021_12_118 crossref_primary_10_1002_adsu_202100281 crossref_primary_10_1002_anie_202115503 crossref_primary_10_1016_j_joule_2019_09_015 crossref_primary_10_1002_smtd_201800354 crossref_primary_10_1039_C8NR09300H crossref_primary_10_1002_smm2_1085 crossref_primary_10_1002_smtd_201800501 crossref_primary_10_1021_jacs_9b09234 crossref_primary_10_1021_acs_accounts_1c00248 crossref_primary_10_1039_D2TA08808H crossref_primary_10_1039_D0GC03498C crossref_primary_10_1002_adma_201905622 crossref_primary_10_1016_j_ijhydene_2023_05_055 crossref_primary_10_1002_anie_201806936 crossref_primary_10_1039_D1MA00720C crossref_primary_10_1021_acsami_0c05481 crossref_primary_10_1021_acs_analchem_3c05053 crossref_primary_10_1039_D2NR02989H crossref_primary_10_1002_adma_202000966 crossref_primary_10_1016_j_ccr_2022_214710 crossref_primary_10_1021_acsami_9b19980 crossref_primary_10_1021_acsaem_8b00490 crossref_primary_10_1021_acsami_2c19713 crossref_primary_10_1016_j_apcatb_2024_124903 crossref_primary_10_1002_aenm_201801226 crossref_primary_10_1016_j_electacta_2023_142060 crossref_primary_10_1002_smll_202303263 crossref_primary_10_1039_D2QI00668E crossref_primary_10_1002_adfm_201804497 crossref_primary_10_1002_smtd_201800450 crossref_primary_10_1002_adfm_202003870 crossref_primary_10_1088_1361_6528_ab1d01 crossref_primary_10_1039_D1TA04511C crossref_primary_10_1002_adfm_202000768 crossref_primary_10_1002_sstr_202100169 crossref_primary_10_1016_j_coelec_2020_01_002 crossref_primary_10_1039_D1EE02884G crossref_primary_10_1039_D4CC00265B crossref_primary_10_1016_j_coelec_2022_101206 crossref_primary_10_1002_ange_202115503 crossref_primary_10_1002_adfm_202103857 crossref_primary_10_1002_aenm_202100303 crossref_primary_10_1016_j_apsusc_2020_147362 crossref_primary_10_1016_j_ccr_2021_213954 crossref_primary_10_1007_s12274_021_3479_8 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1002_smtd_202000315 crossref_primary_10_1002_cey2_74 crossref_primary_10_1039_D0TA08732G crossref_primary_10_1039_D2CY00930G crossref_primary_10_1016_j_coelec_2020_100646 crossref_primary_10_1002_smll_202308530 crossref_primary_10_1002_smll_202207675 crossref_primary_10_1002_smtd_201900159 crossref_primary_10_1021_acs_jpcc_0c05998 crossref_primary_10_1016_j_jpcs_2021_109989 crossref_primary_10_1021_acsestwater_4c00229 crossref_primary_10_1016_j_enconman_2022_115754 crossref_primary_10_1016_j_jpowsour_2021_230143 crossref_primary_10_1016_j_jelechem_2019_03_056 crossref_primary_10_1016_j_mtener_2021_100761 crossref_primary_10_1002_celc_202000595 crossref_primary_10_1039_C9TA12468C crossref_primary_10_1016_j_jcis_2022_03_083 crossref_primary_10_1002_aenm_201900375 crossref_primary_10_1002_adma_201905548 crossref_primary_10_1002_smll_201905363 crossref_primary_10_1002_asia_201901571 crossref_primary_10_1016_j_carbon_2018_12_051 crossref_primary_10_1002_cssc_202002137 crossref_primary_10_1039_D1TA03019A crossref_primary_10_1002_anie_201811099 crossref_primary_10_1016_j_jelechem_2019_113478 crossref_primary_10_1002_smtd_202100947 crossref_primary_10_1002_adfm_202103360 crossref_primary_10_1002_aenm_201803689 crossref_primary_10_1039_C9CS00869A crossref_primary_10_3390_bios13070748 crossref_primary_10_1002_adts_201800158 crossref_primary_10_1039_C9TA03011E crossref_primary_10_1088_1674_1056_ab5d04 crossref_primary_10_1002_adma_202001848 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1002_ange_201811099 crossref_primary_10_1021_acscatal_0c05479 crossref_primary_10_1021_acscatal_0c01950 crossref_primary_10_1039_D3TA03923D |
Cites_doi | 10.1038/nchem.1069 10.1016/S1872-2067(16)62520-2 10.1039/c3ee43463j 10.1021/nl070586o 10.1021/jacs.7b10385 10.1002/anie.201505236 10.1038/s41467-017-01100-7 10.1038/nmat4367 10.1149/2.1091506jes 10.1126/science.aan2255 10.1038/1921068a0 10.1002/celc.201500385 10.1002/anie.201308896 10.1039/c0sc00281j 10.1021/jacs.7b01602 10.1039/c0cp00018c 10.1021/ar400011z 10.1557/mrs.2016.113 10.1039/C0EE00011F 10.1002/anie.201703864 10.1038/ncomms9668 10.1021/jacs.7b05130 10.1021/jacs.7b06514 10.1039/B509853J 10.1021/jacs.6b13100 10.1002/adma.201304676 10.1002/adma.201306328 10.1021/acscatal.5b01223 10.1038/nnano.2012.72 10.1021/cm500805c 10.1039/c1cp23029h 10.1002/anie.201500569 10.1021/am900219g 10.1021/ja054812c 10.1038/nchem.1095 10.1021/ar300361m 10.1002/adma.201304238 10.1002/aenm.201301415 10.1021/jp810792d 10.1039/C2CP42609A 10.1039/c2ee21802j 10.1039/C6SC02105K 10.1021/ic00262a027 10.1021/jp906408y 10.1126/science.aaf8800 10.1007/s11244-007-9000-0 10.1039/b806783j 10.1016/j.nanoen.2017.03.027 10.1038/srep09286 10.1002/anie.201307319 10.1021/acs.chemrev.5b00462 10.1002/adma.201502315 10.1002/anie.200462473 10.1021/ic501080c 10.1021/jp103859w 10.1002/chem.201003080 10.1021/acscatal.6b01534 10.1126/science.1170051 10.1016/j.ccr.2004.03.018 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 OIOZB OTOTI |
DOI | 10.1002/smll.201704319 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 1474147 29504227 10_1002_smll_201704319 SMLL201704319 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Key Basic Research Program of China funderid: 2013CB933200 – fundername: Shanghai International Cooperation project funderid: 16520710200 – fundername: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences funderid: DE‐AC02‐06CH11357; DE‐AC02‐06CH11357 – fundername: China National Funds for Distinguished Young Scientists funderid: 51225202 – fundername: Canadian Light Source |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF NPM 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M 7X8 AAPBV ABHUG ABWRO ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-c4779-3e48b5a2228de3bf215f2a27828a5328f6fe6ab35d44711b1657180218d6bfc93 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu May 18 22:51:04 EDT 2023 Fri Jul 11 13:20:46 EDT 2025 Fri Jul 25 12:13:14 EDT 2025 Wed Feb 19 02:34:47 EST 2025 Tue Jul 01 02:10:34 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Wed Jan 22 16:54:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | selectivity single-atom dispersed catalysts media dependence metal-adsorbate interactions electrocatalysis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4779-3e48b5a2228de3bf215f2a27828a5328f6fe6ab35d44711b1657180218d6bfc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357 USDOE National Key Basic Research Program of China |
ORCID | 0000-0001-8790-195X 000000018790195X |
OpenAccessLink | https://www.osti.gov/servlets/purl/1474147 |
PMID | 29504227 |
PQID | 2025458338 |
PQPubID | 1046358 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1474147 proquest_miscellaneous_2010838327 proquest_journals_2025458338 pubmed_primary_29504227 crossref_primary_10_1002_smll_201704319 crossref_citationtrail_10_1002_smll_201704319 wiley_primary_10_1002_smll_201704319_SMLL201704319 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Apr |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-Apr |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2015; 2 2015; 162 2017; 8 2005 2006; 249 35 2015; 5 2014 2016; 26 41 2011 2015; 3 14 2005 2013 2015 2016 2017 2015 2017 2017; 44 46 6 353 7 5 139 139 2009; 113 2011; 13 2011; 3 1961; 192 2016; 37 2017; 357 2017; 139 2007 2008; 7 10 2016; 7 2013; 15 2015; 27 2010; 1 2012 2014 2014; 5 26 53 2010; 114 2017 2017 2017 2017; 139 139 35 56 2013 2014; 46 4 2009 2011 2014 2015 2011 2015; 1 17 26 54 4 54 2016; 116 2005 2010; 127 12 2012; 7 2014; 7 2014 2014; 53 26 2007; 46 2009; 324 1987; 26 2014; 53 e_1_2_4_21_1 e_1_2_4_23_1 e_1_2_4_25_1 e_1_2_4_23_2 e_1_2_4_27_1 e_1_2_4_29_1 e_1_2_4_29_2 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_7_3 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_7_5 e_1_2_4_7_4 e_1_2_4_7_6 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_33_2 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_12_2 e_1_2_4_12_3 e_1_2_4_14_1 e_1_2_4_33_3 e_1_2_4_35_1 e_1_2_4_12_4 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_20_1 e_1_2_4_22_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_28_1 e_1_2_4_2_2 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_30_2 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_11_2 e_1_2_4_11_3 e_1_2_4_13_1 e_1_2_4_11_4 e_1_2_4_13_2 e_1_2_4_34_2 e_1_2_4_11_5 e_1_2_4_15_1 e_1_2_4_11_6 e_1_2_4_11_7 e_1_2_4_11_8 e_1_2_4_17_1 e_1_2_4_19_2 e_1_2_4_19_1 |
References_xml | – volume: 324 start-page: 71 year: 2009 publication-title: Science – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 2 start-page: 1408 year: 2015 publication-title: ChemElectroChem – volume: 7 start-page: 5758 year: 2016 publication-title: Chem. Sci. – volume: 8 start-page: 957 year: 2017 publication-title: Nat. Commun. – volume: 5 26 53 start-page: 7936 3460 1570 year: 2012 2014 2014 publication-title: Energy Environ. Sci. Chem. Mater. Angew. Chem. Int. Ed. – volume: 113 start-page: 21629 year: 2009 publication-title: J. Phys. Chem. C – volume: 26 start-page: 2477 year: 1987 publication-title: Inorg. Chem. – volume: 116 start-page: 3594 year: 2016 publication-title: Chem. Rev. – volume: 44 46 6 353 7 5 139 139 start-page: 6456 1740 8668 150 34 6563 10790 14143 year: 2005 2013 2015 2016 2017 2015 2017 2017 publication-title: Angew. Chem., Int. Ed. Acc. Chem. Res. Nat. Commun. Science ACS Catal. ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 15 start-page: 148 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 113 start-page: 20689 year: 2009 publication-title: J. Phys. Chem. C – volume: 27 start-page: 5010 year: 2015 publication-title: Adv. Mater. – volume: 139 139 35 56 start-page: 6190 17281 9 13944 year: 2017 2017 2017 2017 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Nano Energy Angew. Chem., Int. Ed. – volume: 7 start-page: 576 year: 2014 publication-title: Energy Environ. Sci. – volume: 192 start-page: 1068 year: 1961 publication-title: Nature – volume: 46 4 start-page: 1878 1301415 year: 2013 2014 publication-title: Acc. Chem. Res. Adv. Energy Mater. – volume: 139 start-page: 3336 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 285 year: 2007 publication-title: Top. Catal. – volume: 5 start-page: 4 year: 2015 publication-title: Sci. Rep. – volume: 13 start-page: 21437 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 162 start-page: H403 year: 2015 publication-title: J. Electrochem. Soc. – volume: 7 start-page: 394 year: 2012 publication-title: Nat. Nanotechnol. – volume: 3 14 start-page: 546 937 year: 2011 2015 publication-title: Nat. Chem. Nat. Mater. – volume: 1 start-page: 411 year: 2010 publication-title: Chem. Sci. – volume: 1 17 26 54 4 54 start-page: 1623 2063 1093 14080 114 10102 year: 2009 2011 2014 2015 2011 2015 publication-title: ACS Appl. Mater. Inter. Chem. ‐ Eur. J. Adv. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci. Angew. Chem., Int. Ed. – volume: 37 start-page: 1443 year: 2016 publication-title: Chin. J. Catal. – volume: 127 12 start-page: 17576 10235 year: 2005 2010 publication-title: J. Am. Chem. Soc. Phys. Chem. Chem. Phys. – volume: 7 10 start-page: 1919 5882 year: 2007 2008 publication-title: Nano Lett. Phys. Chem. Chem. Phys. – volume: 114 start-page: 15190 year: 2010 publication-title: J. Phys. Chem. C – volume: 3 start-page: 634 year: 2011 publication-title: Nat. Chem. – volume: 53 start-page: 8505 year: 2014 publication-title: Inorg. Chem. – volume: 249 35 start-page: 31 1244 year: 2005 2006 publication-title: Coord. Chem. Rev. Chem. Soc. Rev. – volume: 53 26 start-page: 2433 3315 year: 2014 2014 publication-title: Angew. Chem., Int. Ed. Adv. Mater. – volume: 26 41 start-page: 7710 466 year: 2014 2016 publication-title: Adv. Mater. MRS Bull. – ident: e_1_2_4_2_1 doi: 10.1038/nchem.1069 – ident: e_1_2_4_10_1 doi: 10.1016/S1872-2067(16)62520-2 – ident: e_1_2_4_21_1 doi: 10.1039/c3ee43463j – ident: e_1_2_4_34_1 doi: 10.1021/nl070586o – ident: e_1_2_4_12_2 doi: 10.1021/jacs.7b10385 – ident: e_1_2_4_7_4 doi: 10.1002/anie.201505236 – ident: e_1_2_4_14_1 doi: 10.1038/s41467-017-01100-7 – ident: e_1_2_4_2_2 doi: 10.1038/nmat4367 – ident: e_1_2_4_17_1 doi: 10.1149/2.1091506jes – ident: e_1_2_4_35_1 doi: 10.1126/science.aan2255 – ident: e_1_2_4_20_1 doi: 10.1038/1921068a0 – ident: e_1_2_4_3_1 doi: 10.1002/celc.201500385 – ident: e_1_2_4_23_1 doi: 10.1002/anie.201308896 – ident: e_1_2_4_28_1 doi: 10.1039/c0sc00281j – ident: e_1_2_4_12_1 doi: 10.1021/jacs.7b01602 – ident: e_1_2_4_19_2 doi: 10.1039/c0cp00018c – ident: e_1_2_4_13_1 doi: 10.1021/ar400011z – ident: e_1_2_4_29_2 doi: 10.1557/mrs.2016.113 – ident: e_1_2_4_7_5 doi: 10.1039/C0EE00011F – ident: e_1_2_4_12_4 doi: 10.1002/anie.201703864 – ident: e_1_2_4_11_3 doi: 10.1038/ncomms9668 – ident: e_1_2_4_11_7 doi: 10.1021/jacs.7b05130 – ident: e_1_2_4_11_8 doi: 10.1021/jacs.7b06514 – ident: e_1_2_4_30_2 doi: 10.1039/B509853J – ident: e_1_2_4_22_1 doi: 10.1021/jacs.6b13100 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201304676 – ident: e_1_2_4_23_2 doi: 10.1002/adma.201306328 – ident: e_1_2_4_11_6 doi: 10.1021/acscatal.5b01223 – ident: e_1_2_4_32_1 doi: 10.1038/nnano.2012.72 – ident: e_1_2_4_33_2 doi: 10.1021/cm500805c – ident: e_1_2_4_8_1 doi: 10.1039/c1cp23029h – ident: e_1_2_4_7_6 doi: 10.1002/anie.201500569 – ident: e_1_2_4_7_1 doi: 10.1021/am900219g – ident: e_1_2_4_19_1 doi: 10.1021/ja054812c – ident: e_1_2_4_9_1 doi: 10.1038/nchem.1095 – ident: e_1_2_4_11_2 doi: 10.1021/ar300361m – ident: e_1_2_4_7_3 doi: 10.1002/adma.201304238 – ident: e_1_2_4_13_2 doi: 10.1002/aenm.201301415 – ident: e_1_2_4_4_1 doi: 10.1021/jp810792d – ident: e_1_2_4_5_1 doi: 10.1039/C2CP42609A – ident: e_1_2_4_33_1 doi: 10.1039/c2ee21802j – ident: e_1_2_4_25_1 doi: 10.1039/C6SC02105K – ident: e_1_2_4_24_1 doi: 10.1021/ic00262a027 – ident: e_1_2_4_15_1 doi: 10.1021/jp906408y – ident: e_1_2_4_11_4 doi: 10.1126/science.aaf8800 – ident: e_1_2_4_6_1 doi: 10.1007/s11244-007-9000-0 – ident: e_1_2_4_34_2 doi: 10.1039/b806783j – ident: e_1_2_4_12_3 doi: 10.1016/j.nanoen.2017.03.027 – ident: e_1_2_4_31_1 doi: 10.1038/srep09286 – ident: e_1_2_4_33_3 doi: 10.1002/anie.201307319 – ident: e_1_2_4_27_1 doi: 10.1021/acs.chemrev.5b00462 – ident: e_1_2_4_26_1 doi: 10.1002/adma.201502315 – ident: e_1_2_4_11_1 doi: 10.1002/anie.200462473 – ident: e_1_2_4_18_1 doi: 10.1021/ic501080c – ident: e_1_2_4_16_1 doi: 10.1021/jp103859w – ident: e_1_2_4_7_2 doi: 10.1002/chem.201003080 – ident: e_1_2_4_11_5 doi: 10.1021/acscatal.6b01534 – ident: e_1_2_4_1_1 doi: 10.1126/science.1170051 – ident: e_1_2_4_30_1 doi: 10.1016/j.ccr.2004.03.018 |
SSID | ssj0031247 |
Score | 2.5536666 |
Snippet | The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive... The development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive... In this paper, the development of cost-effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy,... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1704319 |
SubjectTerms | Adsorbates Catalysis Catalytic activity Cobalt Design optimization Dispersion electrocatalysis Electronic engineering INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY media dependence metal-adsorbate interactions Nanotechnology Noble metals Oxygen reduction reactions selectivity Single atom catalysts single-atom dispersed catalysts |
Title | Engineering Single‐Atom Cobalt Catalysts toward Improved Electrocatalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201704319 https://www.ncbi.nlm.nih.gov/pubmed/29504227 https://www.proquest.com/docview/2025458338 https://www.proquest.com/docview/2010838327 https://www.osti.gov/servlets/purl/1474147 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgX8qmICFxSku8ZDmiqlUFhQOLxC2yHUdClAaR9AAnPoFv5EuYiZvQIhASXKJYtiPH4_E8j8fPhBwqXynli8Q13FCX-yx1wQhGrpQhU14gBS_pms4v_P4NP70Vt1On-C0_RO1wQ80o52tUcKny9idpaP4wxK0DL0B6GDzBhwFbiIoua_4oBsarvF0FbJaLxFsVa-Mxbc9Wn7FKjQy06zvEOQtgSwvUWyKyarsNPLlvjQvV0i9faB3_83PLZHECT50TO55WyJwZrZKFKdLCNXI2lXKu4DE0769vJ0X24HSQXKRwOugSes6L3CnKoFzHei5M4nTtpTvaFrjL18lNr3vd6buTKxlczQMQITM8VEKi2ygxTKUAGFIqKcCMUApGw9RPjS8VEwkHq-cpzxcBcsx5YeKrVEdsgzRG2chsEUcqLrUwifI0LOrSIPISHqUhzLeJlpLxJnErkcR6wleO12YMY8u0TGPspLjupCY5qss_WqaOH0vuoIRjwBhIlKsxokgXsAgCdMWDJtmtBB9P9DmHuhR3GGE93yQHdTZoIm6vyJHJxljGAzwLMyR8YtMOmLohNBJItgY5tBT7Ly2Mr84Hgzq1_ZdKO2Qe3kMbZLRLGsXT2OwBfirUfqkjH1z4EkI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7R5UA5tDwKLI82SEicwjZ-5HFEK9ACuxx4SNwi23Ek1GUXkewBTv0J_Y39JczEm5RFoErtJZJjO3I8Gc_n8eQbgD0daq1DmflWWOaLkOc-GsHEVyrmOoiUFBVd0-A87F2L0xtZRxPSvzCOH6JxuJFmVOs1KTg5pDt_WEOLuyGdHQQR8cMkH2Ce0npXu6qLhkGKo_mq8qug1fKJeqvmbfzOOrP9Z-xSa4z69RbmnIWwlQ06_gy6Hr0LPflxMCn1gXl6Rez4X6-3BJ-mCNU7dJ_UMszZ0QosvuAtXIWzFyXvEi9D-_vnr8NyfOd1iV-k9LrkFXosysIrq7hczzkvbOYdubw7xjW4Lb7A9fHRVbfnT7My-EZEKEVuRaylIs9RZrnOETPkTDFEGrGSnMV5mNtQaS4zgYYv0EEoI6KZC-Is1LlJ-Bq0RuOR3QBPaaGMtJkODO7r8igJMpHkMS65mVGKizb4tUxSM6Usp8wZw9SRLbOUJiltJqkN-037e0fW8W7LLRJxijCDuHINBRWZEvdBCLBE1IbtWvLpVKUL7MvokBG39G3YbapRGemERY3seEJtAoS0uEjiI9bdF9MMhCWS-NawhlVy_8sI08tBv9-UNv-l0zdY6F0N-mn_5PxsCz7i_djFHG1Dq3yY2B2EU6X-WinMM3gnFl0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BkBA9lHcJLWAkJE5u633ZPlZpo0LTClEq9WbtU0JNk6p2DvTET-A38kuY8SYmQSAkuFiyd9Za7-zsfLs7_gbgjVHGGCVd6oVnqVA8pOgEy1Trgpss11K0dE3HJ-rwTLw_l-dLf_FHfohuw40so52vycCvXNj5SRpaX47p6CDLiR6mvA13hNotaFzvf-wIpDh6rza9CjqtlJi3FrSNu2xntf6KW-pN0bx-BzlXEWzrgob3QS8aHyNPLrZnjdm2N7_wOv7P1z2A9Tk-TfbigHoIt_zkEawtsRY-hqOlu-QUL2P__eu3vWZ6mQyIXaRJBrQn9KVu6qRpo3KTuHXhXXIQs-7YKPC5fgJnw4NPg8N0npMhtSJHHXIvCiM17Rs5z01AxBCYZogzCi05K4IKXmnDpRPo9jKTKZkTyVxWOGWCLflT6E2mE_8MEm2EttI7k1lc1YW8zJwoQ4ETrrNac9GHdKGSys4JyylvxriKVMusok6quk7qw9tO_ipSdfxRcpM0XCHIIKZcSyFFtsFVEMIrkfdha6H4am7QNdZldMSIC_o-vO6K0RTpfEVP_HRGMhkCWpwi8RUbccB0DWGlJLY1LGGt2v_Swur0eDTq7p7_S6VXcPfD_rAavTs52oR7-LiIAUdb0GuuZ_4FYqnGvGzN5Qc82hUV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Single%E2%80%90Atom+Cobalt+Catalysts+toward+Improved+Electrocatalysis&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wan%2C+Gang&rft.au=Yu%2C+Pengfei&rft.au=Chen%2C+Hangrong&rft.au=Wen%2C+Jianguo&rft.date=2018-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=15&rft_id=info:doi/10.1002%2Fsmll.201704319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201704319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |