Soil microbial processes and resource limitation in karst and non-karst forests

Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and im...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 32; no. 5; pp. 1400 - 1409
Main Authors Chen, Hao, Li, Dejun, Xiao, Kongcao, Wang, Kelin
Format Journal Article
LanguageEnglish
Published London Wiley 01.05.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation. Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest. Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest. These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems. A plain language summary is available for this article. Plain Language Summary
AbstractList Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation. Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest. Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest. These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems. A plain language summary is available for this article. Plain Language Summary
Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation. Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest. Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest. These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems. A plain language summary is available for this article.
Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation. Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest. Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest. These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems. A plain language summary is available for this article.
Author Xiao, Kongcao
Wang, Kelin
Chen, Hao
Li, Dejun
Author_xml – sequence: 1
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
– sequence: 2
  givenname: Dejun
  surname: Li
  fullname: Li, Dejun
– sequence: 3
  givenname: Kongcao
  surname: Xiao
  fullname: Xiao, Kongcao
– sequence: 4
  givenname: Kelin
  surname: Wang
  fullname: Wang, Kelin
BookMark eNqFkL9LAzEUx4NUsK3OTsKBi8u1-X3JKKVVodDB7iGX5iD17lKTK9L_3rRXHTpolpDH55P33ncEBq1vLQD3CE5QOlNEOMsxJWyCCOTyCgx_KwMwhJjLXFBObsAoxi2EUDKMh2D17l2dNc4EXzpdZ7vgjY3Rxky3myzY6PfB2Kx2jet053ybuTb70CF2JyDNkPevyie4i7fgutJ1tHfnewzWi_l69povVy9vs-dlbmhRyBxvDJa8NNyWnHOjicaIY8GYFQXZsJJxzAjRElLKpK4EtlUpoaCwolwQQcbgqf82zfu5T41V46Kxda1b6_dRYcgLXGAkaUIfL9Bt2qlNwyWKEFlgIVmiWE-lIGIMtlLmvHAXtKsVguqYsjpmqo6ZqlPKyZteeLvgGh0OfxjnTl-utof_cLWYz368h97bxs6HX48KJnABEfkGeWqXSQ
CitedBy_id crossref_primary_10_1371_journal_pone_0220599
crossref_primary_10_1016_j_apsoil_2022_104395
crossref_primary_10_1016_j_geoderma_2024_116910
crossref_primary_10_3390_w15213823
crossref_primary_10_1016_j_apsoil_2024_105529
crossref_primary_10_1007_s11368_023_03456_4
crossref_primary_10_1029_2021JG006544
crossref_primary_10_1021_acs_est_3c08104
crossref_primary_10_3389_fmicb_2023_1068595
crossref_primary_10_1029_2019JG005291
crossref_primary_10_1016_j_catena_2021_105478
crossref_primary_10_1016_j_catena_2024_108500
crossref_primary_10_1038_s41598_019_44985_8
crossref_primary_10_1016_j_apsoil_2025_105875
crossref_primary_10_3390_jof9121133
crossref_primary_10_3390_f10060497
crossref_primary_10_1007_s11104_019_04212_9
crossref_primary_10_3389_fpls_2023_1224691
crossref_primary_10_1016_j_still_2021_105260
crossref_primary_10_1002_ep_13707
crossref_primary_10_1002_ldr_3723
crossref_primary_10_3390_agronomy14030581
crossref_primary_10_1002_ldr_3449
crossref_primary_10_3390_f11121282
crossref_primary_10_1007_s11104_021_04925_w
crossref_primary_10_1016_j_agee_2024_109462
crossref_primary_10_1016_j_foreco_2022_120658
crossref_primary_10_1007_s11368_021_02896_0
crossref_primary_10_1016_j_scitotenv_2023_161754
crossref_primary_10_1016_j_soilbio_2021_108540
crossref_primary_10_1007_s11356_021_13012_7
crossref_primary_10_1007_s11356_021_18406_1
crossref_primary_10_1007_s11356_023_30637_y
crossref_primary_10_1007_s11356_023_27588_9
crossref_primary_10_3390_f15112004
crossref_primary_10_3389_fevo_2023_1105150
crossref_primary_10_1186_s12870_024_06016_1
crossref_primary_10_1016_j_catena_2021_105807
crossref_primary_10_3390_agronomy11102057
crossref_primary_10_1111_geb_13017
crossref_primary_10_1007_s40626_024_00310_x
crossref_primary_10_1016_j_foreco_2020_118491
crossref_primary_10_2139_ssrn_4016956
crossref_primary_10_1016_j_catena_2021_105809
crossref_primary_10_1590_01047760202127012980
crossref_primary_10_1002_ldr_3439
crossref_primary_10_1016_j_pedsph_2023_06_003
crossref_primary_10_1016_j_scitotenv_2023_162789
crossref_primary_10_1080_00380768_2023_2177493
crossref_primary_10_1002_ldr_4883
crossref_primary_10_1093_jpe_rtae100
crossref_primary_10_1002_agj2_20538
crossref_primary_10_1128_AEM_00342_18
crossref_primary_10_1016_j_isci_2024_111408
crossref_primary_10_1016_j_scitotenv_2024_172905
crossref_primary_10_1007_s00374_019_01362_x
crossref_primary_10_1007_s11104_022_05499_x
crossref_primary_10_1038_s41598_024_70139_6
crossref_primary_10_1002_jsfa_11304
crossref_primary_10_1016_j_catena_2022_106808
crossref_primary_10_1007_s11104_020_04422_6
crossref_primary_10_1016_j_scitotenv_2024_174783
crossref_primary_10_1016_j_ecolind_2022_109552
crossref_primary_10_1007_s11104_021_05220_4
crossref_primary_10_1016_j_gecco_2024_e03260
crossref_primary_10_1016_j_foreco_2020_118880
crossref_primary_10_3390_agronomy11112131
crossref_primary_10_3390_land11060781
crossref_primary_10_3389_fmicb_2022_960594
crossref_primary_10_1016_j_geoderma_2018_12_023
crossref_primary_10_1007_s11104_025_07371_0
crossref_primary_10_1007_s11104_021_05028_2
crossref_primary_10_1016_j_gexplo_2021_106782
crossref_primary_10_3390_agronomy10081084
crossref_primary_10_3389_fevo_2022_1011495
crossref_primary_10_1016_j_soilbio_2021_108162
crossref_primary_10_1016_j_foreco_2023_121582
crossref_primary_10_1016_j_scitotenv_2024_174815
crossref_primary_10_1016_j_gecco_2020_e01328
crossref_primary_10_3389_ffgc_2023_1172062
crossref_primary_10_1007_s00374_020_01522_4
crossref_primary_10_3390_f10090796
crossref_primary_10_1016_j_soilbio_2020_107928
crossref_primary_10_1016_j_apsoil_2022_104594
crossref_primary_10_3390_f15020341
crossref_primary_10_1007_s40333_022_0028_6
crossref_primary_10_1016_j_catena_2022_106759
crossref_primary_10_1002_ldr_4625
crossref_primary_10_1016_j_geoderma_2022_116036
crossref_primary_10_1016_j_scitotenv_2024_172171
crossref_primary_10_1007_s10533_023_01022_1
crossref_primary_10_1007_s11629_022_7345_2
crossref_primary_10_1002_ldr_3771
crossref_primary_10_1016_j_apsoil_2021_104227
crossref_primary_10_1029_2021JG006742
crossref_primary_10_1177_0309133320949865
crossref_primary_10_1016_j_scitotenv_2019_135413
crossref_primary_10_1177_19400829231221018
crossref_primary_10_1016_j_catena_2018_10_042
crossref_primary_10_1016_j_catena_2024_108389
crossref_primary_10_1016_j_apsoil_2024_105453
crossref_primary_10_1016_j_agee_2024_109389
crossref_primary_10_1016_j_apsoil_2025_106001
crossref_primary_10_3390_app14114359
crossref_primary_10_3390_f14071315
crossref_primary_10_1016_j_catena_2020_104849
crossref_primary_10_1016_j_ecolind_2024_113034
crossref_primary_10_1016_j_scitotenv_2023_168349
crossref_primary_10_3389_fpls_2022_834184
crossref_primary_10_1016_j_catena_2024_108259
crossref_primary_10_1016_j_soilbio_2022_108600
crossref_primary_10_1186_s40663_020_0213_z
crossref_primary_10_1007_s11104_024_06668_w
crossref_primary_10_1016_j_geoderma_2019_113938
crossref_primary_10_3390_f14020355
crossref_primary_10_1111_gcb_16765
crossref_primary_10_1007_s11104_023_06014_6
crossref_primary_10_1016_j_catena_2021_105849
crossref_primary_10_1016_j_ecolind_2019_01_046
crossref_primary_10_1016_j_scitotenv_2023_162504
crossref_primary_10_3390_f12010083
crossref_primary_10_1007_s13157_024_01824_5
crossref_primary_10_1016_j_gecco_2024_e03171
crossref_primary_10_3390_f15122233
crossref_primary_10_1007_s42729_024_01750_9
crossref_primary_10_1016_j_still_2023_105898
crossref_primary_10_1080_03650340_2022_2117302
crossref_primary_10_1186_s13717_024_00530_8
crossref_primary_10_1016_j_scitotenv_2020_142381
crossref_primary_10_3389_ffgc_2022_1024656
crossref_primary_10_1016_j_apsoil_2024_105431
crossref_primary_10_1016_j_foreco_2023_121392
crossref_primary_10_1007_s11104_024_07039_1
crossref_primary_10_1007_s11676_020_01213_8
crossref_primary_10_1007_s11368_022_03396_5
crossref_primary_10_1016_j_ecoleng_2019_08_008
crossref_primary_10_1128_spectrum_02316_22
crossref_primary_10_1016_j_apsoil_2021_103969
crossref_primary_10_3389_fevo_2023_1137172
crossref_primary_10_1111_ele_70011
crossref_primary_10_3389_fmicb_2022_1002198
crossref_primary_10_1016_j_envpol_2024_123703
crossref_primary_10_1002_ldr_5082
crossref_primary_10_1016_j_apsoil_2025_106031
crossref_primary_10_1016_j_ecoenv_2023_115190
crossref_primary_10_1080_10807039_2025_2471496
crossref_primary_10_1016_j_apsoil_2021_104253
crossref_primary_10_1186_s40663_021_00341_9
crossref_primary_10_3390_f15101815
Cites_doi 10.1002/9781118684986
10.1007/s12665-014-3847-8
10.1007/BF00422051
10.1016/j.soilbio.2016.10.020
10.3389/fmicb.2013.00223
10.1016/j.soilbio.2015.04.007
10.1111/j.1461-0248.2011.01701.x
10.1016/j.foreco.2017.05.050
10.1007/s00374-015-1061-9
10.1371/journal.pone.0084101
10.1007/s10533-014-9991-0
10.1016/S0065-2113(08)60181-9
10.1016/0038-0717(94)90211-9
10.1146/annurev-ecolsys-071112-124414
10.1007/s11104-015-2406-8
10.1890/06-2057.1
10.1016/S0038-0717(03)00015-4
10.1016/j.jenvman.2017.06.048
10.1016/j.earscirev.2014.01.005
10.1007/s10533-010-9482-x
10.1016/j.soilbio.2009.10.014
10.1007/s10021-002-0202-9
10.1007/s11104-005-5446-7
10.1007/s10533-016-0235-3
10.1111/ele.12113
10.1071/S96047
10.1029/2006JD007990
10.1111/j.1365-3040.1992.tb00973.x
10.1007/978-3-642-79520-6
10.2307/1311067
10.1029/2007GL032887
10.1007/s11104-012-1479-x
10.1007/s10342-012-0608-7
10.1016/S0038-0717(02)00074-3
10.1007/978-3-540-68027-7_2
10.1098/rstb.1999.0524
10.1038/nature08632
10.1002/ecm.1279
10.1111/j.1461-0248.2008.01245.x
10.1016/j.soilbio.2003.12.002
10.1016/S0038-0717(00)00127-9
ContentType Journal Article
Copyright 2018 The Authors. © 2018 British Ecological Society
2018 The Authors. Functional Ecology © 2018 British Ecological Society
Functional Ecology © 2018 British Ecological Society
Copyright_xml – notice: 2018 The Authors. © 2018 British Ecological Society
– notice: 2018 The Authors. Functional Ecology © 2018 British Ecological Society
– notice: Functional Ecology © 2018 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.13069
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1409
ExternalDocumentID 10_1111_1365_2435_13069
FEC13069
48582701
Genre article
GrantInformation_xml – fundername: Chinese Academy of Sciences
– fundername: National Natural Science Foundation of China
  funderid: 41571295; 31500405
– fundername: Natural Science Foundation of Guangxi Province of China
  funderid: 2017GXNSFAA198038
– fundername: National Key Research and Development Program of China
  funderid: 2016YFC0502404
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ACHIC
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
ABSQW
AGUYK
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4779-2dc296bc6eb666ca3a2162855e873d5b562533a904459af82efb90840f468383
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:35:07 EDT 2025
Fri Jul 25 20:53:49 EDT 2025
Tue Jul 01 01:15:47 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Wed Jan 22 16:48:47 EST 2025
Thu Jul 03 21:56:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4779-2dc296bc6eb666ca3a2162855e873d5b562533a904459af82efb90840f468383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3577-2345
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13069
PQID 2033972895
PQPubID 1066355
PageCount 10
ParticipantIDs proquest_miscellaneous_2067272194
proquest_journals_2033972895
crossref_citationtrail_10_1111_1365_2435_13069
crossref_primary_10_1111_1365_2435_13069
wiley_primary_10_1111_1365_2435_13069_FEC13069
jstor_primary_48582701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2018
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2013; 4
2012; 2012
2016; 129
2017; 88
2002; 5
2002; 34
2015; 74
2003; 35
2007
2016; 52
2013; 367
2006
2008; 35
1995
2008; 11
1994; 26
2012; 15
2002
2014; 132
2013; 8
1987; 19
1996; 56
2007; 112
2012; 131
2010; 42
2011; 102
2015; 391
2013; 16
2004; 36
1997; 35
2015; 87
2009; 462
2018
2008; 89
1961; 40
2006; 282
2011; 25
1999; 354
2001; 33
2017; 201
2014; 120
2017; 400
2017; 104
1989; 39
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
R Development Core Team (e_1_2_9_26_1) 2007
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
Cui X. X. (e_1_2_9_11_1) 2011; 25
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
Carter M. R. (e_1_2_9_7_1) 2006
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
Chen H. (e_1_2_9_9_1) 2018
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Sterner R. W. (e_1_2_9_36_1) 2002
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 282
  start-page: 135
  year: 2006
  end-page: 151
  article-title: Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China
  publication-title: Plant and Soil
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil
  publication-title: Soil Biology & Biochemistry
– volume: 40
  start-page: 370
  year: 1961
  article-title: Factors limiting microbial activities in soil
  publication-title: Archiv Für Mikrobiologie
– start-page: 37
  year: 2007
  end-page: 64
– volume: 52
  start-page: 177
  year: 2016
  end-page: 189
  article-title: Fertilization practices alter microbial nutrient limitations after alleviation of carbon limitation in a Ferric Acrisol
  publication-title: Biology and Fertility of Soils
– volume: 5
  start-page: 0680
  year: 2002
  end-page: 0691
  article-title: Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short‐term laboratory incubations and field studies
  publication-title: Ecosystems
– volume: 391
  start-page: 77
  year: 2015
  end-page: 91
  article-title: Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China
  publication-title: Plant and Soil
– volume: 88
  start-page: 4
  year: 2017
  end-page: 21
  article-title: Nutrient limitation of soil microbial processes in tropical forests
  publication-title: Ecological Monographs
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– year: 2018
  article-title: Data from: Soil microbial processes and resource limitation in karst and non‐karst forests
  publication-title: Dryad Digital Repository
– volume: 25
  start-page: 117
  year: 2011
  end-page: 139
  article-title: Soil microbial biomass, respiration, and metabolic quotient under different vegetation restoration stages in karsts gorge district
  publication-title: Journal of Soil & Water Conservation
– year: 2007
– volume: 74
  start-page: 937
  year: 2015
  end-page: 944
  article-title: Characteristics of climate change in southwest China karst region and their potential environmental impacts
  publication-title: Environmental Earth Sciences
– volume: 16
  start-page: 930
  year: 2013
  end-page: 939
  article-title: Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling
  publication-title: Ecology Letters
– volume: 354
  start-page: 1825
  year: 1999
  end-page: 1829
  article-title: Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest
  publication-title: Philosophical Transactions of the Royal Society of London Series B‐Biological Sciences
– volume: 42
  start-page: 391
  year: 2010
  end-page: 404
  article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil
  publication-title: Soil Biology & Biochemistry
– volume: 33
  start-page: 173
  year: 2001
  end-page: 188
  article-title: Substrate limitations to microbial activity in taiga forest floors
  publication-title: Soil Biology & Biochemistry
– volume: 56
  start-page: 139
  year: 1996
  end-page: 185
  article-title: Organic amendments and phosphorus sorption by soils
  publication-title: Advances in Agronomy
– volume: 102
  start-page: 31
  year: 2011
  end-page: 43
  article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse
  publication-title: Biogeochemistry
– volume: 201
  start-page: 199
  year: 2017
  article-title: Dynamics of soil organic carbon in density fractions during post‐agricultural succession over two lithology types, southwest China
  publication-title: Journal of Environmental Management
– volume: 36
  start-page: 581
  year: 2004
  end-page: 589
  article-title: Nutrient limitations to soil microbial biomass and activity in loblolly pine forests
  publication-title: Soil Biology & Biochemistry
– volume: 104
  start-page: 152
  year: 2017
  end-page: 163
  article-title: Soil enzyme activity and stoichiometry in forest ecosystems along the North‐South Transect in eastern China (NSTEC)
  publication-title: Soil Biology & Biochemistry
– volume: 8
  start-page: e84101
  year: 2013
  article-title: Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old‐growth tropical forest
  publication-title: PLoS ONE
– volume: 35
  start-page: 135
  year: 2008
  end-page: 157
  article-title: China: Emissions pattern of the world leader in CO emissions from fossil fuel consumption and cement production
  publication-title: Geophysical Research Letters
– volume: 4
  start-page: 223
  year: 2013
  article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme‐based decomposition models
  publication-title: Frontiers in Microbiology
– volume: 15
  start-page: 9
  year: 2012
  end-page: 16
  article-title: Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation
  publication-title: Ecology Letters
– volume: 26
  start-page: 1305
  year: 1994
  end-page: 1311
  article-title: Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition
  publication-title: Soil Biology & Biochemistry
– volume: 11
  start-page: 1252
  year: 2008
  end-page: 1264
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecology Letters
– volume: 129
  start-page: 1
  year: 2016
  end-page: 14
  article-title: Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China
  publication-title: Biogeochemistry
– volume: 39
  start-page: 378
  year: 1989
  end-page: 386
  article-title: Nitrogen saturation in northern forest ecosystems
  publication-title: BioScience
– volume: 89
  start-page: 371
  year: 2008
  end-page: 379
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
– volume: 120
  start-page: 203
  year: 2014
  end-page: 224
  article-title: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P‐limitation between peatland types
  publication-title: Biogeochemistry
– year: 2002
– year: 2006
– volume: 2012
  start-page: 313
  year: 2012
  end-page: 434
  article-title: Ecoenzymatic stoichiometry and ecological theory
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 87
  start-page: 34
  year: 2015
  end-page: 42
  article-title: Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra‐oligotrophic desert soil
  publication-title: Soil Biology & Biochemistry
– year: 1995
– volume: 132
  start-page: 1
  year: 2014
  end-page: 12
  article-title: Rocky desertification in Southwest China: Impacts, causes, and restoration
  publication-title: Earth‐Science Reviews
– volume: 400
  start-page: 85
  year: 2017
  end-page: 92
  article-title: Afforestation effects on soil organic carbon and nitrogen pools modulated by lithology
  publication-title: Forest Ecology and Management
– volume: 35
  start-page: 227
  year: 1997
  end-page: 240
  article-title: Soil phosphorus: Its measurement, and its uptake by plants
  publication-title: Soil Research
– volume: 112
  start-page: 229
  year: 2007
  end-page: 238
  article-title: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data
  publication-title: Journal of Geophysical Research‐Atmospheres
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  article-title: An extraction method for measuring soil microbial biomass‐C
  publication-title: Soil Biology & Biochemistry
– volume: 35
  start-page: 549
  year: 2003
  end-page: 563
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model
  publication-title: Soil Biology and Biochemistry
– volume: 367
  start-page: 563
  year: 2013
  end-page: 577
  article-title: Decomposition‐rate estimation of leaf litter in karst forests in China based on a mathematical model
  publication-title: Plant and Soil
– volume: 131
  start-page: 1669
  year: 2012
  end-page: 1680
  article-title: High organic carbon stock in a karstic soil of the Middle‐European Forest Province persists after centuries‐long agroforestry management
  publication-title: European Journal of Forest Research
– ident: e_1_2_9_12_1
  doi: 10.1002/9781118684986
– ident: e_1_2_9_20_1
  doi: 10.1007/s12665-014-3847-8
– ident: e_1_2_9_37_1
  doi: 10.1007/BF00422051
– year: 2018
  ident: e_1_2_9_9_1
  article-title: Data from: Soil microbial processes and resource limitation in karst and non‐karst forests
  publication-title: Dryad Digital Repository
– volume-title: : A language and environment for statistical computing
  year: 2007
  ident: e_1_2_9_26_1
– ident: e_1_2_9_46_1
  doi: 10.1016/j.soilbio.2016.10.020
– ident: e_1_2_9_25_1
  doi: 10.3389/fmicb.2013.00223
– ident: e_1_2_9_39_1
  doi: 10.1016/j.soilbio.2015.04.007
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1461-0248.2011.01701.x
– ident: e_1_2_9_19_1
  doi: 10.1016/j.foreco.2017.05.050
– ident: e_1_2_9_40_1
  doi: 10.1007/s00374-015-1061-9
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pone.0084101
– ident: e_1_2_9_14_1
  doi: 10.1007/s10533-014-9991-0
– ident: e_1_2_9_16_1
  doi: 10.1016/S0065-2113(08)60181-9
– volume-title: Soil sampling and methods of analysis
  year: 2006
  ident: e_1_2_9_7_1
– ident: e_1_2_9_34_1
  doi: 10.1016/0038-0717(94)90211-9
– ident: e_1_2_9_35_1
  doi: 10.1146/annurev-ecolsys-071112-124414
– volume-title: Ecological stoichiometry: The biology of elements from molecules to the Biosphere
  year: 2002
  ident: e_1_2_9_36_1
– ident: e_1_2_9_47_1
  doi: 10.1007/s11104-015-2406-8
– ident: e_1_2_9_18_1
  doi: 10.1890/06-2057.1
– ident: e_1_2_9_28_1
  doi: 10.1016/S0038-0717(03)00015-4
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jenvman.2017.06.048
– ident: e_1_2_9_17_1
  doi: 10.1016/j.earscirev.2014.01.005
– ident: e_1_2_9_30_1
  doi: 10.1007/s10533-010-9482-x
– volume: 25
  start-page: 117
  year: 2011
  ident: e_1_2_9_11_1
  article-title: Soil microbial biomass, respiration, and metabolic quotient under different vegetation restoration stages in karsts gorge district
  publication-title: Journal of Soil & Water Conservation
– ident: e_1_2_9_29_1
  doi: 10.1016/j.soilbio.2009.10.014
– ident: e_1_2_9_10_1
  doi: 10.1007/s10021-002-0202-9
– ident: e_1_2_9_24_1
  doi: 10.1007/s11104-005-5446-7
– ident: e_1_2_9_45_1
  doi: 10.1007/s10533-016-0235-3
– ident: e_1_2_9_33_1
  doi: 10.1111/ele.12113
– ident: e_1_2_9_15_1
  doi: 10.1071/S96047
– ident: e_1_2_9_21_1
  doi: 10.1029/2006JD007990
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-3040.1992.tb00973.x
– ident: e_1_2_9_38_1
  doi: 10.1007/978-3-642-79520-6
– ident: e_1_2_9_2_1
  doi: 10.2307/1311067
– ident: e_1_2_9_13_1
  doi: 10.1029/2007GL032887
– ident: e_1_2_9_43_1
  doi: 10.1007/s11104-012-1479-x
– ident: e_1_2_9_3_1
  doi: 10.1007/s10342-012-0608-7
– ident: e_1_2_9_27_1
  doi: 10.1016/S0038-0717(02)00074-3
– ident: e_1_2_9_22_1
  doi: 10.1007/978-3-540-68027-7_2
– ident: e_1_2_9_23_1
  doi: 10.1098/rstb.1999.0524
– ident: e_1_2_9_31_1
  doi: 10.1038/nature08632
– ident: e_1_2_9_6_1
  doi: 10.1002/ecm.1279
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1461-0248.2008.01245.x
– ident: e_1_2_9_4_1
  doi: 10.1016/j.soilbio.2003.12.002
– ident: e_1_2_9_42_1
  doi: 10.1016/S0038-0717(00)00127-9
SSID ssj0009522
Score 2.6129878
Snippet Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1400
SubjectTerms Biogeochemical cycles
C limitation
calcareous soil
cell respiration
Decomposition
Dolomite
ecoenzymatic stoichiometry
Ecosystems
ECOSYSTEMS ECOLOGY
enzyme activity
Forests
Karst
karst forest
karsts
Limestone
Microorganisms
Nitrogen
nutrient limitation
Organic carbon
Organic soils
Phosphorus
Resource availability
Respiration
soil
Soil fertility
Soil improvement
soil organic carbon
Soils
Stoichiometry
Title Soil microbial processes and resource limitation in karst and non-karst forests
URI https://www.jstor.org/stable/48582701
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13069
https://www.proquest.com/docview/2033972895
https://www.proquest.com/docview/2067272194
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8iCF78Hk6nVPDgpWNL0q-jjI0hKKgTvJWkTWBsdmPtDnryT_Bv9C_xvaSd20BEvKVNQl_T9_J-r3kfhFyCyICaSGH3awe-Cxte6ErGoMW1lIhPQ5OO4fbO7z_xm2ev8ibEWBibH2Lxww0lw-zXKOBC5ktCbv2zQNtjQWMfQ_jwDsKiB7qUdteeI1A_ckHTsjK5D_ryrM1f0UvWNXEFdC5DV6N7ertEVlRbl5NRc17IZvK2ltDxX6-1R3ZKZOpcW1baJxsqOyBbtlblK7S6Sdmqdb-D42BCuTvkh-T-cTIcOy9Dk9sJeqY2CEHljshSZ1YeFDhjjKkyDOEMM2cElnVhBmST7PP9w14DlIb1yI_IoNcddPpuWbLBTXgQRC5NExr5MvGVBLsoEUzQNgZpeioMWOpJNLcYE1GLcy8SOqRKy6gFRqbmfgjGco1swsPUMXEU97hWDMvuejzVUmgvlDSNlBaB1iKtk2b1veKkpBqraozjyqzBlYxxJWOzknVytZgwtZk8fh5aMwywGMeBZ2nQatdJo-KIuJT1PKYtBqAODFevTi4W3SClePQiMjWZ4xhz4t2OONBtPv9vNMS9bsc0Tv464ZRsA6oLrVdmg2wWs7k6A-RUyHMjHF-pwgqo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JSgMx9OGC6MW9WNcRPHiZ0iaZJUeRlrq0oFbwNiQzCRTrVGx70JOf4Df6Jb4k01oFEfH2hiQzmeStyVsAjpBkUExkyP1qUegjw4t9SSlCTEtp9NPYpmNotcPmLTu_C-6mYmFcfojJgZuhDMuvDYGbA-kpKncOWijuTUXjkM_CvKnrbc2qazKVeNfdJJCQ-yhraZHex3jzfHvBF8nknBO_qJ3TyquVPo0VSMfzdk4n95XRUFbSl28pHf_3Y6uwXCin3onDpjWYUfk6LLhylc8I1dMCKtU_4-NwQMEgBhtwddPv9ryHrk3vhC2PLg5BDTyRZ95TcVfg9UxYlcUJr5t792hcD22HvJ-_v765Z9SmcUEGm9Bp1DunTb-o2uCnLIq4T7KU8FCmoZJoGqWCClIzcZqBiiOaBdJYXJQKXmUs4ELHRGnJq2hnahbGaC-XYA4_prbAUyxgWlFTeTdgmZZCB7EkGVdaRFqLrAyV8YYlaTFrU1ijl4wtG7OSiVnJxK5kGY4nAx5dMo-fu5YsBkz6MURbElVrZdgdo0RSkPsgIVWKeh3arkEZDifNSKjm9kXkqj8yfeyld40znLfd_9_mkDTqpxbY_uuAA1hsdlqXyeVZ-2IHllDJi52T5i7MDZ9Gag8VqaHct5TyAV8qDsM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTttAcESDqLi0vCJCU2okDlwcObvrxx4RJAoUEK9KvVm79q4UJThRHgc49RP6jf0SZnftNCAhVPW2lmft8e7MzoznBXCILINiIsfTrx1HPh54iS8pxRHTUhr9NLHlGC6vot4Pdv4zrKIJTS6Mqw-x-OFmOMOe14bBx7leYnIXn4XS3jQ0jvgHWGVRkBjCPr0lS3V3nSOBRNxHUUvL6j4mmOfVA14IJheb-ELrXNZdrfDpfgZZoe1iTgat-Uy2sqdXFR3_67s24FOpmnrHjpY2YUUVW7DmmlU-4qiTlaN65292HE4oj4fpNtzcjfpD76FvizvhnbHLQlBTTxS5Nyk9Bd7QJFVZivD6hTdA03pmAYpR8efXb3eNujSux3QH7rud-5OeX_Zs8DMWx9wneUZ4JLNISTSMMkEFaZsszVAlMc1DaewtSgUPGAu50AlRWvIArUzNogSt5TrU8GVqFzzFQqYVNX13Q5ZrKXSYSJJzpUWstcgb0Kr2K81KrE1bjWFa2TVmJVOzkqldyQYcLSaMXSmPt0HrlgAWcAyJlsRBuwHNiiLSktmnKQkoanVouYYNOFjcRjY1vhdRqNHcwFiXd5szxNtu_3s4pN3OiR3s_euEb_Dx-rSbXpxdff8C66jhJS5Cswm12WSuvqIWNZP7lk-eATLdDXs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+microbial+processes+and+resource+limitation+in+karst+and+non%E2%80%90karst+forests&rft.jtitle=Functional+ecology&rft.au=Chen%2C+Hao&rft.au=Li%2C+Dejun&rft.au=Xiao%2C+Kongcao&rft.au=Wang%2C+Kelin&rft.date=2018-05-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=32&rft.issue=5&rft.spage=1400&rft.epage=1409&rft_id=info:doi/10.1111%2F1365-2435.13069&rft.externalDBID=10.1111%252F1365-2435.13069&rft.externalDocID=FEC13069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon