Soil microbial processes and resource limitation in karst and non-karst forests
Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and im...
Saved in:
Published in | Functional ecology Vol. 32; no. 5; pp. 1400 - 1409 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.05.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation.
Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest.
Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest.
These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems.
A plain language summary is available for this article.
Plain Language Summary |
---|---|
AbstractList | Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation.
Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest.
Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest.
These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems.
A plain language summary is available for this article.
Plain Language Summary Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation. Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest. Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest. These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems. A plain language summary is available for this article. Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding soil processes that are driven by micro‐organisms and resource limitation of microbes will help to elucidate controls on soil fertility and improve the ability to predict the responses of an ecosystem to global changes. As a widespread ecosystem type, karst ecosystem develops from limestone or dolomite with unique soil; however, karst ecosystems remain poorly understood regarding their soil microbial processes and microbial resource limitation. Here, ecoenzymatic stoichiometry was used as an indicator of microbial resource limitation, and to model major microbial processes (i.e. decomposition of soil organic carbon and microbial respiration) in a karst and a non‐karst forest. Results showed that the modelled decomposition and respiration rates were significantly higher in the karst forest than in the non‐karst forest. In addition, results of ecoenzymatic stoichiometry showed that the karst forest was more carbon‐limited than the non‐karst forest. In contrast, the karst forest was likely saturated with nitrogen, but the non‐karst forest was limited by nitrogen. Both the karst and non‐karst forests were limited by phosphorus, but phosphorus deficiency was more evident in the non‐karst forest than in the karst forest. These findings highlight the specific profiles of karst ecosystems, and they suggest that the responses of karst ecosystems to global changes should be very different compared to other ecosystems. A plain language summary is available for this article. |
Author | Xiao, Kongcao Wang, Kelin Chen, Hao Li, Dejun |
Author_xml | – sequence: 1 givenname: Hao surname: Chen fullname: Chen, Hao – sequence: 2 givenname: Dejun surname: Li fullname: Li, Dejun – sequence: 3 givenname: Kongcao surname: Xiao fullname: Xiao, Kongcao – sequence: 4 givenname: Kelin surname: Wang fullname: Wang, Kelin |
BookMark | eNqFkL9LAzEUx4NUsK3OTsKBi8u1-X3JKKVVodDB7iGX5iD17lKTK9L_3rRXHTpolpDH55P33ncEBq1vLQD3CE5QOlNEOMsxJWyCCOTyCgx_KwMwhJjLXFBObsAoxi2EUDKMh2D17l2dNc4EXzpdZ7vgjY3Rxky3myzY6PfB2Kx2jet053ybuTb70CF2JyDNkPevyie4i7fgutJ1tHfnewzWi_l69povVy9vs-dlbmhRyBxvDJa8NNyWnHOjicaIY8GYFQXZsJJxzAjRElLKpK4EtlUpoaCwolwQQcbgqf82zfu5T41V46Kxda1b6_dRYcgLXGAkaUIfL9Bt2qlNwyWKEFlgIVmiWE-lIGIMtlLmvHAXtKsVguqYsjpmqo6ZqlPKyZteeLvgGh0OfxjnTl-utof_cLWYz368h97bxs6HX48KJnABEfkGeWqXSQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0220599 crossref_primary_10_1016_j_apsoil_2022_104395 crossref_primary_10_1016_j_geoderma_2024_116910 crossref_primary_10_3390_w15213823 crossref_primary_10_1016_j_apsoil_2024_105529 crossref_primary_10_1007_s11368_023_03456_4 crossref_primary_10_1029_2021JG006544 crossref_primary_10_1021_acs_est_3c08104 crossref_primary_10_3389_fmicb_2023_1068595 crossref_primary_10_1029_2019JG005291 crossref_primary_10_1016_j_catena_2021_105478 crossref_primary_10_1016_j_catena_2024_108500 crossref_primary_10_1038_s41598_019_44985_8 crossref_primary_10_1016_j_apsoil_2025_105875 crossref_primary_10_3390_jof9121133 crossref_primary_10_3390_f10060497 crossref_primary_10_1007_s11104_019_04212_9 crossref_primary_10_3389_fpls_2023_1224691 crossref_primary_10_1016_j_still_2021_105260 crossref_primary_10_1002_ep_13707 crossref_primary_10_1002_ldr_3723 crossref_primary_10_3390_agronomy14030581 crossref_primary_10_1002_ldr_3449 crossref_primary_10_3390_f11121282 crossref_primary_10_1007_s11104_021_04925_w crossref_primary_10_1016_j_agee_2024_109462 crossref_primary_10_1016_j_foreco_2022_120658 crossref_primary_10_1007_s11368_021_02896_0 crossref_primary_10_1016_j_scitotenv_2023_161754 crossref_primary_10_1016_j_soilbio_2021_108540 crossref_primary_10_1007_s11356_021_13012_7 crossref_primary_10_1007_s11356_021_18406_1 crossref_primary_10_1007_s11356_023_30637_y crossref_primary_10_1007_s11356_023_27588_9 crossref_primary_10_3390_f15112004 crossref_primary_10_3389_fevo_2023_1105150 crossref_primary_10_1186_s12870_024_06016_1 crossref_primary_10_1016_j_catena_2021_105807 crossref_primary_10_3390_agronomy11102057 crossref_primary_10_1111_geb_13017 crossref_primary_10_1007_s40626_024_00310_x crossref_primary_10_1016_j_foreco_2020_118491 crossref_primary_10_2139_ssrn_4016956 crossref_primary_10_1016_j_catena_2021_105809 crossref_primary_10_1590_01047760202127012980 crossref_primary_10_1002_ldr_3439 crossref_primary_10_1016_j_pedsph_2023_06_003 crossref_primary_10_1016_j_scitotenv_2023_162789 crossref_primary_10_1080_00380768_2023_2177493 crossref_primary_10_1002_ldr_4883 crossref_primary_10_1093_jpe_rtae100 crossref_primary_10_1002_agj2_20538 crossref_primary_10_1128_AEM_00342_18 crossref_primary_10_1016_j_isci_2024_111408 crossref_primary_10_1016_j_scitotenv_2024_172905 crossref_primary_10_1007_s00374_019_01362_x crossref_primary_10_1007_s11104_022_05499_x crossref_primary_10_1038_s41598_024_70139_6 crossref_primary_10_1002_jsfa_11304 crossref_primary_10_1016_j_catena_2022_106808 crossref_primary_10_1007_s11104_020_04422_6 crossref_primary_10_1016_j_scitotenv_2024_174783 crossref_primary_10_1016_j_ecolind_2022_109552 crossref_primary_10_1007_s11104_021_05220_4 crossref_primary_10_1016_j_gecco_2024_e03260 crossref_primary_10_1016_j_foreco_2020_118880 crossref_primary_10_3390_agronomy11112131 crossref_primary_10_3390_land11060781 crossref_primary_10_3389_fmicb_2022_960594 crossref_primary_10_1016_j_geoderma_2018_12_023 crossref_primary_10_1007_s11104_025_07371_0 crossref_primary_10_1007_s11104_021_05028_2 crossref_primary_10_1016_j_gexplo_2021_106782 crossref_primary_10_3390_agronomy10081084 crossref_primary_10_3389_fevo_2022_1011495 crossref_primary_10_1016_j_soilbio_2021_108162 crossref_primary_10_1016_j_foreco_2023_121582 crossref_primary_10_1016_j_scitotenv_2024_174815 crossref_primary_10_1016_j_gecco_2020_e01328 crossref_primary_10_3389_ffgc_2023_1172062 crossref_primary_10_1007_s00374_020_01522_4 crossref_primary_10_3390_f10090796 crossref_primary_10_1016_j_soilbio_2020_107928 crossref_primary_10_1016_j_apsoil_2022_104594 crossref_primary_10_3390_f15020341 crossref_primary_10_1007_s40333_022_0028_6 crossref_primary_10_1016_j_catena_2022_106759 crossref_primary_10_1002_ldr_4625 crossref_primary_10_1016_j_geoderma_2022_116036 crossref_primary_10_1016_j_scitotenv_2024_172171 crossref_primary_10_1007_s10533_023_01022_1 crossref_primary_10_1007_s11629_022_7345_2 crossref_primary_10_1002_ldr_3771 crossref_primary_10_1016_j_apsoil_2021_104227 crossref_primary_10_1029_2021JG006742 crossref_primary_10_1177_0309133320949865 crossref_primary_10_1016_j_scitotenv_2019_135413 crossref_primary_10_1177_19400829231221018 crossref_primary_10_1016_j_catena_2018_10_042 crossref_primary_10_1016_j_catena_2024_108389 crossref_primary_10_1016_j_apsoil_2024_105453 crossref_primary_10_1016_j_agee_2024_109389 crossref_primary_10_1016_j_apsoil_2025_106001 crossref_primary_10_3390_app14114359 crossref_primary_10_3390_f14071315 crossref_primary_10_1016_j_catena_2020_104849 crossref_primary_10_1016_j_ecolind_2024_113034 crossref_primary_10_1016_j_scitotenv_2023_168349 crossref_primary_10_3389_fpls_2022_834184 crossref_primary_10_1016_j_catena_2024_108259 crossref_primary_10_1016_j_soilbio_2022_108600 crossref_primary_10_1186_s40663_020_0213_z crossref_primary_10_1007_s11104_024_06668_w crossref_primary_10_1016_j_geoderma_2019_113938 crossref_primary_10_3390_f14020355 crossref_primary_10_1111_gcb_16765 crossref_primary_10_1007_s11104_023_06014_6 crossref_primary_10_1016_j_catena_2021_105849 crossref_primary_10_1016_j_ecolind_2019_01_046 crossref_primary_10_1016_j_scitotenv_2023_162504 crossref_primary_10_3390_f12010083 crossref_primary_10_1007_s13157_024_01824_5 crossref_primary_10_1016_j_gecco_2024_e03171 crossref_primary_10_3390_f15122233 crossref_primary_10_1007_s42729_024_01750_9 crossref_primary_10_1016_j_still_2023_105898 crossref_primary_10_1080_03650340_2022_2117302 crossref_primary_10_1186_s13717_024_00530_8 crossref_primary_10_1016_j_scitotenv_2020_142381 crossref_primary_10_3389_ffgc_2022_1024656 crossref_primary_10_1016_j_apsoil_2024_105431 crossref_primary_10_1016_j_foreco_2023_121392 crossref_primary_10_1007_s11104_024_07039_1 crossref_primary_10_1007_s11676_020_01213_8 crossref_primary_10_1007_s11368_022_03396_5 crossref_primary_10_1016_j_ecoleng_2019_08_008 crossref_primary_10_1128_spectrum_02316_22 crossref_primary_10_1016_j_apsoil_2021_103969 crossref_primary_10_3389_fevo_2023_1137172 crossref_primary_10_1111_ele_70011 crossref_primary_10_3389_fmicb_2022_1002198 crossref_primary_10_1016_j_envpol_2024_123703 crossref_primary_10_1002_ldr_5082 crossref_primary_10_1016_j_apsoil_2025_106031 crossref_primary_10_1016_j_ecoenv_2023_115190 crossref_primary_10_1080_10807039_2025_2471496 crossref_primary_10_1016_j_apsoil_2021_104253 crossref_primary_10_1186_s40663_021_00341_9 crossref_primary_10_3390_f15101815 |
Cites_doi | 10.1002/9781118684986 10.1007/s12665-014-3847-8 10.1007/BF00422051 10.1016/j.soilbio.2016.10.020 10.3389/fmicb.2013.00223 10.1016/j.soilbio.2015.04.007 10.1111/j.1461-0248.2011.01701.x 10.1016/j.foreco.2017.05.050 10.1007/s00374-015-1061-9 10.1371/journal.pone.0084101 10.1007/s10533-014-9991-0 10.1016/S0065-2113(08)60181-9 10.1016/0038-0717(94)90211-9 10.1146/annurev-ecolsys-071112-124414 10.1007/s11104-015-2406-8 10.1890/06-2057.1 10.1016/S0038-0717(03)00015-4 10.1016/j.jenvman.2017.06.048 10.1016/j.earscirev.2014.01.005 10.1007/s10533-010-9482-x 10.1016/j.soilbio.2009.10.014 10.1007/s10021-002-0202-9 10.1007/s11104-005-5446-7 10.1007/s10533-016-0235-3 10.1111/ele.12113 10.1071/S96047 10.1029/2006JD007990 10.1111/j.1365-3040.1992.tb00973.x 10.1007/978-3-642-79520-6 10.2307/1311067 10.1029/2007GL032887 10.1007/s11104-012-1479-x 10.1007/s10342-012-0608-7 10.1016/S0038-0717(02)00074-3 10.1007/978-3-540-68027-7_2 10.1098/rstb.1999.0524 10.1038/nature08632 10.1002/ecm.1279 10.1111/j.1461-0248.2008.01245.x 10.1016/j.soilbio.2003.12.002 10.1016/S0038-0717(00)00127-9 |
ContentType | Journal Article |
Copyright | 2018 The Authors. © 2018 British Ecological Society 2018 The Authors. Functional Ecology © 2018 British Ecological Society Functional Ecology © 2018 British Ecological Society |
Copyright_xml | – notice: 2018 The Authors. © 2018 British Ecological Society – notice: 2018 The Authors. Functional Ecology © 2018 British Ecological Society – notice: Functional Ecology © 2018 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.13069 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1409 |
ExternalDocumentID | 10_1111_1365_2435_13069 FEC13069 48582701 |
Genre | article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences – fundername: National Natural Science Foundation of China funderid: 41571295; 31500405 – fundername: Natural Science Foundation of Guangxi Province of China funderid: 2017GXNSFAA198038 – fundername: National Key Research and Development Program of China funderid: 2016YFC0502404 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ACHIC ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX ABSQW AGUYK CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4779-2dc296bc6eb666ca3a2162855e873d5b562533a904459af82efb90840f468383 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:35:07 EDT 2025 Fri Jul 25 20:53:49 EDT 2025 Tue Jul 01 01:15:47 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Wed Jan 22 16:48:47 EST 2025 Thu Jul 03 21:56:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4779-2dc296bc6eb666ca3a2162855e873d5b562533a904459af82efb90840f468383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3577-2345 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.13069 |
PQID | 2033972895 |
PQPubID | 1066355 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2067272194 proquest_journals_2033972895 crossref_citationtrail_10_1111_1365_2435_13069 crossref_primary_10_1111_1365_2435_13069 wiley_primary_10_1111_1365_2435_13069_FEC13069 jstor_primary_48582701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2018 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2013; 4 2012; 2012 2016; 129 2017; 88 2002; 5 2002; 34 2015; 74 2003; 35 2007 2016; 52 2013; 367 2006 2008; 35 1995 2008; 11 1994; 26 2012; 15 2002 2014; 132 2013; 8 1987; 19 1996; 56 2007; 112 2012; 131 2010; 42 2011; 102 2015; 391 2013; 16 2004; 36 1997; 35 2015; 87 2009; 462 2018 2008; 89 1961; 40 2006; 282 2011; 25 1999; 354 2001; 33 2017; 201 2014; 120 2017; 400 2017; 104 1989; 39 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 R Development Core Team (e_1_2_9_26_1) 2007 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 Cui X. X. (e_1_2_9_11_1) 2011; 25 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 Carter M. R. (e_1_2_9_7_1) 2006 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 Chen H. (e_1_2_9_9_1) 2018 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Sterner R. W. (e_1_2_9_36_1) 2002 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 282 start-page: 135 year: 2006 end-page: 151 article-title: Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China publication-title: Plant and Soil – volume: 34 start-page: 1309 year: 2002 end-page: 1315 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an forest soil publication-title: Soil Biology & Biochemistry – volume: 40 start-page: 370 year: 1961 article-title: Factors limiting microbial activities in soil publication-title: Archiv Für Mikrobiologie – start-page: 37 year: 2007 end-page: 64 – volume: 52 start-page: 177 year: 2016 end-page: 189 article-title: Fertilization practices alter microbial nutrient limitations after alleviation of carbon limitation in a Ferric Acrisol publication-title: Biology and Fertility of Soils – volume: 5 start-page: 0680 year: 2002 end-page: 0691 article-title: Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short‐term laboratory incubations and field studies publication-title: Ecosystems – volume: 391 start-page: 77 year: 2015 end-page: 91 article-title: Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China publication-title: Plant and Soil – volume: 88 start-page: 4 year: 2017 end-page: 21 article-title: Nutrient limitation of soil microbial processes in tropical forests publication-title: Ecological Monographs – volume: 462 start-page: 795 year: 2009 end-page: 798 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – year: 2018 article-title: Data from: Soil microbial processes and resource limitation in karst and non‐karst forests publication-title: Dryad Digital Repository – volume: 25 start-page: 117 year: 2011 end-page: 139 article-title: Soil microbial biomass, respiration, and metabolic quotient under different vegetation restoration stages in karsts gorge district publication-title: Journal of Soil & Water Conservation – year: 2007 – volume: 74 start-page: 937 year: 2015 end-page: 944 article-title: Characteristics of climate change in southwest China karst region and their potential environmental impacts publication-title: Environmental Earth Sciences – volume: 16 start-page: 930 year: 2013 end-page: 939 article-title: Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling publication-title: Ecology Letters – volume: 354 start-page: 1825 year: 1999 end-page: 1829 article-title: Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest publication-title: Philosophical Transactions of the Royal Society of London Series B‐Biological Sciences – volume: 42 start-page: 391 year: 2010 end-page: 404 article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil publication-title: Soil Biology & Biochemistry – volume: 33 start-page: 173 year: 2001 end-page: 188 article-title: Substrate limitations to microbial activity in taiga forest floors publication-title: Soil Biology & Biochemistry – volume: 56 start-page: 139 year: 1996 end-page: 185 article-title: Organic amendments and phosphorus sorption by soils publication-title: Advances in Agronomy – volume: 102 start-page: 31 year: 2011 end-page: 43 article-title: Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: The growth rate hypothesis in reverse publication-title: Biogeochemistry – volume: 201 start-page: 199 year: 2017 article-title: Dynamics of soil organic carbon in density fractions during post‐agricultural succession over two lithology types, southwest China publication-title: Journal of Environmental Management – volume: 36 start-page: 581 year: 2004 end-page: 589 article-title: Nutrient limitations to soil microbial biomass and activity in loblolly pine forests publication-title: Soil Biology & Biochemistry – volume: 104 start-page: 152 year: 2017 end-page: 163 article-title: Soil enzyme activity and stoichiometry in forest ecosystems along the North‐South Transect in eastern China (NSTEC) publication-title: Soil Biology & Biochemistry – volume: 8 start-page: e84101 year: 2013 article-title: Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old‐growth tropical forest publication-title: PLoS ONE – volume: 35 start-page: 135 year: 2008 end-page: 157 article-title: China: Emissions pattern of the world leader in CO emissions from fossil fuel consumption and cement production publication-title: Geophysical Research Letters – volume: 4 start-page: 223 year: 2013 article-title: Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme‐based decomposition models publication-title: Frontiers in Microbiology – volume: 15 start-page: 9 year: 2012 end-page: 16 article-title: Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation publication-title: Ecology Letters – volume: 26 start-page: 1305 year: 1994 end-page: 1311 article-title: Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition publication-title: Soil Biology & Biochemistry – volume: 11 start-page: 1252 year: 2008 end-page: 1264 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters – volume: 129 start-page: 1 year: 2016 end-page: 14 article-title: Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China publication-title: Biogeochemistry – volume: 39 start-page: 378 year: 1989 end-page: 386 article-title: Nitrogen saturation in northern forest ecosystems publication-title: BioScience – volume: 89 start-page: 371 year: 2008 end-page: 379 article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed publication-title: Ecology – volume: 120 start-page: 203 year: 2014 end-page: 224 article-title: Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P‐limitation between peatland types publication-title: Biogeochemistry – year: 2002 – year: 2006 – volume: 2012 start-page: 313 year: 2012 end-page: 434 article-title: Ecoenzymatic stoichiometry and ecological theory publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 87 start-page: 34 year: 2015 end-page: 42 article-title: Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra‐oligotrophic desert soil publication-title: Soil Biology & Biochemistry – year: 1995 – volume: 132 start-page: 1 year: 2014 end-page: 12 article-title: Rocky desertification in Southwest China: Impacts, causes, and restoration publication-title: Earth‐Science Reviews – volume: 400 start-page: 85 year: 2017 end-page: 92 article-title: Afforestation effects on soil organic carbon and nitrogen pools modulated by lithology publication-title: Forest Ecology and Management – volume: 35 start-page: 227 year: 1997 end-page: 240 article-title: Soil phosphorus: Its measurement, and its uptake by plants publication-title: Soil Research – volume: 112 start-page: 229 year: 2007 end-page: 238 article-title: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data publication-title: Journal of Geophysical Research‐Atmospheres – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring soil microbial biomass‐C publication-title: Soil Biology & Biochemistry – volume: 35 start-page: 549 year: 2003 end-page: 563 article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model publication-title: Soil Biology and Biochemistry – volume: 367 start-page: 563 year: 2013 end-page: 577 article-title: Decomposition‐rate estimation of leaf litter in karst forests in China based on a mathematical model publication-title: Plant and Soil – volume: 131 start-page: 1669 year: 2012 end-page: 1680 article-title: High organic carbon stock in a karstic soil of the Middle‐European Forest Province persists after centuries‐long agroforestry management publication-title: European Journal of Forest Research – ident: e_1_2_9_12_1 doi: 10.1002/9781118684986 – ident: e_1_2_9_20_1 doi: 10.1007/s12665-014-3847-8 – ident: e_1_2_9_37_1 doi: 10.1007/BF00422051 – year: 2018 ident: e_1_2_9_9_1 article-title: Data from: Soil microbial processes and resource limitation in karst and non‐karst forests publication-title: Dryad Digital Repository – volume-title: : A language and environment for statistical computing year: 2007 ident: e_1_2_9_26_1 – ident: e_1_2_9_46_1 doi: 10.1016/j.soilbio.2016.10.020 – ident: e_1_2_9_25_1 doi: 10.3389/fmicb.2013.00223 – ident: e_1_2_9_39_1 doi: 10.1016/j.soilbio.2015.04.007 – ident: e_1_2_9_5_1 doi: 10.1111/j.1461-0248.2011.01701.x – ident: e_1_2_9_19_1 doi: 10.1016/j.foreco.2017.05.050 – ident: e_1_2_9_40_1 doi: 10.1007/s00374-015-1061-9 – ident: e_1_2_9_8_1 doi: 10.1371/journal.pone.0084101 – ident: e_1_2_9_14_1 doi: 10.1007/s10533-014-9991-0 – ident: e_1_2_9_16_1 doi: 10.1016/S0065-2113(08)60181-9 – volume-title: Soil sampling and methods of analysis year: 2006 ident: e_1_2_9_7_1 – ident: e_1_2_9_34_1 doi: 10.1016/0038-0717(94)90211-9 – ident: e_1_2_9_35_1 doi: 10.1146/annurev-ecolsys-071112-124414 – volume-title: Ecological stoichiometry: The biology of elements from molecules to the Biosphere year: 2002 ident: e_1_2_9_36_1 – ident: e_1_2_9_47_1 doi: 10.1007/s11104-015-2406-8 – ident: e_1_2_9_18_1 doi: 10.1890/06-2057.1 – ident: e_1_2_9_28_1 doi: 10.1016/S0038-0717(03)00015-4 – ident: e_1_2_9_44_1 doi: 10.1016/j.jenvman.2017.06.048 – ident: e_1_2_9_17_1 doi: 10.1016/j.earscirev.2014.01.005 – ident: e_1_2_9_30_1 doi: 10.1007/s10533-010-9482-x – volume: 25 start-page: 117 year: 2011 ident: e_1_2_9_11_1 article-title: Soil microbial biomass, respiration, and metabolic quotient under different vegetation restoration stages in karsts gorge district publication-title: Journal of Soil & Water Conservation – ident: e_1_2_9_29_1 doi: 10.1016/j.soilbio.2009.10.014 – ident: e_1_2_9_10_1 doi: 10.1007/s10021-002-0202-9 – ident: e_1_2_9_24_1 doi: 10.1007/s11104-005-5446-7 – ident: e_1_2_9_45_1 doi: 10.1007/s10533-016-0235-3 – ident: e_1_2_9_33_1 doi: 10.1111/ele.12113 – ident: e_1_2_9_15_1 doi: 10.1071/S96047 – ident: e_1_2_9_21_1 doi: 10.1029/2006JD007990 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-3040.1992.tb00973.x – ident: e_1_2_9_38_1 doi: 10.1007/978-3-642-79520-6 – ident: e_1_2_9_2_1 doi: 10.2307/1311067 – ident: e_1_2_9_13_1 doi: 10.1029/2007GL032887 – ident: e_1_2_9_43_1 doi: 10.1007/s11104-012-1479-x – ident: e_1_2_9_3_1 doi: 10.1007/s10342-012-0608-7 – ident: e_1_2_9_27_1 doi: 10.1016/S0038-0717(02)00074-3 – ident: e_1_2_9_22_1 doi: 10.1007/978-3-540-68027-7_2 – ident: e_1_2_9_23_1 doi: 10.1098/rstb.1999.0524 – ident: e_1_2_9_31_1 doi: 10.1038/nature08632 – ident: e_1_2_9_6_1 doi: 10.1002/ecm.1279 – ident: e_1_2_9_32_1 doi: 10.1111/j.1461-0248.2008.01245.x – ident: e_1_2_9_4_1 doi: 10.1016/j.soilbio.2003.12.002 – ident: e_1_2_9_42_1 doi: 10.1016/S0038-0717(00)00127-9 |
SSID | ssj0009522 |
Score | 2.6129878 |
Snippet | Soil micro‐organisms play a key role in soil biogeochemical cycles, but their growth and activities are often limited by resource availability. Understanding... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1400 |
SubjectTerms | Biogeochemical cycles C limitation calcareous soil cell respiration Decomposition Dolomite ecoenzymatic stoichiometry Ecosystems ECOSYSTEMS ECOLOGY enzyme activity Forests Karst karst forest karsts Limestone Microorganisms Nitrogen nutrient limitation Organic carbon Organic soils Phosphorus Resource availability Respiration soil Soil fertility Soil improvement soil organic carbon Soils Stoichiometry |
Title | Soil microbial processes and resource limitation in karst and non-karst forests |
URI | https://www.jstor.org/stable/48582701 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13069 https://www.proquest.com/docview/2033972895 https://www.proquest.com/docview/2067272194 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8iCF78Hk6nVPDgpWNL0q-jjI0hKKgTvJWkTWBsdmPtDnryT_Bv9C_xvaSd20BEvKVNQl_T9_J-r3kfhFyCyICaSGH3awe-Cxte6ErGoMW1lIhPQ5OO4fbO7z_xm2ev8ibEWBibH2Lxww0lw-zXKOBC5ktCbv2zQNtjQWMfQ_jwDsKiB7qUdteeI1A_ckHTsjK5D_ryrM1f0UvWNXEFdC5DV6N7ertEVlRbl5NRc17IZvK2ltDxX6-1R3ZKZOpcW1baJxsqOyBbtlblK7S6Sdmqdb-D42BCuTvkh-T-cTIcOy9Dk9sJeqY2CEHljshSZ1YeFDhjjKkyDOEMM2cElnVhBmST7PP9w14DlIb1yI_IoNcddPpuWbLBTXgQRC5NExr5MvGVBLsoEUzQNgZpeioMWOpJNLcYE1GLcy8SOqRKy6gFRqbmfgjGco1swsPUMXEU97hWDMvuejzVUmgvlDSNlBaB1iKtk2b1veKkpBqraozjyqzBlYxxJWOzknVytZgwtZk8fh5aMwywGMeBZ2nQatdJo-KIuJT1PKYtBqAODFevTi4W3SClePQiMjWZ4xhz4t2OONBtPv9vNMS9bsc0Tv464ZRsA6oLrVdmg2wWs7k6A-RUyHMjHF-pwgqo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JSgMx9OGC6MW9WNcRPHiZ0iaZJUeRlrq0oFbwNiQzCRTrVGx70JOf4Df6Jb4k01oFEfH2hiQzmeStyVsAjpBkUExkyP1qUegjw4t9SSlCTEtp9NPYpmNotcPmLTu_C-6mYmFcfojJgZuhDMuvDYGbA-kpKncOWijuTUXjkM_CvKnrbc2qazKVeNfdJJCQ-yhraZHex3jzfHvBF8nknBO_qJ3TyquVPo0VSMfzdk4n95XRUFbSl28pHf_3Y6uwXCin3onDpjWYUfk6LLhylc8I1dMCKtU_4-NwQMEgBhtwddPv9ryHrk3vhC2PLg5BDTyRZ95TcVfg9UxYlcUJr5t792hcD22HvJ-_v765Z9SmcUEGm9Bp1DunTb-o2uCnLIq4T7KU8FCmoZJoGqWCClIzcZqBiiOaBdJYXJQKXmUs4ELHRGnJq2hnahbGaC-XYA4_prbAUyxgWlFTeTdgmZZCB7EkGVdaRFqLrAyV8YYlaTFrU1ijl4wtG7OSiVnJxK5kGY4nAx5dMo-fu5YsBkz6MURbElVrZdgdo0RSkPsgIVWKeh3arkEZDifNSKjm9kXkqj8yfeyld40znLfd_9_mkDTqpxbY_uuAA1hsdlqXyeVZ-2IHllDJi52T5i7MDZ9Gag8VqaHct5TyAV8qDsM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTttAcESDqLi0vCJCU2okDlwcObvrxx4RJAoUEK9KvVm79q4UJThRHgc49RP6jf0SZnftNCAhVPW2lmft8e7MzoznBXCILINiIsfTrx1HPh54iS8pxRHTUhr9NLHlGC6vot4Pdv4zrKIJTS6Mqw-x-OFmOMOe14bBx7leYnIXn4XS3jQ0jvgHWGVRkBjCPr0lS3V3nSOBRNxHUUvL6j4mmOfVA14IJheb-ELrXNZdrfDpfgZZoe1iTgat-Uy2sqdXFR3_67s24FOpmnrHjpY2YUUVW7DmmlU-4qiTlaN65292HE4oj4fpNtzcjfpD76FvizvhnbHLQlBTTxS5Nyk9Bd7QJFVZivD6hTdA03pmAYpR8efXb3eNujSux3QH7rud-5OeX_Zs8DMWx9wneUZ4JLNISTSMMkEFaZsszVAlMc1DaewtSgUPGAu50AlRWvIArUzNogSt5TrU8GVqFzzFQqYVNX13Q5ZrKXSYSJJzpUWstcgb0Kr2K81KrE1bjWFa2TVmJVOzkqldyQYcLSaMXSmPt0HrlgAWcAyJlsRBuwHNiiLSktmnKQkoanVouYYNOFjcRjY1vhdRqNHcwFiXd5szxNtu_3s4pN3OiR3s_euEb_Dx-rSbXpxdff8C66jhJS5Cswm12WSuvqIWNZP7lk-eATLdDXs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+microbial+processes+and+resource+limitation+in+karst+and+non%E2%80%90karst+forests&rft.jtitle=Functional+ecology&rft.au=Chen%2C+Hao&rft.au=Li%2C+Dejun&rft.au=Xiao%2C+Kongcao&rft.au=Wang%2C+Kelin&rft.date=2018-05-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=32&rft.issue=5&rft.spage=1400&rft.epage=1409&rft_id=info:doi/10.1111%2F1365-2435.13069&rft.externalDBID=10.1111%252F1365-2435.13069&rft.externalDocID=FEC13069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |