Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials
Cellular materials with periodic architectures have been extensively investigated over the past decade for their potential to provide multifunctional solutions for a variety of applications, including lightweight thermo‐structural panels, blast resistant structures, and high‐authority morphing compo...
Saved in:
Published in | Journal of the American Ceramic Society Vol. 94; no. s1; pp. s15 - s34 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Columbus
Blackwell Publishing Ltd
01.06.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0002-7820 1551-2916 |
DOI | 10.1111/j.1551-2916.2011.04599.x |
Cover
Loading…
Abstract | Cellular materials with periodic architectures have been extensively investigated over the past decade for their potential to provide multifunctional solutions for a variety of applications, including lightweight thermo‐structural panels, blast resistant structures, and high‐authority morphing components. Stiffer and stronger than stochastic foams, periodic cellular materials lend themselves well to geometry optimization, enabling a high degree of tailorability and superior performance benefits. This article reviews a commonly established optimal design protocol, extensively adopted at the macro‐scale for both single and multifunctional structures. Two prototypical examples are discussed: the design of strong and lightweight sandwich beams subject to mechanical loads and the combined material/geometry optimization of actively cooled combustors for hypersonic vehicles. With this body of literature in mind, we present a motivation for the development of micro‐architected materials, namely periodic multiscale cellular materials with overall macroscopic dimensions yet with features (such as the unit cell or subunit cell constituents) at the micro‐ or nano‐scale. We review a suite of viable manufacturing approaches and discuss the need for advanced experimental tools, numerical models, and optimization strategies. In analyzing challenges and opportunities, we conclude that the technology is approaching maturity for the development of micro‐architected materials with unprecedented combinations of properties (e.g., specific stiffness and strength), with tremendous potential impact on a number of fields. |
---|---|
AbstractList | A commonly established optimal design protocol, extensively adopted at the macro-scale for both single and multifunctional cellular structures, is reviewed. Two prototypical examples are discussed: the design of strong and lightweight sandwich beams subject to mechanical loads and the combined material/geometry optimisation of actively cooled combustors for hypersonic vehicles. With this body of literature in mind, motivation for the development of micro-architected materials, namely periodic multiscale cellular materials with overall macroscopic dimensions yet with features (such as the unit cell or subunit cell constituents) at the micro- or nano-scale is presented. A suite of viable manufacturing approaches are reviewed and advanced experimental tools, numerical models, and optimisation strategies are discussed. It is concluded that the technology is approaching maturity for the development of micro-architected materials with unprecedented combinations of properties (e.g., specific stiffness and strength), with tremendous potential impact on a number of fields. Cellular materials with periodic architectures have been extensively investigated over the past decade for their potential to provide multifunctional solutions for a variety of applications, including lightweight thermo-structural panels, blast resistant structures, and high-authority morphing components. Stiffer and stronger than stochastic foams, periodic cellular materials lend themselves well to geometry optimization, enabling a high degree of tailorability and superior performance benefits. This article reviews a commonly established optimal design protocol, extensively adopted at the macro-scale for both single and multifunctional structures. Two prototypical examples are discussed: the design of strong and lightweight sandwich beams subject to mechanical loads and the combined material/geometry optimization of actively cooled combustors for hypersonic vehicles. With this body of literature in mind, we present a motivation for the development of micro-architected materials, namely periodic multiscale cellular materials with overall macroscopic dimensions yet with features (such as the unit cell or subunit cell constituents) at the micro- or nano-scale. We review a suite of viable manufacturing approaches and discuss the need for advanced experimental tools, numerical models, and optimization strategies. In analyzing challenges and opportunities, we conclude that the technology is approaching maturity for the development of micro-architected materials with unprecedented combinations of properties (e.g., specific stiffness and strength), with tremendous potential impact on a number of fields. [PUBLICATION ABSTRACT] Cellular materials with periodic architectures have been extensively investigated over the past decade for their potential to provide multifunctional solutions for a variety of applications, including lightweight thermo‐structural panels, blast resistant structures, and high‐authority morphing components. Stiffer and stronger than stochastic foams, periodic cellular materials lend themselves well to geometry optimization, enabling a high degree of tailorability and superior performance benefits. This article reviews a commonly established optimal design protocol, extensively adopted at the macro‐scale for both single and multifunctional structures. Two prototypical examples are discussed: the design of strong and lightweight sandwich beams subject to mechanical loads and the combined material/geometry optimization of actively cooled combustors for hypersonic vehicles. With this body of literature in mind, we present a motivation for the development of micro‐architected materials, namely periodic multiscale cellular materials with overall macroscopic dimensions yet with features (such as the unit cell or subunit cell constituents) at the micro‐ or nano‐scale. We review a suite of viable manufacturing approaches and discuss the need for advanced experimental tools, numerical models, and optimization strategies. In analyzing challenges and opportunities, we conclude that the technology is approaching maturity for the development of micro‐architected materials with unprecedented combinations of properties (e.g., specific stiffness and strength), with tremendous potential impact on a number of fields. Cellular materials with periodic architectures have been extensively investigated over the past decade for their potential to provide multifunctional solutions for a variety of applications, including lightweight thermo‐structural panels, blast resistant structures, and high‐authority morphing components. Stiffer and stronger than stochastic foams, periodic cellular materials lend themselves well to geometry optimization, enabling a high degree of tailorability and superior performance benefits. This article reviews a commonly established optimal design protocol, extensively adopted at the macro‐scale for both single and multifunctional structures. Two prototypical examples are discussed: the design of strong and lightweight sandwich beams subject to mechanical loads and the combined material/geometry optimization of actively cooled combustors for hypersonic vehicles. With this body of literature in mind, we present a motivation for the development of micro‐architected materials , namely periodic multiscale cellular materials with overall macroscopic dimensions yet with features (such as the unit cell or subunit cell constituents) at the micro‐ or nano‐scale. We review a suite of viable manufacturing approaches and discuss the need for advanced experimental tools, numerical models, and optimization strategies. In analyzing challenges and opportunities, we conclude that the technology is approaching maturity for the development of micro‐architected materials with unprecedented combinations of properties (e.g., specific stiffness and strength), with tremendous potential impact on a number of fields. |
Author | Valdevit, Lorenzo Carter, William B. Greer, Julia R. Jacobsen, Alan J. |
Author_xml | – sequence: 1 givenname: Lorenzo surname: Valdevit fullname: Valdevit, Lorenzo email: valdevit@uci.edu organization: Mechanical and Aerospace Engineering Department and Chemical Engineering and Materials Science Department, University of California, California, 92697, Irvine – sequence: 2 givenname: Alan J. surname: Jacobsen fullname: Jacobsen, Alan J. organization: HRL Laboratories, California, 90265, Malibu – sequence: 3 givenname: Julia R. surname: Greer fullname: Greer, Julia R. organization: Materials Science Department, California Institute of Technology, 91125, Pasadena, California – sequence: 4 givenname: William B. surname: Carter fullname: Carter, William B. organization: HRL Laboratories, California, 90265, Malibu |
BookMark | eNqVkc1v2yAYh9HUSUs__ge0y3axB9jmY4dJUdo0q5p21Tb1iDCBlcwxGWAt-e-Hl6qHHqaOCyCe9we8zzE46n1vAIAYlTiPD-sSNw0uiMC0JAjjEtWNEOXuFZg8HRyBCUKIFIwT9AYcx7jOWyx4PQH7L8Enr30XofUBpgcDb7fJbVQHz010P3roLVwOXXLFfOh1cr7PRzPTdUOnAvyawqDTEEz8COfBb-BivzUh-t7pCJOHS6eDL6ZBP7hkdDIruFTJBKe6eApe2zyZs8f5BHyfX3ybLYrr28vPs-l1oWvGREEqizTilFnVYiFaxShRSDWNYLU1WiDbtivEUYUqutJtYwyteIVa3Bpqa2urE_DukLsN_tdgYpIbF3X-gOqNH6IUhBKOKaeZfP9PElNBakwYIS9AGa5xfpLI6Ntn6NoPIXcxSs4J4Zw1PEP8AOV2xRiMlduQJYS9xEiOnuVajjrlqFOOnuVfz3KXSz89K9UuqVFUCsp1_xHw23Vm_-KL5dV0djEuc0BxCHAxmd1TgAo_JWUVa-T9zaW8Wdxf3THaSFH9AbRr05U |
CODEN | JACTAW |
CitedBy_id | crossref_primary_10_1002_adem_201700625 crossref_primary_10_1016_j_matdes_2021_110008 crossref_primary_10_1016_j_cma_2018_04_034 crossref_primary_10_1016_j_euromechsol_2023_105007 crossref_primary_10_1061__ASCE_AS_1943_5525_0000339 crossref_primary_10_1016_j_actamat_2017_10_002 crossref_primary_10_1016_j_pmatsci_2017_12_003 crossref_primary_10_1002_smll_202206391 crossref_primary_10_1016_j_ijmecsci_2021_106353 crossref_primary_10_3390_app10217449 crossref_primary_10_1016_j_engstruct_2018_05_094 crossref_primary_10_1115_1_4038672 crossref_primary_10_1126_sciadv_aaz4169 crossref_primary_10_1002_adma_201501546 crossref_primary_10_1021_acsami_6b10502 crossref_primary_10_1007_s11465_019_0530_5 crossref_primary_10_1061__ASCE_EM_1943_7889_0001759 crossref_primary_10_1016_j_mtcomm_2023_107638 crossref_primary_10_1007_s12008_022_00863_8 crossref_primary_10_1002_smll_201802239 crossref_primary_10_1557_mrc_2016_62 crossref_primary_10_1126_science_1255908 crossref_primary_10_2140_jomms_2017_12_633 crossref_primary_10_1016_j_compstruct_2019_03_076 crossref_primary_10_1038_s41598_018_23857_7 crossref_primary_10_1016_j_matdes_2019_107597 crossref_primary_10_1002_adma_201701850 crossref_primary_10_3389_fmats_2018_00068 crossref_primary_10_1016_j_matdes_2017_03_018 crossref_primary_10_1002_adem_201300254 crossref_primary_10_1002_smll_201602514 crossref_primary_10_1002_adem_202101703 crossref_primary_10_1016_j_ijsolstr_2015_01_016 crossref_primary_10_1002_adem_202400518 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124517 crossref_primary_10_1016_j_compositesb_2021_109301 crossref_primary_10_1557_jmr_2018_6 crossref_primary_10_1073_pnas_1315147111 crossref_primary_10_1002_adem_201500607 crossref_primary_10_1115_1_4047345 crossref_primary_10_1063_5_0167076 crossref_primary_10_1016_j_actamat_2012_03_007 crossref_primary_10_1016_j_compstruct_2022_115540 crossref_primary_10_1007_s00158_015_1282_4 crossref_primary_10_1039_C9MH00302A crossref_primary_10_1002_adem_201800213 crossref_primary_10_1557_jmr_2018_18 crossref_primary_10_1038_s41467_023_42415_y crossref_primary_10_1007_s12541_015_0330_8 crossref_primary_10_1002_adem_201700389 crossref_primary_10_1016_j_compscitech_2018_08_009 crossref_primary_10_1016_j_eml_2020_100688 crossref_primary_10_3390_ma11101856 crossref_primary_10_1016_j_actamat_2015_10_040 crossref_primary_10_1016_j_addma_2022_103062 crossref_primary_10_1016_j_compstruct_2018_07_033 crossref_primary_10_1016_j_mtcomm_2018_01_017 crossref_primary_10_1002_adem_202001471 crossref_primary_10_1557_jmr_2013_160 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126404 crossref_primary_10_1080_15376494_2019_1629048 crossref_primary_10_1038_s41598_023_33935_0 crossref_primary_10_1115_1_4032809 crossref_primary_10_59277_PRA_SER_A_24_1_08 crossref_primary_10_1016_j_ijmecsci_2021_106727 crossref_primary_10_1016_j_jmps_2024_106016 crossref_primary_10_1016_j_jmbbm_2023_105967 crossref_primary_10_1016_j_jmps_2018_12_001 crossref_primary_10_1002_adem_201600365 crossref_primary_10_1016_j_matdes_2019_108124 crossref_primary_10_1115_1_4032248 crossref_primary_10_1142_S2047684121500147 crossref_primary_10_1002_mdp2_252 crossref_primary_10_1016_j_eml_2016_04_014 crossref_primary_10_1557_jmr_2014_226 crossref_primary_10_1557_mrc_2015_51 crossref_primary_10_3390_ma17112682 crossref_primary_10_1115_1_4035993 crossref_primary_10_1016_j_scriptamat_2013_08_025 crossref_primary_10_1016_j_ijsolstr_2016_01_011 crossref_primary_10_1080_09506608_2020_1815394 crossref_primary_10_1002_adem_201500118 crossref_primary_10_1016_j_jmst_2023_08_072 crossref_primary_10_1557_jmr_2017_427 crossref_primary_10_1088_1402_4896_ace5f1 crossref_primary_10_1088_2399_7532_aaca91 crossref_primary_10_1016_j_compositesa_2017_03_002 crossref_primary_10_1016_j_jmps_2019_01_002 crossref_primary_10_1016_j_commatsci_2021_110987 crossref_primary_10_1126_science_1252291 crossref_primary_10_1038_nature21075 crossref_primary_10_1016_j_jeurceramsoc_2016_03_038 crossref_primary_10_1016_j_scriptamat_2011_10_009 crossref_primary_10_1016_j_compstruct_2020_112669 crossref_primary_10_3103_S1067821217060098 crossref_primary_10_1016_j_actamat_2017_11_045 crossref_primary_10_1002_adem_201500249 crossref_primary_10_1016_j_ijmecsci_2018_10_005 crossref_primary_10_1007_s11661_014_2602_9 crossref_primary_10_1016_j_carbon_2018_03_033 crossref_primary_10_1080_21663831_2021_1961908 crossref_primary_10_1073_pnas_2003504118 crossref_primary_10_1002_adma_201201644 crossref_primary_10_1146_annurev_matsci_070115_031624 crossref_primary_10_1115_1_4033957 crossref_primary_10_1088_0960_1317_23_12_125011 crossref_primary_10_1109_JMEMS_2012_2211576 |
Cites_doi | 10.1016/S0022-5096(98)00018-0 10.1103/PhysRevB.73.245410 10.1016/j.ijsolstr.2005.06.079 10.1146/annurev-matsci-082908-145422 10.1016/j.pmatsci.2005.03.001 10.1016/j.actamat.2004.12.031 10.1002/adem.201000048 10.1557/JMR.1992.1564 10.1016/j.actamat.2009.10.042 10.1088/0965-0393/3/5/008 10.1179/imr.1994.39.1.1 10.1016/j.actamat.2007.10.031 10.1038/nmat2622 10.1016/S0079-6425(00)00016-5 10.1016/j.ijheatmasstransfer.2006.03.042 10.1016/j.ijimpeng.2009.06.006 10.2140/jomms.2008.3.1315 10.1002/adem.200800114 10.1002/adem.200600129 10.1063/1.2979684 10.1016/S0020-7683(02)00250-0 10.1016/j.matdes.2008.09.015 10.1016/j.actamat.2008.05.013 10.1016/j.actamat.2009.06.053 10.1080/09500830903236038 10.1098/rspa.2010.0215 10.1063/1.2884584 10.1146/annurev-matsci-082908-145409 10.1016/S0022-5096(99)00035-6 10.1038/nmat2085 10.1016/S0020-7403(00)00070-9 10.1103/PhysRevLett.100.185503 10.2514/1.45417 10.1088/0960-1317/20/12/125004 10.1080/14786437008238426 10.1016/j.actamat.2009.12.052 10.1016/j.ijsolstr.2004.04.027 10.1016/S0022-5096(97)00086-0 10.1016/S0020-7683(03)00375-5 10.1016/j.carbon.2010.10.059 10.1016/j.actamat.2005.05.023 10.1080/15376490590928589 10.1016/j.actamat.2009.07.027 10.1557/JMR.1995.2162 10.1016/S0065-2156(08)70388-0 10.1088/0965-0393/3/3/001 10.1088/0964-1726/8/3/308 10.1103/PhysRevLett.104.135503 10.1016/j.pmatsci.2011.01.005 10.1126/science.1098993 10.1016/S0020-7683(01)00103-2 10.1016/S0022-5096(01)00024-2 10.1002/adma.200701527 10.1557/jmr.2004.19.1.3 10.1016/j.ijsolstr.2004.05.045 10.1016/j.actamat.2007.02.034 10.1016/S0020-7683(00)00315-2 10.1016/j.biomaterials.2010.04.050 10.1016/j.jmps.2006.07.001 10.1080/14786430701591513 10.1016/S0079-6425(00)00002-5 10.1016/0956-7151(94)90502-9 10.1146/annurev.ms.22.080192.000323 10.1016/j.scriptamat.2006.09.016 10.1016/j.scriptamat.2010.09.010 10.1103/RevModPhys.75.949 10.1016/j.scriptamat.2008.09.024 10.1016/j.pmatsci.2009.03.005 10.1557/JMR.2002.0021 10.1016/j.mechmat.2003.05.003 10.1016/j.actamat.2008.05.030 10.1016/S0022-5096(99)00022-8 10.1115/1.1778720 10.1016/S0022-5096(01)00049-7 10.1016/j.susc.2009.03.009 10.1016/j.actamat.2007.10.015 10.1002/adma.200700797 10.1016/S1359-6454(98)00025-1 10.1016/j.actamat.2007.09.044 10.1016/j.scriptamat.2009.12.023 10.1016/j.actamat.2009.06.002 10.1115/1.2966270 10.1016/j.ijimpeng.2010.03.007 10.1007/s11340-008-9210-9 10.1007/s11661-008-9768-y 10.1016/S0022-5096(01)00010-2 10.1557/JMR.1999.0405 10.1016/j.actamat.2008.12.012 10.1016/j.actamat.2008.03.011 10.1080/14786430600567739 10.1557/JMR.1993.0237 10.1016/S0266-3538(03)00266-5 10.1016/S1369-7021(09)70006-9 10.1016/j.scriptamat.2008.01.051 10.1002/nme.1535 10.1063/1.2784948 10.1016/j.actamat.2007.08.036 10.1103/PhysRevB.46.2727 10.1016/j.jmps.2005.07.005 10.1016/j.msea.2009.01.005 10.1016/S0022-5096(98)00103-3 10.1088/0960-1317/15/7/022 10.1080/0950083021000050287 10.1016/S0020-7683(03)00349-4 10.1016/S0020-7683(03)00348-2 10.1016/j.scriptamat.2009.12.017 10.1016/j.actamat.2008.02.046 10.1557/JMR.1999.0404 10.1016/j.scriptamat.2008.06.019 10.1038/nnano.2009.142 10.1002/nme.1142 10.1038/nmeth871 10.1016/j.actamat.2009.12.022 10.1016/j.actamat.2007.12.016 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y 10.1016/S0022-5096(96)00114-7 10.1126/science.1123889 10.1016/j.actamat.2008.01.051 10.1016/j.ijsolstr.2004.02.012 10.1016/j.ijsolstr.2005.06.073 10.1016/j.msea.2006.12.185 10.1016/j.scriptamat.2009.04.012 10.1016/j.scriptamat.2009.05.012 10.1002/3527606696 10.1557/PROC-308-613 10.1016/j.actamat.2004.09.024 10.1016/j.ijheatfluidflow.2010.07.002 10.1103/PhysRevLett.103.105501 10.1080/14786430500073945 10.1016/S1359-6454(98)00153-0 10.1016/j.compositesa.2010.02.001 10.1016/j.msea.2007.12.038 10.1016/j.actamat.2008.09.033 10.1038/nature08692 10.1016/j.scriptamat.2009.12.048 10.3139/146.110254 10.1103/PhysRevB.80.104104 10.1016/S0921-5093(97)00176-7 |
ContentType | Journal Article |
Copyright | 2011 The American Ceramic Society Copyright American Ceramic Society Jun 2011 |
Copyright_xml | – notice: 2011 The American Ceramic Society – notice: Copyright American Ceramic Society Jun 2011 |
DBID | BSCLL AAYXX CITATION 7QQ 7SR 8FD JG9 |
DOI | 10.1111/j.1551-2916.2011.04599.x |
DatabaseName | Istex CrossRef Ceramic Abstracts Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Ceramic Abstracts Technology Research Database |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts Engineering |
EISSN | 1551-2916 |
Editor | Pollock, T. M. |
Editor_xml | – sequence: 5 givenname: T. M. surname: Pollock fullname: Pollock, T. M. |
EndPage | s34 |
ExternalDocumentID | 2421690701 10_1111_j_1551_2916_2011_04599_x JACE4599 ark_67375_WNG_NHWJQ765_9 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: ONR funderid: N000140910883 – fundername: DARPA funderid: W91CRB‐10‐C‐0305; W911NF‐08‐C‐0038 – fundername: NSF CAREER Award funderid: DMR‐0748267 – fundername: California‐Catalonia Engineering Program |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEFU ABEML ABJNI ABPVW ABTAH ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACKIV ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBO EBS EDO EJD EMK ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ H~9 I-F IRD ITF ITG ITH IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QF4 QM1 QN7 QO4 R.K RAX RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TAE TH9 TN5 TUS UB1 UPT V8K VH1 W8V W99 WBKPD WFSAM WH7 WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 YQT ZCG ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS ADXHL AEYWJ AGHNM AGQPQ AGYGG CITATION 7QQ 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c4779-23f0c0867fab199ba762a0a55974fec90fbbd0803036dcb5ee63830b1be6f4ff3 |
IEDL.DBID | DR2 |
ISSN | 0002-7820 |
IngestDate | Fri Jul 11 07:55:59 EDT 2025 Thu Jul 10 22:32:14 EDT 2025 Thu Jul 10 23:48:29 EDT 2025 Fri Jul 25 19:32:33 EDT 2025 Tue Jul 01 01:35:16 EDT 2025 Thu Apr 24 22:53:31 EDT 2025 Wed Jan 22 16:58:59 EST 2025 Wed Oct 30 09:50:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | s1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4779-23f0c0867fab199ba762a0a55974fec90fbbd0803036dcb5ee63830b1be6f4ff3 |
Notes | DARPA - No. W91CRB-10-C-0305; No. W911NF-08-C-0038 NSF CAREER Award - No. DMR-0748267 ark:/67375/WNG-NHWJQ765-9 ArticleID:JACE4599 ONR - No. N000140910883 istex:B79216B15C47325D83766EB6F58C918077DC337D California-Catalonia Engineering Program ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 882288758 |
PQPubID | 23500 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_926281686 proquest_miscellaneous_1692412722 proquest_miscellaneous_1671410369 proquest_journals_882288758 crossref_primary_10_1111_j_1551_2916_2011_04599_x crossref_citationtrail_10_1111_j_1551_2916_2011_04599_x wiley_primary_10_1111_j_1551_2916_2011_04599_x_JACE4599 istex_primary_ark_67375_WNG_NHWJQ765_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2011 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: June 2011 |
PublicationDecade | 2010 |
PublicationPlace | Columbus |
PublicationPlace_xml | – name: Columbus |
PublicationTitle | Journal of the American Ceramic Society |
PublicationTitleAlternate | J. Am. Ceram. Soc |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. R. Greer, W. C. Oliver, and W. D. Nix, "Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients," Acta Mater., 53, 1821-30 (2005). S. Lucato, J. Wang, P. Maxwell, R. M. McMeeking, and A. G. Evans, "Design and Demonstration of a High Authority Shape Morphing Structure," Int. J. Solids Struct., 41 [13] 3521-43 (2004). J. R. Greer, J.-Y. Kim, and M. J. Burek, "The In-Situ Mechanical Testing of Nanoscale Single-Crystalline Nanopillars," J. Mater., 61 [12] 19-25 (2009). A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. F. Ashby, and H. N. G. Wadley, "The Topological Design of Multifunctional Cellular Metals," Prog. Mater. Sci., 46 [3-4] 309-27 (2001). M. R. Begley and J. W. Hutchinson, "The Mechanics of Size-Dependent Indentation," J. Mech. Phys. Solids, 46 [10] 2049-68 (1998). N. Vermaak, L. Valdevit, and A. G. Evans, "Influence of Configuration on Materials Selection for Actively Cooled Combustors," J. Propul. Power, 26 [2] 295-302 (2010). C. S. Roper, "Multiobjective Optimization for Design of Multifunctional Sandwich Panel Heat Pipes With Micro-Architected Truss Cores," Int. J. Heat Fluid Flow, 32, 239-48 (2011). T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, and D. R. Trinkle, "Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples," Scr. Mater., 56 [4] 313-6 (2007). R. G. Hutchinson, N. Wicks, A. G. Evans, N. A. Fleck, and J. W. Hutchinson, "Kagorne Plate Structures for Actuation," Int. J. Solids Struct., 40 [25] 6969-80 (2003). M. S. De Guzman, G. Neubauer, P. Flinn, and W. D. Nix, "The Role of Indentation Depth on the Measured Hardness of Materials," Mater. Res. Soc. Symp. Proc., 308 613 (1993). N. Vermaak, L. Valdevit, and A. G. Evans, "Materials Property Profiles for Actively Cooled Panels: An Illustration for Scramjet Applications," Metall. Mater. Trans. A., 40A [4] 877-90 (2009). C. A. Volkert, A. Donohue, and F. Spaepen, "Effect of Sample Size on Deformation in Amorphous Metals," J. Appl. Phys., 103 [8] 083539 (2008). J. Banhart, "Manufacture, Characterisation and Application of Cellular Metals and Metal Foams," Prog. Mater. Sci., 46, 559-632 (2001). M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, "Sample Dimensions Influence Strength and Crystal Plasticity," Science, 305 [5686] 986-9 (2004). S. Lee, S. Han, and W. D. Nix, "Uniaxial Compression of fcc Au Nanopillars on an MgO Substrate: The Effects of Prestraining and Annealing," Acta Mater., 57 [15] 4404-15 (2009). H. Bart-Smith, J. W. Hutchinson, N. A. Fleck, and A. G. Evans, "Influence of Imperfections on the Performance of Metal Foam Core Sandwich Panels," Int. J. Solids Struct., 39 [19] 4999-5012 (2002). J. M. San Juan, M. L. Nó, and C. A. Schuh, "Nanoscale Shape-Memory Alloys for Ultrahigh Mechanical Damping," Nat. Nanotechnol., 4, 415-9 (2009). A. G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, "Concepts for Enhanced Energy Absorption Using Hollow Micro-Lattices," Int. J. Impact Eng., 37 [9] 947-59 (2010). B. G. Clark, D. S. Gianola, O. Kraft, and C. P. Frick, "Size Independent Shape Memory Behavior of Nickel-Titanium," Adv. Eng. Mater., 12 [8] 805-15 (2010). F. W. Zok, H. J. Rathbun, Z. Wei, and A. G. Evans, "Design of Metallic Textile Core Sandwich Panels," Int. J. Solids Struct., 40 [21] 5707-22 (2003). A. Torrents, K. Azgin, S. W. Godfrey, E. S. Topalli, T. Akin, and L. Valdevit, "MEMS Resonant Load Cells for Micro-Mechanical Test Frames: Feasibility Study and Optimal Design," J. Micromech. Microeng., 20 125004 (17pp) (2010). K. S. Ng and A. H. W. Ngan, "Stochastic Nature of Plasticity of Aluminum Micro-Pillars," Acta Mater., 56 [8] 1712-20 (2008). D. Dang and J. R. Greer, "Size-Induced Weakening and Grain Boundary-Assisted Deformation in 60nm Grained Ni Nanopillars," Scripta Mater., 64, 77-80 (2011). J. Y. Kim and J. R. Greer, "Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale," Acta Mater., 57 [17] 5245-53 (2009). H. Tang, K. W. Schwarz, and H. D. Espinosa, "Dislocation-Source Shutdown and the Plastic Behavior of Single-Crystal Micropillars," Phys. Rev. Lett., 100, 185503 (2008). E. Van der Giessen and A. Needleman, "Discrete Dislocation Plasticity - A Simple Planar Model," Modelling Simul. Mater. Sci. Eng., 3 [5] 689-735 (1995). L. Valdevit, J. W. Hutchinson, and A. G. Evans, "Structurally Optimized Sandwich Panels With Prismatic Cores," Int. J. Solids Struct., 41 [18-19] 5105-24 (2004). J. R. Greer and W. D. Nix, "Nanoscale Gold Pillars Strengthened through Dislocation Starvation," Phys. Rev. B, 73, 245410-6 (2006). P. W. Christensen and A. Klabring, "An Introduction to Structural Optimization," pp. 214. Springer, Berlin, Germany, (2008). A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, "Micro-Scale Truss Structures With Three-Fold And Six-Fold Symmetry Formed From Self-Propagating Polymer Waveguides," Acta Mater., 56 [11] 2540-8 (2008). R. Dou and B. Derby, "A Universal Scaling Law for the Strength of Metal Micropillars and Nanowires," Scr. Mater., 61 [5] 524-7 (2009). N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel I., 174 [1] 25-8 (1953). D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, "Size-Affected Single-Slip Behavior of Pure Nickel Microcrystals," Acta Mater., 53, 4065-77 (2005). H. J. Rathbun, D. D. Radford, Z. Xue, M. Y. He, J. Yang, V. Deshpande, N. A. Fleck, J. W. Hutchinson, F. W. Zok, and A. G. Evans, "Performance of Metallic Honeycomb-Core Sandwich Beams Under Shock Loading," Int. J. Solids Struct., 43 [6] 1746-63 (2006). M. Scheffler and P. Colombo, "Cellular Ceramics: Structure, Manufacturing, Properties and Applications. WILEY, Weinheim, 2005. J. R. Greer, W. C. Oliver, and W. D. Nix, "Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients," Acta Mater., 53 [6] 1821-30 (2005). S. I. Rao, D. M. Dimiduk, M. Tang, T. A. Parthasarathy, M. D. Uchic, and C. Woodward, "Estimating the Strength of Single-Ended Dislocation Sources in Micron-Sized Single Crystals,'' Philos. Mag. A, 87 [30], 4777-94 (2007). J. R. Greer and J. T. M. De Hosson, "Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effects," Prog. Mater. Sci., 56, 654-724 (2011). N. Wicks and J. W. Hutchinson, "Optimal Truss Plates," Int. J. Solids Struct., 38 [30-31] 5165-83 (2001). A. J. Jacobsen, S. Mahoney, W. B. Carter, and S. Nutt, "Vitreous Carbon Micro-Lattice Structures," Carbon, 49 [3] 1025-32 (2011). K. S. Ng and A. H. W. Ngan, "Effects of Trapping Dislocations Within Small Crystals on Their Deformation Behavior," Acta Mater., 57, 4902-10 (2009). Q. Li, E. Y. Chen, D. R. Bice, and D. C. Dunand, "Mechanical Properties of Cast Ti-6Al-2Sn-4Zr-2Mo Lattice Block Structures," Adv. Eng. Mater., 10 [10] 939-42 (2008). H. N. G. Wadley, "Cellular Metals Manufacturing," Adv. Eng. Mater., 4 [10] 726-33 (2002). J. M. San Juan, M. L. Nó, and C. A. Schuh, "Superelasticity and Shape Memory in Micro- and Nanometer-Scale Pillars," Adv. Mater., 20, 272-8 (2008). A. P. Mouritz and B. N. Cox, "A Mechanistic Interpretation of the Comparative In-Plane Mechanical Properties of 3D Woven, Stitched and Pinned Composites," Compos. Part A - Appl. S., 41 [6] 709-28 (2001). M. T. Tilbrook, V. S. Deshpande, and N. A. Fleck, "The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour," J. Mech. Phys. Solids, 54 [11] 2242-80 (2006). H. Bart-Smith, J. W. Hutchinson, and A. G. Evans, "Measurement and Analysis of the Structural Performance of Cellular Metal Sandwich Construction," Int. J. Mech. Sci., 43 [8] 1945-63 (2001). W. D. Nix and H. J. Gao, "Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity," J. Mech. Phys. Solids, 46 [3] 411-25 (1998). A. T. Jennings and J. R. Greer, "Tensile Deformation of Electroplated Copper Nanopillars," Phil. Mag. A., 91 [7-9] 1108-20 (2010). A. S. Schneider, D. Kaufmann, B. G. Clark, C. P. Frick, P. A. Gruber, R. Monig, O. Kraft, and E. Arzt, "Correlation Between Critical Temperature and Strength of Small-Scale bcc Pillars," Phys. Rev. Lett., 103, 105501 (2009). O. Sigmund and S. Torquato, "Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method," J. Mech. Phys. Solids, 45 [6] 1037-67 (1997). P. Hinterdorfer and Y. Dufrene, "Detection and Localization of Single Molecular Recognition Events Using Atomic Force Microscopy," Nat. Methods, 3 [5] 347-55 (2006). A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, "Compression Behavior of Micro-Scale Truss Structures Formed From Self-Propagating Polymer Waveguides," Acta Mater., 55 [20] 6724-33 (2007). H. Bart-Smith, A. F. Bastawros, D. R. Mumm, A. G. Evans, D. J. Sypeck, and H. N. G. Wadley, "Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-ray Tomography and Surface Strain Mapping," Acta Mater., 46 [10] 3583-92 (1998). W. Xiao, M. I. Baskes, and K. Cho, "MEAM Study of Carbon Atom Interaction With Ni Nano Particle," Surf. Sci., 603 [13] 1985-98 (2009). J.-Y. Kim, D. Jang, and J. R. Greer, "Insights into Deformation Behavior and Microstructure Evolution in Nb Single Crystalline Nano-Pillars Under Uniaxial Tension and Compression," Scr. Mater., 61 [3] 300-3 (2009). K. S. Ng and A. H. W. Ngan, "Breakdown of Schmid's Law in Micropillars," Scr. Mater., 59 [7] 796-9 (2008). D. Jang and J. R. Greer, "Transition From a Strong-Yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses," Nat. Mater., 9, 215-9 (2010). J. A. El-Awady, C. Woodward, D. M. Dimiduk, and N. M. Ghoniem, "Effects of Focused Ion Beam Induced Damage on the Plasticity of Micropillars," Phys. Rev. B, 80, 104104 (2009). C. P. Frick, B. G. Clark, S. Orso, A. S. Schneider, and E. Arzt, "Size Effect on Strength an Strain Hardening of Small-Scale (111), Nickel Compression Pillars," Mater. Sci. Eng. A, 489 [1-2] 319-29 (2008). C. P. Fric 2010; 12 2009; 89 2002; 17 2009; 80 2010; 466 2010; 104 2010; 101 1999; 47 1997; 45 2010; 463 2001; 49 2011; 56 2008; 103 2008; 100 2001; 46 2006; 459 2001; 41 2001; 43 1992; 7 2010; 20 2010; 26 2004; 36 2009; 40A 2011; 64 1970; 21 1992; 46 1980 2008; 20 2003; 40 2010; 9 2004; 41 2007; 19 2009; 69 2010; 31 2010; 37 2006; 54 2009; 61 2009; 60 2005; 85 2008; 59 2008; 56 2007; 91 2002; 4 2008; 489 2004; 305 1995; 3 2010; 40 1999 1953; 174 1997; 33 2006; 43 2006; 49 2001; 38 2005; 15 2007; 87 1992; 22 2009; 505 2008; 483–484 2009; 103 2005; 12 2010; 50 1997; 234 1993; 8 2004; 61 2010; 58 2006; 73 2000; 48 2008; 7 2008; 3 2008; 75 2010; 62 1998; 46 2009; 57 2009; 54 2004; 71 2000 2006; 65 1999; 14 1994; 39 2003; 83 2009; 603 2002; 39 1993; 308 2011 2010 1995; 10 2006; 8 2008 2011; 32 2008; 10 2005 2006; 3 2004 2008; 11 2002 1999; 8 2007; 55 2007; 56 2008; 93 2003; 75 2006; 312 1994; 42 2009; 30 2006; 86 2004; 19 2005; 53 2005; 50 2009; 4 2011; 49 2010; 91 2003; 63 2009; 39 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_41_1 Petch N. J. (e_1_2_6_57_1) 1953; 174 e_1_2_6_60_1 e_1_2_6_83_1 Gibson L. J. (e_1_2_6_2_1) 1999 e_1_2_6_121_1 Lloyd D. J. (e_1_2_6_58_1) 1994; 39 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 Jennings A. T. (e_1_2_6_80_1) 2010; 91 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_159_1 Azgin K. (e_1_2_6_161_1) 2011 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_113_1 e_1_2_6_155_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 Jacobsen A. J. (e_1_2_6_47_1) 2010 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_109_1 e_1_2_6_61_1 Greer J. R. (e_1_2_6_140_1) 2009; 61 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_158_1 e_1_2_6_32_1 Allen H. G. (e_1_2_6_53_1) 1980 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Christensen P. W. (e_1_2_6_153_1) 2008 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 Maass R. (e_1_2_6_79_1) 2008 Sun H.‐B. (e_1_2_6_45_1) 2004 e_1_2_6_142_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 Kiener D. (e_1_2_6_73_1) 2006; 459 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_157_1 e_1_2_6_134_1 Bendsoe M. P. (e_1_2_6_152_1) 2002 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_103_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 Haque M. A. (e_1_2_6_129_1) 2008 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_8_1 Ikeda R. (e_1_2_6_126_1) 2009; 69 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: L. Valdevit, Z. Wei, C. Mercer, F. W. Zok, and A. G. Evans, "Structural Performance of Near-Optimal Sandwich Panels With Corrugated Cores," Int. J. Solids Struct., 43 [16] 4888-905 (2006). – reference: M. Scheffler and P. Colombo, "Cellular Ceramics: Structure, Manufacturing, Properties and Applications. WILEY, Weinheim, 2005. – reference: N. Vermaak, L. Valdevit, and A. G. Evans, "Influence of Configuration on Materials Selection for Actively Cooled Combustors," J. Propul. Power, 26 [2] 295-302 (2010). – reference: M. F. Ashby, "Deformation of Plastically Non-Homogeneous Materials," Philos. Mag., 21 [170] 399 (1970). – reference: R. G. Hutchinson, N. Wicks, A. G. Evans, N. A. Fleck, and J. W. Hutchinson, "Kagorne Plate Structures for Actuation," Int. J. Solids Struct., 40 [25] 6969-80 (2003). – reference: A. S. Schneider, D. Kaufmann, B. G. Clark, C. P. Frick, P. A. Gruber, R. Monig, O. Kraft, and E. Arzt, "Correlation Between Critical Temperature and Strength of Small-Scale bcc Pillars," Phys. Rev. Lett., 103, 105501 (2009). – reference: L. Valdevit, A. Pantano, H. A. Stone, and A. G. Evans, "Optimal Active Cooling Performance of Metallic Sandwich Panels With Prismatic Cores," Int. J. Heat Mass Transfer, 49 [21-22] 3819-30 (2006). – reference: V. S. Deshpande, A. Needleman, and E. Van der Giessen, "Plasticity Size Effects in Tension and Compression of Single Crystals," J. Mech. Phys. Solids, 53 [12] 2661-91 (2005). – reference: A. Rinaldi, P. Peralta, C. Friesen, and K. Sieradzki, "Sample-Size Effects in the Yield Behavior of Nanocrystalline Nickel," Acta Mater., 56 511-7 (2008). – reference: N. Wicks and J. W. Hutchinson, "Performance of Sandwich Plates With Truss Cores," Mech. Mater., 36 [8] 739-51 (2004). – reference: A. T. Jennings, M. J. Burek, and J. R. Greer, "Size Effects in Single Crystalline cu Nano-Pillars Fabricated Without the Use of Fib," Phys. Rev. Lett., 104, 135503 (2010). – reference: M. I. Baskes, "Modified Embedded-Atom Potentials for Cubic Materials," Phys. Rev. B, 46 [5] 2727-42 (1992). – reference: K. S. Ng and A. H. W. Ngan, "Breakdown of Schmid's Law in Micropillars," Scr. Mater., 59 [7] 796-9 (2008). – reference: N. Wicks and J. W. Hutchinson, "Optimal Truss Plates," Int. J. Solids Struct., 38 [30-31] 5165-83 (2001). – reference: S. Lee, S. Han, and W. D. Nix, "Uniaxial Compression of fcc Au Nanopillars on an MgO Substrate: The Effects of Prestraining and Annealing," Acta Mater., 57 [15] 4404-15 (2009). – reference: Q. Li, E. Y. Chen, D. R. Bice, and D. C. Dunand, "Mechanical Properties of Cast Ti-6Al-2Sn-4Zr-2Mo Lattice Block Structures," Adv. Eng. Mater., 10 [10] 939-42 (2008). – reference: E. A. Withey, A. M. Minor, Jr, D. C. Morris, J. W. Morris, and S. Kuramot , "The Deformation of Gum Metal Through In Situ Compression of Nanopillars," Acta Mater., 58 [7] 2652-65 (2010). – reference: L. H. Han, T. J. Lu, and A. G. Evans, "Optimal Design of a Novel High Authority SMA Actuator," Mech. Adv. Mater. Struct., 12 [3] 217-27 (2005). – reference: J. A. El-Awady, C. Woodward, D. M. Dimiduk, and N. M. Ghoniem, "Effects of Focused Ion Beam Induced Damage on the Plasticity of Micropillars," Phys. Rev. B, 80, 104104 (2009). – reference: A. P. Mouritz and B. N. Cox, "A Mechanistic Interpretation of the Comparative In-Plane Mechanical Properties of 3D Woven, Stitched and Pinned Composites," Compos. Part A - Appl. S., 41 [6] 709-28 (2001). – reference: P. W. Christensen and A. Klabring, "An Introduction to Structural Optimization," pp. 214. Springer, Berlin, Germany, (2008). – reference: J. S. Stolken and A. G. Evans, "A microbend Test Method for Measuring the Plasticity Length Scale," Acta Mater., 46 [14] 5109-15 (1998). – reference: C. P. Frick, B. G. Clark, S. Orso, A. S. Schneider, and E. Arzt, "Size Effect on Strength an Strain Hardening of Small-Scale (111), Nickel Compression Pillars," Mater. Sci. Eng. A, 489 [1-2] 319-29 (2008). – reference: H. N. G. Wadley, "Cellular Metals Manufacturing," Adv. Eng. Mater., 4 [10] 726-33 (2002). – reference: R. Ikeda, H. Ogi, T. Ogawa, and M. Takemoto, "Mechanical Properties of CVD Synthesized Polycrystalline Diamond," Ind. Diamond Quat., 69, 35-8 (2009). – reference: M. D. Uchic, P. A. Shade, and D. M. Dimiduk, "Plasticity of Micrometer-Scale Single Crystals in Compression," Annu. Rev. Mater. Res., 39, 361-86 (2009). – reference: A. T. Jennings and J. R. Greer, "Tensile Deformation of Electroplated Copper Nanopillars," Phil. Mag. A., 91 [7-9] 1108-20 (2010). – reference: C. P. Frick, B. G. Clark, S. Orso, P. Sonnweber-Ribic, and E. Arzt, "Orientation-Independent Pseudoelasticity in Small-Scale NiTi Compression Pillars," Scr. Mater., 59, 7-10 (2008). – reference: A. G. Evans, M. Y. He, V. S. Deshpande, J. W. Hutchinson, A. J. Jacobsen, and W. B. Carter, "Concepts for Enhanced Energy Absorption Using Hollow Micro-Lattices," Int. J. Impact Eng., 37 [9] 947-59 (2010). – reference: L. Valdevit, N. Vermaak, F. W. Zok, and A. G. Evans, "A Materials Selection Protocol for Lightweight Actively Cooled Panels," J. Appl. Mech., 75, 061022 (2008). – reference: W. D. Nix, "Elastic and Plastic Properties of Thin Films on Substrates: Nanoindentation Techniques," Mat. Sci. Eng. A - Struct., 234, 37-44 (1997). – reference: S. Hyun and S. Torquato, "Optimal and Manufacturable Two-Dimensional, Kagome-Like Cellular Solids," J. Mater. Res., 17 [1] 137-44 (2002). – reference: Y. Huang, H. Gao, W. D. Nix, and J. W. Hutchinson, "Mechanism-Based Strain Gradient Plasticity - II. Analysis," J. Mech. Phys. Solids, 48 [1] 99-128 (2000). – reference: O. Sigmund and S. Torquato, "Design of Smart Composite Materials Using Topology Optimization," Smart Mater. Struct., 8 [3] 365-79 (1999). – reference: D. Jang and J. R. Greer, "Transition From a Strong-Yet-Brittle to a Stronger-and-Ductile State by Size Reduction of Metallic Glasses," Nat. Mater., 9, 215-9 (2010). – reference: E. A. Withey, J. Ye, A. M. Minor, S. Kuramoto, D. C. Chrzan, and J. W. Morris Jr, "Nanomechanical Testing of Gum Metal," Exp. Mech., 50 37-45 (2010). – reference: F. W. Zok, S. A. Waltner, Z. Wei, H. J. Rathbun, R. M. McMeeking, and A. G. Evans, "A protocol for Characterizing the Structural Performance of Metallic Sandwich Panels: Application to Pyramidal Truss Cores," Int. J. Solids Struct., 41 [22-23] 6249-71 (2004). – reference: J. R. Greer, W. C. Oliver, and W. D. Nix, "Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients," Acta Mater., 53 [6] 1821-30 (2005). – reference: H. Gao, Y. Huang, W. D. Nix, and J. W. Hutchinson, "Mechanism-Based Strain Gradient Plasticity - I. Theory," J. Mech. Phys. Solids, 47 [6] 1239-63 (1999). – reference: N. Wicks and J. W. Hutchinson, "Sandwich Plates Actuated by a Kagome Planar Truss," J. Appl. Mech.-Trans. Asme, 71 [5] 652-62 (2004). – reference: D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm, "FIB Damage of Cu and Possible Consequences for Miniaturized Mechanical Tests," Mater. Sci. Eng. A, 459 [1-2] 262-72 (2006). – reference: K. S. Ng and A. H. W. Ngan, "Effects of Trapping Dislocations Within Small Crystals on Their Deformation Behavior," Acta Mater., 57, 4902-10 (2009). – reference: C. P. Frick, S. Orso, and E. Arzt, "Loss of Pseudoelasticity in Nickel-Titanium Submicron Compression Pillars," Acta Mater., 55, 3845-55 (2007). – reference: H. J. Rathbun, D. D. Radford, Z. Xue, M. Y. He, J. Yang, V. Deshpande, N. A. Fleck, J. W. Hutchinson, F. W. Zok, and A. G. Evans, "Performance of Metallic Honeycomb-Core Sandwich Beams Under Shock Loading," Int. J. Solids Struct., 43 [6] 1746-63 (2006). – reference: L. Valdevit, J. W. Hutchinson, and A. G. Evans, "Structurally Optimized Sandwich Panels With Prismatic Cores," Int. J. Solids Struct., 41 [18-19] 5105-24 (2004). – reference: R. Maass, S. Van Petegem, D. Grolimund, H. Van Swygenhoven, D. Kiener, and G. Dehm, "Crystal Rotation in Cu Single Crystal Micropillars: In Situ Laue and Electron Backscatter Diffraction," Appl. Phys. Lett., 017905 (2008). – reference: J. R. Greer, J.-Y. Kim, and M. J. Burek, "The In-Situ Mechanical Testing of Nanoscale Single-Crystalline Nanopillars," J. Mater., 61 [12] 19-25 (2009). – reference: H. N. G. Wadley, K. P. Dharmasena, M. Y. He, R. M. McMeeking, A. G. Evans, T. Bui-Thanh, and R. Radovitzky, "An active Concept for Limiting Injuries Caused by Air Blasts," Int. J. Impact Eng., 37 [3] 317-23 (2010). – reference: M. S. De Guzman, G. Neubauer, P. Flinn, and W. D. Nix, "The Role of Indentation Depth on the Measured Hardness of Materials," Mater. Res. Soc. Symp. Proc., 308 613 (1993). – reference: A. Torrents, K. Azgin, S. W. Godfrey, E. S. Topalli, T. Akin, and L. Valdevit, "MEMS Resonant Load Cells for Micro-Mechanical Test Frames: Feasibility Study and Optimal Design," J. Micromech. Microeng., 20 125004 (17pp) (2010). – reference: C. A. Volkert and E. T. Lilleodden, "Size Effects in the Deformation of Sub-Micron Au Columns," Philos. Mag., 86, 5567-79 (2006). – reference: G. Lee, J.-Y. Kim, A. S. Budiman, N. Tamura, M. Kunz, K. Chen, M. J. Burek, J. R. Greer, and T. Y. Tsui, "Fabrication, Structure, and Mechanical Properties of Indium Nanopillars," Acta Mater., 58 [4] 1361-8 (2010). – reference: C. S. Roper, "Multiobjective Optimization for Design of Multifunctional Sandwich Panel Heat Pipes With Micro-Architected Truss Cores," Int. J. Heat Fluid Flow, 32, 239-48 (2011). – reference: S. I. Rao, D. M. Dimiduk, M. Tang, T. A. Parthasarathy, M. D. Uchic, and C. Woodward, "Estimating the Strength of Single-Ended Dislocation Sources in Micron-Sized Single Crystals,'' Philos. Mag. A, 87 [30], 4777-94 (2007). – reference: J. Wang, A. G. Evans, K. Dharmasena, and H. N. G. Wadley, "On the Performance of Truss Panels With Kagome Cores," Int. J. Solids Struct., 40 [25] 6981-8 (2003). – reference: B. von Blanckenhagen, P. Gumbsch, and E. Arzt, "Dislocation Sources and the Flow Stress of Polycrystalline Thin Metal Films," Philos. Mag. Lett., 83 [1] 1-8 (2003). – reference: K. S. Ng and A. H. W. Ngan, "Stochastic Nature of Plasticity of Aluminum Micro-Pillars," Acta Mater., 56 [8] 1712-20 (2008). – reference: A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, "Compression Behavior of Micro-Scale Truss Structures Formed From Self-Propagating Polymer Waveguides," Acta Mater., 55 [20] 6724-33 (2007). – reference: D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, "Size-Affected Single-Slip Behavior of Pure Nickel Microcrystals," Acta Mater., 53, 4065-77 (2005). – reference: N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, "Strain Gradient Plasticity - Theory and Experiment," Acta Metall. Mater., 42 [2] 475-87 (1994). – reference: Z. W. Shan, R. Mishra, S. A. Syed, O. L. Warren, and A. M. Minor, "Mechanical Annealing and Source-limited Deformation in Submicron-diameter Ni Crystals," Nat. Mater., 7 [116] 115-9 (2008). – reference: C. P. Frick, B. G. Clark, A. S. Schneider, R. Maaß, S. Van Petegem, and H. Van Swygenhoven, "On the Plasticity of Small-Scale Nickel-Titanium Shape Memory Alloys," Scr. Mater., 62, 492-5 (2010). – reference: J. R. Greer and W. D. Nix, "Nanoscale Gold Pillars Strengthened through Dislocation Starvation," Phys. Rev. B, 73, 245410-6 (2006). – reference: W. Xiao, M. I. Baskes, and K. Cho, "MEAM Study of Carbon Atom Interaction With Ni Nano Particle," Surf. Sci., 603 [13] 1985-98 (2009). – reference: D. Kiener, C. Motz, T. Schoberl, M. Jenko, and G. Dehm, "Determination of Mechanical Properties of Copper at the Micron Scale," Adv. Eng. Mater., 8 1119-25 (2006). – reference: N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel I., 174 [1] 25-8 (1953). – reference: H. Tang, K. W. Schwarz, and H. D. Espinosa, "Dislocation-Source Shutdown and the Plastic Behavior of Single-Crystal Micropillars," Phys. Rev. Lett., 100, 185503 (2008). – reference: O. Sigmund and S. Torquato, "Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method," J. Mech. Phys. Solids, 45 [6] 1037-67 (1997). – reference: J. Y. Kim and J. R. Greer, "Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale," Acta Mater., 57 [17] 5245-53 (2009). – reference: N. A. Fleck and J. W. Hutchinson, "Strain Gradient Plasticity," Adv. Appl. Mech., 33, 295-361 (1997). – reference: M. D. Kriese, W. W. Gerberich, and N. R. Moody, "Quantitative Adhesion Measures of Multilayer Films: Part I. Indentation Mechanics," J. Mater. Res., 14 [7] 3007-18 (1999). – reference: O. Kraft, P. A. Gruber, R. Monig, and D. Weygand, "Plasticity in Confined Dimensions,'' Annu. Rev. Mater. Res., 40, 293-317 (2010). – reference: D. J. Bell, T. J. Lu, N. A. Fleck, and S. M. Spearing, "MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose," J. Micromech. Microeng., 15 [7] S153-64 (2005). – reference: J.-Y. Kim and J. R. Greer, "Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale," Acta Mater., 57, 5245-53 (2009). – reference: D. M. Dimiduk, C. Woodward, R. LeSar, and M. D. Uchic, "Scale-Free Intermittent Flow in Crystal Plasticity," Science, 312, 1188-90 (2006). – reference: C. A. Volkert, A. Donohue, and F. Spaepen, "Effect of Sample Size on Deformation in Amorphous Metals," J. Appl. Phys., 103 [8] 083539 (2008). – reference: M. D. Kriese, W. W. Gerberich, and N. R. Moody, "Quantitative Adhesion Measures of Multilayer Films: Part II. Indentation of W/Cu, W/W, Cr/W," J. Mater. Res., 14 [7] 3019-26 (1999). – reference: A. J. Jacobsen, S. Mahoney, W. B. Carter, and S. Nutt, "Vitreous Carbon Micro-Lattice Structures," Carbon, 49 [3] 1025-32 (2011). – reference: M. T. Tilbrook, V. S. Deshpande, and N. A. Fleck, "The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour," J. Mech. Phys. Solids, 54 [11] 2242-80 (2006). – reference: F. P. W. Melchels, J. Feijen, and D. W. Grijpma, "A Review on Stereolithography and its Applications in Biomedical Engineering," Biomaterials, 31 [24] 6121-30 (2010). – reference: F. W. Zok, H. Rathbun, M. He, E. Ferri, C. Mercer, R. M. McMeeking, and A. G. Evans, "Structural Performance of Metallic Sandwich Panels With Square Honeycomb Cores," Philos. Mag., 85 [26-27] 3207-34 (2005). – reference: Z. Y. Xue and J. W. Hutchinson, "Constitutive Model for Quasi-Static Deformation of Metallic Sandwich Cores," Int. J. Numer. Meth. Eng., 61 [13] 2205-38 (2004). – reference: D. Kiener, W. Grosinger, and G. Dehm, "On the Importance of Sample Compliance in Uniaxial Microtesting," Scr. Mater., 60 [3] 148-51 (2009). – reference: W. C. Oliver and G. M. Pharr, "Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology," J. Mater. Res., 19 [1] 3-20 (2004). – reference: W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., 7 [6] 1564-83 (1992). – reference: P. Hinterdorfer and Y. Dufrene, "Detection and Localization of Single Molecular Recognition Events Using Atomic Force Microscopy," Nat. Methods, 3 [5] 347-55 (2006). – reference: E. Van der Giessen and A. Needleman, "Discrete Dislocation Plasticity - A Simple Planar Model," Modelling Simul. Mater. Sci. Eng., 3 [5] 689-735 (1995). – reference: C. V. Thompson, "The Yield Stress of Polycrystalline Thin Films," J. Mater. Res., 8, 237 (1993). – reference: J.-Y. Kim and J. R. Greer, "Size-Dependent Mechanical Properties of Mo Nanopillars," Appl. Phys. Lett., 93, 101916 (2008). – reference: N. Vermaak, L. Valdevit, and A. G. Evans, "Materials Property Profiles for Actively Cooled Panels: An Illustration for Scramjet Applications," Metall. Mater. Trans. A., 40A [4] 877-90 (2009). – reference: S. J. Johnson, B. Tryon, and T. M. Pollock, "Post-Fabrication Vapor Phase Strengthening of Nickel-Based Sheet Alloys for Thermostructural Panels," Acta Mater., 56 [17] 4577-84 (2008). – reference: D. Kiener, C. Motz, and G. Dehm, "Micro-Compression Testing: A Critical Discussion of Experimental Constraints," Mater. Sci. Eng. A, 505, 79-87 (2009). – reference: G. Dehm, "Miniaturized Single-Crystalline fcc Metals Deformed in Tension: New Insights in Size-Dependent Plasticity," Prog. Mater. Sci., 54 [6] 664-88 (2009). – reference: H. Bart-Smith, J. W. Hutchinson, and A. G. Evans, "Measurement and Analysis of the Structural Performance of Cellular Metal Sandwich Construction," Int. J. Mech. Sci., 43 [8] 1945-63 (2001). – reference: W. D. Nix and H. J. Gao, "Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity," J. Mech. Phys. Solids, 46 [3] 411-25 (1998). – reference: J. R. Greer, W. C. Oliver, and W. D. Nix, "Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients," Acta Mater., 53, 1821-30 (2005). – reference: M. P. Bendsoe and O. Sigmund, "Topology Optimization," pp. 370. Springer, Berlin, Germany, (2002). – reference: B. G. Clark, D. S. Gianola, O. Kraft, and C. P. Frick, "Size Independent Shape Memory Behavior of Nickel-Titanium," Adv. Eng. Mater., 12 [8] 805-15 (2010). – reference: H. Bart-Smith, A. F. Bastawros, D. R. Mumm, A. G. Evans, D. J. Sypeck, and H. N. G. Wadley, "Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-ray Tomography and Surface Strain Mapping," Acta Mater., 46 [10] 3583-92 (1998). – reference: A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, "Micro-Scale Truss Structures Formed From Self-Propagating Photopolymer Waveguides," Adv. Mater., 19 [22] 3892-6 (2007). – reference: V. S. Deshpande and N. A. Fleck, "Collapse of Truss Core Sandwich Beams in 3-Point Bending," Int. J. Solids Struct., 38 [36-37] 6275-305 (2001). – reference: J. M. San Juan, M. L. Nó, and C. A. Schuh, "Superelasticity and Shape Memory in Micro- and Nanometer-Scale Pillars," Adv. Mater., 20, 272-8 (2008). – reference: J. E. Angelo, N. R. Moody, and M. I. Baskes, "Trapping of Hydrogen to Lattice-Defects in Nickel," Modelling Simul. Mater. Sci. Eng., 3 [3] 289-307 (1995). – reference: J. R. Greer and J. T. M. De Hosson, "Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effects," Prog. Mater. Sci., 56, 654-724 (2011). – reference: T. J. Lu, L. Valdevit, and A. G. Evans, "Active Cooling by Metallic Sandwich Structures With Periodic Cores," Prog. Mater. Sci., 50 [7] 789-815 (2005). – reference: F. W. Zok, H. J. Rathbun, Z. Wei, and A. G. Evans, "Design of Metallic Textile Core Sandwich Panels," Int. J. Solids Struct., 40 [21] 5707-22 (2003). – reference: D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, "A Further Step Towards an Understanding of Size-Dependent Crystal Plasticity: In Situ Tension Experiments of Miniaturized Single-Crystal Copper Samples," Acta Mater., 56, 580-92 (2008). – reference: C. M. Byer, B. Li, B. Cao, and K. T. Ramesh, "Microcompression of Single-Crystal Magnesium," Scr. Mater., 62 [8] 536-9 (2010). – reference: R. Dou and B. Derby, "A Universal Scaling Law for the Strength of Metal Micropillars and Nanowires," Scr. Mater., 61 [5] 524-7 (2009). – reference: L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge, UK, 1999. – reference: S. I. Rao, D. M. Dimiduk, T. A. Parthasarathy, M. D. Uchic, M. Tang, and C. Woodward, "Athermal Mechanisms of Size-Dependent Crystal Flow Gleaned From Three-Dimensional Discrete Dislocation Simulations," Acta Mater., 56 [13] 3245-59 (2008). – reference: H. Bei, E. P. George, and G. M. Pharr, "Small-Scale Mechanical Behavior of Intermetallics and Their Composites," Mater. Sci. Eng. A, 483-484, 218-22 (2008). – reference: Q. Yu, Z.-W. Shan, J. Li, X. Huang, L. Xiao, J. Sun, and E. Ma, "Strong Crystal Size Effect on Deformation Twinning," Nature, 463, 335-8 (2010). – reference: T. J. Lu, J. W. Hutchinson, and A. G. Evans, "Optimal Design of a Flexural Actuator," J. Mech. Phys. Solids, 49 [9] 2071-93 (2001). – reference: E. Lilleodden, "Microcompression Study of Mg (0001) Single Crystal," Scr. Mater., 62 [8] 532-5 (2010). – reference: D. Dang and J. R. Greer, "Size-Induced Weakening and Grain Boundary-Assisted Deformation in 60nm Grained Ni Nanopillars," Scripta Mater., 64, 77-80 (2011). – reference: A. J. Jacobsen, W. Barvosa-Carter, and S. Nutt, "Micro-Scale Truss Structures With Three-Fold And Six-Fold Symmetry Formed From Self-Propagating Polymer Waveguides," Acta Mater., 56 [11] 2540-8 (2008). – reference: D. T. Queheillalt and H. N. G. Wadley, "Titanium alloy Lattice Truss Structures," Mater. Des., 30 [6] 1966-75 (2009). – reference: W. D. Macdonald and T. W. Eagar, "Transient Liquid-Phase Bonding," Annu. Rev. Mater. Sci, 22, 23-46 (1992). – reference: A. G. Evans and J. W. Hutchinson, "A Critical Assessment of Theories of Strain Gradient Plasticity," Acta Mater., 57 [5] 1675-88 (2009). – reference: A. F. Bastawros, H. Bart-Smith, and A. G. Evans, "Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam," J. Mech. Phys. Solids, 48 [2] 301-22 (2000). – reference: Y. Jiang, Y. G. Wei, J. R. Smith, J. W. Hutchinson, and A. G. Evans, "First Principles Based Predictions of the Toughness of a Metal/Oxide Interface," Int. J. Mater. Res., 101 [1] 8-15 (2010). – reference: C. Q. Chen, Y. T. Pei, and J. T. M. De Hosson, "Strength of Submicrometer Diameter Pillars of Metallic Glasses Investigated with in Situ Transmission Electron Microscopy," Philos. Mag. Lett., 89 [10] 633-40 (2009). – reference: M. D. Uchic, P. A. Shade, and D. M. Dimiduk, "Plasticity of Micrometer-Scale Single Crystals in Compression," Annu. Rev. Mater. Res., 39 [1] 361-86 (2009). – reference: H. Bei and S. Shim, "Effects of Focused Ion Beam Milling on the Mechanical Behavior of a Molybdenum-Alloy Single Crystal," Appl. Phys. Lett., 91 [11] 11915 (2007). – reference: M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, "Sample Dimensions Influence Strength and Crystal Plasticity," Science, 305 [5686] 986-9 (2004). – reference: F. Giessibl, "Advances in Atomic Force Microscopy," Rev. Mod. Phys., 75 [3] 949-83 (2003). – reference: H. Bart-Smith, J. W. Hutchinson, N. A. Fleck, and A. G. Evans, "Influence of Imperfections on the Performance of Metal Foam Core Sandwich Panels," Int. J. Solids Struct., 39 [19] 4999-5012 (2002). – reference: V. S. Deshpande, N. A. Fleck, and M. F. Ashby, "Effective Properties of the Octet-Truss Lattice Material," J. Mech. Phys. Solids, 49 [8] 1747-69 (2001). – reference: G. Schitter and M. J. Rost, "Scanning Probe Microscopy at Video-Rate," Mater. Today, 11, 40-8 (2008). – reference: D. M. Norfleet, D. M. Dimiduk, S. J. Polasik, M. D. Uchic, and M. J. Mills, "Dislocation Structures and Their Relationship to Strength in Deformed Nickel Microcrystals," Acta Mater., 56 [13] 2988-3001 (2008). – reference: S. Lucato, J. Wang, P. Maxwell, R. M. McMeeking, and A. G. Evans, "Design and Demonstration of a High Authority Shape Morphing Structure," Int. J. Solids Struct., 41 [13] 3521-43 (2004). – reference: D. Queheillalt and H. Wadley, "Cellular Metal Lattices With Hollow Trusses," Acta Mater., 53 [2] 303-13 (2005). – reference: J. Banhart, "Manufacture, Characterisation and Application of Cellular Metals and Metal Foams," Prog. Mater. Sci., 46, 559-632 (2001). – reference: B. P. Russell, V. S. Deshpande, and H. N. G. Wadley, "Quasi-Static Deformation and Failure Modes of Composite Square Honeycombs," J. Mech. Mater. Struct., 3 [7] 1315-40 (2008). – reference: J.-Y. Kim, D. Jang, and J. R. Greer, "Insights into Deformation Behavior and Microstructure Evolution in Nb Single Crystalline Nano-Pillars Under Uniaxial Tension and Compression," Scr. Mater., 61 [3] 300-3 (2009). – reference: M. R. Begley and J. W. Hutchinson, "The Mechanics of Size-Dependent Indentation," J. Mech. Phys. Solids, 46 [10] 2049-68 (1998). – reference: T. A. Parthasarathy, S. I. Rao, D. M. Dimiduk, M. D. Uchic, and D. R. Trinkle, "Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples," Scr. Mater., 56 [4] 313-6 (2007). – reference: H. N. G. Wadley, N. A. Fleck, and A. G. Evans, "Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures," Compos. Sci. Technol., 63 [16] 2331-43 (2003). – reference: N. A. Fleck and J. W. Hutchinson, "A Reformulation of Strain Gradient Plasticity," J. Mech. Phys. Solids, 49 [10] 2245-71 (2001). – reference: J. M. San Juan, M. L. Nó, and C. A. Schuh, "Nanoscale Shape-Memory Alloys for Ultrahigh Mechanical Damping," Nat. Nanotechnol., 4, 415-9 (2009). – reference: D. J. Lloyd, "Particle Reinforced Aluminum and Magnesium Matrix Composites," Int. Mater. Rev, 39, 1-23 (1994). – reference: A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. F. Ashby, and H. N. G. Wadley, "The Topological Design of Multifunctional Cellular Metals," Prog. Mater. Sci., 46 [3-4] 309-27 (2001). – reference: A. Budiman, S. Han, J. R. Greer, N. Tamura, J. Patel, and W. D. Nix, "A Search for Evidence of Strain Gradient Hardening in Au Submicron Pillars Under Uniaxial Compression Using Synchrotron X-ray Microdiffraction," Acta Mater., 56 [3] 602-8 (2007). – reference: Z. Y. Xue and J. W. Hutchinson, "Crush Dynamics of Square Honeycomb Sandwich Cores," Int. J. Numer. Meth. Eng., 65 [13] 2221-45 (2006). – reference: H. Bei, S. Shim, G. M. Pharr, and E. P. George, "Effects of Pre-Strain on the Compressive Stress-Strain Response of Mo-Alloy Single-Crystal Micropillars," Acta Mater., 56 [17] 4762-70 (2008). – reference: J. Y. Kim, D. C. Jong, and J. R. Greer, "Tensile and Compressive Behavior of Tungsten, Molybdenum, Tantalum and Niobium at the Nanoscale," Acta Mater., 58 [7] 2355-63 (2010). – reference: E. T. Lilleodden, W. Bonin, J. Nelson, J. T. Wyrobek, and W. W. Gerberich, "In-Situ Imaging of MU-N Load Indents into GAAS," J. Mater. Res., 10 [9] 2162-5 (1995). – reference: H. G. Allen and P. S. Bulson, "Background to Buckling." McGraw-Hill, London, 1980. – reference: S. Shim, H. Bei, M. K. Miller, G. M. Pharr, and E. P. George, "Effects of Focused Ion Beam Milling on the Compressive Behavior of Directionally Solidified Micropillars and the Nanoindentation Response of an Electropolished Surface," Acta Mater., 57, 503-10 (2009). – reference: N. A. Fleck, V. Deshpande, and M. F. Ashby, "Micro-Architected Materials: Past, Present and Future," Proc. Royal Soc. A, 466, 2495-516 (2010). – year: 2011 – volume: 63 start-page: 2331 issue: 16 year: 2003 end-page: 43 article-title: Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures publication-title: Compos. Sci. Technol. – volume: 39 start-page: 361 year: 2009 end-page: 86 article-title: Plasticity of Micrometer‐Scale Single Crystals in Compression publication-title: Annu. Rev. Mater. Res. – volume: 87 start-page: 4777 issue: 30 year: 2007 end-page: 94 article-title: Estimating the Strength of Single‐Ended Dislocation Sources in Micron‐Sized Single Crystals publication-title: Philos. Mag. A – volume: 489 start-page: 319 issue: 1–2 year: 2008 end-page: 29 article-title: Size Effect on Strength an Strain Hardening of Small‐Scale (111), Nickel Compression Pillars publication-title: Mater. Sci. Eng. A – volume: 603 start-page: 1985 issue: 13 year: 2009 end-page: 98 article-title: MEAM Study of Carbon Atom Interaction With Ni Nano Particle publication-title: Surf. Sci. – year: 2005 – volume: 505 start-page: 79 year: 2009 end-page: 87 article-title: Micro‐Compression Testing: A Critical Discussion of Experimental Constraints publication-title: Mater. Sci. Eng. A – volume: 39 start-page: 361 issue: 1 year: 2009 end-page: 86 article-title: Plasticity of Micrometer‐Scale Single Crystals in Compression publication-title: Annu. Rev. Mater. Res. – volume: 42 start-page: 475 issue: 2 year: 1994 end-page: 87 article-title: Strain Gradient Plasticity – Theory and Experiment publication-title: Acta Metall. Mater. – volume: 53 start-page: 1821 year: 2005 end-page: 30 article-title: Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients publication-title: Acta Mater. – volume: 30 start-page: 1966 issue: 6 year: 2009 end-page: 75 article-title: Titanium alloy Lattice Truss Structures publication-title: Mater. Des. – volume: 104 start-page: 135503 year: 2010 article-title: Size Effects in Single Crystalline cu Nano‐Pillars Fabricated Without the Use of Fib publication-title: Phys. Rev. Lett. – volume: 20 start-page: 272 year: 2008 end-page: 8 article-title: Superelasticity and Shape Memory in Micro‐ and Nanometer‐Scale Pillars publication-title: Adv. Mater. – volume: 53 start-page: 303 issue: 2 year: 2005 end-page: 13 article-title: Cellular Metal Lattices With Hollow Trusses publication-title: Acta Mater. – year: 2010 article-title: Optimal Design of Orthotropic Fiber‐Composite Corrugated‐Core Sandwich Panels Under Axial Compression”; MS Thesis, Mechanical and Aerospace Engineering – volume: 234 start-page: 37 year: 1997 end-page: 44 article-title: Elastic and Plastic Properties of Thin Films on Substrates: Nanoindentation Techniques publication-title: Mat. Sci. Eng. A ‐ Struct. – volume: 36 start-page: 739 issue: 8 year: 2004 end-page: 51 article-title: Performance of Sandwich Plates With Truss Cores publication-title: Mech. Mater. – volume: 33 start-page: 295 year: 1997 end-page: 361 publication-title: Adv. Appl. Mech. – volume: 57 start-page: 4902 year: 2009 end-page: 10 article-title: Effects of Trapping Dislocations Within Small Crystals on Their Deformation Behavior publication-title: Acta Mater. – volume: 54 start-page: 664 issue: 6 year: 2009 end-page: 88 article-title: Miniaturized Single‐Crystalline fcc Metals Deformed in Tension: New Insights in Size‐Dependent Plasticity publication-title: Prog. Mater. Sci. – year: 2010 article-title: Thermostructural Design Tools for Hypersonic Vehicles – volume: 59 start-page: 7 year: 2008 end-page: 10 article-title: Orientation‐Independent Pseudoelasticity in Small‐Scale NiTi Compression Pillars publication-title: Scr. Mater. – volume: 85 start-page: 3207 issue: 26–27 year: 2005 end-page: 34 article-title: Structural Performance of Metallic Sandwich Panels With Square Honeycomb Cores publication-title: Philos. Mag. – volume: 48 start-page: 99 issue: 1 year: 2000 end-page: 128 article-title: Mechanism‐Based Strain Gradient Plasticity – II. Analysis publication-title: J. Mech. Phys. Solids – volume: 46 start-page: 5109 issue: 14 year: 1998 end-page: 15 article-title: A microbend Test Method for Measuring the Plasticity Length Scale publication-title: Acta Mater. – volume: 62 start-page: 492 year: 2010 end-page: 5 article-title: On the Plasticity of Small‐Scale Nickel‐Titanium Shape Memory Alloys publication-title: Scr. Mater. – volume: 38 start-page: 6275 issue: 36–37 year: 2001 end-page: 305 article-title: Collapse of Truss Core Sandwich Beams in 3‐Point Bending publication-title: Int. J. Solids Struct. – volume: 31 start-page: 6121 issue: 24 year: 2010 end-page: 30 article-title: A Review on Stereolithography and its Applications in Biomedical Engineering publication-title: Biomaterials – volume: 57 start-page: 503 year: 2009 end-page: 10 article-title: Effects of Focused Ion Beam Milling on the Compressive Behavior of Directionally Solidified Micropillars and the Nanoindentation Response of an Electropolished Surface publication-title: Acta Mater. – volume: 12 start-page: 217 issue: 3 year: 2005 end-page: 27 article-title: Optimal Design of a Novel High Authority SMA Actuator publication-title: Mech. Adv. Mater. Struct. – start-page: 214 year: 2008 – volume: 49 start-page: 2245 issue: 10 year: 2001 end-page: 71 article-title: A Reformulation of Strain Gradient Plasticity publication-title: J. Mech. Phys. Solids – year: 2008 – volume: 21 start-page: 399 issue: 170 year: 1970 article-title: Deformation of Plastically Non‐Homogeneous Materials publication-title: Philos. Mag. – volume: 7 start-page: 1564 issue: 6 year: 1992 end-page: 83 article-title: An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments publication-title: J. Mater. Res. – volume: 483–484 start-page: 218 year: 2008 end-page: 22 article-title: Small‐Scale Mechanical Behavior of Intermetallics and Their Composites publication-title: Mater. Sci. Eng. A – volume: 53 start-page: 1821 issue: 6 year: 2005 end-page: 30 article-title: Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients publication-title: Acta Mater. – volume: 22 start-page: 23 year: 1992 end-page: 46 article-title: Transient Liquid‐Phase Bonding publication-title: Annu. Rev. Mater. Sci – volume: 8 start-page: 365 issue: 3 year: 1999 end-page: 79 article-title: Design of Smart Composite Materials Using Topology Optimization publication-title: Smart Mater. Struct. – volume: 308 start-page: 613 year: 1993 article-title: The Role of Indentation Depth on the Measured Hardness of Materials publication-title: Mater. Res. Soc. Symp. Proc. – year: 2010 article-title: Interconnected Self‐Propagating Photopolymer Waveguides: An Alternative to Stereolithography for Rapid Formation of Lattice‐Based Open‐Cellular Materials – volume: 8 start-page: 237 year: 1993 article-title: The Yield Stress of Polycrystalline Thin Films publication-title: J. Mater. Res. – volume: 3 start-page: 689 issue: 5 year: 1995 end-page: 735 article-title: Discrete Dislocation Plasticity – A Simple Planar Model publication-title: Modelling Simul. Mater. Sci. Eng. – volume: 49 start-page: 1025 issue: 3 year: 2011 end-page: 32 article-title: Vitreous Carbon Micro‐Lattice Structures publication-title: Carbon – volume: 61 start-page: 19 issue: 12 year: 2009 end-page: 25 article-title: The In‐Situ Mechanical Testing of Nanoscale Single‐Crystalline Nanopillars publication-title: J. Mater. – volume: 41 start-page: 709 issue: 6 year: 2001 end-page: 28 article-title: A Mechanistic Interpretation of the Comparative In‐Plane Mechanical Properties of 3D Woven, Stitched and Pinned Composites publication-title: Compos. Part A ‐ Appl. S. – volume: 54 start-page: 2242 issue: 11 year: 2006 end-page: 80 article-title: The Impulsive Response of Sandwich Beams: Analytical and Numerical Investigation of Regimes of Behaviour publication-title: J. Mech. Phys. Solids – volume: 463 start-page: 335 year: 2010 end-page: 8 article-title: Strong Crystal Size Effect on Deformation Twinning publication-title: Nature – volume: 466 start-page: 2495 year: 2010 end-page: 516 article-title: Micro‐Architected Materials: Past, Present and Future publication-title: Proc. Royal Soc. A – volume: 26 start-page: 295 issue: 2 year: 2010 end-page: 302 article-title: Influence of Configuration on Materials Selection for Actively Cooled Combustors publication-title: J. Propul. Power – volume: 83 start-page: 1 issue: 1 year: 2003 end-page: 8 article-title: Dislocation Sources and the Flow Stress of Polycrystalline Thin Metal Films publication-title: Philos. Mag. Lett. – volume: 47 start-page: 1239 issue: 6 year: 1999 end-page: 63 article-title: Mechanism‐Based Strain Gradient Plasticity – I. Theory publication-title: J. Mech. Phys. Solids – volume: 39 start-page: 4999 issue: 19 year: 2002 end-page: 5012 article-title: Influence of Imperfections on the Performance of Metal Foam Core Sandwich Panels publication-title: Int. J. Solids Struct. – volume: 55 start-page: 6724 issue: 20 year: 2007 end-page: 33 article-title: Compression Behavior of Micro‐Scale Truss Structures Formed From Self‐Propagating Polymer Waveguides publication-title: Acta Mater. – volume: 59 start-page: 796 issue: 7 year: 2008 end-page: 9 article-title: Breakdown of Schmid's Law in Micropillars publication-title: Scr. Mater. – volume: 41 start-page: 3521 issue: 13 year: 2004 end-page: 43 article-title: Design and Demonstration of a High Authority Shape Morphing Structure publication-title: Int. J. Solids Struct. – volume: 62 start-page: 532 issue: 8 year: 2010 end-page: 5 article-title: Microcompression Study of Mg (0001) Single Crystal publication-title: Scr. Mater. – volume: 41 start-page: 6249 issue: 22–23 year: 2004 end-page: 71 article-title: A protocol for Characterizing the Structural Performance of Metallic Sandwich Panels: Application to Pyramidal Truss Cores publication-title: Int. J. Solids Struct. – volume: 53 start-page: 2661 issue: 12 year: 2005 end-page: 91 article-title: Plasticity Size Effects in Tension and Compression of Single Crystals publication-title: J. Mech. Phys. Solids – volume: 60 start-page: 148 issue: 3 year: 2009 end-page: 51 article-title: On the Importance of Sample Compliance in Uniaxial Microtesting publication-title: Scr. Mater. – volume: 50 start-page: 789 issue: 7 year: 2005 end-page: 815 article-title: Active Cooling by Metallic Sandwich Structures With Periodic Cores publication-title: Prog. Mater. Sci. – volume: 8 start-page: 1119 year: 2006 end-page: 25 article-title: Determination of Mechanical Properties of Copper at the Micron Scale publication-title: Adv. Eng. Mater. – volume: 3 start-page: 347 issue: 5 year: 2006 end-page: 55 article-title: Detection and Localization of Single Molecular Recognition Events Using Atomic Force Microscopy publication-title: Nat. Methods – volume: 40A start-page: 877 issue: 4 year: 2009 end-page: 90 article-title: Materials Property Profiles for Actively Cooled Panels: An Illustration for Scramjet Applications publication-title: Metall. Mater. Trans. A. – volume: 56 start-page: 580 year: 2008 end-page: 92 article-title: A Further Step Towards an Understanding of Size‐Dependent Crystal Plasticity: In Situ Tension Experiments of Miniaturized Single‐Crystal Copper Samples publication-title: Acta Mater. – volume: 57 start-page: 1675 issue: 5 year: 2009 end-page: 88 article-title: A Critical Assessment of Theories of Strain Gradient Plasticity publication-title: Acta Mater. – volume: 58 start-page: 1361 issue: 4 year: 2010 end-page: 8 article-title: Fabrication, Structure, and Mechanical Properties of Indium Nanopillars publication-title: Acta Mater. – volume: 56 start-page: 1712 issue: 8 year: 2008 end-page: 20 article-title: Stochastic Nature of Plasticity of Aluminum Micro‐Pillars publication-title: Acta Mater. – volume: 40 start-page: 6969 issue: 25 year: 2003 end-page: 80 article-title: Kagorne Plate Structures for Actuation publication-title: Int. J. Solids Struct. – volume: 56 start-page: 602 issue: 3 year: 2007 end-page: 8 article-title: A Search for Evidence of Strain Gradient Hardening in Au Submicron Pillars Under Uniaxial Compression Using Synchrotron X‐ray Microdiffraction publication-title: Acta Mater. – volume: 43 start-page: 1945 issue: 8 year: 2001 end-page: 63 article-title: Measurement and Analysis of the Structural Performance of Cellular Metal Sandwich Construction publication-title: Int. J. Mech. Sci. – volume: 37 start-page: 947 issue: 9 year: 2010 end-page: 59 article-title: Concepts for Enhanced Energy Absorption Using Hollow Micro‐Lattices publication-title: Int. J. Impact Eng. – volume: 7 start-page: 115 issue: 116 year: 2008 end-page: 9 article-title: Mechanical Annealing and Source‐limited Deformation in Submicron‐diameter Ni Crystals publication-title: Nat. Mater. – volume: 73 start-page: 245410 year: 2006 end-page: 6 article-title: Nanoscale Gold Pillars Strengthened through Dislocation Starvation publication-title: Phys. Rev. B – volume: 69 start-page: 35 year: 2009 end-page: 8 article-title: Mechanical Properties of CVD Synthesized Polycrystalline Diamond publication-title: Ind. Diamond Quat. – volume: 41 start-page: 5105 issue: 18–19 year: 2004 end-page: 24 article-title: Structurally Optimized Sandwich Panels With Prismatic Cores publication-title: Int. J. Solids Struct. – volume: 57 start-page: 5245 year: 2009 end-page: 53 article-title: Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano‐Scale publication-title: Acta Mater. – volume: 103 start-page: 105501 year: 2009 article-title: Correlation Between Critical Temperature and Strength of Small‐Scale bcc Pillars publication-title: Phys. Rev. Lett. – volume: 14 start-page: 3007 issue: 7 year: 1999 end-page: 18 article-title: Quantitative Adhesion Measures of Multilayer Films: Part I. Indentation Mechanics publication-title: J. Mater. Res. – volume: 38 start-page: 5165 issue: 30–31 year: 2001 end-page: 83 article-title: Optimal Truss Plates publication-title: Int. J. Solids Struct. – volume: 89 start-page: 633 issue: 10 year: 2009 end-page: 40 article-title: Strength of Submicrometer Diameter Pillars of Metallic Glasses Investigated with in Situ Transmission Electron Microscopy publication-title: Philos. Mag. Lett. – volume: 75 start-page: 061022 year: 2008 article-title: A Materials Selection Protocol for Lightweight Actively Cooled Panels publication-title: J. Appl. Mech. – volume: 46 start-page: 411 issue: 3 year: 1998 end-page: 25 article-title: Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity publication-title: J. Mech. Phys. Solids – volume: 12 start-page: 805 issue: 8 year: 2010 end-page: 15 article-title: Size Independent Shape Memory Behavior of Nickel‐Titanium publication-title: Adv. Eng. Mater. – volume: 40 start-page: 6981 issue: 25 year: 2003 end-page: 8 article-title: On the Performance of Truss Panels With Kagome Cores publication-title: Int. J. Solids Struct. – volume: 46 start-page: 309 issue: 3‐4 year: 2001 end-page: 27 article-title: The Topological Design of Multifunctional Cellular Metals publication-title: Prog. Mater. Sci. – volume: 56 start-page: 313 issue: 4 year: 2007 end-page: 6 article-title: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples publication-title: Scr. Mater. – volume: 93 start-page: 101916 year: 2008 article-title: Size‐Dependent Mechanical Properties of Mo Nanopillars publication-title: Appl. Phys. Lett. – volume: 14 start-page: 3019 issue: 7 year: 1999 end-page: 26 article-title: Quantitative Adhesion Measures of Multilayer Films: Part II. Indentation of W/Cu, W/W, Cr/W publication-title: J. Mater. Res. – volume: 19 start-page: 3892 issue: 22 year: 2007 end-page: 6 article-title: Micro‐Scale Truss Structures Formed From Self‐Propagating Photopolymer Waveguides publication-title: Adv. Mater. – volume: 56 start-page: 511 year: 2008 end-page: 7 article-title: Sample‐Size Effects in the Yield Behavior of Nanocrystalline Nickel publication-title: Acta Mater. – volume: 40 start-page: 5707 issue: 21 year: 2003 end-page: 22 article-title: Design of Metallic Textile Core Sandwich Panels publication-title: Int. J. Solids Struct. – volume: 62 start-page: 536 issue: 8 year: 2010 end-page: 9 article-title: Microcompression of Single‐Crystal Magnesium publication-title: Scr. Mater. – volume: 19 start-page: 3 issue: 1 year: 2004 end-page: 20 article-title: Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology publication-title: J. Mater. Res. – volume: 56 start-page: 2540 issue: 11 year: 2008 end-page: 8 article-title: Micro‐Scale Truss Structures With Three‐Fold And Six‐Fold Symmetry Formed From Self‐Propagating Polymer Waveguides publication-title: Acta Mater. – volume: 46 start-page: 559 year: 2001 end-page: 632 article-title: Manufacture, Characterisation and Application of Cellular Metals and Metal Foams publication-title: Prog. Mater. Sci. – volume: 39 start-page: 1 year: 1994 end-page: 23 article-title: Particle Reinforced Aluminum and Magnesium Matrix Composites publication-title: Int. Mater. Rev – volume: 58 start-page: 2355 issue: 7 year: 2010 end-page: 63 article-title: Tensile and Compressive Behavior of Tungsten, Molybdenum, Tantalum and Niobium at the Nanoscale publication-title: Acta Mater. – volume: 40 start-page: 293 year: 2010 end-page: 317 publication-title: Annu. Rev. Mater. Res. – start-page: 017905 year: 2008 article-title: Crystal Rotation in Cu Single Crystal Micropillars: In Situ Laue and Electron Backscatter Diffraction publication-title: Appl. Phys. Lett. – volume: 46 start-page: 2049 issue: 10 year: 1998 end-page: 68 article-title: The Mechanics of Size‐Dependent Indentation publication-title: J. Mech. Phys. Solids – volume: 17 start-page: 137 issue: 1 year: 2002 end-page: 44 article-title: Optimal and Manufacturable Two‐Dimensional, Kagome‐Like Cellular Solids publication-title: J. Mater. Res. – volume: 20 start-page: 125004 year: 2010 article-title: MEMS Resonant Load Cells for Micro‐Mechanical Test Frames: Feasibility Study and Optimal Design publication-title: J. Micromech. Microeng. – volume: 4 start-page: 726 issue: 10 year: 2002 end-page: 33 article-title: Cellular Metals Manufacturing publication-title: Adv. Eng. Mater. – volume: 57 start-page: 5245 issue: 17 year: 2009 end-page: 53 article-title: Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano‐Scale publication-title: Acta Mater. – volume: 32 start-page: 239 year: 2011 end-page: 48 article-title: Multiobjective Optimization for Design of Multifunctional Sandwich Panel Heat Pipes With Micro‐Architected Truss Cores publication-title: Int. J. Heat Fluid Flow – volume: 45 start-page: 1037 issue: 6 year: 1997 end-page: 67 article-title: Design of Materials With Extreme Thermal Expansion Using a Three‐Phase Topology Optimization Method publication-title: J. Mech. Phys. Solids – volume: 56 start-page: 654 year: 2011 end-page: 724 article-title: Plasticity in Small‐Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effects publication-title: Prog. Mater. Sci. – volume: 50 start-page: 37 year: 2010 end-page: 45 article-title: Nanomechanical Testing of Gum Metal publication-title: Exp. Mech. – volume: 56 start-page: 3245 issue: 13 year: 2008 end-page: 59 article-title: Athermal Mechanisms of Size‐Dependent Crystal Flow Gleaned From Three‐Dimensional Discrete Dislocation Simulations publication-title: Acta Mater. – volume: 312 start-page: 1188 year: 2006 end-page: 90 article-title: Scale‐Free Intermittent Flow in Crystal Plasticity publication-title: Science – volume: 48 start-page: 301 issue: 2 year: 2000 end-page: 22 article-title: Experimental Analysis of Deformation Mechanisms in a Closed‐Cell Aluminum Alloy Foam publication-title: J. Mech. Phys. Solids – start-page: 169 year: 2004 end-page: 273 – volume: 56 start-page: 2988 issue: 13 year: 2008 end-page: 3001 article-title: Dislocation Structures and Their Relationship to Strength in Deformed Nickel Microcrystals publication-title: Acta Mater. – volume: 55 start-page: 3845 year: 2007 end-page: 55 article-title: Loss of Pseudoelasticity in Nickel‐Titanium Submicron Compression Pillars publication-title: Acta Mater. – volume: 9 start-page: 215 year: 2010 end-page: 9 article-title: Transition From a Strong‐Yet‐Brittle to a Stronger‐and‐Ductile State by Size Reduction of Metallic Glasses publication-title: Nat. Mater. – volume: 11 start-page: 40 year: 2008 end-page: 8 article-title: Scanning Probe Microscopy at Video‐Rate publication-title: Mater. Today – volume: 101 start-page: 8 issue: 1 year: 2010 end-page: 15 article-title: First Principles Based Predictions of the Toughness of a Metal/Oxide Interface publication-title: Int. J. Mater. Res. – volume: 58 start-page: 2652 issue: 7 year: 2010 end-page: 65 article-title: The Deformation of Gum Metal Through In Situ Compression of Nanopillars publication-title: Acta Mater. – volume: 65 start-page: 2221 issue: 13 year: 2006 end-page: 45 article-title: Crush Dynamics of Square Honeycomb Sandwich Cores publication-title: Int. J. Numer. Meth. Eng. – volume: 46 start-page: 3583 issue: 10 year: 1998 end-page: 92 article-title: Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X‐ray Tomography and Surface Strain Mapping publication-title: Acta Mater. – volume: 49 start-page: 3819 issue: 21–22 year: 2006 end-page: 30 article-title: Optimal Active Cooling Performance of Metallic Sandwich Panels With Prismatic Cores publication-title: Int. J. Heat Mass Transfer – volume: 174 start-page: 25 issue: 1 year: 1953 end-page: 8 article-title: The Cleavage Strength of Polycrystals publication-title: J. Iron Steel I. – volume: 459 start-page: 262 issue: 1–2 year: 2006 end-page: 72 article-title: FIB Damage of Cu and Possible Consequences for Miniaturized Mechanical Tests publication-title: Mater. Sci. Eng. A – volume: 46 start-page: 2727 issue: 5 year: 1992 end-page: 42 article-title: Modified Embedded‐Atom Potentials for Cubic Materials publication-title: Phys. Rev. B – volume: 3 start-page: 1315 issue: 7 year: 2008 end-page: 40 article-title: Quasi‐Static Deformation and Failure Modes of Composite Square Honeycombs publication-title: J. Mech. Mater. Struct. – volume: 64 start-page: 77 year: 2011 end-page: 80 article-title: Size‐Induced Weakening and Grain Boundary‐Assisted Deformation in 60nm Grained Ni Nanopillars publication-title: Scripta Mater. – volume: 3 start-page: 289 issue: 3 year: 1995 end-page: 307 article-title: Trapping of Hydrogen to Lattice‐Defects in Nickel publication-title: Modelling Simul. Mater. Sci. Eng. – volume: 61 start-page: 2205 issue: 13 year: 2004 end-page: 38 article-title: Constitutive Model for Quasi‐Static Deformation of Metallic Sandwich Cores publication-title: Int. J. Numer. Meth. Eng. – volume: 4 start-page: 415 year: 2009 end-page: 9 article-title: Nanoscale Shape‐Memory Alloys for Ultrahigh Mechanical Damping publication-title: Nat. Nanotechnol. – volume: 49 start-page: 2071 issue: 9 year: 2001 end-page: 93 article-title: Optimal Design of a Flexural Actuator publication-title: J. Mech. Phys. Solids – volume: 61 start-page: 300 issue: 3 year: 2009 end-page: 3 article-title: Insights into Deformation Behavior and Microstructure Evolution in Nb Single Crystalline Nano‐Pillars Under Uniaxial Tension and Compression publication-title: Scr. Mater. – volume: 71 start-page: 652 issue: 5 year: 2004 end-page: 62 article-title: Sandwich Plates Actuated by a Kagome Planar Truss publication-title: J. Appl. Mech.‐Trans. Asme – volume: 61 start-page: 524 issue: 5 year: 2009 end-page: 7 article-title: A Universal Scaling Law for the Strength of Metal Micropillars and Nanowires publication-title: Scr. Mater. – volume: 103 start-page: 083539 issue: 8 year: 2008 article-title: Effect of Sample Size on Deformation in Amorphous Metals publication-title: J. Appl. Phys. – year: 2000 – volume: 80 start-page: 104104 year: 2009 article-title: Effects of Focused Ion Beam Induced Damage on the Plasticity of Micropillars publication-title: Phys. Rev. B – volume: 86 start-page: 5567 year: 2006 end-page: 79 article-title: Size Effects in the Deformation of Sub‐Micron Au Columns publication-title: Philos. Mag. – volume: 10 start-page: 939 issue: 10 year: 2008 end-page: 42 article-title: Mechanical Properties of Cast Ti‐6Al‐2Sn‐4Zr‐2Mo Lattice Block Structures publication-title: Adv. Eng. Mater. – start-page: 370 year: 2002 – volume: 37 start-page: 317 issue: 3 year: 2010 end-page: 23 article-title: An active Concept for Limiting Injuries Caused by Air Blasts publication-title: Int. J. Impact Eng. – volume: 305 start-page: 986 issue: 5686 year: 2004 end-page: 9 article-title: Sample Dimensions Influence Strength and Crystal Plasticity publication-title: Science – volume: 91 start-page: 11915 issue: 11 year: 2007 article-title: Effects of Focused Ion Beam Milling on the Mechanical Behavior of a Molybdenum‐Alloy Single Crystal publication-title: Appl. Phys. Lett. – volume: 43 start-page: 4888 issue: 16 year: 2006 end-page: 905 article-title: Structural Performance of Near‐Optimal Sandwich Panels With Corrugated Cores publication-title: Int. J. Solids Struct. – volume: 57 start-page: 4404 issue: 15 year: 2009 end-page: 15 article-title: Uniaxial Compression of fcc Au Nanopillars on an MgO Substrate: The Effects of Prestraining and Annealing publication-title: Acta Mater. – year: 1980 – volume: 56 start-page: 4577 issue: 17 year: 2008 end-page: 84 article-title: Post‐Fabrication Vapor Phase Strengthening of Nickel‐Based Sheet Alloys for Thermostructural Panels publication-title: Acta Mater. – volume: 49 start-page: 1747 issue: 8 year: 2001 end-page: 69 article-title: Effective Properties of the Octet‐Truss Lattice Material publication-title: J. Mech. Phys. Solids – volume: 75 start-page: 949 issue: 3 year: 2003 end-page: 83 article-title: Advances in Atomic Force Microscopy publication-title: Rev. Mod. Phys. – volume: 91 start-page: 1108 issue: 7–9 year: 2010 end-page: 20 article-title: Tensile Deformation of Electroplated Copper Nanopillars publication-title: Phil. Mag. A. – volume: 100 start-page: 185503 year: 2008 article-title: Dislocation‐Source Shutdown and the Plastic Behavior of Single‐Crystal Micropillars publication-title: Phys. Rev. Lett. – volume: 43 start-page: 1746 issue: 6 year: 2006 end-page: 63 article-title: Performance of Metallic Honeycomb‐Core Sandwich Beams Under Shock Loading publication-title: Int. J. Solids Struct. – volume: 53 start-page: 4065 year: 2005 end-page: 77 article-title: Size‐Affected Single‐Slip Behavior of Pure Nickel Microcrystals publication-title: Acta Mater. – volume: 56 start-page: 4762 issue: 17 year: 2008 end-page: 70 article-title: Effects of Pre‐Strain on the Compressive Stress–Strain Response of Mo‐Alloy Single‐Crystal Micropillars publication-title: Acta Mater. – volume: 15 start-page: S153 issue: 7 year: 2005 end-page: 64 article-title: MEMS Actuators and Sensors: Observations on Their Performance and Selection for Purpose publication-title: J. Micromech. Microeng. – year: 1999 – volume: 10 start-page: 2162 issue: 9 year: 1995 end-page: 5 article-title: In‐Situ Imaging of MU‐N Load Indents into GAAS publication-title: J. Mater. Res. – ident: e_1_2_6_54_1 doi: 10.1016/S0022-5096(98)00018-0 – ident: e_1_2_6_70_1 doi: 10.1103/PhysRevB.73.245410 – ident: e_1_2_6_24_1 doi: 10.1016/j.ijsolstr.2005.06.079 – ident: e_1_2_6_150_1 doi: 10.1146/annurev-matsci-082908-145422 – start-page: 370 volume-title: Topology Optimization year: 2002 ident: e_1_2_6_152_1 – ident: e_1_2_6_4_1 doi: 10.1016/j.pmatsci.2005.03.001 – ident: e_1_2_6_69_1 doi: 10.1016/j.actamat.2004.12.031 – ident: e_1_2_6_99_1 doi: 10.1002/adem.201000048 – ident: e_1_2_6_138_1 doi: 10.1557/JMR.1992.1564 – ident: e_1_2_6_94_1 doi: 10.1016/j.actamat.2009.10.042 – ident: e_1_2_6_149_1 doi: 10.1088/0965-0393/3/5/008 – volume: 39 start-page: 1 year: 1994 ident: e_1_2_6_58_1 article-title: Particle Reinforced Aluminum and Magnesium Matrix Composites publication-title: Int. Mater. Rev doi: 10.1179/imr.1994.39.1.1 – ident: e_1_2_6_72_1 doi: 10.1016/j.actamat.2007.10.031 – ident: e_1_2_6_106_1 doi: 10.1038/nmat2622 – ident: e_1_2_6_5_1 doi: 10.1016/S0079-6425(00)00016-5 – ident: e_1_2_6_19_1 doi: 10.1016/j.ijheatmasstransfer.2006.03.042 – ident: e_1_2_6_26_1 doi: 10.1016/j.ijimpeng.2009.06.006 – ident: e_1_2_6_38_1 doi: 10.2140/jomms.2008.3.1315 – ident: e_1_2_6_43_1 doi: 10.1002/adem.200800114 – ident: e_1_2_6_75_1 doi: 10.1002/adem.200600129 – ident: e_1_2_6_159_1 doi: 10.1063/1.2979684 – ident: e_1_2_6_11_1 doi: 10.1016/S0020-7683(02)00250-0 – ident: e_1_2_6_35_1 doi: 10.1016/j.matdes.2008.09.015 – ident: e_1_2_6_36_1 doi: 10.1016/j.actamat.2008.05.013 – volume-title: Background to Buckling year: 1980 ident: e_1_2_6_53_1 – ident: e_1_2_6_114_1 doi: 10.1016/j.actamat.2004.12.031 – ident: e_1_2_6_83_1 doi: 10.1016/j.actamat.2009.06.053 – ident: e_1_2_6_108_1 doi: 10.1080/09500830903236038 – ident: e_1_2_6_127_1 doi: 10.1098/rspa.2010.0215 – ident: e_1_2_6_107_1 doi: 10.1063/1.2884584 – ident: e_1_2_6_121_1 doi: 10.1146/annurev-matsci-082908-145409 – ident: e_1_2_6_10_1 doi: 10.1016/S0022-5096(99)00035-6 – ident: e_1_2_6_67_1 doi: 10.1038/nmat2085 – ident: e_1_2_6_9_1 doi: 10.1016/S0020-7403(00)00070-9 – ident: e_1_2_6_148_1 doi: 10.1103/PhysRevLett.100.185503 – ident: e_1_2_6_21_1 doi: 10.2514/1.45417 – ident: e_1_2_6_130_1 doi: 10.1088/0960-1317/20/12/125004 – ident: e_1_2_6_65_1 doi: 10.1080/14786437008238426 – ident: e_1_2_6_95_1 doi: 10.1016/j.actamat.2009.12.052 – ident: e_1_2_6_13_1 doi: 10.1016/j.ijsolstr.2004.04.027 – volume: 174 start-page: 25 issue: 1 year: 1953 ident: e_1_2_6_57_1 article-title: The Cleavage Strength of Polycrystals publication-title: J. Iron Steel I. – ident: e_1_2_6_63_1 doi: 10.1016/S0022-5096(97)00086-0 – ident: e_1_2_6_34_1 – ident: e_1_2_6_17_1 doi: 10.1016/S0020-7683(03)00375-5 – ident: e_1_2_6_51_1 doi: 10.1016/j.carbon.2010.10.059 – ident: e_1_2_6_66_1 doi: 10.1016/j.actamat.2005.05.023 – volume: 91 start-page: 1108 issue: 7 year: 2010 ident: e_1_2_6_80_1 article-title: Tensile Deformation of Electroplated Copper Nanopillars publication-title: Phil. Mag. A. – ident: e_1_2_6_28_1 doi: 10.1080/15376490590928589 – ident: e_1_2_6_141_1 doi: 10.1016/j.actamat.2009.07.027 – ident: e_1_2_6_136_1 doi: 10.1557/JMR.1995.2162 – ident: e_1_2_6_59_1 doi: 10.1016/S0065-2156(08)70388-0 – ident: e_1_2_6_143_1 doi: 10.1088/0965-0393/3/3/001 – ident: e_1_2_6_155_1 doi: 10.1088/0964-1726/8/3/308 – volume-title: Twenty First Annual International Solid Freeform Fabrication Symposium ‐ An Additive Manufacturing Conference year: 2010 ident: e_1_2_6_47_1 – ident: e_1_2_6_81_1 doi: 10.1103/PhysRevLett.104.135503 – ident: e_1_2_6_158_1 doi: 10.1016/j.pmatsci.2011.01.005 – ident: e_1_2_6_68_1 doi: 10.1126/science.1098993 – ident: e_1_2_6_52_1 doi: 10.1016/S0020-7683(01)00103-2 – ident: e_1_2_6_30_1 doi: 10.1016/S0022-5096(01)00024-2 – ident: e_1_2_6_105_1 doi: 10.1002/adma.200701527 – ident: e_1_2_6_139_1 doi: 10.1557/jmr.2004.19.1.3 – ident: e_1_2_6_18_1 doi: 10.1016/j.ijsolstr.2004.05.045 – ident: e_1_2_6_100_1 doi: 10.1016/j.actamat.2007.02.034 – ident: e_1_2_6_12_1 doi: 10.1016/S0020-7683(00)00315-2 – ident: e_1_2_6_122_1 doi: 10.1103/PhysRevLett.104.135503 – volume-title: Springer Handbook of Experimental Solid Mechanics year: 2008 ident: e_1_2_6_129_1 – ident: e_1_2_6_44_1 doi: 10.1016/j.biomaterials.2010.04.050 – volume-title: IEEE MEMS Conference year: 2011 ident: e_1_2_6_161_1 – ident: e_1_2_6_25_1 doi: 10.1016/j.jmps.2006.07.001 – ident: e_1_2_6_119_1 doi: 10.1080/14786430701591513 – ident: e_1_2_6_48_1 doi: 10.1016/S0079-6425(00)00002-5 – ident: e_1_2_6_55_1 doi: 10.1016/0956-7151(94)90502-9 – volume-title: Cellular Solids: Structure and Properties year: 1999 ident: e_1_2_6_2_1 – ident: e_1_2_6_33_1 doi: 10.1146/annurev.ms.22.080192.000323 – ident: e_1_2_6_109_1 doi: 10.1146/annurev-matsci-082908-145422 – ident: e_1_2_6_118_1 doi: 10.1016/j.scriptamat.2006.09.016 – volume: 61 start-page: 19 issue: 12 year: 2009 ident: e_1_2_6_140_1 article-title: The In‐Situ Mechanical Testing of Nanoscale Single‐Crystalline Nanopillars publication-title: J. Mater. – ident: e_1_2_6_98_1 doi: 10.1016/j.scriptamat.2010.09.010 – start-page: 017905 year: 2008 ident: e_1_2_6_79_1 article-title: Crystal Rotation in Cu Single Crystal Micropillars: In Situ Laue and Electron Backscatter Diffraction publication-title: Appl. Phys. Lett. – ident: e_1_2_6_131_1 doi: 10.1103/RevModPhys.75.949 – ident: e_1_2_6_77_1 doi: 10.1016/j.scriptamat.2008.09.024 – ident: e_1_2_6_74_1 doi: 10.1016/j.pmatsci.2009.03.005 – ident: e_1_2_6_156_1 doi: 10.1557/JMR.2002.0021 – ident: e_1_2_6_15_1 doi: 10.1016/j.mechmat.2003.05.003 – ident: e_1_2_6_85_1 doi: 10.1016/j.actamat.2008.05.030 – ident: e_1_2_6_62_1 doi: 10.1016/S0022-5096(99)00022-8 – ident: e_1_2_6_32_1 doi: 10.1115/1.1778720 – ident: e_1_2_6_60_1 doi: 10.1016/S0022-5096(01)00049-7 – ident: e_1_2_6_37_1 – ident: e_1_2_6_145_1 doi: 10.1016/j.susc.2009.03.009 – ident: e_1_2_6_76_1 doi: 10.1016/j.actamat.2007.10.015 – ident: e_1_2_6_46_1 doi: 10.1002/adma.200700797 – ident: e_1_2_6_8_1 doi: 10.1016/S1359-6454(98)00025-1 – ident: e_1_2_6_97_1 doi: 10.1016/j.actamat.2007.09.044 – ident: e_1_2_6_103_1 doi: 10.1016/j.scriptamat.2009.12.023 – ident: e_1_2_6_123_1 doi: 10.1016/j.actamat.2009.06.002 – ident: e_1_2_6_20_1 doi: 10.1115/1.2966270 – ident: e_1_2_6_50_1 doi: 10.1016/j.ijimpeng.2010.03.007 – ident: e_1_2_6_96_1 doi: 10.1007/s11340-008-9210-9 – volume: 69 start-page: 35 year: 2009 ident: e_1_2_6_126_1 article-title: Mechanical Properties of CVD Synthesized Polycrystalline Diamond publication-title: Ind. Diamond Quat. – ident: e_1_2_6_22_1 doi: 10.1007/s11661-008-9768-y – ident: e_1_2_6_40_1 doi: 10.1016/S0022-5096(01)00010-2 – ident: e_1_2_6_135_1 doi: 10.1557/JMR.1999.0405 – ident: e_1_2_6_64_1 doi: 10.1016/j.actamat.2008.12.012 – ident: e_1_2_6_116_1 doi: 10.1016/j.actamat.2008.03.011 – ident: e_1_2_6_71_1 doi: 10.1080/14786430600567739 – ident: e_1_2_6_111_1 doi: 10.1557/JMR.1993.0237 – ident: e_1_2_6_7_1 doi: 10.1016/S0266-3538(03)00266-5 – ident: e_1_2_6_133_1 doi: 10.1016/S1369-7021(09)70006-9 – ident: e_1_2_6_3_1 – ident: e_1_2_6_102_1 doi: 10.1016/j.scriptamat.2008.01.051 – ident: e_1_2_6_27_1 doi: 10.1002/nme.1535 – ident: e_1_2_6_86_1 doi: 10.1063/1.2784948 – ident: e_1_2_6_160_1 doi: 10.1016/j.actamat.2007.08.036 – ident: e_1_2_6_144_1 doi: 10.1103/PhysRevB.46.2727 – ident: e_1_2_6_147_1 doi: 10.1016/j.jmps.2005.07.005 – start-page: 214 volume-title: An Introduction to Structural Optimization year: 2008 ident: e_1_2_6_153_1 – ident: e_1_2_6_78_1 doi: 10.1016/j.msea.2009.01.005 – ident: e_1_2_6_61_1 doi: 10.1016/S0022-5096(98)00103-3 – ident: e_1_2_6_128_1 doi: 10.1088/0960-1317/15/7/022 – ident: e_1_2_6_112_1 doi: 10.1080/0950083021000050287 – start-page: 169 volume-title: NMR, 3D Analysis, Photopolymerization year: 2004 ident: e_1_2_6_45_1 – ident: e_1_2_6_151_1 doi: 10.1016/S0020-7683(03)00349-4 – ident: e_1_2_6_29_1 doi: 10.1016/S0020-7683(03)00348-2 – ident: e_1_2_6_92_1 doi: 10.1016/j.scriptamat.2009.12.017 – ident: e_1_2_6_117_1 doi: 10.1016/j.actamat.2008.02.046 – ident: e_1_2_6_134_1 doi: 10.1557/JMR.1999.0404 – ident: e_1_2_6_82_1 doi: 10.1016/j.scriptamat.2008.06.019 – ident: e_1_2_6_104_1 doi: 10.1038/nnano.2009.142 – ident: e_1_2_6_142_1 doi: 10.1002/nme.1142 – ident: e_1_2_6_132_1 doi: 10.1038/nmeth871 – ident: e_1_2_6_89_1 doi: 10.1016/j.actamat.2009.12.022 – ident: e_1_2_6_115_1 doi: 10.1016/j.actamat.2007.12.016 – ident: e_1_2_6_6_1 doi: 10.1002/1527-2648(20021014)4:10<726::AID-ADEM726>3.0.CO;2-Y – ident: e_1_2_6_154_1 doi: 10.1016/S0022-5096(96)00114-7 – ident: e_1_2_6_41_1 – ident: e_1_2_6_88_1 doi: 10.1016/j.actamat.2009.07.027 – ident: e_1_2_6_120_1 doi: 10.1126/science.1123889 – ident: e_1_2_6_157_1 doi: 10.1016/j.actamat.2008.01.051 – ident: e_1_2_6_31_1 doi: 10.1016/j.ijsolstr.2004.02.012 – ident: e_1_2_6_14_1 doi: 10.1016/j.ijsolstr.2005.06.073 – ident: e_1_2_6_84_1 doi: 10.1016/j.msea.2006.12.185 – ident: e_1_2_6_87_1 doi: 10.1016/j.scriptamat.2009.04.012 – ident: e_1_2_6_110_1 doi: 10.1016/j.scriptamat.2009.05.012 – ident: e_1_2_6_49_1 doi: 10.1002/3527606696 – volume: 459 start-page: 262 issue: 1 year: 2006 ident: e_1_2_6_73_1 article-title: FIB Damage of Cu and Possible Consequences for Miniaturized Mechanical Tests publication-title: Mater. Sci. Eng. A – ident: e_1_2_6_113_1 doi: 10.1557/PROC-308-613 – ident: e_1_2_6_42_1 doi: 10.1016/j.actamat.2004.09.024 – ident: e_1_2_6_23_1 doi: 10.1016/j.ijheatfluidflow.2010.07.002 – ident: e_1_2_6_90_1 doi: 10.1103/PhysRevLett.103.105501 – ident: e_1_2_6_16_1 doi: 10.1080/14786430500073945 – ident: e_1_2_6_56_1 doi: 10.1016/S1359-6454(98)00153-0 – ident: e_1_2_6_39_1 doi: 10.1016/j.compositesa.2010.02.001 – ident: e_1_2_6_101_1 doi: 10.1016/j.msea.2007.12.038 – ident: e_1_2_6_124_1 doi: 10.1016/j.actamat.2008.09.033 – ident: e_1_2_6_93_1 doi: 10.1038/nature08692 – ident: e_1_2_6_91_1 doi: 10.1016/j.scriptamat.2009.12.048 – ident: e_1_2_6_146_1 doi: 10.3139/146.110254 – ident: e_1_2_6_125_1 doi: 10.1103/PhysRevB.80.104104 – ident: e_1_2_6_137_1 doi: 10.1016/S0921-5093(97)00176-7 |
SSID | ssj0001984 |
Score | 2.3948927 |
Snippet | Cellular materials with periodic architectures have been extensively investigated over the past decade for their potential to provide multifunctional solutions... A commonly established optimal design protocol, extensively adopted at the macro-scale for both single and multifunctional cellular structures, is reviewed.... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | s15 |
SubjectTerms | Cellular Cellular structure Design optimization Foams Hypersonic vehicles Lightweight Materials science Mathematical models Nanostructure Optimization Physical properties Protocol Prototypes Unit cell Weight reduction |
Title | Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials |
URI | https://api.istex.fr/ark:/67375/WNG-NHWJQ765-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1551-2916.2011.04599.x https://www.proquest.com/docview/882288758 https://www.proquest.com/docview/1671410369 https://www.proquest.com/docview/1692412722 https://www.proquest.com/docview/926281686 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBajfdkedh_zug0Nxt4cLN9U7S1kzUIg2bVr34QkS1CSxiN2oBQK_Qn9jf0lO0e2s2Rso4y92VjHoONz-Y589ImQ13niIKkWRRgzm4VpYXWoVMzCWLnURS5lPMK9w5NpPjpMx8fZcdv_hHthGn6I9YIbeoaP1-jgSlfbTg7ZPowB37RMnGkmRA_xJLZuIT76_JNJCmrrtEPCSBG33dTz2xdtZapdVPrZFgzdBLM-Gw3vkVk3j6YJZdZb1bpnzn-hePw_E71P7raglfYbK3tAbtnFQ3Jng8oQ7r6dVKtmTPWIXHxclnUJNlZRAMUUQCb9ALHpFAa88y0jtHTU7_29vrwaQmptViTpwM7n2BdLv3ha29XSVm_pcFme0hHUy1gbnJiK1iWdYB8hyPa7_yC2oBNVN-70mBwOD74ORmF70ENoUs5FGCcuMlBbcac0E0IriNAqUr7YcdaIyGldALTFdFsYnVkLUSOJNNM2B5NyyROysygX9imhRhuBJH1OR0Wq9gHMuASPfdGmYIVKTEB491GlaVnQ8TCOudyohkDdEtUtUd3Sq1ueBYStJb83TCA3kHnj7WYtoJYz7KTjmTyavpfT0dH4E88zKQKy1xmWbINIJaH4iSEHZPsBebV-Ct6Pv3TUwparSrKcY6Nukou_jYEam8U8jgNC_zAGWSPxBJYc9ONt8cZTlOP-4AAvn_2z5B653azU49rWc7IDFmZfANSr9UvvxD8A_GtHeg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQewAOlKe6lIeRELeN1vusuUVpwxKa8Gppb5bttaWqabbKbqQKCYmfwG_klzDj3Q0JAlQhboliR_LsPL6ZHX9DyPM0shBUi8IPmUn8uDDKlzJkfihtbAMbsyzAu8PjSZofxaOT5KQdB4R3YRp-iGXBDS3D-Ws0cCxIr1s5hHs_BIDTUnHGCec9AJSbOOAbxxnsffjJJQXZddxhYSSJW2_r-e0_rcWqTRT75RoQXYWzLh4Nt8i0O0nThnLWW9Sqpz__QvL4n456m9xqcSvtN4p2h1wzs7vk5gqbIXz7dFotmjXVPfLl3bysS1CzigIupoAz6VtwT-ewYM91jdDSUnf99_vXb0OIrk1Rkg7MdIqtsfSjY7ZdzE31kg7n5TnNIWXG9OBUV7Qu6RhbCWFvv3sVYgo6lnVjUffJ0XD_cJD77awHX8dZxv0wsoGG9CqzUjHOlQQnLQPp8h1rNA-sUgWgW4y4hVaJMeA4okAxZVLQKhs9IBuzcma2CdVKc-TpsyooYrkLeMZGOPlF6YIVMtIeybqnKnRLhI7zOKZiJSECcQsUt0BxCyducekRttx50ZCBXGHPC6c4yw1yfobNdFkijievxCQ_Hr3P0kRwj-x0miVaP1IJyH9CCAPJrkeeLX8FB4BvdeTMlItKsDTDXt0o5X9bA2k2C7Mw9Aj9wxokjsQhLCnIxynjlY8oRv3BPn58-M87n5Lr-eH4QBy8nrzZITeawj2Wuh6RDdA28xiQX62eOIv-AVoSS5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB6kBdEH79JYLyOIb1mSya3xbdk2rqu71ktt34a5QtntpmyyUATBn-Bv9Jd4ziRZd0WliG8JmROYk3P5zuTMN4Q8SyMLSVVrn4Um8WNtpC8EC30mbGwDG4dZgHuHx5N0eBSPTpKTtv8J98I0_BCrBTf0DBev0cHPtd10csj2PgN80zJxxkme9wBPbscp-A4CpPc_qaSguI47KIwccZtdPb9900aq2katX2zg0HU069JRcZNMu4k0XSjT3rKWPfX5F47H_zPTW-RGi1ppvzGz2-SKmd8h19e4DOHu02m1bMZUd8mXw0VZl2BkFQVUTAFl0rcQnM5gwL7rGaGlpW7z7_ev3wrIrc2SJB2Y2QwbY-kHx2u7XJjqBS0W5RkdQsGMxcGpqmhd0jE2EoJsv_sRYjQdi7rxp3vkqDj4OBj67UkPvoqzLPdZZAMFxVVmhQzzXAoI0SIQrtqxRuWBlVIDtsV8q5VMjIGwEQUylCYFm7LRfbI1L-dmh1AlVY4sfVYGOhZ7gGZshOe-SKVDLSLlkaz7qFy1NOh4GseMr5VDoG6O6uaobu7UzS88Eq4kzxsqkEvIPHd2sxIQiym20mUJP5685JPh8ehdliY898huZ1i8jSIVh-qHQRJI9jzydPUU3B__6Yi5KZcVD9MMO3WjNP_bGCiyQ5Yx5hH6hzFIG4lHsKSgH2eLl54iH_UHB3j54J8ln5Crh_sFf_Nq8nqXXGtW7XGd6yHZAmMzjwD21fKx8-cfT55KTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocols+for+the+Optimal+Design+of+Multi-Functional+Cellular+Structures%3A+From+Hypersonics+to+Micro-Architected+Materials&rft.jtitle=Journal+of+the+American+Ceramic+Society&rft.au=Valdevit%2C+Lorenzo&rft.au=Jacobsen%2C+Alan+J&rft.au=Greer%2C+Julia+R&rft.au=Carter%2C+William+B&rft.date=2011-06-01&rft.issn=0002-7820&rft.eissn=1551-2916&rft.volume=94&rft.spage=15&rft.epage=34&rft_id=info:doi/10.1111%2Fj.1551-2916.2011.04599.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7820&client=summon |