Xylem resistance to embolism presenting a simple diagnostic test for the open vessel artefact

Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels r...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 215; no. 1; pp. 489 - 499
Main Authors Torres‐Ruiz, José M., Cochard, Hervé, Choat, Brendan, Jansen, Steven, López, Rosana, Tomášková, Ivana, Padilla‐Díaz, Carmen M., Badel, Eric, Burlett, Regis, King, Andrew, Lenoir, Nicolas, Martin‐StPaul, Nicolas K., Delzon, Sylvain
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.07.2017
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below −4.0 MPa, reaching 50% loss of hydraulic conductivity at −5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
AbstractList Summary Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Summary Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open‐vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non‐invasive measurement of embolism on intact olive plants by X‐ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X‐Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below −4.0 MPa, reaching 50% loss of hydraulic conductivity at −5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open‐vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non‐invasive measurement of embolism on intact olive plants by X‐ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X‐Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below −4.0 MPa, reaching 50% loss of hydraulic conductivity at −5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below −4.0 MPa, reaching 50% loss of hydraulic conductivity at −5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open‐vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non‐invasive measurement of embolism on intact olive plants by X‐ray microtomography. Results showed artefactual decreases in hydraulic conductance ( k ) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X‐Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below −4.0 MP a, reaching 50% loss of hydraulic conductivity at −5.3 MP a. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
Author Eric Badel
Steven Jansen
Andrew King
Ivana Tomášková
Regis Burlett
Carmen M. Padilla-Díaz
Rosana López
Nicolas K. Martin-St Paul
Sylvain Delzon
José M. Torres-Ruiz
Hervé Cochard
Nicolas Lenoir
Brendan Choat
Author_xml – sequence: 1
  givenname: José M.
  surname: Torres‐Ruiz
  fullname: Torres‐Ruiz, José M.
  organization: BIOGECO INRA University of Bordeaux 33615 Pessac France
– sequence: 2
  givenname: Hervé
  surname: Cochard
  fullname: Cochard, Hervé
  organization: PIAF INRA University of Clermont‐Auvergne 63100 Clermont‐Ferrand France
– sequence: 3
  givenname: Brendan
  surname: Choat
  fullname: Choat, Brendan
  organization: Western Sydney University Hawkesbury Institute for the Environment Richmond NSW 2753 Australia
– sequence: 4
  givenname: Steven
  surname: Jansen
  fullname: Jansen, Steven
  organization: Ulm University Institute of Systematic Botany and Ecology Albert‐Einstein‐Allee 11 89081 Ulm Germany
– sequence: 5
  givenname: Rosana
  surname: López
  fullname: López, Rosana
  organization: PIAF INRA University of Clermont‐Auvergne 63100 Clermont‐Ferrand France, Western Sydney University Hawkesbury Institute for the Environment Richmond NSW 2753 Australia
– sequence: 6
  givenname: Ivana
  surname: Tomášková
  fullname: Tomášková, Ivana
  organization: Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcká 129 165 00 Praha 6 – Suchdol Czech Republic
– sequence: 7
  givenname: Carmen M.
  surname: Padilla‐Díaz
  fullname: Padilla‐Díaz, Carmen M.
  organization: Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC) Avenida Reina Mercedes, 10 41012 Sevilla Spain
– sequence: 8
  givenname: Eric
  surname: Badel
  fullname: Badel, Eric
  organization: PIAF INRA University of Clermont‐Auvergne 63100 Clermont‐Ferrand France
– sequence: 9
  givenname: Regis
  surname: Burlett
  fullname: Burlett, Regis
  organization: BIOGECO INRA University of Bordeaux 33615 Pessac France
– sequence: 10
  givenname: Andrew
  surname: King
  fullname: King, Andrew
  organization: Synchrotron SOLEIL L'Orme de Merisiers 91190 Saint‐Aubin – BP48 Gif‐sur‐Yvette Cedex France
– sequence: 11
  givenname: Nicolas
  surname: Lenoir
  fullname: Lenoir, Nicolas
  organization: CNRS University of Bordeaux UMS 3626 Placamat F‐33608 Pessac France
– sequence: 12
  givenname: Nicolas K.
  surname: Martin‐StPaul
  fullname: Martin‐StPaul, Nicolas K.
  organization: INRA UR629 Ecologie des Forêts Méditerranéennes (URFM) F‐84914 Avignon France
– sequence: 13
  givenname: Sylvain
  surname: Delzon
  fullname: Delzon, Sylvain
  organization: BIOGECO INRA University of Bordeaux 33615 Pessac France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28467616$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01518575$$DView record in HAL
BookMark eNqFkc1LAzEQxYMotlUP3lUKXvSwmsnm81hErVDUgwdvIbtNacrupiZbpf-9qdUKgprLQPi9x7x5PbTd-MYidAj4AtK7bObTC6BMqi3UBcpVJiEX26iLMZEZp_y5g3oxzjDGinGyizpEUi448C46el5Wtu4HG11sTVPafuv7ti585WK9j3Ympor24HPuoaeb66erYTZ6uL27GoyykgqhMrClAVFIWwjLFeFCFSVMciwoBTMeQ15yQiBXBcCYGCWNkEpNgICxhJk830Pna9upqfQ8uNqEpfbG6eFgpFd_GBhIJtgrJPZszc6Df1nY2OraxdJWlWmsX0RNUkhKOVH4XxSkYkRwkbOEnv5AZ34RmpRZQ3ISUlBCEnXySS2K2o43q35d8ztIGXyMwU42CGC9akqnpvRHU4m9_MGWrjWt800bjKv-Ury5yi5_t9b3j8MvxfFaMYutDxuFwhgw5yx_B60sqOI
CitedBy_id crossref_primary_10_1111_geb_12701
crossref_primary_10_1111_nph_16177
crossref_primary_10_1111_nph_20115
crossref_primary_10_1111_nph_18578
crossref_primary_10_1093_jxb_ery321
crossref_primary_10_1111_ppl_12738
crossref_primary_10_1016_j_plantsci_2021_110986
crossref_primary_10_1016_j_foreco_2020_118175
crossref_primary_10_1093_treephys_tpae134
crossref_primary_10_1111_nph_17282
crossref_primary_10_1007_s13595_018_0786_7
crossref_primary_10_1093_treephys_tpy015
crossref_primary_10_1007_s11104_020_04525_0
crossref_primary_10_1093_treephys_tpz141
crossref_primary_10_1007_s13595_018_0768_9
crossref_primary_10_1093_aob_mcae077
crossref_primary_10_1093_plphys_kiae407
crossref_primary_10_1111_ppl_13331
crossref_primary_10_1016_j_eja_2019_02_008
crossref_primary_10_3389_fpls_2021_627403
crossref_primary_10_1093_jxb_erz206
crossref_primary_10_3389_fpls_2021_633595
crossref_primary_10_1111_nph_15079
crossref_primary_10_1093_treephys_tpac105
crossref_primary_10_1111_nph_18447
crossref_primary_10_1111_ppl_13081
crossref_primary_10_1093_plphys_kiac034
crossref_primary_10_1111_pce_13607
crossref_primary_10_1093_treephys_tpad113
crossref_primary_10_1093_treephys_tpy083
crossref_primary_10_1111_plb_13384
crossref_primary_10_1371_journal_pone_0196075
crossref_primary_10_1093_treephys_tpz090
crossref_primary_10_1111_pce_13703
crossref_primary_10_1111_pce_14713
crossref_primary_10_1016_j_plaphy_2018_04_008
crossref_primary_10_1071_FP21326
crossref_primary_10_1111_ppl_12654
crossref_primary_10_1016_j_jtbi_2018_07_036
crossref_primary_10_1016_j_foreco_2018_04_031
crossref_primary_10_1007_s00468_019_01891_w
crossref_primary_10_1093_aob_mcz104
crossref_primary_10_1111_ppl_13580
crossref_primary_10_3390_plants11030307
crossref_primary_10_1111_nph_16746
crossref_primary_10_1111_nph_16448
crossref_primary_10_3389_fpls_2020_585674
crossref_primary_10_1093_aobpla_plz056
Cites_doi 10.1300/J144v02n02_05
10.1111/j.1469-8137.2012.04118.x
10.1111/j.1438-8677.2012.00678.x
10.1007/978-3-662-04931-0
10.1104/pp.126.1.27
10.1093/acprof:oso/9780198567288.001.0001
10.1111/j.1399-3054.2012.01619.x
10.1139/b81-248
10.1023/B:VEGE.0000029378.87169.b1
10.1111/pce.12840
10.1104/pp.15.00732
10.1007/s11104-013-1774-1
10.1104/pp.16.01039
10.1093/treephys/tpu059
10.1111/j.1399-3054.2005.00526.x
10.1111/pce.12139
10.1093/jxb/ert193
10.1111/j.1469-8137.2009.02919.x
10.1111/pce.12391
10.1093/jxb/48.3.665
10.1111/pce.12572
10.1104/pp.114.249706
10.1111/j.1365-3040.2010.02163.x
10.1111/nph.12556
10.1104/pp.113.228403
10.1111/j.1365-3040.1988.tb01774.x
10.1073/pnas.1522569113
10.1104/pp.108.129783
10.1093/treephys/tpv003
10.1111/j.1469-8137.2010.03393.x
10.1093/treephys/tpx013
10.1111/j.1469-8137.2011.03984.x
10.1111/j.1469-8137.2012.04244.x
10.1038/nature11688
10.1111/ppl.12185
10.3732/ajb.1500305
10.1093/treephys/tpu055
10.1016/j.nimb.2013.09.030
10.1111/pce.12680
10.1016/j.agwat.2012.06.027
10.1104/pp.100.2.1020
10.5962/bhl.title.1943
10.1111/j.1365-3040.2011.02439.x
10.1111/pce.12313
10.1163/22941932-90001023
10.1073/pnas.1525678113
10.1104/pp.109.138305
10.1093/treephys/tpt030
10.1111/nph.13017
10.1104/pp.16.01079
10.1111/j.1399-3054.2011.01470.x
10.1111/j.1365-2435.2009.01577.x
10.1093/treephys/tpw081
10.1002/j.1537-2197.1952.tb13070.x
10.1111/j.1469-8137.1988.tb04162.x
10.1111/nph.12798
10.1086/520724
10.1093/treephys/28.6.971
ContentType Journal Article
Copyright 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Copyright © 2017 New Phytologist Trust
Attribution - ShareAlike
Copyright_xml – notice: 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust
– notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
– notice: Copyright © 2017 New Phytologist Trust
– notice: Attribution - ShareAlike
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/nph.14589
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE


AGRICOLA

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Ecology
Environmental Sciences
EISSN 1469-8137
EndPage 499
ExternalDocumentID oai_HAL_hal_01518575v1
28467616
10_1111_nph_14589
NPH14589
90010665
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: FT130101115
– fundername: French National Agency for Research
  funderid: ANR‐10‐EQPX‐16
– fundername: Marie Curie fellowship
  funderid: 624473
– fundername: Spanish Ministry of Economy and Competitiveness
  funderid: EEBB‐I‐15‐09191
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
UMC
VOOES
ID FETCH-LOGICAL-c4779-1eca17b8eb7e692679bc1f307441add13c622139b11d2a98a7899f121ae25a33
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri May 09 12:25:57 EDT 2025
Fri Jul 11 18:36:26 EDT 2025
Fri Jul 11 03:45:32 EDT 2025
Fri Jul 25 10:48:10 EDT 2025
Wed Feb 19 02:43:00 EST 2025
Tue Jul 01 03:09:26 EDT 2025
Thu Apr 24 22:57:35 EDT 2025
Wed Jan 22 16:32:23 EST 2025
Thu Jul 03 22:32:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords xylem
centrifuge technique
embolism
olive
micro-CT
artefact
activité hydraulique
courbe de vulnérabilité
centrifuging
centrifugation
artifact
xylème
biologie de la plante
microtomographie
embolie des vaisseaux
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4779-1eca17b8eb7e692679bc1f307441add13c622139b11d2a98a7899f121ae25a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7574-0108
0000-0002-4476-5334
0000-0003-3442-1711
0000-0003-1367-7056
0000-0002-2727-7072
0000-0003-2282-7554
0000-0001-8289-5757
OpenAccessLink https://hal.science/hal-01518575
PMID 28467616
PQID 1903787422
PQPubID 2026848
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01518575v1
proquest_miscellaneous_2000446290
proquest_miscellaneous_1895276735
proquest_journals_1903787422
pubmed_primary_28467616
crossref_primary_10_1111_nph_14589
crossref_citationtrail_10_1111_nph_14589
wiley_primary_10_1111_nph_14589_NPH14589
jstor_primary_90010665
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2017
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2017
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2015; 35
2015; 38
1987; 8
2015; 102
1997; 48
2013; 64
2010; 188
2009; 151
2016; 39
1952; 39
1988; 108
2016; 36
2012; 491
2013; 15
2015a; 167
2008; 28
2004; 171
2016; 113
2014; 164
2005; 34
2014; 203
2014; 324
2014; 201
2015b; 35
2009; 23
2010; 33
2007; 168
2012; 146
1992; 100
1988; 11
2006
2017; 173
1999; 2
2015; 205
2002
1959; 47
2012; 35
2014; 152
1914
2001; 126
2012; 194
2012; 196
2013; 36
2013; 33
2005; 124
2012; 193
2014; 37
2017
1981; 59
2009; 184
2014
2013; 373
2012; 114
2016; 170
2014; 34
2009; 149
2016; 172
2011; 142
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Connor DJ (e_1_2_7_22_1) 2005; 34
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Braun HJ (e_1_2_7_7_1) 1959; 47
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
Lens F (e_1_2_7_38_1) 2016; 172
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Choat B (e_1_2_7_14_1) 2010; 33
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
References_xml – volume: 201
  start-page: 874
  year: 2014
  end-page: 886
  article-title: Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine
  publication-title: New Phytologist
– volume: 36
  start-page: 1498
  year: 2016
  end-page: 1507
  article-title: Partitioning of vessel resistivity in three liana species
  publication-title: Tree Physiology
– volume: 194
  start-page: 982
  year: 2012
  end-page: 990
  article-title: No evidence for an open vessel effect in centrifuge‐based vulnerability curves of a long‐vesselled liana ( )
  publication-title: New Phytologist
– volume: 173
  start-page: 1177
  year: 2017
  end-page: 1196
  article-title: Xylem surfactants introduce a new element to the cohesion‐tension theory
  publication-title: Plant Physiology
– volume: 33
  start-page: 1502
  year: 2010
  end-page: 1512
  article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to a long‐vesseled species
  publication-title: Plant, Cell & Environment
– volume: 172
  start-page: 661
  year: 2016
  end-page: 667
  article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees
  publication-title: Plant Physiology
– volume: 37
  start-page: 2491
  year: 2014
  end-page: 2499
  article-title: Relax and refill: xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values
  publication-title: Plant, Cell & Environment
– year: 1914
– volume: 59
  start-page: 1882
  year: 1981
  end-page: 1892
  article-title: Vessel‐length distribution in stems of some American woody plants
  publication-title: Canadian Journal of Botany
– volume: 2
  start-page: 101
  year: 1999
  end-page: 162
  article-title: Water use by the olive tree
  publication-title: Journal of Crop Production
– volume: 33
  start-page: 1543
  year: 2010
  end-page: 1552
  article-title: Does sample length influence the shape of vulnerability to cavitation curves? A test with the Cavitron spinning technique
  publication-title: Plant, Cell & Environment
– volume: 170
  start-page: 273
  year: 2016
  end-page: 282
  article-title: Non‐invasive measurement of vulnerability to drought induced embolism by X‐ray microtomography
  publication-title: Plant Physiology
– volume: 146
  start-page: 129
  year: 2012
  end-page: 135
  article-title: Improving xylem hydraulic conductivity measurements by correcting the error caused by passive water uptake
  publication-title: Physiologia Plantarum
– volume: 172
  start-page: 1657
  year: 2016
  end-page: 1668
  article-title: Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension
  publication-title: Plant Physiology
– volume: 373
  start-page: 77
  year: 2013
  end-page: 87
  article-title: Shoot hydraulic characteristics, plant water status and stomatal response in olive trees under different soil water conditions
  publication-title: Plant and Soil
– year: 2014
– volume: 167
  start-page: 40
  year: 2015a
  end-page: 43
  article-title: Direct X‐ray microtomography observation confirms the induction of embolism upon xylem cutting under tension
  publication-title: Plant Physiology
– volume: 64
  start-page: 4779
  year: 2013
  end-page: 4791
  article-title: Methods for measuring plant vulnerability to cavitation: a critical review
  publication-title: Journal of Experimental Botany
– volume: 35
  start-page: 601
  year: 2012
  end-page: 610
  article-title: Vulnerability curves by centrifugation: is there an open vessel artefact, and are “r” shaped curves necessarily invalid?
  publication-title: Plant, Cell & Environment
– volume: 23
  start-page: 922
  year: 2009
  end-page: 930
  article-title: Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance
  publication-title: Functional Ecology
– volume: 35
  start-page: 415
  year: 2015b
  end-page: 424
  article-title: Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions
  publication-title: Tree Physiology
– volume: 8
  start-page: 41
  year: 1987
  end-page: 45
  article-title: A study of lumen diameter variation along the longitudinal axis of wood vessels in using cinematography
  publication-title: IAWA Bull (NS)
– volume: 100
  start-page: 1020
  year: 1992
  end-page: 1028
  article-title: Genotypic variability of leaf xylem cavitation in water‐stressed and well‐irrigated sugarcane
  publication-title: Plant Physiology
– volume: 324
  start-page: 41
  year: 2014
  end-page: 48
  article-title: The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities
  publication-title: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
– volume: 188
  start-page: 533
  year: 2010
  end-page: 542
  article-title: Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit
  publication-title: New Phytologist
– volume: 184
  start-page: 245
  year: 2009
  end-page: 256
  article-title: Functional repair of embolized vessels in maize roots after temporal drought stress, as demonstrated by magnetic resonance
  publication-title: New Phytologist
– volume: 152
  start-page: 465
  year: 2014
  end-page: 474
  article-title: Vulnerability to cavitation in current‐year shoots: further evidence of an open vessel artefact associated with centrifuge and air‐injection techniques
  publication-title: Physiologia Plantarum
– volume: 164
  start-page: 992
  year: 2014
  end-page: 998
  article-title: Freeze‐thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms
  publication-title: Plant Physiology
– volume: 34
  start-page: 155
  year: 2005
  end-page: 229
  article-title: The physiology of adaptation and yield expression in olive
  publication-title: Horticultural Reviews
– volume: 113
  start-page: 5024
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 102
  start-page: 1561
  year: 2015
  end-page: 1563
  article-title: On the ascent of sap in the presence of bubbles
  publication-title: American Journal of Botany
– volume: 171
  start-page: 3
  year: 2004
  end-page: 13
  article-title: The hydraulic architecture of Pinaceae – a review
  publication-title: Plant Ecology
– volume: 124
  start-page: 410
  year: 2005
  end-page: 418
  article-title: Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves
  publication-title: Physiologia Plantarum
– volume: 203
  start-page: 355
  year: 2014
  end-page: 358
  article-title: Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin
  publication-title: New Phytologist
– volume: 48
  start-page: 665
  year: 1997
  end-page: 674
  article-title: Use of centrifugal force in the study of xylem cavitation
  publication-title: Journal of Experimental Botany
– volume: 149
  start-page: 575
  year: 2009
  end-page: 584
  article-title: Hydraulic failure defines the recovery and point of death in water‐stressed conifers
  publication-title: Plant Physiology
– volume: 34
  start-page: 894
  year: 2014
  end-page: 905
  article-title: How reliable are methods to assess xylem vulnerability to cavitation? The issue of “open vessel” artifact in oaks
  publication-title: Tree Physiology
– volume: 38
  start-page: 2575
  year: 2015
  end-page: 2588
  article-title: Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine
  publication-title: Plant, Cell & Environment
– volume: 38
  start-page: 201
  year: 2015
  end-page: 206
  article-title: X‐ray microtomography (micro‐CT): a reference technology for high‐resolution quantification of xylem embolism in trees
  publication-title: Plant, Cell & Environment
– volume: 33
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 126
  start-page: 27
  year: 2001
  end-page: 31
  article-title: observation of cavitation and embolism repair using magnetic resonance imaging
  publication-title: Plant Physiology
– volume: 36
  start-page: 1938
  year: 2013
  end-page: 1949
  article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism
  publication-title: Plant, Cell & Environment
– volume: 39
  start-page: 860
  year: 2016
  end-page: 870
  article-title: Are needles of more vulnerable to xylem embolism than branches? New insights from X‐ray computed tomography
  publication-title: Plant, Cell & Environment
– volume: 168
  start-page: 1113
  year: 2007
  end-page: 1126
  article-title: Water transport in vesseless angiosperms: conducting efficiency and cavitation safety
  publication-title: International Journal of Plant Sciences
– volume: 28
  start-page: 971
  year: 2008
  end-page: 976
  article-title: Water relations and drought‐induced embolism in two olive ( L.) varieties ‘Meski’ and ‘Chemlali’ under severe drought conditions
  publication-title: Tree Physiology
– volume: 142
  start-page: 205
  year: 2011
  end-page: 210
  article-title: How reliable is the double‐ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms?
  publication-title: Physiologia Plantarum
– volume: 35
  start-page: 185
  year: 2015
  end-page: 196
  article-title: Root resistance to cavitation is accurately measured using a centrifuge technique
  publication-title: Tree Physiology
– volume: 205
  start-page: 116
  year: 2015
  end-page: 127
  article-title: The standard centrifuge method accurately measures vulnerability curves of long‐vesselled olive stems
  publication-title: New Phytologist
– volume: 39
  start-page: 2774
  year: 2016
  end-page: 2785
  article-title: Direct observation and modelling of embolism spread between xylem conduits: a case study in Scots pine
  publication-title: Plant, Cell & Environment
– volume: 113
  start-page: 4865
  year: 2016
  end-page: 4869
  article-title: Revealing catastrophic failure of leaf networks under stress
  publication-title: Proceedings of th National Academy of Sciences, USA
– volume: 39
  start-page: 570
  year: 1952
  end-page: 574
  article-title: An approach to the study of vessel length in hardwood species
  publication-title: American Journal of Botany
– volume: 11
  start-page: 35
  year: 1988
  end-page: 40
  article-title: A method for measuring hydraulic conductivity and embolism in xylem
  publication-title: Plant, Cell & Environment
– year: 2002
– volume: 114
  start-page: 37
  year: 2012
  end-page: 49
  article-title: Steps toward an improvement in process‐based models of water use by fruit trees: a case study in olive
  publication-title: Agricultural Water Management
– volume: 108
  start-page: 267
  year: 1988
  end-page: 276
  article-title: Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions
  publication-title: New Phytologist
– volume: 47
  start-page: 421
  year: 1959
  end-page: 434
  article-title: Die Vernetzung der Gefässe bei Populus
  publication-title: Zeitschrift für Botanik
– year: 2006
– volume: 151
  start-page: 949
  year: 2009
  end-page: 954
  article-title: New insights into the mechanisms of water‐stress‐induced cavitation in conifers
  publication-title: Plant Physiology
– volume: 196
  start-page: 661
  year: 2012
  end-page: 665
  article-title: Centrifuge technique consistently overestimates vulnerability to water stress‐induced cavitation in grapevines as confirmed with high‐resolution computed tomography
  publication-title: New Phytologist
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– volume: 193
  start-page: 713
  year: 2012
  end-page: 720
  article-title: Rare pits, large vessels, and extreme vulnerability to cavitation in a ring‐porous tree species
  publication-title: New Phytologist
– year: 2017
  article-title: Differences in functional and xylem anatomical features allow species to co‐occur and cope differently with drought in the Mediterranean region
  publication-title: Tree Physiology
– volume: 15
  start-page: 496
  year: 2013
  end-page: 504
  article-title: Xylem vulnerability to cavitation can be accurately characterized in species with long vessels using a centrifuge method
  publication-title: Plant Biology
– volume: 34
  start-page: 155
  year: 2005
  ident: e_1_2_7_22_1
  article-title: The physiology of adaptation and yield expression in olive
  publication-title: Horticultural Reviews
– ident: e_1_2_7_28_1
  doi: 10.1300/J144v02n02_05
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1469-8137.2012.04118.x
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1438-8677.2012.00678.x
– ident: e_1_2_7_61_1
  doi: 10.1007/978-3-662-04931-0
– ident: e_1_2_7_32_1
  doi: 10.1104/pp.126.1.27
– ident: e_1_2_7_46_1
  doi: 10.1093/acprof:oso/9780198567288.001.0001
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1399-3054.2012.01619.x
– ident: e_1_2_7_64_1
  doi: 10.1139/b81-248
– ident: e_1_2_7_33_1
– ident: e_1_2_7_40_1
  doi: 10.1023/B:VEGE.0000029378.87169.b1
– ident: e_1_2_7_55_1
  doi: 10.1111/pce.12840
– ident: e_1_2_7_13_1
  doi: 10.1104/pp.15.00732
– ident: e_1_2_7_56_1
  doi: 10.1007/s11104-013-1774-1
– ident: e_1_2_7_49_1
  doi: 10.1104/pp.16.01039
– ident: e_1_2_7_41_1
  doi: 10.1093/treephys/tpu059
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1399-3054.2005.00526.x
– ident: e_1_2_7_63_1
  doi: 10.1111/pce.12139
– ident: e_1_2_7_17_1
  doi: 10.1093/jxb/ert193
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1469-8137.2009.02919.x
– ident: e_1_2_7_19_1
  doi: 10.1111/pce.12391
– ident: e_1_2_7_3_1
  doi: 10.1093/jxb/48.3.665
– ident: e_1_2_7_48_1
  doi: 10.1111/pce.12572
– ident: e_1_2_7_58_1
  doi: 10.1104/pp.114.249706
– volume: 172
  start-page: 661
  year: 2016
  ident: e_1_2_7_38_1
  article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees
  publication-title: Plant Physiology
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-3040.2010.02163.x
– ident: e_1_2_7_37_1
  doi: 10.1111/nph.12556
– ident: e_1_2_7_11_1
  doi: 10.1104/pp.113.228403
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-3040.1988.tb01774.x
– volume: 47
  start-page: 421
  year: 1959
  ident: e_1_2_7_7_1
  article-title: Die Vernetzung der Gefässe bei Populus
  publication-title: Zeitschrift für Botanik
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.1522569113
– ident: e_1_2_7_10_1
  doi: 10.1104/pp.108.129783
– ident: e_1_2_7_47_1
  doi: 10.1093/treephys/tpv003
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1469-8137.2010.03393.x
– ident: e_1_2_7_53_1
  doi: 10.1093/treephys/tpx013
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1469-8137.2011.03984.x
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1469-8137.2012.04244.x
– ident: e_1_2_7_15_1
  doi: 10.1038/nature11688
– ident: e_1_2_7_54_1
  doi: 10.1111/ppl.12185
– ident: e_1_2_7_35_1
  doi: 10.3732/ajb.1500305
– ident: e_1_2_7_57_1
  doi: 10.1093/treephys/tpu055
– ident: e_1_2_7_44_1
  doi: 10.1016/j.nimb.2013.09.030
– ident: e_1_2_7_6_1
  doi: 10.1111/pce.12680
– ident: e_1_2_7_24_1
  doi: 10.1016/j.agwat.2012.06.027
– ident: e_1_2_7_45_1
  doi: 10.1104/pp.100.2.1020
– ident: e_1_2_7_25_1
  doi: 10.5962/bhl.title.1943
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-3040.2011.02439.x
– ident: e_1_2_7_60_1
  doi: 10.1111/pce.12313
– ident: e_1_2_7_2_1
  doi: 10.1163/22941932-90001023
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_7_21_1
  doi: 10.1104/pp.109.138305
– ident: e_1_2_7_62_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_7_31_1
  doi: 10.1111/nph.13017
– ident: e_1_2_7_12_1
  doi: 10.1104/pp.16.01079
– volume: 33
  start-page: 1502
  year: 2010
  ident: e_1_2_7_14_1
  article-title: Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to a long‐vesseled species
  publication-title: Plant, Cell & Environment
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1399-3054.2011.01470.x
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2435.2009.01577.x
– ident: e_1_2_7_5_1
  doi: 10.1093/treephys/tpw081
– ident: e_1_2_7_29_1
  doi: 10.1002/j.1537-2197.1952.tb13070.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1469-8137.1988.tb04162.x
– ident: e_1_2_7_23_1
  doi: 10.1111/nph.12798
– ident: e_1_2_7_30_1
  doi: 10.1086/520724
– ident: e_1_2_7_27_1
  doi: 10.1093/treephys/28.6.971
SSID ssj0009562
Score 2.456164
Snippet Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard...
Summary Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The...
Summary Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms artefact
Botanics
Centrifugation
centrifuge technique
Centrifuges
Centrifuging
Conductance
Construction
Construction standards
Diagnostic systems
Diagnostic tests
Ecology
Embolism
Embolisms
Environmental Engineering
Environmental Sciences
Evaluation
Exposure
Fluid dynamics
Fluid flow
fluid mechanics
hydraulic conductivity
Hydraulics
Life Sciences
Measurement
Methods
micro-computed tomography
micro‐CT
Olea - physiology
olive
olives
Plant Diseases
Pressure
Resistance
Species
System reliability
Vegetal Biology
Vessels
Vulnerability
Water - metabolism
X ray microtomography
Xylem
Xylem - metabolism
Xylem - physiology
Subtitle presenting a simple diagnostic test for the open vessel artefact
Title Xylem resistance to embolism
URI https://www.jstor.org/stable/90010665
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14589
https://www.ncbi.nlm.nih.gov/pubmed/28467616
https://www.proquest.com/docview/1903787422
https://www.proquest.com/docview/1895276735
https://www.proquest.com/docview/2000446290
https://hal.science/hal-01518575
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7M4YMvzqlz1SlRfPClY0mbpNGnORwXkSEy4T6IJclN2di97cXbO5h_veekP9hkA_GtNKclP85JvrTf-QLwVheVx4Xdp1pSSo4ULsU7VaokHQubkYJ6JMieqMn3_PNUTjfgw5AL0-lDjB_cKDLifE0Bbt3qWpDXyzMMc1lQ8h5xtQgQfRPXBHeVGBSYVa6mvaoQsXjGJ2-sRffOiAnZkRJvg5s30Wtcfo634MdQ8Y51crG_bt2-__2XpuN_tuwRPOxhKTvs_GgbNkL9GO5_bBA6Xj2Bn9OreVgw3JkT2kQ3YW3DwsI18_PV4j1bdilMuAgyy1bnpDfMZh2FD1_HEMy2DLExQ6zJ6LQudkmC5XNGdFJKrHgKp8efTo8maX8wQ-pzrU3Kg7dcuyI4HZQRShvneYWzBWIrnC955pUQCC0d5zNhTWFxwE3FBbdBSJtlO7BZN3XYBeZmGKWhEgdqFnJbUBpvVhmbSeON9FIl8G4YodL3ouV0dsa8HDYv2Fll7KwE3oymy06p41YjHOaxnLS1J4dfSrqHuIh0seQlT2AnesFoZuLOWckE9ga3KPtQX5WIqDKc9XIhEng9FmOQ0p8XW4dmjTaFkUIrncm7bUT3c12YgwSedS43VkAQSlScuiM6zt0NLE--TuLF8383fQEPBIGVSELeg8321zq8RKjVulcxpv4A4u8hGg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB21BQkufLcNFDCIA5dUtRM7MeJSEFWAZYXQIu0FosTrqBW7yaqbrVR-PTN2ErWolRC3yJ5EsT1jP9szbwBeJWllcGE3YSIpJEeKMsSSKlSS0sJGxKDuHGTHKvsef5rK6Qa87WNhPD_EcOBGluHmazJwOpC-YOX18hjtXKZ6E25QRm-3ofomLlDuKtFzMKtYTTteIfLjGV69tBptHpMvpHdLvApwXsavbgE6ugs_-l_3fie_9tdtuW9-_8Xq-L9tuwd3OmTKDr0q3YcNWz-Am-8aRI_nD-Hn9HxuFww35wQ4UVNY2zC7KJv5yWrxhi19FBOug6xgqxOiHGYz78WHn2OIZ1uG8Jgh3GSUsIudEWf5nJFHKcVWPILJ0YfJ-yzscjOEJk4SHXJrCp6UqS0Tq7RQiS4Nr3DCQHiFUyaPjBIC0WXJ-UwUOi1wzHXFBS-skEUUbcNW3dR2F1g5Q0O1lThQMxsXKUXyRpUuIqmNlkaqAF73Q5Sbjrec0mfM837_gp2Vu84K4OUguvRkHVcK4TgP9USvnR2OcipDaETUWPKMB7Dt1GAQ027zrGQAe71e5J21r3IEVRFOfLEQAbwYqtFO6fKlqG2zRplUS5GoJJLXywh_vy70QQA7XueGHxAEFBWn7nCac30D8_HXzD08_nfR53Arm3wZ5aOP489P4LYg7OJ8kvdgqz1d26eIvNrymTOwP-G7JTU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61BSEuvFsCBQziwCXV2ontGE6FslqgWlWoSHtARInjqBW7yYrNViq_nhnnoRa1EuIW2ZPIjxn7czzzDcBrnZQWN3YbakkhOVLkIZaUoZKUFjYiBnXvIDtVk2_x55mcbcC7Pham5YcYfriRZfj1mgx8WZQXjLxanqCZy8Rswo1YjRJS6YOv4gLjrhI9BbOK1ayjFSI3nuHVS5vR5gm5QrZeiVfhzcvw1e8_47vwvW9563byc2_d5Hv291-kjv_ZtXtwp8OlbL9VpPuw4aoHcPN9jdjx_CH8mJ3P3YLh0ZzgJuoJa2rmFnk9P10t3rJlG8OEuyDL2OqUCIdZ0frw4ecYotmGIThmCDYZpetiZ8RYPmfkT0qRFY_gePzx-MMk7DIzhDbW2oTc2YzrPHG5dsoIpU1ueYnLBYIrXDB5ZJUQiC1zzguRmSTDGTclFzxzQmZRtA1bVV25x8DyAs3UlWKkChdnCcXxRqXJImmskVaqAN70M5TajrWckmfM0_70goOV-sEK4NUgumypOq4Uwmke6olce7J_mFIZAiMixpJnPIBtrwWDmPFHZyUD2O3VIu1sfZUipIpw2YuFCODlUI1WSlcvWeXqNcokRgqtdCSvlxHt7bowowB2WpUbGiAIJipOw-EV5_oOptOjiX948u-iL-DW0cE4Pfw0_fIUbgsCLt4heRe2ml9r9wxhV5M_9-b1B3DgI-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Xylem+resistance+to+embolism%3A+presenting+a+simple+diagnostic+test+for+the+open+vessel+artefact&rft.jtitle=The+New+phytologist&rft.au=Torres-Ruiz%2C+Jos%C3%A9+M&rft.au=Cochard%2C+Herv%C3%A9&rft.au=Choat%2C+Brendan&rft.au=Jansen%2C+Steven&rft.date=2017-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=215&rft.issue=1&rft.spage=489&rft_id=info:doi/10.1111%2Fnph.14589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon