Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with i...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 58; no. 27; pp. 9083 - 9087 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2019
Wiley Blackwell (John Wiley & Sons) |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201903298 |
Cover
Abstract | The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts.
Strong metal–support interactions between metallic copper and iron oxides were observed during the high‐temperature water‐gas shift (WGS) reaction. Such a synergistic interaction not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. |
---|---|
AbstractList | Abstract
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr
2
O
3
‐Fe
2
O
3
, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeO
x
was directly observed. During the WGS reaction, a thin FeO
x
overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeO
x
interfaces. The synergistic interaction between Cu and FeO
x
not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H
2
O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts. The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts.The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts. The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeO x was directly observed. During the WGS reaction, a thin FeO x overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeO x interfaces. The synergistic interaction between Cu and FeO x not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H 2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts. The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts. Strong metal–support interactions between metallic copper and iron oxides were observed during the high‐temperature water‐gas shift (WGS) reaction. Such a synergistic interaction not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr O -Fe O , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeO was directly observed. During the WGS reaction, a thin FeO overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeO interfaces. The synergistic interaction between Cu and FeO not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts. The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts. |
Author | Tian, Pengfei Xu, Jing Wachs, Israel E. Han, Yi‐Fan Lunkenbein, Thomas Schlögl, Robert Zhu, Minghui Kurtz, Ravi |
Author_xml | – sequence: 1 givenname: Minghui orcidid: 0000-0003-1593-9320 surname: Zhu fullname: Zhu, Minghui organization: East China University of Science and Technology – sequence: 2 givenname: Pengfei orcidid: 0000-0003-0261-8536 surname: Tian fullname: Tian, Pengfei organization: East China University of Science and Technology – sequence: 3 givenname: Ravi surname: Kurtz fullname: Kurtz, Ravi organization: Lehigh University – sequence: 4 givenname: Thomas surname: Lunkenbein fullname: Lunkenbein, Thomas organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft – sequence: 5 givenname: Jing surname: Xu fullname: Xu, Jing organization: East China University of Science and Technology – sequence: 6 givenname: Robert surname: Schlögl fullname: Schlögl, Robert organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft – sequence: 7 givenname: Israel E. surname: Wachs fullname: Wachs, Israel E. organization: Lehigh University – sequence: 8 givenname: Yi‐Fan orcidid: 0000-0001-7360-2342 surname: Han fullname: Han, Yi‐Fan email: yifanhan@ecust.edu.cn organization: Zhengzhou University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31074080$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1518524$$D View this record in Osti.gov |
BookMark | eNqFkU9rFDEYh4NU7B-9epRgL15mTSaZSfZYltouVAvugseQTd7ppswmY5Kh1lM_guA37Ccx69YKBfGUEJ7nF97fe4j2fPCA0GtKJpSQ-r32DiY1oVPC6ql8hg5oU9OKCcH2yp0zVgnZ0H10mNJ14aUk7Qu0zygRnEhygL4vcgz-Cn-ErPv7u5-LcRhCzHjuM0Rtsgs-4RXkGwCPZ2EYIGLtLZ4XC19-cxawHaMrCXkN-Nxdre_vfixhUzidxwj4iy5B5e1MJ7xYuy7jz7DLfYmed7pP8OrhPELLD6fL2Xl1cXk2n51cVIYLISsgUtCO25ZxyphtGwqy46u6bhqw1ForBCG0IZobZjoGIGhRONGdti0AO0Jvd7EhZaeScRnM2gTvwWRFGyqbmhfo3Q4aYvg6Qspq45KBvtcewphUXTM65YL_Ro-foNdhjL5MUKiGtUKWYgv15oEaVxuwaohuo-Ot-tN8ASY7wMSQUoTuEaFEbVertqtVj6stAn8ilFH0tsgctev_rU132o3r4fY_n6iTT_PTv-4vJ1a7FQ |
CitedBy_id | crossref_primary_10_1016_j_jcis_2021_12_119 crossref_primary_10_1039_D0CP06468H crossref_primary_10_1016_j_cej_2023_143403 crossref_primary_10_1038_s41467_021_27557_1 crossref_primary_10_61435_ijred_2024_59257 crossref_primary_10_1021_acsmaterialslett_4c01166 crossref_primary_10_1016_j_jcat_2022_06_003 crossref_primary_10_1002_ange_202212278 crossref_primary_10_1016_j_nantod_2020_101028 crossref_primary_10_1016_j_apcatb_2024_124440 crossref_primary_10_1021_acs_jpcc_2c05478 crossref_primary_10_1021_jacs_2c10326 crossref_primary_10_1021_acscatal_3c02552 crossref_primary_10_3390_catal10050582 crossref_primary_10_1002_anie_202219299 crossref_primary_10_1021_acs_jpclett_2c03391 crossref_primary_10_1007_s11426_023_1789_3 crossref_primary_10_1016_j_ijhydene_2024_06_353 crossref_primary_10_1038_s41929_021_00729_4 crossref_primary_10_3390_su13168939 crossref_primary_10_1016_j_apcatb_2024_124672 crossref_primary_10_1016_j_matt_2023_05_010 crossref_primary_10_1021_acs_jpcc_2c00350 crossref_primary_10_1021_acscatal_0c03471 crossref_primary_10_1039_D1CC04051K crossref_primary_10_1002_ghg_2314 crossref_primary_10_1021_acscatal_4c02612 crossref_primary_10_1016_j_fuel_2020_118449 crossref_primary_10_1016_j_jcat_2021_05_029 crossref_primary_10_1021_acscatal_4c01403 crossref_primary_10_1002_ange_202219299 crossref_primary_10_1002_anie_202409673 crossref_primary_10_1039_D4TA03453H crossref_primary_10_1016_j_checat_2024_101113 crossref_primary_10_1039_D0TA07190K crossref_primary_10_1016_j_apcatb_2024_124984 crossref_primary_10_1016_j_ijhydene_2020_01_108 crossref_primary_10_1016_j_micromeso_2025_113601 crossref_primary_10_1021_acscatal_4c01493 crossref_primary_10_3390_molecules28041522 crossref_primary_10_1016_j_joei_2025_102025 crossref_primary_10_1002_adfm_202404535 crossref_primary_10_1038_s41467_020_17070_2 crossref_primary_10_1021_acsnano_4c06542 crossref_primary_10_1021_acscatal_1c03405 crossref_primary_10_1002_ange_202409673 crossref_primary_10_1021_acscatal_1c04854 crossref_primary_10_1016_j_apsusc_2020_146484 crossref_primary_10_1016_j_cattod_2021_01_012 crossref_primary_10_1016_j_coche_2023_100929 crossref_primary_10_1021_acssuschemeng_1c08087 crossref_primary_10_1016_j_scenv_2024_100167 crossref_primary_10_1016_j_jechem_2023_03_055 crossref_primary_10_1016_j_jtice_2023_104719 crossref_primary_10_1016_j_ces_2024_119779 crossref_primary_10_3390_catal10030305 crossref_primary_10_1016_j_checat_2023_100768 crossref_primary_10_1021_acscatal_1c02162 crossref_primary_10_1021_acs_jpcc_1c06381 crossref_primary_10_3390_ceramics7040114 crossref_primary_10_1007_s40820_020_00469_3 crossref_primary_10_1016_j_cattod_2020_03_052 crossref_primary_10_1021_acs_jpclett_2c03915 crossref_primary_10_2139_ssrn_4167574 crossref_primary_10_1002_adma_202008145 crossref_primary_10_1039_C9CC07669G crossref_primary_10_1002_anie_202412637 crossref_primary_10_1021_acscatal_1c03936 crossref_primary_10_1002_aic_16846 crossref_primary_10_1002_anie_202003208 crossref_primary_10_1039_D0CS01059F crossref_primary_10_1134_S1990793122040042 crossref_primary_10_1039_D0CY01137A crossref_primary_10_1016_j_pmatsci_2024_101335 crossref_primary_10_1016_j_jece_2022_107618 crossref_primary_10_1021_acsami_1c10428 crossref_primary_10_1021_acscatal_3c00448 crossref_primary_10_1016_j_apcatb_2024_124510 crossref_primary_10_1002_adma_202303216 crossref_primary_10_1016_j_fuel_2024_134256 crossref_primary_10_1021_acscatal_3c00388 crossref_primary_10_1021_acscentsci_2c01290 crossref_primary_10_1021_acs_jpcc_1c08309 crossref_primary_10_1021_acscatal_1c03792 crossref_primary_10_1021_acsmaterialslett_3c00640 crossref_primary_10_1002_cctc_202401323 crossref_primary_10_1002_ange_202003208 crossref_primary_10_1021_acsami_1c22795 crossref_primary_10_1016_j_enchem_2020_100050 crossref_primary_10_1021_acs_jpcc_3c04575 crossref_primary_10_1002_cctc_202301350 crossref_primary_10_1016_j_apsusc_2021_151750 crossref_primary_10_1002_wcms_70006 crossref_primary_10_1002_aenm_202301042 crossref_primary_10_1016_j_ijhydene_2025_01_049 crossref_primary_10_1016_j_surfin_2024_104396 crossref_primary_10_1002_adfm_202416605 crossref_primary_10_1016_j_apcatb_2020_118943 crossref_primary_10_1021_acscatal_9b05591 crossref_primary_10_1016_j_apsusc_2024_162227 crossref_primary_10_1039_D0CY00289E crossref_primary_10_1002_slct_202403904 crossref_primary_10_1039_D3EY00071K crossref_primary_10_1002_adma_202101536 crossref_primary_10_3390_catal12060603 crossref_primary_10_1002_ange_202412637 crossref_primary_10_1021_acscatal_0c01311 crossref_primary_10_1002_anie_202212278 crossref_primary_10_1016_j_jcat_2023_03_033 crossref_primary_10_1002_cctc_202301341 crossref_primary_10_1021_jacs_3c09102 crossref_primary_10_1007_s11426_024_2320_1 crossref_primary_10_1016_j_apcatb_2024_124017 crossref_primary_10_1016_j_ijhydene_2023_01_017 |
Cites_doi | 10.1016/S0926-860X(03)00637-9 10.1016/S0920-5861(98)00503-3 10.1021/acscatal.8b04427 10.1002/anie.201705002 10.1021/acscatal.6b00659 10.1016/j.apcatb.2010.03.024 10.1021/acscatal.6b00698 10.1126/science.1150038 10.1002/anie.201602489 10.1006/jcat.2002.3679 10.1016/j.apcatb.2017.12.050 10.1039/C5CY00173K 10.1016/j.physleta.2014.12.014 10.1016/j.cej.2014.12.045 10.1002/anie.200603931 10.1021/jp2003084 10.1126/science.1219831 10.1021/ja3033235 10.1016/0021-9517(91)90334-Z 10.1016/j.cej.2014.08.080 10.1016/0920-5861(94)00135-O 10.1021/acs.jpcc.5b09192 10.1126/science.1253057 10.1016/j.cattod.2017.08.042 10.1021/ja00469a029 10.1002/cctc.201100090 10.1016/j.cherd.2016.06.025 10.1021/acscatal.5b02961 10.1021/ar00143a001 10.1002/anie.201411581 10.1039/c3cc43699c 10.1021/jp301090d 10.1021/jp2068446 10.1016/j.cherd.2014.11.006 10.1021/acs.iecr.6b04707 10.1021/acscatal.5b02594 10.1126/science.1085721 10.1016/j.jiec.2013.12.011 10.1016/j.jcat.2009.07.004 10.1021/jp903818q |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 OTOTI |
DOI | 10.1002/anie.201903298 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 9087 |
ExternalDocumentID | 1518524 31074080 10_1002_anie_201903298 ANIE201903298 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 222201718002 – fundername: Department of Energy funderid: DE-FG02-05ER15688; DE-AC02-98CH10886 – fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning – fundername: Shanghai Sailing Program funderid: 19YF1410600 – fundername: National Natural Science Foundation of China funderid: 21808057 – fundername: National Science Foundation funderid: CBET-1511689 – fundername: Shanghai Sailing Program grantid: 19YF1410600 – fundername: Department of Energy grantid: DE-FG02-05ER15688 – fundername: National Natural Science Foundation of China grantid: 21808057 – fundername: Fundamental Research Funds for the Central Universities grantid: 222201718002 – fundername: National Science Foundation grantid: CBET-1511689 – fundername: Department of Energy grantid: DE-AC02-98CH10886 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OTOTI |
ID | FETCH-LOGICAL-c4778-e0871f4d634133d651e8f4b2255ed1ddd7700150a4c3cf3ee71e0840afad6ee3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Mon Apr 01 04:54:25 EDT 2024 Thu Jul 10 18:26:06 EDT 2025 Fri Jul 25 10:29:18 EDT 2025 Thu Apr 03 06:54:50 EDT 2025 Tue Jul 01 02:26:49 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Wed Jan 22 16:41:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | iron oxide water-gas shift reaction copper hydrogen metal-support interactions |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4778-e0871f4d634133d651e8f4b2255ed1ddd7700150a4c3cf3ee71e0840afad6ee3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE FG02-05ER15688; AC02-98CH10886 |
ORCID | 0000-0003-0261-8536 0000-0001-7360-2342 0000-0003-1593-9320 0000000315939320 0000000173602342 0000000302618536 |
OpenAccessLink | https://www.osti.gov/biblio/1518524 |
PMID | 31074080 |
PQID | 2253678080 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1518524 proquest_miscellaneous_2231947424 proquest_journals_2253678080 pubmed_primary_31074080 crossref_primary_10_1002_anie_201903298 crossref_citationtrail_10_1002_anie_201903298 wiley_primary_10_1002_anie_201903298_ANIE201903298 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 1, 2019 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 1, 2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2011; 115 1991; 131 2015; 260 2010; 97 2019; 9 2015; 5 2013; 49 2018; 226 2015; 95 2015; 265 2002; 210 2015; 54 2009; 113 2011; 3 2016; 55 2014; 20 2016; 6 1987; 20 2012; 134 2004; 257 2015; 379 2018; 311 1995; 23 2017; 56 2016; 113 1978; 100 2009; 266 2015; 119 1999; 50 2003; 301 2007; 318 2012; 336 2012; 116 2007; 46 2014; 345 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_27_1 e_1_2_2_26_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_15_1 e_1_2_2_36_1 |
References_xml | – volume: 55 start-page: 7455 year: 2016 end-page: 7459 publication-title: Angew. Chem. Int. Ed. – volume: 131 start-page: 178 year: 1991 end-page: 189 publication-title: J. Catal. – volume: 336 start-page: 893 year: 2012 end-page: 897 publication-title: Science – volume: 3 start-page: 934 year: 2011 end-page: 948 publication-title: ChemCatChem – volume: 50 start-page: 175 year: 1999 end-page: 206 publication-title: Catal. Today – volume: 100 start-page: 170 year: 1978 end-page: 175 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2752 year: 2015 end-page: 2760 publication-title: Catal. Sci. Technol. – volume: 49 start-page: 11257 year: 2013 publication-title: Chem. Commun. – volume: 56 start-page: 1772 year: 2017 end-page: 1781 publication-title: Ind. Eng. Chem. Res. – volume: 257 start-page: 97 year: 2004 end-page: 106 publication-title: Appl. Catal. A Gen. – volume: 6 start-page: 4455 year: 2016 end-page: 4464 publication-title: ACS Catal. – volume: 115 start-page: 7586 year: 2011 end-page: 7595 publication-title: J. Phys. Chem. C – volume: 6 start-page: 722 year: 2016 end-page: 732 publication-title: ACS Catal. – volume: 20 start-page: 389 year: 1987 end-page: 394 publication-title: Acc. Chem. Res. – volume: 266 start-page: 380 year: 2009 end-page: 390 publication-title: J. Catal. – volume: 9 start-page: 2261 year: 2019 end-page: 2274 publication-title: ACS Catal. – volume: 56 start-page: 10761 year: 2017 end-page: 10765 publication-title: Angew. Chem. Int. Ed. – volume: 23 start-page: 43 year: 1995 end-page: 58 publication-title: Catal. Today – volume: 379 start-page: 607 year: 2015 end-page: 612 publication-title: Phys. Lett. A – volume: 6 start-page: 2827 year: 2016 end-page: 2830 publication-title: ACS Catal. – volume: 97 start-page: 57 year: 2010 end-page: 71 publication-title: Appl. Catal. B Environ. – volume: 226 start-page: 182 year: 2018 end-page: 193 publication-title: Appl. Catal. B – volume: 301 start-page: 935 year: 2003 end-page: 938 publication-title: Science – volume: 116 start-page: 11019 year: 2012 end-page: 11031 publication-title: J. Phys. Chem. C – volume: 210 start-page: 229 year: 2002 end-page: 236 publication-title: J. Catal. – volume: 260 start-page: 107 year: 2015 end-page: 116 publication-title: Chem. Eng. J. – volume: 134 start-page: 10251 year: 2012 end-page: 10258 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 3297 year: 2014 end-page: 3302 publication-title: J. Ind. Eng. Chem. – volume: 54 start-page: 4544 year: 2015 end-page: 4548 publication-title: Angew. Chem. Int. Ed. – volume: 115 start-page: 20153 year: 2011 end-page: 20159 publication-title: J. Phys. Chem. C – volume: 318 start-page: 1757 year: 2007 end-page: 1760 publication-title: Science – volume: 311 start-page: 2 year: 2018 end-page: 7 publication-title: Catal. Today – volume: 265 start-page: 100 year: 2015 end-page: 109 publication-title: Chem. Eng. J. – volume: 119 start-page: 28934 year: 2015 end-page: 28945 publication-title: J. Phys. Chem. C – volume: 113 start-page: 14411 year: 2009 end-page: 14417 publication-title: J. Phys. Chem. C – volume: 345 start-page: 546 year: 2014 end-page: 550 publication-title: Science – volume: 113 start-page: 9 year: 2016 end-page: 16 publication-title: Chem. Eng. Res. Des. – volume: 95 start-page: 288 year: 2015 end-page: 297 publication-title: Chem. Eng. Res. Des. – volume: 46 start-page: 1329 year: 2007 end-page: 1332 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1764 year: 2016 end-page: 1767 publication-title: ACS Catal. – ident: e_1_2_2_27_1 doi: 10.1016/S0926-860X(03)00637-9 – ident: e_1_2_2_4_1 doi: 10.1016/S0920-5861(98)00503-3 – ident: e_1_2_2_37_1 doi: 10.1021/acscatal.8b04427 – ident: e_1_2_2_12_1 doi: 10.1002/anie.201705002 – ident: e_1_2_2_39_1 doi: 10.1021/acscatal.6b00659 – ident: e_1_2_2_11_1 doi: 10.1016/j.apcatb.2010.03.024 – ident: e_1_2_2_23_1 doi: 10.1021/acscatal.6b00698 – ident: e_1_2_2_5_1 doi: 10.1126/science.1150038 – ident: e_1_2_2_14_1 doi: 10.1002/anie.201602489 – ident: e_1_2_2_34_1 doi: 10.1006/jcat.2002.3679 – ident: e_1_2_2_26_1 doi: 10.1016/j.apcatb.2017.12.050 – ident: e_1_2_2_25_1 doi: 10.1039/C5CY00173K – ident: e_1_2_2_36_1 doi: 10.1016/j.physleta.2014.12.014 – ident: e_1_2_2_31_1 doi: 10.1016/j.cej.2014.12.045 – ident: e_1_2_2_6_1 doi: 10.1002/anie.200603931 – ident: e_1_2_2_32_1 doi: 10.1021/jp2003084 – ident: e_1_2_2_9_1 doi: 10.1126/science.1219831 – ident: e_1_2_2_10_1 doi: 10.1021/ja3033235 – ident: e_1_2_2_35_1 doi: 10.1016/0021-9517(91)90334-Z – ident: e_1_2_2_20_1 doi: 10.1016/j.cej.2014.08.080 – ident: e_1_2_2_29_1 doi: 10.1016/0920-5861(94)00135-O – ident: e_1_2_2_38_1 doi: 10.1021/acs.jpcc.5b09192 – ident: e_1_2_2_8_1 doi: 10.1126/science.1253057 – ident: e_1_2_2_30_1 doi: 10.1016/j.cattod.2017.08.042 – ident: e_1_2_2_1_1 doi: 10.1021/ja00469a029 – ident: e_1_2_2_3_1 doi: 10.1002/cctc.201100090 – ident: e_1_2_2_18_1 doi: 10.1016/j.cherd.2016.06.025 – ident: e_1_2_2_22_1 doi: 10.1021/acscatal.5b02961 – ident: e_1_2_2_2_1 doi: 10.1021/ar00143a001 – ident: e_1_2_2_7_1 doi: 10.1002/anie.201411581 – ident: e_1_2_2_33_1 doi: 10.1039/c3cc43699c – ident: e_1_2_2_40_1 doi: 10.1021/jp301090d – ident: e_1_2_2_15_1 doi: 10.1021/jp2068446 – ident: e_1_2_2_19_1 doi: 10.1016/j.cherd.2014.11.006 – ident: e_1_2_2_21_1 doi: 10.1021/acs.iecr.6b04707 – ident: e_1_2_2_28_1 doi: 10.1021/acscatal.5b02594 – ident: e_1_2_2_16_1 doi: 10.1126/science.1085721 – ident: e_1_2_2_17_1 doi: 10.1016/j.jiec.2013.12.011 – ident: e_1_2_2_13_1 doi: 10.1016/j.jcat.2009.07.004 – ident: e_1_2_2_24_1 doi: 10.1021/jp903818q |
SSID | ssj0028806 |
Score | 2.6080644 |
Snippet | The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the... The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to increase... The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr O -Fe O , where Cu functions as a chemical promoter to increase the... The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the... Abstract The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9083 |
SubjectTerms | Catalysis Catalysts Catalytic activity Copper Copper oxides Density functional theory hydrogen Interfaces iron oxide Iron oxides metal–support interactions Organic chemistry Shift reaction Surface structure water-gas shift reaction |
Title | Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903298 https://www.ncbi.nlm.nih.gov/pubmed/31074080 https://www.proquest.com/docview/2253678080 https://www.proquest.com/docview/2231947424 https://www.osti.gov/biblio/1518524 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQXuAChRZY-pArIfWUdmM7jz1WS0tbqUVqF9Gb5cekVKDsajcrVT31JyDxD_tLmImTwFYgJLjl4Yn8mLE_OzPfMPZWFEleiNREBS5nkcqEwXnQi8hmJk9MbNJhSvHOp2fp0Ud1cplc_hLFH_ghugM3sox6viYDN3a-95M0lCKwyTVrOJBiSNG-sUyJPP_deccfJVA5Q3iRlBFloW9ZGwdib1l8aVXqTdC6foc4lwFsvQIdPmOmrXtwPPmyu6jsrrt9QOv4P41bYU8beMr3gz49Z4-gfMEej9qscKvs9oLOzq_4KSBqv7_7TllBEcHz-mQxBEnMeeP8xUeT6RRm3JSeH6MU_3Bz7YGHyEiOyJOTl8n93bcxIHgP5M78E4LfGT57b-b84vN1UfFzCN9dY-PDg_HoKGryN0ROZbg5hQHuxgrlU1oppU-TGPJCWZxBEvCx9z7LaoZDo5x0hQTIYhRRA1MYnwLIl6xXTkp4zXhGwM_YeOitUtZY43IvjcfdYm4dKNFnUTt82jXc5pRi46sOrMxCU4fqrkP7bKcrPw2sHn8suU7aoBGPEKmuI-8jV2nESXkiVJ9ttEqiG9ufa2yfRAiAULzPtrvXOEz0K8aUMFlQGZz6VKboE6-CcnUVkeQjW0uLWkX-UkO9f3Z80N29-RehdfaEroMX8gbrVbMFbCLWquxWbU8_ADkTI1o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOJRLW96hBYyExGnbrO195FiFlgSaILVBcLPstReqok2UbKSqp_4EJP5hf0ln1ruLgkBIcFyvZ-XHjP3ZO_MNwCueR2nOYx3kuJ0FMuEa10HLA5PoNNKhjvsxxTuPJ_Hwo3z3OWq8CSkWxvNDtBduZBnVek0GThfS-z9ZQykEm3yz-j3B--ltuCMRbdD5681JyyDFUT19gJEQAeWhb3gbe3x_XX5tX-rM0L5-hznXIWy1Bx1tgWla711PzvdWpdnLLn8hdvyv7m3DZo1Q2YFXqXtwyxX3YWPQJIZ7AJendH3-hY0dAvfrqx-UGBRBPKsuF32cxJLV_l9sMJvP3YLpwrIRSrEPF2fWMR8cyRB8MnI0ub76PnWI3z2_M_uE-HeBZW_1kp1-PctLduL8dx_C9OhwOhgGdQqHIJMJnk9dDw9kubQxbZbCxlHo0lwaXEQiZ0NrbZJUJIdaZiLLhXNJiCKyp3NtY-fEI-gUs8I9AZYQ9tMm7FsjpdFGZ6kV2uKBMTWZk7wLQTN_KqvpzSnLxjfliZm5ogFV7YB24XVbf-6JPf5Yc4fUQSEkIV7djByQslIhVEojLruw22iJqs1_qbB_AlEAovEuvGxf4zTR3xhduNmK6uDqJxNJn3jstattiCA32UqaVzrylxaqg8nosH16-i9CL2BjOB0fq-PR5P0O3KVy75S8C51ysXLPEHqV5nllXDdilCd5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgSNALb0raAkZC4rRt1vY-cqxCQwM0oDaI3iw_aVW0iZKNhHrqT6jEP-wvYWa9uxAEQoLjej0rP2bsz96Zbwh5wXySe5aqyMN2FomMKVgHLYt0pvJExSrtpxjvfDBO9z-KN8fJ8U9R_IEfor1wQ8uo1ms08Jn1Oz9IQzECG12z-j3O-vl1ckOkACcQFh22BFIMtDPEF3EeYRr6hraxx3ZW5Ve2pc4UzOt3kHMVwVZb0PAOUU3jg-fJ2fay1Nvm_Bdex__p3V1yu8andDco1D1yzRX3ya1BkxbuATk_wsvzz_TAAWy_uviGaUEBwtPqajFESSxo7f1FB9PZzM2pKiwdgRR9__XUOhpCIylAT4puJlcXlxMH6D2wO9NPgH7nUPZaLejRyakv6aEL331IJsO9yWA_qhM4REZkcDp1PTiOeWFT3Cq5TZPY5V5oWEISZ2NrbZZVFIdKGG48dy6LQUT0lFc2dY4_Ip1iWrjHhGaI_JSO-1YLoZVWJrdcWTgu5to4wbokaqZPmprcHHNsfJGBlplJHFDZDmiXvGzrzwKtxx9rbqI2SAAkyKpr0P3IlBKAUp4w0SVbjZLI2vgXEvrHAQMAFu-S5-1rmCb8F6MKN11iHVj7RCbwE-tBudqGcHSSraRZpSJ_aaHcHY_22qeNfxF6Rm5-eDWU70bjt5tkDYuDR_IW6ZTzpXsCuKvUTyvT-g7PhyYo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Metal%E2%80%93Support+Interactions+between+Copper+and+Iron+Oxide+during+the+High%E2%80%90Temperature+Water%E2%80%90Gas+Shift+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Minghui&rft.au=Tian%2C+Pengfei&rft.au=Kurtz%2C+Ravi&rft.au=Lunkenbein%2C+Thomas&rft.date=2019-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=27&rft.spage=9083&rft.epage=9087&rft_id=info:doi/10.1002%2Fanie.201903298&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |