Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction

The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with i...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 58; no. 27; pp. 9083 - 9087
Main Authors Zhu, Minghui, Tian, Pengfei, Kurtz, Ravi, Lunkenbein, Thomas, Xu, Jing, Schlögl, Robert, Wachs, Israel E., Han, Yi‐Fan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2019
Wiley Blackwell (John Wiley & Sons)
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201903298

Cover

Abstract The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts. Strong metal–support interactions between metallic copper and iron oxides were observed during the high‐temperature water‐gas shift (WGS) reaction. Such a synergistic interaction not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction.
AbstractList Abstract The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeO x was directly observed. During the WGS reaction, a thin FeO x overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeO x interfaces. The synergistic interaction between Cu and FeO x not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H 2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts.
The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts.The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts.
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeO x was directly observed. During the WGS reaction, a thin FeO x overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeO x interfaces. The synergistic interaction between Cu and FeO x not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H 2 O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts.
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts. Strong metal–support interactions between metallic copper and iron oxides were observed during the high‐temperature water‐gas shift (WGS) reaction. Such a synergistic interaction not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction.
The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr O -Fe O , where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron-based model catalysts were investigated with in situ or pseudo in situ characterization, steady-state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal-support interaction (SMSI) between Cu and FeO was directly observed. During the WGS reaction, a thin FeO overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu-FeO interfaces. The synergistic interaction between Cu and FeO not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron-based HT-WGS catalysts.
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the catalytic activity, but its promotion mechanism is poorly understood. In this work, a series of iron‐based model catalysts were investigated with in situ or pseudo in situ characterization, steady‐state WGS reaction, and density function theory (DFT) calculations. For the first time, a strong metal‐support interaction (SMSI) between Cu and FeOx was directly observed. During the WGS reaction, a thin FeOx overlayer migrates onto the metallic Cu particles, creating a hybrid surface structure with Cu‐FeOx interfaces. The synergistic interaction between Cu and FeOx not only stabilizes the Cu clusters, but also provides new catalytic active sites that facilitate CO adsorption, H2O dissociation, and WGS reaction. These new fundamental insights can potentially guide the rational design of improved iron‐based HT‐WGS catalysts.
Author Tian, Pengfei
Xu, Jing
Wachs, Israel E.
Han, Yi‐Fan
Lunkenbein, Thomas
Schlögl, Robert
Zhu, Minghui
Kurtz, Ravi
Author_xml – sequence: 1
  givenname: Minghui
  orcidid: 0000-0003-1593-9320
  surname: Zhu
  fullname: Zhu, Minghui
  organization: East China University of Science and Technology
– sequence: 2
  givenname: Pengfei
  orcidid: 0000-0003-0261-8536
  surname: Tian
  fullname: Tian, Pengfei
  organization: East China University of Science and Technology
– sequence: 3
  givenname: Ravi
  surname: Kurtz
  fullname: Kurtz, Ravi
  organization: Lehigh University
– sequence: 4
  givenname: Thomas
  surname: Lunkenbein
  fullname: Lunkenbein, Thomas
  organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft
– sequence: 5
  givenname: Jing
  surname: Xu
  fullname: Xu, Jing
  organization: East China University of Science and Technology
– sequence: 6
  givenname: Robert
  surname: Schlögl
  fullname: Schlögl, Robert
  organization: Fritz-Haber-Institut der Max-Planck-Gesellschaft
– sequence: 7
  givenname: Israel E.
  surname: Wachs
  fullname: Wachs, Israel E.
  organization: Lehigh University
– sequence: 8
  givenname: Yi‐Fan
  orcidid: 0000-0001-7360-2342
  surname: Han
  fullname: Han, Yi‐Fan
  email: yifanhan@ecust.edu.cn
  organization: Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31074080$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1518524$$D View this record in Osti.gov
BookMark eNqFkU9rFDEYh4NU7B-9epRgL15mTSaZSfZYltouVAvugseQTd7ppswmY5Kh1lM_guA37Ccx69YKBfGUEJ7nF97fe4j2fPCA0GtKJpSQ-r32DiY1oVPC6ql8hg5oU9OKCcH2yp0zVgnZ0H10mNJ14aUk7Qu0zygRnEhygL4vcgz-Cn-ErPv7u5-LcRhCzHjuM0Rtsgs-4RXkGwCPZ2EYIGLtLZ4XC19-cxawHaMrCXkN-Nxdre_vfixhUzidxwj4iy5B5e1MJ7xYuy7jz7DLfYmed7pP8OrhPELLD6fL2Xl1cXk2n51cVIYLISsgUtCO25ZxyphtGwqy46u6bhqw1ForBCG0IZobZjoGIGhRONGdti0AO0Jvd7EhZaeScRnM2gTvwWRFGyqbmhfo3Q4aYvg6Qspq45KBvtcewphUXTM65YL_Ro-foNdhjL5MUKiGtUKWYgv15oEaVxuwaohuo-Ot-tN8ASY7wMSQUoTuEaFEbVertqtVj6stAn8ilFH0tsgctev_rU132o3r4fY_n6iTT_PTv-4vJ1a7FQ
CitedBy_id crossref_primary_10_1016_j_jcis_2021_12_119
crossref_primary_10_1039_D0CP06468H
crossref_primary_10_1016_j_cej_2023_143403
crossref_primary_10_1038_s41467_021_27557_1
crossref_primary_10_61435_ijred_2024_59257
crossref_primary_10_1021_acsmaterialslett_4c01166
crossref_primary_10_1016_j_jcat_2022_06_003
crossref_primary_10_1002_ange_202212278
crossref_primary_10_1016_j_nantod_2020_101028
crossref_primary_10_1016_j_apcatb_2024_124440
crossref_primary_10_1021_acs_jpcc_2c05478
crossref_primary_10_1021_jacs_2c10326
crossref_primary_10_1021_acscatal_3c02552
crossref_primary_10_3390_catal10050582
crossref_primary_10_1002_anie_202219299
crossref_primary_10_1021_acs_jpclett_2c03391
crossref_primary_10_1007_s11426_023_1789_3
crossref_primary_10_1016_j_ijhydene_2024_06_353
crossref_primary_10_1038_s41929_021_00729_4
crossref_primary_10_3390_su13168939
crossref_primary_10_1016_j_apcatb_2024_124672
crossref_primary_10_1016_j_matt_2023_05_010
crossref_primary_10_1021_acs_jpcc_2c00350
crossref_primary_10_1021_acscatal_0c03471
crossref_primary_10_1039_D1CC04051K
crossref_primary_10_1002_ghg_2314
crossref_primary_10_1021_acscatal_4c02612
crossref_primary_10_1016_j_fuel_2020_118449
crossref_primary_10_1016_j_jcat_2021_05_029
crossref_primary_10_1021_acscatal_4c01403
crossref_primary_10_1002_ange_202219299
crossref_primary_10_1002_anie_202409673
crossref_primary_10_1039_D4TA03453H
crossref_primary_10_1016_j_checat_2024_101113
crossref_primary_10_1039_D0TA07190K
crossref_primary_10_1016_j_apcatb_2024_124984
crossref_primary_10_1016_j_ijhydene_2020_01_108
crossref_primary_10_1016_j_micromeso_2025_113601
crossref_primary_10_1021_acscatal_4c01493
crossref_primary_10_3390_molecules28041522
crossref_primary_10_1016_j_joei_2025_102025
crossref_primary_10_1002_adfm_202404535
crossref_primary_10_1038_s41467_020_17070_2
crossref_primary_10_1021_acsnano_4c06542
crossref_primary_10_1021_acscatal_1c03405
crossref_primary_10_1002_ange_202409673
crossref_primary_10_1021_acscatal_1c04854
crossref_primary_10_1016_j_apsusc_2020_146484
crossref_primary_10_1016_j_cattod_2021_01_012
crossref_primary_10_1016_j_coche_2023_100929
crossref_primary_10_1021_acssuschemeng_1c08087
crossref_primary_10_1016_j_scenv_2024_100167
crossref_primary_10_1016_j_jechem_2023_03_055
crossref_primary_10_1016_j_jtice_2023_104719
crossref_primary_10_1016_j_ces_2024_119779
crossref_primary_10_3390_catal10030305
crossref_primary_10_1016_j_checat_2023_100768
crossref_primary_10_1021_acscatal_1c02162
crossref_primary_10_1021_acs_jpcc_1c06381
crossref_primary_10_3390_ceramics7040114
crossref_primary_10_1007_s40820_020_00469_3
crossref_primary_10_1016_j_cattod_2020_03_052
crossref_primary_10_1021_acs_jpclett_2c03915
crossref_primary_10_2139_ssrn_4167574
crossref_primary_10_1002_adma_202008145
crossref_primary_10_1039_C9CC07669G
crossref_primary_10_1002_anie_202412637
crossref_primary_10_1021_acscatal_1c03936
crossref_primary_10_1002_aic_16846
crossref_primary_10_1002_anie_202003208
crossref_primary_10_1039_D0CS01059F
crossref_primary_10_1134_S1990793122040042
crossref_primary_10_1039_D0CY01137A
crossref_primary_10_1016_j_pmatsci_2024_101335
crossref_primary_10_1016_j_jece_2022_107618
crossref_primary_10_1021_acsami_1c10428
crossref_primary_10_1021_acscatal_3c00448
crossref_primary_10_1016_j_apcatb_2024_124510
crossref_primary_10_1002_adma_202303216
crossref_primary_10_1016_j_fuel_2024_134256
crossref_primary_10_1021_acscatal_3c00388
crossref_primary_10_1021_acscentsci_2c01290
crossref_primary_10_1021_acs_jpcc_1c08309
crossref_primary_10_1021_acscatal_1c03792
crossref_primary_10_1021_acsmaterialslett_3c00640
crossref_primary_10_1002_cctc_202401323
crossref_primary_10_1002_ange_202003208
crossref_primary_10_1021_acsami_1c22795
crossref_primary_10_1016_j_enchem_2020_100050
crossref_primary_10_1021_acs_jpcc_3c04575
crossref_primary_10_1002_cctc_202301350
crossref_primary_10_1016_j_apsusc_2021_151750
crossref_primary_10_1002_wcms_70006
crossref_primary_10_1002_aenm_202301042
crossref_primary_10_1016_j_ijhydene_2025_01_049
crossref_primary_10_1016_j_surfin_2024_104396
crossref_primary_10_1002_adfm_202416605
crossref_primary_10_1016_j_apcatb_2020_118943
crossref_primary_10_1021_acscatal_9b05591
crossref_primary_10_1016_j_apsusc_2024_162227
crossref_primary_10_1039_D0CY00289E
crossref_primary_10_1002_slct_202403904
crossref_primary_10_1039_D3EY00071K
crossref_primary_10_1002_adma_202101536
crossref_primary_10_3390_catal12060603
crossref_primary_10_1002_ange_202412637
crossref_primary_10_1021_acscatal_0c01311
crossref_primary_10_1002_anie_202212278
crossref_primary_10_1016_j_jcat_2023_03_033
crossref_primary_10_1002_cctc_202301341
crossref_primary_10_1021_jacs_3c09102
crossref_primary_10_1007_s11426_024_2320_1
crossref_primary_10_1016_j_apcatb_2024_124017
crossref_primary_10_1016_j_ijhydene_2023_01_017
Cites_doi 10.1016/S0926-860X(03)00637-9
10.1016/S0920-5861(98)00503-3
10.1021/acscatal.8b04427
10.1002/anie.201705002
10.1021/acscatal.6b00659
10.1016/j.apcatb.2010.03.024
10.1021/acscatal.6b00698
10.1126/science.1150038
10.1002/anie.201602489
10.1006/jcat.2002.3679
10.1016/j.apcatb.2017.12.050
10.1039/C5CY00173K
10.1016/j.physleta.2014.12.014
10.1016/j.cej.2014.12.045
10.1002/anie.200603931
10.1021/jp2003084
10.1126/science.1219831
10.1021/ja3033235
10.1016/0021-9517(91)90334-Z
10.1016/j.cej.2014.08.080
10.1016/0920-5861(94)00135-O
10.1021/acs.jpcc.5b09192
10.1126/science.1253057
10.1016/j.cattod.2017.08.042
10.1021/ja00469a029
10.1002/cctc.201100090
10.1016/j.cherd.2016.06.025
10.1021/acscatal.5b02961
10.1021/ar00143a001
10.1002/anie.201411581
10.1039/c3cc43699c
10.1021/jp301090d
10.1021/jp2068446
10.1016/j.cherd.2014.11.006
10.1021/acs.iecr.6b04707
10.1021/acscatal.5b02594
10.1126/science.1085721
10.1016/j.jiec.2013.12.011
10.1016/j.jcat.2009.07.004
10.1021/jp903818q
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OTOTI
DOI 10.1002/anie.201903298
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9087
ExternalDocumentID 1518524
31074080
10_1002_anie_201903298
ANIE201903298
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 222201718002
– fundername: Department of Energy
  funderid: DE-FG02-05ER15688; DE-AC02-98CH10886
– fundername: Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
– fundername: Shanghai Sailing Program
  funderid: 19YF1410600
– fundername: National Natural Science Foundation of China
  funderid: 21808057
– fundername: National Science Foundation
  funderid: CBET-1511689
– fundername: Shanghai Sailing Program
  grantid: 19YF1410600
– fundername: Department of Energy
  grantid: DE-FG02-05ER15688
– fundername: National Natural Science Foundation of China
  grantid: 21808057
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 222201718002
– fundername: National Science Foundation
  grantid: CBET-1511689
– fundername: Department of Energy
  grantid: DE-AC02-98CH10886
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OTOTI
ID FETCH-LOGICAL-c4778-e0871f4d634133d651e8f4b2255ed1ddd7700150a4c3cf3ee71e0840afad6ee3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Mon Apr 01 04:54:25 EDT 2024
Thu Jul 10 18:26:06 EDT 2025
Fri Jul 25 10:29:18 EDT 2025
Thu Apr 03 06:54:50 EDT 2025
Tue Jul 01 02:26:49 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Wed Jan 22 16:41:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords iron oxide
water-gas shift reaction
copper
hydrogen
metal-support interactions
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4778-e0871f4d634133d651e8f4b2255ed1ddd7700150a4c3cf3ee71e0840afad6ee3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
FG02-05ER15688; AC02-98CH10886
ORCID 0000-0003-0261-8536
0000-0001-7360-2342
0000-0003-1593-9320
0000000315939320
0000000173602342
0000000302618536
OpenAccessLink https://www.osti.gov/biblio/1518524
PMID 31074080
PQID 2253678080
PQPubID 946352
PageCount 5
ParticipantIDs osti_scitechconnect_1518524
proquest_miscellaneous_2231947424
proquest_journals_2253678080
pubmed_primary_31074080
crossref_primary_10_1002_anie_201903298
crossref_citationtrail_10_1002_anie_201903298
wiley_primary_10_1002_anie_201903298_ANIE201903298
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 1, 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2011; 115
1991; 131
2015; 260
2010; 97
2019; 9
2015; 5
2013; 49
2018; 226
2015; 95
2015; 265
2002; 210
2015; 54
2009; 113
2011; 3
2016; 55
2014; 20
2016; 6
1987; 20
2012; 134
2004; 257
2015; 379
2018; 311
1995; 23
2017; 56
2016; 113
1978; 100
2009; 266
2015; 119
1999; 50
2003; 301
2007; 318
2012; 336
2012; 116
2007; 46
2014; 345
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_27_1
e_1_2_2_26_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_15_1
e_1_2_2_36_1
References_xml – volume: 55
  start-page: 7455
  year: 2016
  end-page: 7459
  publication-title: Angew. Chem. Int. Ed.
– volume: 131
  start-page: 178
  year: 1991
  end-page: 189
  publication-title: J. Catal.
– volume: 336
  start-page: 893
  year: 2012
  end-page: 897
  publication-title: Science
– volume: 3
  start-page: 934
  year: 2011
  end-page: 948
  publication-title: ChemCatChem
– volume: 50
  start-page: 175
  year: 1999
  end-page: 206
  publication-title: Catal. Today
– volume: 100
  start-page: 170
  year: 1978
  end-page: 175
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2752
  year: 2015
  end-page: 2760
  publication-title: Catal. Sci. Technol.
– volume: 49
  start-page: 11257
  year: 2013
  publication-title: Chem. Commun.
– volume: 56
  start-page: 1772
  year: 2017
  end-page: 1781
  publication-title: Ind. Eng. Chem. Res.
– volume: 257
  start-page: 97
  year: 2004
  end-page: 106
  publication-title: Appl. Catal. A Gen.
– volume: 6
  start-page: 4455
  year: 2016
  end-page: 4464
  publication-title: ACS Catal.
– volume: 115
  start-page: 7586
  year: 2011
  end-page: 7595
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 722
  year: 2016
  end-page: 732
  publication-title: ACS Catal.
– volume: 20
  start-page: 389
  year: 1987
  end-page: 394
  publication-title: Acc. Chem. Res.
– volume: 266
  start-page: 380
  year: 2009
  end-page: 390
  publication-title: J. Catal.
– volume: 9
  start-page: 2261
  year: 2019
  end-page: 2274
  publication-title: ACS Catal.
– volume: 56
  start-page: 10761
  year: 2017
  end-page: 10765
  publication-title: Angew. Chem. Int. Ed.
– volume: 23
  start-page: 43
  year: 1995
  end-page: 58
  publication-title: Catal. Today
– volume: 379
  start-page: 607
  year: 2015
  end-page: 612
  publication-title: Phys. Lett. A
– volume: 6
  start-page: 2827
  year: 2016
  end-page: 2830
  publication-title: ACS Catal.
– volume: 97
  start-page: 57
  year: 2010
  end-page: 71
  publication-title: Appl. Catal. B Environ.
– volume: 226
  start-page: 182
  year: 2018
  end-page: 193
  publication-title: Appl. Catal. B
– volume: 301
  start-page: 935
  year: 2003
  end-page: 938
  publication-title: Science
– volume: 116
  start-page: 11019
  year: 2012
  end-page: 11031
  publication-title: J. Phys. Chem. C
– volume: 210
  start-page: 229
  year: 2002
  end-page: 236
  publication-title: J. Catal.
– volume: 260
  start-page: 107
  year: 2015
  end-page: 116
  publication-title: Chem. Eng. J.
– volume: 134
  start-page: 10251
  year: 2012
  end-page: 10258
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 3297
  year: 2014
  end-page: 3302
  publication-title: J. Ind. Eng. Chem.
– volume: 54
  start-page: 4544
  year: 2015
  end-page: 4548
  publication-title: Angew. Chem. Int. Ed.
– volume: 115
  start-page: 20153
  year: 2011
  end-page: 20159
  publication-title: J. Phys. Chem. C
– volume: 318
  start-page: 1757
  year: 2007
  end-page: 1760
  publication-title: Science
– volume: 311
  start-page: 2
  year: 2018
  end-page: 7
  publication-title: Catal. Today
– volume: 265
  start-page: 100
  year: 2015
  end-page: 109
  publication-title: Chem. Eng. J.
– volume: 119
  start-page: 28934
  year: 2015
  end-page: 28945
  publication-title: J. Phys. Chem. C
– volume: 113
  start-page: 14411
  year: 2009
  end-page: 14417
  publication-title: J. Phys. Chem. C
– volume: 345
  start-page: 546
  year: 2014
  end-page: 550
  publication-title: Science
– volume: 113
  start-page: 9
  year: 2016
  end-page: 16
  publication-title: Chem. Eng. Res. Des.
– volume: 95
  start-page: 288
  year: 2015
  end-page: 297
  publication-title: Chem. Eng. Res. Des.
– volume: 46
  start-page: 1329
  year: 2007
  end-page: 1332
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1764
  year: 2016
  end-page: 1767
  publication-title: ACS Catal.
– ident: e_1_2_2_27_1
  doi: 10.1016/S0926-860X(03)00637-9
– ident: e_1_2_2_4_1
  doi: 10.1016/S0920-5861(98)00503-3
– ident: e_1_2_2_37_1
  doi: 10.1021/acscatal.8b04427
– ident: e_1_2_2_12_1
  doi: 10.1002/anie.201705002
– ident: e_1_2_2_39_1
  doi: 10.1021/acscatal.6b00659
– ident: e_1_2_2_11_1
  doi: 10.1016/j.apcatb.2010.03.024
– ident: e_1_2_2_23_1
  doi: 10.1021/acscatal.6b00698
– ident: e_1_2_2_5_1
  doi: 10.1126/science.1150038
– ident: e_1_2_2_14_1
  doi: 10.1002/anie.201602489
– ident: e_1_2_2_34_1
  doi: 10.1006/jcat.2002.3679
– ident: e_1_2_2_26_1
  doi: 10.1016/j.apcatb.2017.12.050
– ident: e_1_2_2_25_1
  doi: 10.1039/C5CY00173K
– ident: e_1_2_2_36_1
  doi: 10.1016/j.physleta.2014.12.014
– ident: e_1_2_2_31_1
  doi: 10.1016/j.cej.2014.12.045
– ident: e_1_2_2_6_1
  doi: 10.1002/anie.200603931
– ident: e_1_2_2_32_1
  doi: 10.1021/jp2003084
– ident: e_1_2_2_9_1
  doi: 10.1126/science.1219831
– ident: e_1_2_2_10_1
  doi: 10.1021/ja3033235
– ident: e_1_2_2_35_1
  doi: 10.1016/0021-9517(91)90334-Z
– ident: e_1_2_2_20_1
  doi: 10.1016/j.cej.2014.08.080
– ident: e_1_2_2_29_1
  doi: 10.1016/0920-5861(94)00135-O
– ident: e_1_2_2_38_1
  doi: 10.1021/acs.jpcc.5b09192
– ident: e_1_2_2_8_1
  doi: 10.1126/science.1253057
– ident: e_1_2_2_30_1
  doi: 10.1016/j.cattod.2017.08.042
– ident: e_1_2_2_1_1
  doi: 10.1021/ja00469a029
– ident: e_1_2_2_3_1
  doi: 10.1002/cctc.201100090
– ident: e_1_2_2_18_1
  doi: 10.1016/j.cherd.2016.06.025
– ident: e_1_2_2_22_1
  doi: 10.1021/acscatal.5b02961
– ident: e_1_2_2_2_1
  doi: 10.1021/ar00143a001
– ident: e_1_2_2_7_1
  doi: 10.1002/anie.201411581
– ident: e_1_2_2_33_1
  doi: 10.1039/c3cc43699c
– ident: e_1_2_2_40_1
  doi: 10.1021/jp301090d
– ident: e_1_2_2_15_1
  doi: 10.1021/jp2068446
– ident: e_1_2_2_19_1
  doi: 10.1016/j.cherd.2014.11.006
– ident: e_1_2_2_21_1
  doi: 10.1021/acs.iecr.6b04707
– ident: e_1_2_2_28_1
  doi: 10.1021/acscatal.5b02594
– ident: e_1_2_2_16_1
  doi: 10.1126/science.1085721
– ident: e_1_2_2_17_1
  doi: 10.1016/j.jiec.2013.12.011
– ident: e_1_2_2_13_1
  doi: 10.1016/j.jcat.2009.07.004
– ident: e_1_2_2_24_1
  doi: 10.1021/jp903818q
SSID ssj0028806
Score 2.6080644
Snippet The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr2O3‐Fe2O3, where Cu functions as a chemical promoter to increase the...
The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to increase...
The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr O -Fe O , where Cu functions as a chemical promoter to increase the...
The commercial high-temperature water-gas shift (HT-WGS) catalyst consists of CuO-Cr2 O3 -Fe2 O3 , where Cu functions as a chemical promoter to increase the...
Abstract The commercial high‐temperature water‐gas shift (HT‐WGS) catalyst consists of CuO‐Cr 2 O 3 ‐Fe 2 O 3 , where Cu functions as a chemical promoter to...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9083
SubjectTerms Catalysis
Catalysts
Catalytic activity
Copper
Copper oxides
Density functional theory
hydrogen
Interfaces
iron oxide
Iron oxides
metal–support interactions
Organic chemistry
Shift reaction
Surface structure
water-gas shift reaction
Title Strong Metal–Support Interactions between Copper and Iron Oxide during the High‐Temperature Water‐Gas Shift Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903298
https://www.ncbi.nlm.nih.gov/pubmed/31074080
https://www.proquest.com/docview/2253678080
https://www.proquest.com/docview/2231947424
https://www.osti.gov/biblio/1518524
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQXuAChRZY-pArIfWUdmM7jz1WS0tbqUVqF9Gb5cekVKDsajcrVT31JyDxD_tLmImTwFYgJLjl4Yn8mLE_OzPfMPZWFEleiNREBS5nkcqEwXnQi8hmJk9MbNJhSvHOp2fp0Ud1cplc_hLFH_ghugM3sox6viYDN3a-95M0lCKwyTVrOJBiSNG-sUyJPP_deccfJVA5Q3iRlBFloW9ZGwdib1l8aVXqTdC6foc4lwFsvQIdPmOmrXtwPPmyu6jsrrt9QOv4P41bYU8beMr3gz49Z4-gfMEej9qscKvs9oLOzq_4KSBqv7_7TllBEcHz-mQxBEnMeeP8xUeT6RRm3JSeH6MU_3Bz7YGHyEiOyJOTl8n93bcxIHgP5M78E4LfGT57b-b84vN1UfFzCN9dY-PDg_HoKGryN0ROZbg5hQHuxgrlU1oppU-TGPJCWZxBEvCx9z7LaoZDo5x0hQTIYhRRA1MYnwLIl6xXTkp4zXhGwM_YeOitUtZY43IvjcfdYm4dKNFnUTt82jXc5pRi46sOrMxCU4fqrkP7bKcrPw2sHn8suU7aoBGPEKmuI-8jV2nESXkiVJ9ttEqiG9ufa2yfRAiAULzPtrvXOEz0K8aUMFlQGZz6VKboE6-CcnUVkeQjW0uLWkX-UkO9f3Z80N29-RehdfaEroMX8gbrVbMFbCLWquxWbU8_ADkTI1o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOJRLW96hBYyExGnbrO195FiFlgSaILVBcLPstReqok2UbKSqp_4EJP5hf0ln1ruLgkBIcFyvZ-XHjP3ZO_MNwCueR2nOYx3kuJ0FMuEa10HLA5PoNNKhjvsxxTuPJ_Hwo3z3OWq8CSkWxvNDtBduZBnVek0GThfS-z9ZQykEm3yz-j3B--ltuCMRbdD5681JyyDFUT19gJEQAeWhb3gbe3x_XX5tX-rM0L5-hznXIWy1Bx1tgWla711PzvdWpdnLLn8hdvyv7m3DZo1Q2YFXqXtwyxX3YWPQJIZ7AJendH3-hY0dAvfrqx-UGBRBPKsuF32cxJLV_l9sMJvP3YLpwrIRSrEPF2fWMR8cyRB8MnI0ub76PnWI3z2_M_uE-HeBZW_1kp1-PctLduL8dx_C9OhwOhgGdQqHIJMJnk9dDw9kubQxbZbCxlHo0lwaXEQiZ0NrbZJUJIdaZiLLhXNJiCKyp3NtY-fEI-gUs8I9AZYQ9tMm7FsjpdFGZ6kV2uKBMTWZk7wLQTN_KqvpzSnLxjfliZm5ogFV7YB24XVbf-6JPf5Yc4fUQSEkIV7djByQslIhVEojLruw22iJqs1_qbB_AlEAovEuvGxf4zTR3xhduNmK6uDqJxNJn3jstattiCA32UqaVzrylxaqg8nosH16-i9CL2BjOB0fq-PR5P0O3KVy75S8C51ysXLPEHqV5nllXDdilCd5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELYgSNALb0raAkZC4rRt1vY-cqxCQwM0oDaI3iw_aVW0iZKNhHrqT6jEP-wvYWa9uxAEQoLjej0rP2bsz96Zbwh5wXySe5aqyMN2FomMKVgHLYt0pvJExSrtpxjvfDBO9z-KN8fJ8U9R_IEfor1wQ8uo1ms08Jn1Oz9IQzECG12z-j3O-vl1ckOkACcQFh22BFIMtDPEF3EeYRr6hraxx3ZW5Ve2pc4UzOt3kHMVwVZb0PAOUU3jg-fJ2fay1Nvm_Bdex__p3V1yu8andDco1D1yzRX3ya1BkxbuATk_wsvzz_TAAWy_uviGaUEBwtPqajFESSxo7f1FB9PZzM2pKiwdgRR9__XUOhpCIylAT4puJlcXlxMH6D2wO9NPgH7nUPZaLejRyakv6aEL331IJsO9yWA_qhM4REZkcDp1PTiOeWFT3Cq5TZPY5V5oWEISZ2NrbZZVFIdKGG48dy6LQUT0lFc2dY4_Ip1iWrjHhGaI_JSO-1YLoZVWJrdcWTgu5to4wbokaqZPmprcHHNsfJGBlplJHFDZDmiXvGzrzwKtxx9rbqI2SAAkyKpr0P3IlBKAUp4w0SVbjZLI2vgXEvrHAQMAFu-S5-1rmCb8F6MKN11iHVj7RCbwE-tBudqGcHSSraRZpSJ_aaHcHY_22qeNfxF6Rm5-eDWU70bjt5tkDYuDR_IW6ZTzpXsCuKvUTyvT-g7PhyYo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+Metal%E2%80%93Support+Interactions+between+Copper+and+Iron+Oxide+during+the+High%E2%80%90Temperature+Water%E2%80%90Gas+Shift+Reaction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhu%2C+Minghui&rft.au=Tian%2C+Pengfei&rft.au=Kurtz%2C+Ravi&rft.au=Lunkenbein%2C+Thomas&rft.date=2019-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=27&rft.spage=9083&rft.epage=9087&rft_id=info:doi/10.1002%2Fanie.201903298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon