Prenatal Diagnosis of Placenta Accreta Spectrum Disorders: Deep Learning Radiomics of Pelvic MRI

Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. Purpose To explore whether DLR from MRI can be used to identify pregnancies with PAS. Study Type Retrospective....

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 59; no. 2; pp. 496 - 509
Main Authors Peng, Lulu, Yang, Zehong, Liu, Jue, Liu, Yi, Huang, Jianwei, Chen, Junwei, Su, Yun, Zhang, Xiang, Song, Ting
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.02.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. Purpose To explore whether DLR from MRI can be used to identify pregnancies with PAS. Study Type Retrospective. Population 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS). Field Strength/Sequence 3‐T, turbo spin‐echo T2‐weighted images. Assessment The DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. Statistical Tests The Student t‐test or Mann–Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. Results The MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. Data Conclusion An MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. Level of Evidence 3 Technical Efficacy Stage 2
AbstractList Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.BACKGROUNDDiagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.To explore whether DLR from MRI can be used to identify pregnancies with PAS.PURPOSETo explore whether DLR from MRI can be used to identify pregnancies with PAS.Retrospective.STUDY TYPERetrospective.324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS).POPULATION324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS).3-T, turbo spin-echo T2-weighted images.FIELD STRENGTH/SEQUENCE3-T, turbo spin-echo T2-weighted images.The DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.ASSESSMENTThe DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.The Student t-test or Mann-Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.STATISTICAL TESTSThe Student t-test or Mann-Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.The MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.RESULTSThe MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.An MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.DATA CONCLUSIONAn MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.3 TECHNICAL EFFICACY STAGE: 2.LEVEL OF EVIDENCE3 TECHNICAL EFFICACY STAGE: 2.
BackgroundDiagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.PurposeTo explore whether DLR from MRI can be used to identify pregnancies with PAS.Study TypeRetrospective.Population324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS).Field Strength/Sequence3‐T, turbo spin‐echo T2‐weighted images.AssessmentThe DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.Statistical TestsThe Student t‐test or Mann–Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.ResultsThe MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.Data ConclusionAn MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.Level of Evidence3Technical Efficacy Stage2
Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. Purpose To explore whether DLR from MRI can be used to identify pregnancies with PAS. Study Type Retrospective. Population 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS). Field Strength/Sequence 3‐T, turbo spin‐echo T2‐weighted images. Assessment The DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. Statistical Tests The Student t‐test or Mann–Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. Results The MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. Data Conclusion An MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. Level of Evidence 3 Technical Efficacy Stage 2
Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. To explore whether DLR from MRI can be used to identify pregnancies with PAS. Retrospective. 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS). 3-T, turbo spin-echo T2-weighted images. The DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. The Student t-test or Mann-Whitney U, χ or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. The MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. An MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. 3 TECHNICAL EFFICACY STAGE: 2.
Author Yang, Zehong
Liu, Jue
Chen, Junwei
Su, Yun
Peng, Lulu
Liu, Yi
Song, Ting
Zhang, Xiang
Huang, Jianwei
Author_xml – sequence: 1
  givenname: Lulu
  surname: Peng
  fullname: Peng, Lulu
  organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University
– sequence: 2
  givenname: Zehong
  surname: Yang
  fullname: Yang, Zehong
  organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University
– sequence: 3
  givenname: Jue
  surname: Liu
  fullname: Liu, Jue
  organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University
– sequence: 4
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University
– sequence: 5
  givenname: Jianwei
  surname: Huang
  fullname: Huang, Jianwei
  organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University
– sequence: 6
  givenname: Junwei
  surname: Chen
  fullname: Chen, Junwei
  organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University
– sequence: 7
  givenname: Yun
  surname: Su
  fullname: Su, Yun
  organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University
– sequence: 8
  givenname: Xiang
  orcidid: 0000-0002-1128-0242
  surname: Zhang
  fullname: Zhang, Xiang
  email: zhangx345@mail.sysu.edu.cn
  organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University
– sequence: 9
  givenname: Ting
  surname: Song
  fullname: Song, Ting
  email: flair@gzhmu.edu.cn
  organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37222638$$D View this record in MEDLINE/PubMed
BookMark eNp90U1PFjEQB_DGQOTNix_AbMLFkCz2dbvLjQAi5DES0HPttlPSJ7vtY7ur4dtbWPRAjKeZw-8_bWb20FaIARB6S_AxwZh-WI_JH9NWtvIV2iWC0pqKttkqPRasJi2WO2gv5zXGuOu4eI12mKSUNqzdRd9vEgQ96aE69_o-xOxzFV11M2gDYdLVqTEJSr3bgJnSPBaWY7KQ8kl1DrCpVqBT8OG-utXWx9GbJQ_DT2-qz7dXB2jb6SHDm-e6j759vPh69qlefbm8Ojtd1YZLKWspHBYNaMZ1RxhnVlpBOtc7K7TT1HFhhTW0I1z2hoMwhnPeNAKsI33PeraP3i9zNyn-mCFPavTZwDDoAHHOiraklbzhAhd6-IKu45xC-Z0qDwjcStZ0Rb17VnM_glWb5EedHtSf3RVwtACTYs4J3F9CsHo8jHo8jHo6TMH4BTZ-0pOPYUraD_-OkCXyyw_w8J_h6rrsecn8BgQ9n2Y
CitedBy_id crossref_primary_10_2463_mrms_rev_2024_0077
crossref_primary_10_1002_jmri_29152
crossref_primary_10_1016_j_mric_2024_03_009
crossref_primary_10_1093_bjr_tqae164
crossref_primary_10_3390_medicina61030392
crossref_primary_10_1016_j_eurox_2024_100362
Cites_doi 10.1007/s00330-022-08821-4
10.1002/sim.2929
10.1002/uog.20381
10.1213/ANE.0000000000006222
10.1016/j.ajog.2020.04.026
10.1016/j.ajog.2018.09.042
10.1007/s00330-019-06617-7
10.1002/jmri.26764
10.1016/S1076-6332(03)00671-8
10.1016/j.ajog.2018.04.049
10.1016/j.ebiom.2019.11.010
10.1186/s13045-022-01225-3
10.1016/j.mri.2019.05.017
10.1038/s41571-021-00560-7
10.1056/NEJMcp1709324
10.1007/s00330-019-06372-9
10.1002/mrm.29396
10.1002/jmri.26883
10.1007/s00330-019-06373-8
10.1002/uog.14950
10.1038/s41467-020-15027-z
10.1109/MSP.2019.2900993
10.1002/sim.3148
10.1136/gutjnl-2018-316204
10.1016/j.ajog.2016.07.044
10.1007/s00261-022-03673-4
10.1016/j.ajog.2019.05.035
10.1002/uog.24861
10.1148/radiol.2015151169
ContentType Journal Article
Copyright 2023 International Society for Magnetic Resonance in Medicine.
2024 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2023 International Society for Magnetic Resonance in Medicine.
– notice: 2024 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.28787
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 509
ExternalDocumentID 37222638
10_1002_jmri_28787
JMRI28787
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82102130
– fundername: Guangzhou Basic and Applied Basic Research Foundation
  funderid: SL2023A04J01957
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515010385; 2023A1515011305
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2023A1515011305
– fundername: National Natural Science Foundation of China
  grantid: 82102130
– fundername: Guangzhou Basic and Applied Basic Research Foundation
  grantid: SL2023A04J01957
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2021A1515010385
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4777-75f056ea34a91343d7d519fbfd5afa2f45d5dc29147bc4e5cc444665edf1bb3b3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Jul 10 19:13:42 EDT 2025
Sun Jul 13 03:54:53 EDT 2025
Mon Jul 21 06:04:36 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Wed Jan 22 16:15:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords placenta accreta
deep learning
radiomics
Language English
License 2023 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4777-75f056ea34a91343d7d519fbfd5afa2f45d5dc29147bc4e5cc444665edf1bb3b3
Notes Contract grant sponsor: the National Natural Science Foundation of China; Contract grant number: 82102130; Contract grant sponsor: Guangdong Basic and Applied Basic Research Foundation; Contract grant sponsor: 2021A1515010385 and 2023A1515011305; Contract grant sponsor: Guangzhou Basic and Applied Basic Research Foundation; Contract grant number: SL2023A04J01957.
The first three authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1128-0242
PMID 37222638
PQID 2915087369
PQPubID 1006400
PageCount 14
ParticipantIDs proquest_miscellaneous_2818746450
proquest_journals_2915087369
pubmed_primary_37222638
crossref_primary_10_1002_jmri_28787
crossref_citationtrail_10_1002_jmri_28787
wiley_primary_10_1002_jmri_28787_JMRI28787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 50
2019; 36
2022; 47
2020; 55
2020; 11
2020; 223
2022; 88
2019; 221
2004; 11
2019; 64
2020; 30
2022
2020; 51
2019; 68
2008; 27
2018; 378
2016; 278
2019; 29
2022; 15
2022; 59
2018; 219
2016; 215
2022; 32
2016; 47
2007; 26
2022; 19
2014; 31
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
Bowman ZS (e_1_2_8_24_1) 2014; 31
References_xml – volume: 219
  start-page: 193.e1
  year: 2018
  end-page: 193.e9
  article-title: Placenta percreta is associated with more frequent severe maternal morbidity than placenta accreta
  publication-title: Am J Obstet Gynecol
– volume: 19
  start-page: 132
  year: 2022
  end-page: 146
  article-title: Predicting cancer outcomes with radiomics and artificial intelligence in radiology
  publication-title: Nat Rev Clin Oncol
– volume: 68
  start-page: 729
  year: 2019
  end-page: 741
  article-title: Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: A prospective multicentre study
  publication-title: Gut
– volume: 29
  start-page: 6149
  year: 2019
  end-page: 6151
  article-title: How and why should the radiologist look at the placenta?
  publication-title: Eur Radiol
– volume: 219
  start-page: B2
  year: 2018
  end-page: B16
  article-title: Placenta Accreta Spectrum
  publication-title: Am J Obstet Gynecol
– volume: 221
  start-page: 337.e1
  year: 2019
  end-page: 337.e5
  article-title: Maternal outcomes in unexpected placenta accreta spectrum disorders: Single‐center experience with a multidisciplinary team
  publication-title: Am J Obstet Gynecol
– volume: 47
  start-page: 290
  year: 2016
  end-page: 301
  article-title: Counseling in fetal medicine: Evidence‐based answers to clinical questions on morbidly adherent placenta
  publication-title: Ultrasound Obstet Gynecol
– volume: 59
  start-page: 428
  year: 2022
  end-page: 436
  article-title: Diagnosis of placenta accreta spectrum in high‐risk women using ultrasonography or magnetic resonance imaging: Systematic review and meta‐analysis
  publication-title: Ultrasound Obstet Gynecol
– volume: 36
  start-page: 132
  year: 2019
  end-page: 160
  article-title: From handcrafted to deep‐learning‐based cancer radiomics: Challenges and opportunities
  publication-title: IEEE Signal Process Mag
– volume: 11
  start-page: 178
  year: 2004
  end-page: 189
  article-title: Statistical validation of image segmentation quality based on a spatial overlap index
  publication-title: Acad Radiol
– volume: 32
  start-page: 7532
  year: 2022
  end-page: 7543
  article-title: MRI‐radiomics‐clinical‐based nomogram for prenatal prediction of the placenta accreta spectrum disorders
  publication-title: Eur Radiol
– volume: 378
  start-page: 1529
  year: 2018
  end-page: 1536
  article-title: Placenta accreta spectrum
  publication-title: N Engl J Med
– volume: 55
  start-page: 467
  year: 2020
  end-page: 473
  article-title: Interobserver agreement in MRI assessment of severity of placenta accreta spectrum disorders
  publication-title: Ultrasound Obstet Gynecol
– volume: 50
  start-page: 1702
  year: 2019
  end-page: 1717
  article-title: MRI evaluation of the placenta from normal variants to abnormalities of implantation and malignancies
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 6152
  year: 2019
  end-page: 6162
  article-title: Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning
  publication-title: Eur Radiol
– volume: 47
  start-page: 4205
  year: 2022
  end-page: 4218
  article-title: Prediction of placenta accreta spectrum by combining deep learning and radiomics using T2WI: A multicenter study
  publication-title: Abdom Radiol (NY)
– volume: 26
  start-page: 5512
  year: 2007
  end-page: 5528
  article-title: Selection of important variables and determination of functional form for continuous predictors in multivariable model building
  publication-title: Stat Med
– volume: 88
  start-page: 2621
  year: 2022
  end-page: 2632
  article-title: Radiomics analysis of T2‐weighted images for differentiating invasive placentas in women at high risks
  publication-title: Magn Reson Med
– volume: 15
  start-page: 11
  issue: 1
  year: 2022
  article-title: Development of a novel combined nomogram model integrating deep learning‐pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients
  publication-title: J Hematol Oncol
– volume: 215
  start-page: 712
  year: 2016
  end-page: 721
  article-title: Accreta placentation: A systematic review of prenatal ultrasound imaging and grading of villous invasiveness
  publication-title: Am J Obstet Gynecol
– volume: 51
  start-page: 936
  year: 2020
  end-page: 946
  article-title: MRI of the placenta accreta spectrum (PAS) disorder: Radiomics analysis correlates with surgical and pathological outcome
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 71
  year: 2019
  end-page: 76
  article-title: Machine learning analysis of MRI‐derived texture features to predict placenta accreta spectrum in patients with placenta previa
  publication-title: Magn Reson Imaging
– volume: 30
  start-page: 2604
  year: 2020
  end-page: 2615
  article-title: Society of Abdominal Radiology (SAR) and European Society of Urogenital Radiology (ESUR) joint consensus statement for MR imaging of placenta accreta spectrum disorders
  publication-title: Eur Radiol
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  article-title: Radiomics: Images are more than pictures, they are data
  publication-title: Radiology
– volume: 50
  start-page: 355
  year: 2019
  end-page: 365
  article-title: Radiomics analysis of placenta on T2WI facilitates prediction of postpartum haemorrhage: A multicentre study
  publication-title: EBioMedicine
– year: 2022
– volume: 31
  start-page: 799
  year: 2014
  end-page: 804
  article-title: Risk factors for placenta accreta: A large prospective cohort
  publication-title: Am J Perinatol
– volume: 11
  start-page: 1236
  year: 2020
  article-title: Deep learning radiomics can predict axillary lymph node status in early‐stage breast cancer
  publication-title: Nat Commun
– volume: 223
  start-page: 568.e1
  year: 2020
  end-page: 568.e5
  article-title: In vitro fertilization as an independent risk factor for placenta accreta spectrum
  publication-title: Am J Obstet Gynecol
– volume: 27
  start-page: 157
  year: 2008
  end-page: 172
  article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
  publication-title: Stat Med
– ident: e_1_2_8_14_1
  doi: 10.1007/s00330-022-08821-4
– ident: e_1_2_8_22_1
  doi: 10.1002/sim.2929
– ident: e_1_2_8_11_1
  doi: 10.1002/uog.20381
– ident: e_1_2_8_27_1
  doi: 10.1213/ANE.0000000000006222
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ajog.2020.04.026
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ajog.2018.09.042
– ident: e_1_2_8_3_1
  doi: 10.1007/s00330-019-06617-7
– ident: e_1_2_8_8_1
  doi: 10.1002/jmri.26764
– ident: e_1_2_8_23_1
  doi: 10.1016/S1076-6332(03)00671-8
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ajog.2018.04.049
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ebiom.2019.11.010
– ident: e_1_2_8_17_1
  doi: 10.1186/s13045-022-01225-3
– ident: e_1_2_8_30_1
  doi: 10.1016/j.mri.2019.05.017
– ident: e_1_2_8_12_1
  doi: 10.1038/s41571-021-00560-7
– ident: e_1_2_8_2_1
  doi: 10.1056/NEJMcp1709324
– ident: e_1_2_8_29_1
  doi: 10.1007/s00330-019-06372-9
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.29396
– ident: e_1_2_8_16_1
  doi: 10.1002/jmri.26883
– ident: e_1_2_8_7_1
  doi: 10.1007/s00330-019-06373-8
– ident: e_1_2_8_9_1
  doi: 10.1002/uog.14950
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-020-15027-z
– ident: e_1_2_8_20_1
  doi: 10.1109/MSP.2019.2900993
– ident: e_1_2_8_21_1
  doi: 10.1002/sim.3148
– volume: 31
  start-page: 799
  year: 2014
  ident: e_1_2_8_24_1
  article-title: Risk factors for placenta accreta: A large prospective cohort
  publication-title: Am J Perinatol
– ident: e_1_2_8_19_1
  doi: 10.1136/gutjnl-2018-316204
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ajog.2016.07.044
– ident: e_1_2_8_10_1
  doi: 10.1007/s00261-022-03673-4
– ident: e_1_2_8_5_1
  doi: 10.1016/j.ajog.2019.05.035
– ident: e_1_2_8_28_1
  doi: 10.1002/uog.24861
– ident: e_1_2_8_13_1
  doi: 10.1148/radiol.2015151169
SSID ssj0009945
Score 2.4668233
Snippet Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to...
Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the...
BackgroundDiagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 496
SubjectTerms Adult
Auditory discrimination
Chi-square test
Correlation coefficient
Correlation coefficients
Datasets
Decision analysis
Deep Learning
Diagnosis
Female
Field strength
Humans
Magnetic Resonance Imaging
Placenta
placenta accreta
Placenta Accreta - diagnostic imaging
Placenta Diseases
Population studies
Pregnancy
Prenatal Diagnosis
Radiomics
Reclassification
Regression analysis
Retrospective Studies
Statistical analysis
Statistical tests
Training
Title Prenatal Diagnosis of Placenta Accreta Spectrum Disorders: Deep Learning Radiomics of Pelvic MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.28787
https://www.ncbi.nlm.nih.gov/pubmed/37222638
https://www.proquest.com/docview/2915087369
https://www.proquest.com/docview/2818746450
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBegFIeoQW5ggtI2W5iO04Ql4pStZUWVSsq9YKCX6m2j2y1jwu_npk4yaqAkNpbpNhy4nnky8z4G4D3Cfq7NM91nOkCf1B8wmOdSh27ghrAJQYhN8UhR9-yozNxci7P1-BzdxYm8EP0ATeyjMZfk4FrM99bkYZe3swmA8T7OR0lp2ItQkTjFXdUUTQdihE_8DjJh6rnJk33VlPvfo3-gph3EWvzyTl8Aj-6hw2VJleD5cIM7K8_eBwf-jZP4XGLRdl-UJ5NWPP1M3g0arPtW_DzdOZrCu-wg1CQN5mzacVOKfJeLzTbt5aqFRn1sF_Mljeso_Kcf2IH3t-ylrz1go21m9Dx5zDfX6N7YqPx8XM4O_z6_ctR3HZkiK1QSsVKVgiYvOZCU8aeO-UQAVamclJXOq2EdNLZtEiEMlZ4aa2gfLH0rkqM4Ya_gPV6WvtXwDKTO4HoBH0M6gSqh_CWO5rqjdHDLIIPnWRK29KVU9eM6zIQLaclbVnZbFkE7_qxt4Gk45-jdjoBl62hzktcECGq4lkRwW5_G02M8ia69tMljslJbzMhhxG8DIrRL8MVAiz0YRF8bMT7n_XLE9zY5ur1fQZvw0aKQCpUiu_AOsrTv0EgtDBvG4X_DZhpAnk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkaCX8i4pBYzgAlK2m8SOE24VpdqWblWtWqm34FeqLW222seFX8-Mnc2qgJDgFim2rHge_jIz_gbgfYL-Li0KFeeqxB8Ul2SxSoWKbUkN4BKNkJvikMPjfHDGD8_FeVubQ3dhAj9EF3Ajy_D-mgycAtI7K9bQy-vpuIeAv5B34R619PZ_VKMVe1RZ-h7FiCCyOCn6smMnTXdWc2-fR7-BzNuY1R86-w9DZ9WZ5yqkWpPvvcVc98yPX5gc__t7HsFGC0fZbtCfx3DHNU_g_rBNuD-FbydT11CEh-2FmrzxjE1qdkLB92au2K4xVLDIqI39fLq4Zks2z9kntufcDWv5Wy_YSNkx3YAO890Veig2HB08g7P9L6efB3HblCE2XEoZS1EjZnIq44qS9pmVFkFgrWsrVK3SmgsrrEnLhEttuBPGcEoZC2frROtMZ89hrZk07gWwXBeWI0BBN4NqgRrCncksTXVaq34ewYelaCrTMpZT44yrKnAtpxVtWeW3LIJ33dibwNPxx1HbSwlXra3OKlwQUarM8jKCt91rtDJKnajGTRY4piDVzbnoR7AZNKNbJpOIsdCNRfDRy_cv61eHuLH-aetfBr-BB4PT4VF1dHD89SWsp4irQuH4NqyhbN0rxEVz_dpr_0-2HAaU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlW8lBtCCxjBC0jZbmI7ThAvFcuq11arFZX6glJfqbZHdrXHS3894zjJqoCQ2rdIGcuJ58iXGfsbgE8Rxrs4TWWYyAx_UGxEQxlzGZrMNYCLFEJul4ccHCd7J-zglJ-uwbfmLIznh2gTbs4zqnjtHHxqip0VaejF9WzcQbyfigfwkCXd1Nl0b7Qij8qyqkUxAggaRmlXtOSk8c5q7O3P0V8Y8zZkrb45_cfwq3lav9XksrNcqI6--YPI8b6v8wQ2azBKdr31PIU1Wz6DjUFdbn8OZ8OZLV1-h_T8jrzxnEwKMnSp93Ihya7WbrsicU3sF7PlNWm4POdfSc_aKanZW8_JSJqxO__sx9srjE9kMNp_ASf9Hz-_74V1S4ZQMyFEKHiBiMlKyqQr2VMjDELAQhWGy0LGBeOGGx1nERNKM8u1Zq5gzK0pIqWooi9hvZyU9jWQRKWGITzBIINGgfbBrKbGDbVKyW4SwOdGM7mu-cpd24yr3DMtx7lbsrxasgA-trJTz9LxT6ntRsF57anzHCdEjCpokgXwob2NPuYKJ7K0kyXKpM5wE8a7AbzyhtFOQwUiLAxiAXyp1Puf-fMDXNjq6s1dhN_DxrDXz4_2jw-34FGMoMrvGt-GdVStfYugaKHeVbb_G7t4BUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prenatal+Diagnosis+of+Placenta+Accreta+Spectrum+Disorders%3A+Deep+Learning+Radiomics+of+Pelvic+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Peng%2C+Lulu&rft.au=Yang%2C+Zehong&rft.au=Liu%2C+Jue&rft.au=Liu%2C+Yi&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=59&rft.issue=2&rft.spage=496&rft.epage=509&rft_id=info:doi/10.1002%2Fjmri.28787&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon