Prenatal Diagnosis of Placenta Accreta Spectrum Disorders: Deep Learning Radiomics of Pelvic MRI
Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. Purpose To explore whether DLR from MRI can be used to identify pregnancies with PAS. Study Type Retrospective....
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 59; no. 2; pp. 496 - 509 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.
Purpose
To explore whether DLR from MRI can be used to identify pregnancies with PAS.
Study Type
Retrospective.
Population
324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS).
Field Strength/Sequence
3‐T, turbo spin‐echo T2‐weighted images.
Assessment
The DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.
Statistical Tests
The Student t‐test or Mann–Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.
Results
The MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.
Data Conclusion
An MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.
Level of Evidence
3
Technical Efficacy Stage
2 |
---|---|
AbstractList | Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.BACKGROUNDDiagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.To explore whether DLR from MRI can be used to identify pregnancies with PAS.PURPOSETo explore whether DLR from MRI can be used to identify pregnancies with PAS.Retrospective.STUDY TYPERetrospective.324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS).POPULATION324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS).3-T, turbo spin-echo T2-weighted images.FIELD STRENGTH/SEQUENCE3-T, turbo spin-echo T2-weighted images.The DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.ASSESSMENTThe DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.The Student t-test or Mann-Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.STATISTICAL TESTSThe Student t-test or Mann-Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.The MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.RESULTSThe MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.An MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.DATA CONCLUSIONAn MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.3 TECHNICAL EFFICACY STAGE: 2.LEVEL OF EVIDENCE3 TECHNICAL EFFICACY STAGE: 2. BackgroundDiagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS.PurposeTo explore whether DLR from MRI can be used to identify pregnancies with PAS.Study TypeRetrospective.Population324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS).Field Strength/Sequence3‐T, turbo spin‐echo T2‐weighted images.AssessmentThe DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets.Statistical TestsThe Student t‐test or Mann–Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference.ResultsThe MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability.Data ConclusionAn MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model.Level of Evidence3Technical Efficacy Stage2 Background Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. Purpose To explore whether DLR from MRI can be used to identify pregnancies with PAS. Study Type Retrospective. Population 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non‐PAS). Field Strength/Sequence 3‐T, turbo spin‐echo T2‐weighted images. Assessment The DLR features were extracted using the MedicalNet. An MRI‐based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non‐PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. Statistical Tests The Student t‐test or Mann–Whitney U, χ2 or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer–Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. Results The MRI‐based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer–Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. Data Conclusion An MRI‐based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. Level of Evidence 3 Technical Efficacy Stage 2 Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the MRI features of PAS. To explore whether DLR from MRI can be used to identify pregnancies with PAS. Retrospective. 324 pregnant women (mean age, 33.3 years) suspected PAS (170 training and 72 validation from institution 1, 82 external validation from institution 2) with clinicopathologically proved PAS (206 PAS, 118 non-PAS). 3-T, turbo spin-echo T2-weighted images. The DLR features were extracted using the MedicalNet. An MRI-based DLR model incorporating DLR signature, clinical model (different clinical characteristics between PAS and non-PAS groups), and MRI morphologic model (radiologists' binary assessment for the PAS diagnosis) was developed. These models were constructed in the training dataset and then validated in the validation datasets. The Student t-test or Mann-Whitney U, χ or Fisher exact test, Kappa, dice similarity coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator logistic regression, multivariate logistic regression, receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI) and integrated discrimination improvement (IDI), calibration curve with Hosmer-Lemeshow test, decision curve analysis (DCA). P < 0.05 indicated a significant difference. The MRI-based DLR model had a higher area under the curve than the clinical model in three datasets (0.880 vs. 0.741, 0.861 vs. 0.772, 0.852 vs. 0.675, respectively) or MRI morphologic model in training and independent validation datasets (0.880 vs. 0.760, 0.861, vs. 0.781, respectively). The NRI and IDI were 0.123 and 0.104, respectively. The Hosmer-Lemeshow test had nonsignificant statistics (P = 0.296 to 0.590). The DCA offered a net benefit at any threshold probability. An MRI-based DLR model may show better performance in diagnosing PAS than a clinical or MRI morphologic model. 3 TECHNICAL EFFICACY STAGE: 2. |
Author | Yang, Zehong Liu, Jue Chen, Junwei Su, Yun Peng, Lulu Liu, Yi Song, Ting Zhang, Xiang Huang, Jianwei |
Author_xml | – sequence: 1 givenname: Lulu surname: Peng fullname: Peng, Lulu organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University – sequence: 2 givenname: Zehong surname: Yang fullname: Yang, Zehong organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University – sequence: 3 givenname: Jue surname: Liu fullname: Liu, Jue organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University – sequence: 4 givenname: Yi surname: Liu fullname: Liu, Yi organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University – sequence: 5 givenname: Jianwei surname: Huang fullname: Huang, Jianwei organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University – sequence: 6 givenname: Junwei surname: Chen fullname: Chen, Junwei organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University – sequence: 7 givenname: Yun surname: Su fullname: Su, Yun organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University – sequence: 8 givenname: Xiang orcidid: 0000-0002-1128-0242 surname: Zhang fullname: Zhang, Xiang email: zhangx345@mail.sysu.edu.cn organization: Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University – sequence: 9 givenname: Ting surname: Song fullname: Song, Ting email: flair@gzhmu.edu.cn organization: Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37222638$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1PFjEQB_DGQOTNix_AbMLFkCz2dbvLjQAi5DES0HPttlPSJ7vtY7ur4dtbWPRAjKeZw-8_bWb20FaIARB6S_AxwZh-WI_JH9NWtvIV2iWC0pqKttkqPRasJi2WO2gv5zXGuOu4eI12mKSUNqzdRd9vEgQ96aE69_o-xOxzFV11M2gDYdLVqTEJSr3bgJnSPBaWY7KQ8kl1DrCpVqBT8OG-utXWx9GbJQ_DT2-qz7dXB2jb6SHDm-e6j759vPh69qlefbm8Ojtd1YZLKWspHBYNaMZ1RxhnVlpBOtc7K7TT1HFhhTW0I1z2hoMwhnPeNAKsI33PeraP3i9zNyn-mCFPavTZwDDoAHHOiraklbzhAhd6-IKu45xC-Z0qDwjcStZ0Rb17VnM_glWb5EedHtSf3RVwtACTYs4J3F9CsHo8jHo8jHo6TMH4BTZ-0pOPYUraD_-OkCXyyw_w8J_h6rrsecn8BgQ9n2Y |
CitedBy_id | crossref_primary_10_2463_mrms_rev_2024_0077 crossref_primary_10_1002_jmri_29152 crossref_primary_10_1016_j_mric_2024_03_009 crossref_primary_10_1093_bjr_tqae164 crossref_primary_10_3390_medicina61030392 crossref_primary_10_1016_j_eurox_2024_100362 |
Cites_doi | 10.1007/s00330-022-08821-4 10.1002/sim.2929 10.1002/uog.20381 10.1213/ANE.0000000000006222 10.1016/j.ajog.2020.04.026 10.1016/j.ajog.2018.09.042 10.1007/s00330-019-06617-7 10.1002/jmri.26764 10.1016/S1076-6332(03)00671-8 10.1016/j.ajog.2018.04.049 10.1016/j.ebiom.2019.11.010 10.1186/s13045-022-01225-3 10.1016/j.mri.2019.05.017 10.1038/s41571-021-00560-7 10.1056/NEJMcp1709324 10.1007/s00330-019-06372-9 10.1002/mrm.29396 10.1002/jmri.26883 10.1007/s00330-019-06373-8 10.1002/uog.14950 10.1038/s41467-020-15027-z 10.1109/MSP.2019.2900993 10.1002/sim.3148 10.1136/gutjnl-2018-316204 10.1016/j.ajog.2016.07.044 10.1007/s00261-022-03673-4 10.1016/j.ajog.2019.05.035 10.1002/uog.24861 10.1148/radiol.2015151169 |
ContentType | Journal Article |
Copyright | 2023 International Society for Magnetic Resonance in Medicine. 2024 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2023 International Society for Magnetic Resonance in Medicine. – notice: 2024 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.28787 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 509 |
ExternalDocumentID | 37222638 10_1002_jmri_28787 JMRI28787 |
Genre | researchArticle Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82102130 – fundername: Guangzhou Basic and Applied Basic Research Foundation funderid: SL2023A04J01957 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515010385; 2023A1515011305 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2023A1515011305 – fundername: National Natural Science Foundation of China grantid: 82102130 – fundername: Guangzhou Basic and Applied Basic Research Foundation grantid: SL2023A04J01957 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2021A1515010385 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4777-75f056ea34a91343d7d519fbfd5afa2f45d5dc29147bc4e5cc444665edf1bb3b3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Jul 10 19:13:42 EDT 2025 Sun Jul 13 03:54:53 EDT 2025 Mon Jul 21 06:04:36 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Wed Jan 22 16:15:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | placenta accreta deep learning radiomics |
Language | English |
License | 2023 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4777-75f056ea34a91343d7d519fbfd5afa2f45d5dc29147bc4e5cc444665edf1bb3b3 |
Notes | Contract grant sponsor: the National Natural Science Foundation of China; Contract grant number: 82102130; Contract grant sponsor: Guangdong Basic and Applied Basic Research Foundation; Contract grant sponsor: 2021A1515010385 and 2023A1515011305; Contract grant sponsor: Guangzhou Basic and Applied Basic Research Foundation; Contract grant number: SL2023A04J01957. The first three authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1128-0242 |
PMID | 37222638 |
PQID | 2915087369 |
PQPubID | 1006400 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2818746450 proquest_journals_2915087369 pubmed_primary_37222638 crossref_primary_10_1002_jmri_28787 crossref_citationtrail_10_1002_jmri_28787 wiley_primary_10_1002_jmri_28787_JMRI28787 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2019; 50 2019; 36 2022; 47 2020; 55 2020; 11 2020; 223 2022; 88 2019; 221 2004; 11 2019; 64 2020; 30 2022 2020; 51 2019; 68 2008; 27 2018; 378 2016; 278 2019; 29 2022; 15 2022; 59 2018; 219 2016; 215 2022; 32 2016; 47 2007; 26 2022; 19 2014; 31 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 Bowman ZS (e_1_2_8_24_1) 2014; 31 |
References_xml | – volume: 219 start-page: 193.e1 year: 2018 end-page: 193.e9 article-title: Placenta percreta is associated with more frequent severe maternal morbidity than placenta accreta publication-title: Am J Obstet Gynecol – volume: 19 start-page: 132 year: 2022 end-page: 146 article-title: Predicting cancer outcomes with radiomics and artificial intelligence in radiology publication-title: Nat Rev Clin Oncol – volume: 68 start-page: 729 year: 2019 end-page: 741 article-title: Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: A prospective multicentre study publication-title: Gut – volume: 29 start-page: 6149 year: 2019 end-page: 6151 article-title: How and why should the radiologist look at the placenta? publication-title: Eur Radiol – volume: 219 start-page: B2 year: 2018 end-page: B16 article-title: Placenta Accreta Spectrum publication-title: Am J Obstet Gynecol – volume: 221 start-page: 337.e1 year: 2019 end-page: 337.e5 article-title: Maternal outcomes in unexpected placenta accreta spectrum disorders: Single‐center experience with a multidisciplinary team publication-title: Am J Obstet Gynecol – volume: 47 start-page: 290 year: 2016 end-page: 301 article-title: Counseling in fetal medicine: Evidence‐based answers to clinical questions on morbidly adherent placenta publication-title: Ultrasound Obstet Gynecol – volume: 59 start-page: 428 year: 2022 end-page: 436 article-title: Diagnosis of placenta accreta spectrum in high‐risk women using ultrasonography or magnetic resonance imaging: Systematic review and meta‐analysis publication-title: Ultrasound Obstet Gynecol – volume: 36 start-page: 132 year: 2019 end-page: 160 article-title: From handcrafted to deep‐learning‐based cancer radiomics: Challenges and opportunities publication-title: IEEE Signal Process Mag – volume: 11 start-page: 178 year: 2004 end-page: 189 article-title: Statistical validation of image segmentation quality based on a spatial overlap index publication-title: Acad Radiol – volume: 32 start-page: 7532 year: 2022 end-page: 7543 article-title: MRI‐radiomics‐clinical‐based nomogram for prenatal prediction of the placenta accreta spectrum disorders publication-title: Eur Radiol – volume: 378 start-page: 1529 year: 2018 end-page: 1536 article-title: Placenta accreta spectrum publication-title: N Engl J Med – volume: 55 start-page: 467 year: 2020 end-page: 473 article-title: Interobserver agreement in MRI assessment of severity of placenta accreta spectrum disorders publication-title: Ultrasound Obstet Gynecol – volume: 50 start-page: 1702 year: 2019 end-page: 1717 article-title: MRI evaluation of the placenta from normal variants to abnormalities of implantation and malignancies publication-title: J Magn Reson Imaging – volume: 29 start-page: 6152 year: 2019 end-page: 6162 article-title: Identification of suspicious invasive placentation based on clinical MRI data using textural features and automated machine learning publication-title: Eur Radiol – volume: 47 start-page: 4205 year: 2022 end-page: 4218 article-title: Prediction of placenta accreta spectrum by combining deep learning and radiomics using T2WI: A multicenter study publication-title: Abdom Radiol (NY) – volume: 26 start-page: 5512 year: 2007 end-page: 5528 article-title: Selection of important variables and determination of functional form for continuous predictors in multivariable model building publication-title: Stat Med – volume: 88 start-page: 2621 year: 2022 end-page: 2632 article-title: Radiomics analysis of T2‐weighted images for differentiating invasive placentas in women at high risks publication-title: Magn Reson Med – volume: 15 start-page: 11 issue: 1 year: 2022 article-title: Development of a novel combined nomogram model integrating deep learning‐pathomics, radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients publication-title: J Hematol Oncol – volume: 215 start-page: 712 year: 2016 end-page: 721 article-title: Accreta placentation: A systematic review of prenatal ultrasound imaging and grading of villous invasiveness publication-title: Am J Obstet Gynecol – volume: 51 start-page: 936 year: 2020 end-page: 946 article-title: MRI of the placenta accreta spectrum (PAS) disorder: Radiomics analysis correlates with surgical and pathological outcome publication-title: J Magn Reson Imaging – volume: 64 start-page: 71 year: 2019 end-page: 76 article-title: Machine learning analysis of MRI‐derived texture features to predict placenta accreta spectrum in patients with placenta previa publication-title: Magn Reson Imaging – volume: 30 start-page: 2604 year: 2020 end-page: 2615 article-title: Society of Abdominal Radiology (SAR) and European Society of Urogenital Radiology (ESUR) joint consensus statement for MR imaging of placenta accreta spectrum disorders publication-title: Eur Radiol – volume: 278 start-page: 563 year: 2016 end-page: 577 article-title: Radiomics: Images are more than pictures, they are data publication-title: Radiology – volume: 50 start-page: 355 year: 2019 end-page: 365 article-title: Radiomics analysis of placenta on T2WI facilitates prediction of postpartum haemorrhage: A multicentre study publication-title: EBioMedicine – year: 2022 – volume: 31 start-page: 799 year: 2014 end-page: 804 article-title: Risk factors for placenta accreta: A large prospective cohort publication-title: Am J Perinatol – volume: 11 start-page: 1236 year: 2020 article-title: Deep learning radiomics can predict axillary lymph node status in early‐stage breast cancer publication-title: Nat Commun – volume: 223 start-page: 568.e1 year: 2020 end-page: 568.e5 article-title: In vitro fertilization as an independent risk factor for placenta accreta spectrum publication-title: Am J Obstet Gynecol – volume: 27 start-page: 157 year: 2008 end-page: 172 article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond publication-title: Stat Med – ident: e_1_2_8_14_1 doi: 10.1007/s00330-022-08821-4 – ident: e_1_2_8_22_1 doi: 10.1002/sim.2929 – ident: e_1_2_8_11_1 doi: 10.1002/uog.20381 – ident: e_1_2_8_27_1 doi: 10.1213/ANE.0000000000006222 – ident: e_1_2_8_25_1 doi: 10.1016/j.ajog.2020.04.026 – ident: e_1_2_8_26_1 doi: 10.1016/j.ajog.2018.09.042 – ident: e_1_2_8_3_1 doi: 10.1007/s00330-019-06617-7 – ident: e_1_2_8_8_1 doi: 10.1002/jmri.26764 – ident: e_1_2_8_23_1 doi: 10.1016/S1076-6332(03)00671-8 – ident: e_1_2_8_4_1 doi: 10.1016/j.ajog.2018.04.049 – ident: e_1_2_8_15_1 doi: 10.1016/j.ebiom.2019.11.010 – ident: e_1_2_8_17_1 doi: 10.1186/s13045-022-01225-3 – ident: e_1_2_8_30_1 doi: 10.1016/j.mri.2019.05.017 – ident: e_1_2_8_12_1 doi: 10.1038/s41571-021-00560-7 – ident: e_1_2_8_2_1 doi: 10.1056/NEJMcp1709324 – ident: e_1_2_8_29_1 doi: 10.1007/s00330-019-06372-9 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.29396 – ident: e_1_2_8_16_1 doi: 10.1002/jmri.26883 – ident: e_1_2_8_7_1 doi: 10.1007/s00330-019-06373-8 – ident: e_1_2_8_9_1 doi: 10.1002/uog.14950 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-020-15027-z – ident: e_1_2_8_20_1 doi: 10.1109/MSP.2019.2900993 – ident: e_1_2_8_21_1 doi: 10.1002/sim.3148 – volume: 31 start-page: 799 year: 2014 ident: e_1_2_8_24_1 article-title: Risk factors for placenta accreta: A large prospective cohort publication-title: Am J Perinatol – ident: e_1_2_8_19_1 doi: 10.1136/gutjnl-2018-316204 – ident: e_1_2_8_6_1 doi: 10.1016/j.ajog.2016.07.044 – ident: e_1_2_8_10_1 doi: 10.1007/s00261-022-03673-4 – ident: e_1_2_8_5_1 doi: 10.1016/j.ajog.2019.05.035 – ident: e_1_2_8_28_1 doi: 10.1002/uog.24861 – ident: e_1_2_8_13_1 doi: 10.1148/radiol.2015151169 |
SSID | ssj0009945 |
Score | 2.4668233 |
Snippet | Background
Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to... Diagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to quantify the... BackgroundDiagnostic performance of placenta accreta spectrum (PAS) by prenatal MRI is unsatisfactory. Deep learning radiomics (DLR) has the potential to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 496 |
SubjectTerms | Adult Auditory discrimination Chi-square test Correlation coefficient Correlation coefficients Datasets Decision analysis Deep Learning Diagnosis Female Field strength Humans Magnetic Resonance Imaging Placenta placenta accreta Placenta Accreta - diagnostic imaging Placenta Diseases Population studies Pregnancy Prenatal Diagnosis Radiomics Reclassification Regression analysis Retrospective Studies Statistical analysis Statistical tests Training |
Title | Prenatal Diagnosis of Placenta Accreta Spectrum Disorders: Deep Learning Radiomics of Pelvic MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.28787 https://www.ncbi.nlm.nih.gov/pubmed/37222638 https://www.proquest.com/docview/2915087369 https://www.proquest.com/docview/2818746450 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBegFIeoQW5ggtI2W5iO04Ql4pStZUWVSsq9YKCX6m2j2y1jwu_npk4yaqAkNpbpNhy4nnky8z4G4D3Cfq7NM91nOkCf1B8wmOdSh27ghrAJQYhN8UhR9-yozNxci7P1-BzdxYm8EP0ATeyjMZfk4FrM99bkYZe3swmA8T7OR0lp2ItQkTjFXdUUTQdihE_8DjJh6rnJk33VlPvfo3-gph3EWvzyTl8Aj-6hw2VJleD5cIM7K8_eBwf-jZP4XGLRdl-UJ5NWPP1M3g0arPtW_DzdOZrCu-wg1CQN5mzacVOKfJeLzTbt5aqFRn1sF_Mljeso_Kcf2IH3t-ylrz1go21m9Dx5zDfX6N7YqPx8XM4O_z6_ctR3HZkiK1QSsVKVgiYvOZCU8aeO-UQAVamclJXOq2EdNLZtEiEMlZ4aa2gfLH0rkqM4Ya_gPV6WvtXwDKTO4HoBH0M6gSqh_CWO5rqjdHDLIIPnWRK29KVU9eM6zIQLaclbVnZbFkE7_qxt4Gk45-jdjoBl62hzktcECGq4lkRwW5_G02M8ia69tMljslJbzMhhxG8DIrRL8MVAiz0YRF8bMT7n_XLE9zY5ur1fQZvw0aKQCpUiu_AOsrTv0EgtDBvG4X_DZhpAnk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkaCX8i4pBYzgAlK2m8SOE24VpdqWblWtWqm34FeqLW222seFX8-Mnc2qgJDgFim2rHge_jIz_gbgfYL-Li0KFeeqxB8Ul2SxSoWKbUkN4BKNkJvikMPjfHDGD8_FeVubQ3dhAj9EF3Ajy_D-mgycAtI7K9bQy-vpuIeAv5B34R619PZ_VKMVe1RZ-h7FiCCyOCn6smMnTXdWc2-fR7-BzNuY1R86-w9DZ9WZ5yqkWpPvvcVc98yPX5gc__t7HsFGC0fZbtCfx3DHNU_g_rBNuD-FbydT11CEh-2FmrzxjE1qdkLB92au2K4xVLDIqI39fLq4Zks2z9kntufcDWv5Wy_YSNkx3YAO890Veig2HB08g7P9L6efB3HblCE2XEoZS1EjZnIq44qS9pmVFkFgrWsrVK3SmgsrrEnLhEttuBPGcEoZC2frROtMZ89hrZk07gWwXBeWI0BBN4NqgRrCncksTXVaq34ewYelaCrTMpZT44yrKnAtpxVtWeW3LIJ33dibwNPxx1HbSwlXra3OKlwQUarM8jKCt91rtDJKnajGTRY4piDVzbnoR7AZNKNbJpOIsdCNRfDRy_cv61eHuLH-aetfBr-BB4PT4VF1dHD89SWsp4irQuH4NqyhbN0rxEVz_dpr_0-2HAaU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlW8lBtCCxjBC0jZbmI7ThAvFcuq11arFZX6glJfqbZHdrXHS3894zjJqoCQ2rdIGcuJ58iXGfsbgE8Rxrs4TWWYyAx_UGxEQxlzGZrMNYCLFEJul4ccHCd7J-zglJ-uwbfmLIznh2gTbs4zqnjtHHxqip0VaejF9WzcQbyfigfwkCXd1Nl0b7Qij8qyqkUxAggaRmlXtOSk8c5q7O3P0V8Y8zZkrb45_cfwq3lav9XksrNcqI6--YPI8b6v8wQ2azBKdr31PIU1Wz6DjUFdbn8OZ8OZLV1-h_T8jrzxnEwKMnSp93Ihya7WbrsicU3sF7PlNWm4POdfSc_aKanZW8_JSJqxO__sx9srjE9kMNp_ASf9Hz-_74V1S4ZQMyFEKHiBiMlKyqQr2VMjDELAQhWGy0LGBeOGGx1nERNKM8u1Zq5gzK0pIqWooi9hvZyU9jWQRKWGITzBIINGgfbBrKbGDbVKyW4SwOdGM7mu-cpd24yr3DMtx7lbsrxasgA-trJTz9LxT6ntRsF57anzHCdEjCpokgXwob2NPuYKJ7K0kyXKpM5wE8a7AbzyhtFOQwUiLAxiAXyp1Puf-fMDXNjq6s1dhN_DxrDXz4_2jw-34FGMoMrvGt-GdVStfYugaKHeVbb_G7t4BUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prenatal+Diagnosis+of+Placenta+Accreta+Spectrum+Disorders%3A+Deep+Learning+Radiomics+of+Pelvic+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Peng%2C+Lulu&rft.au=Yang%2C+Zehong&rft.au=Liu%2C+Jue&rft.au=Liu%2C+Yi&rft.date=2024-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=59&rft.issue=2&rft.spage=496&rft.epage=509&rft_id=info:doi/10.1002%2Fjmri.28787&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |