Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data
AIM: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analy...
Saved in:
Published in | Global ecology and biogeography Vol. 23; no. 12; pp. 1472 - 1484 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Science
01.12.2014
Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AIM: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence‐only data, but these models have largely ignored the effects of imperfect detection and survey bias. In this paper I describe a model‐based approach for the analysis of presence‐only data that accounts for errors in the detection of individuals and for biased selection of survey locations. INNOVATION: I develop a hierarchical, statistical model that allows presence‐only data to be analysed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detection of individuals encountered during opportunistic surveys and the detection of individuals encountered during planned surveys. MAIN CONCLUSIONS: Using mathematical proof and simulation‐based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence‐only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high‐quality data (from planned surveys) can be used to leverage the information in presence‐only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence‐only data is widely applicable. In addition, since the point‐process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions. |
---|---|
AbstractList | Aim: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence-only data, but these models have largely ignored the effects of imperfect detection and survey bias. In this paper I describe a model-based approach for the analysis of presence-only data that accounts for errors in the detection of individuals and for biased selection of survey locations. Innovation: I develop a hierarchical, statistical model that allows presence-only data to be analysed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detection of individuals encountered during opportunistic surveys and the detection of individuals encountered during planned surveys. Main conclusions: Using mathematical proof and simulation-based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence-only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high-quality data (from planned surveys) can be used to leverage the information in presence-only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence-only data is widely applicable. In addition, since the point-process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions. Aim During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence‐only data, but these models have largely ignored the effects of imperfect detection and survey bias. In this paper I describe a model‐based approach for the analysis of presence‐only data that accounts for errors in the detection of individuals and for biased selection of survey locations. Innovation I develop a hierarchical, statistical model that allows presence‐only data to be analysed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detection of individuals encountered during opportunistic surveys and the detection of individuals encountered during planned surveys. Main conclusions Using mathematical proof and simulation‐based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence‐only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high‐quality data (from planned surveys) can be used to leverage the information in presence‐only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence‐only data is widely applicable. In addition, since the point‐process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions. |
Author | Dorazio, Robert M. |
Author_xml | – sequence: 1 fullname: Dorazio, Robert M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28915476$$DView record in Pascal Francis |
BookMark | eNqNksFu1DAQhiNUJNrCgQdAWEJIcEhrO7GdHEtVFkRVpEIF4mI5znjlJWsvdtKSG4_AM_IkOGS7hwokfBlb8_0j-f_nINtz3kGWPSb4iKRzvITmiFBK-L1sn5Sc5xUtqr3dnX5-kB3EuMIYs5Lx_aw50doPrrduiYwPyK43EAzoHrXQp2K9Q8q1KA7hGkbUWBWRdSj2qrext1p1qa26MdqIvEGbABGchl8_fnrXjahVvXqY3Teqi_BoWw-zq9dnH0_f5OfvF29PT85zXQrBc0VrXrUgOCtbDQbqIj2AiVq0rC64bjU1GgtaNk3dGkZAG4VJ2wpaGQMUisPsxTx3E_y3AWIv1zZq6DrlwA9REs4LxkhZk_9AqagrxnCR0Gd30JUfQvryRJGaClJwlqjnW0rF5IkJymkb5SbYtQqjpFVNWCl44o5nTgcfYwAjtZ2s9K4PynaSYDnFKFOM8k-MSfHyjuJ26N_Y7fQb28H4b1Auzl7dKp7MilXsfdgpyqISaWMmo_K5n8KG77u-Cl8lF4Vg8tPFQuJ3-MsFvbyUkw9PZ94oL9UyJA-uPlBMWFq4FDKtit8Z69Fv |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_1111_geb_12988 crossref_primary_10_1002_eap_2117 crossref_primary_10_1016_j_ecolind_2022_109487 crossref_primary_10_1017_ext_2024_22 crossref_primary_10_1038_ncomms9221 crossref_primary_10_1111_ddi_13416 crossref_primary_10_1016_j_foreco_2019_117642 crossref_primary_10_1111_ecog_04122 crossref_primary_10_1002_ecy_3204 crossref_primary_10_1016_j_ecolmodel_2019_108735 crossref_primary_10_1111_1365_2664_14163 crossref_primary_10_1111_brv_12727 crossref_primary_10_1111_2041_210X_14368 crossref_primary_10_1186_s43170_020_00016_5 crossref_primary_10_1214_24_AOAS1924 crossref_primary_10_1016_j_fishres_2025_107321 crossref_primary_10_1038_s41559_019_0826_1 crossref_primary_10_1111_geb_13792 crossref_primary_10_1214_21_AOAS1569 crossref_primary_10_3390_biology11040563 crossref_primary_10_1007_s10980_015_0327_9 crossref_primary_10_1002_ecy_1710 crossref_primary_10_1002_ecy_1831 crossref_primary_10_1038_s41598_023_32886_w crossref_primary_10_3389_fevo_2021_682124 crossref_primary_10_3389_fmars_2022_939692 crossref_primary_10_1111_ecog_05843 crossref_primary_10_47603_manovol5n1_31_35 crossref_primary_10_1002_env_2462 crossref_primary_10_1073_pnas_1904807116 crossref_primary_10_1111_2041_210X_13565 crossref_primary_10_1111_geb_12453 crossref_primary_10_1111_cobi_12688 crossref_primary_10_1111_2041_210X_12352 crossref_primary_10_1155_2023_6685108 crossref_primary_10_1111_2041_210X_14252 crossref_primary_10_1002_eap_2893 crossref_primary_10_1002_ecs2_3878 crossref_primary_10_1016_j_baae_2022_08_001 crossref_primary_10_1214_21_AOAS1472 crossref_primary_10_1111_1365_2656_13763 crossref_primary_10_1016_j_tree_2023_05_010 crossref_primary_10_1002_ece3_71029 crossref_primary_10_1111_geb_13491 crossref_primary_10_1002_ece3_3725 crossref_primary_10_1111_ecog_06048 crossref_primary_10_3389_fevo_2021_693602 crossref_primary_10_1111_icad_12345 crossref_primary_10_1002_ecm_1372 crossref_primary_10_1111_2041_210X_13614 crossref_primary_10_1111_2041_210X_13457 crossref_primary_10_1111_ecog_04385 crossref_primary_10_1016_j_gecco_2021_e01662 crossref_primary_10_7717_peerj_3324 crossref_primary_10_1038_s41598_019_44075_9 crossref_primary_10_1111_2041_210X_13297 crossref_primary_10_1111_2041_210X_12242 crossref_primary_10_1371_journal_pone_0215794 crossref_primary_10_1002_jwmg_21968 crossref_primary_10_1007_s10980_021_01262_2 crossref_primary_10_1371_journal_pone_0265730 crossref_primary_10_1186_s12898_015_0038_8 crossref_primary_10_1111_ddi_12631 crossref_primary_10_1038_s41598_022_23603_0 crossref_primary_10_1002_eap_2647 crossref_primary_10_1016_j_ecoinf_2021_101501 crossref_primary_10_1038_s41598_019_46376_5 crossref_primary_10_1007_s10530_022_02976_3 crossref_primary_10_1007_s11356_023_31131_1 crossref_primary_10_1111_1440_1703_12222 crossref_primary_10_1111_2041_210X_12815 crossref_primary_10_1007_s11252_024_01634_x crossref_primary_10_1111_2041_210X_12499 crossref_primary_10_1111_ecog_07086 crossref_primary_10_1016_j_tree_2019_08_006 crossref_primary_10_1111_ecog_06391 crossref_primary_10_3390_e27010006 crossref_primary_10_1016_j_ecolmodel_2022_110255 crossref_primary_10_1080_10618600_2023_2182311 crossref_primary_10_1111_2041_210X_14282 crossref_primary_10_1111_ddi_13176 crossref_primary_10_1111_ele_12624 crossref_primary_10_1111_geb_12268 crossref_primary_10_1111_aec_12274 crossref_primary_10_7717_peerj_13490 crossref_primary_10_1016_j_spasta_2023_100756 crossref_primary_10_1002_eap_1866 crossref_primary_10_1186_s40068_023_00312_9 crossref_primary_10_1002_ecy_3769 crossref_primary_10_1111_ecog_02303 crossref_primary_10_1371_journal_pone_0308552 crossref_primary_10_1111_ecog_04321 crossref_primary_10_1002_ecy_2710 crossref_primary_10_1139_cjfas_2022_0279 crossref_primary_10_1007_s42519_023_00336_5 crossref_primary_10_1016_j_fishres_2018_10_011 crossref_primary_10_1093_icesjms_fsz075 crossref_primary_10_1111_2041_210X_13110 crossref_primary_10_1002_ece3_8082 crossref_primary_10_1002_ecy_4292 crossref_primary_10_1111_2041_210X_13196 crossref_primary_10_1016_j_biocon_2020_108501 crossref_primary_10_1111_geb_12539 crossref_primary_10_1111_ddi_12776 crossref_primary_10_1111_ddi_13749 crossref_primary_10_1002_eap_2427 crossref_primary_10_1111_ecog_06219 crossref_primary_10_3389_fevo_2022_944116 crossref_primary_10_1016_j_biocon_2022_109715 crossref_primary_10_1016_j_biocon_2017_10_017 crossref_primary_10_3389_fevo_2022_881247 crossref_primary_10_1111_jbi_14622 crossref_primary_10_1007_s00267_015_0613_y crossref_primary_10_1111_2041_210X_14458 crossref_primary_10_1111_ecog_06451 crossref_primary_10_1111_2041_210X_13002 crossref_primary_10_1016_j_scitotenv_2023_167133 crossref_primary_10_1016_j_oneear_2020_09_010 crossref_primary_10_1371_journal_pone_0190706 crossref_primary_10_1007_s12080_018_0387_y crossref_primary_10_1038_s41598_022_16104_7 crossref_primary_10_1007_s13364_022_00622_w crossref_primary_10_1016_j_biocon_2020_108675 crossref_primary_10_1002_ecy_2777 crossref_primary_10_1111_1365_2656_14012 crossref_primary_10_1007_s40823_016_0008_7 crossref_primary_10_1111_1365_2745_70009 crossref_primary_10_1002_eap_2619 crossref_primary_10_3390_ani11123426 crossref_primary_10_1007_s13253_025_00684_8 crossref_primary_10_1111_ecog_02445 crossref_primary_10_3390_environments4040081 crossref_primary_10_1007_s40808_024_02017_z crossref_primary_10_1111_jbi_14335 crossref_primary_10_1111_2041_210X_13811 crossref_primary_10_1186_s40064_016_3583_5 crossref_primary_10_1002_ecy_2093 crossref_primary_10_1186_s40537_025_01078_w crossref_primary_10_1002_ecs2_3165 crossref_primary_10_1002_2688_8319_12048 crossref_primary_10_1002_ecs2_4376 crossref_primary_10_1111_geb_12483 crossref_primary_10_1016_j_biocon_2019_108374 crossref_primary_10_1126_science_ade2541 crossref_primary_10_1002_ecy_2709 crossref_primary_10_1111_geb_12514 crossref_primary_10_1002_eap_1754 crossref_primary_10_1002_ece3_7330 crossref_primary_10_1111_een_13307 crossref_primary_10_1111_ecog_04616 crossref_primary_10_1002_ece3_10793 crossref_primary_10_1002_ecy_3637 crossref_primary_10_1016_j_ecolmodel_2022_109910 crossref_primary_10_1111_2041_210X_12738 crossref_primary_10_1111_2041_210X_13948 crossref_primary_10_1016_j_spasta_2020_100418 crossref_primary_10_1007_s40808_022_01417_3 crossref_primary_10_1111_ecog_05146 crossref_primary_10_1111_oik_08215 crossref_primary_10_1038_s41467_017_00923_8 crossref_primary_10_1002_ecs2_3273 crossref_primary_10_1002_ecs2_3790 crossref_primary_10_1016_j_ecoinf_2023_102155 crossref_primary_10_1017_S0376892919000055 crossref_primary_10_1111_1365_2664_14633 crossref_primary_10_1007_s11252_020_01071_6 crossref_primary_10_1007_s13253_023_00558_x crossref_primary_10_1111_gcb_16114 crossref_primary_10_1002_env_2446 crossref_primary_10_1007_s12080_018_0389_9 crossref_primary_10_1007_s42519_022_00302_7 |
Cites_doi | 10.1890/02-5078 10.1111/j.2041-210X.2011.00172.x 10.1111/j.0021-8901.2004.00905.x 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2 10.1111/j.1541-0420.2007.00927.x 10.1890/12-1520.1 10.1016/j.jnc.2012.11.005 10.1890/07-2153.1 10.1016/S0169-5347(01)02205-4 10.2307/1914036 10.1111/j.1469-185X.2012.00235.x 10.1111/geb.12138 10.1890/06-1350.1 10.1146/annurev.ecolsys.110308.120159 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2 10.1111/j.1541-0420.2012.01779.x 10.1111/j.0006-341X.2004.00142.x 10.1111/j.1472-4642.2007.00342.x 10.1111/j.1365-2664.2010.01911.x 10.1111/j.2006.0906-7590.04596.x 10.1890/10-2433.1 10.1111/jbi.12029 10.1111/j.1600-0706.2009.18295.x 10.1002/env.1149 10.1080/01621459.2011.641402 10.1111/j.0030-1299.2004.13043.x 10.1111/j.1365-2699.2011.02659.x 10.1086/521240 10.1093/biomet/93.2.385 10.1890/ES11-00308.1 10.1890/07-0006.1 10.1111/j.0006-341X.1999.01051.x 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 10.1111/j.1600-0587.2011.07103.x 10.1016/j.ecolmodel.2009.02.021 10.1002/9780470725160 10.1111/j.1365-2699.2011.02663.x 10.1111/j.1472-4642.2010.00725.x 10.1111/j.1541-0420.2012.01824.x 10.1214/10-AOAS331 10.1111/2041-210x.12004 10.1371/journal.pone.0084017 10.1214/13-AOAS667 10.1111/1365-2745.12021 10.1111/j.1467-9876.2011.00769.x 10.1111/j.1461-0248.2005.00792.x 10.1111/j.1365-2664.2005.01112.x 10.1016/j.ecolmodel.2005.03.026 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons Ltd. 2014 John Wiley & Sons Ltd 2015 INIST-CNRS Copyright © 2014 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons Ltd. – notice: 2014 John Wiley & Sons Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2014 John Wiley & Sons Ltd |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.12216 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts Ecology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 1484 |
ExternalDocumentID | 3479644731 28915476 10_1111_geb_12216 GEB12216 43871461 ark_67375_WNG_0K0ZN2RR_5 US201500077628 |
Genre | technicalNote |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABSQW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACHIC ACPOU ACPRK ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FBQ FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM ADACV AEUQT AFPWT BSCLL DOOOF EQZMY ESX JSODD WRC AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c4776-a2968de7654dcefe93de7e5797d5936cdc2fc0724bb9df51ecfa01dd728ffe2e3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:28:42 EDT 2025 Thu Jul 10 22:12:20 EDT 2025 Fri Jul 25 03:44:45 EDT 2025 Wed Apr 02 07:26:07 EDT 2025 Tue Jul 01 01:46:05 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Wed Jan 22 16:21:54 EST 2025 Thu Jul 03 22:44:23 EDT 2025 Wed Oct 30 09:52:22 EDT 2024 Thu Apr 03 09:46:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Statistical analysis Ecological niche model Biogeography Ecology predictive biogeography species distribution model site occupancy model spatial point process Spatial distribution N-mixture model Geographic distribution Ecological niche Models Detection Distribution range |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4776-a2968de7654dcefe93de7e5797d5936cdc2fc0724bb9df51ecfa01dd728ffe2e3 |
Notes | http://dx.doi.org/10.1111/geb.12216 Appendix S1 Fisher information matrix.Appendix S2 R code (R Core Team, 2014) used to simulate and analyse data in opportunistic and planned surveys. istex:E2AEEBEAA6894C56AC5032EE7048DF659CF2D336 ArticleID:GEB12216 ark:/67375/WNG-0K0ZN2RR-5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1619271365 |
PQPubID | 1066347 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1663551491 proquest_miscellaneous_1627985503 proquest_journals_1619271365 pascalfrancis_primary_28915476 crossref_citationtrail_10_1111_geb_12216 crossref_primary_10_1111_geb_12216 wiley_primary_10_1111_geb_12216_GEB12216 jstor_primary_43871461 istex_primary_ark_67375_WNG_0K0ZN2RR_5 fao_agris_US201500077628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Global Ecology and Biogeography |
PublicationYear | 2014 |
Publisher | Blackwell Science Blackwell Publishing Ltd John Wiley & Sons Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Goodsoe, W. & Harmon, L.J. (2012) How do species interactions affect species distribution models? Ecography, 35, 811-820. Efford, M. (2004) Density estimation in live-trapping studies. Oikos, 106, 598-610. Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B. & Singer, A. (2012) Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeograpy, 39, 2119-2131. MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255. Guisan, A., Graham, C.H., Elith, J. et al. (2007) Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13, 332-340. Newbold, T., Reader, T., El-Gabbas, A., Berg, W., Shohdi, W.M., Zalat, S., El Din, S.B. & Gilbert, F. (2010) Testing the accuracy of species distribution models using species records from a new field survey. Oikos, 119, 1326-1334. Chandler, R.B., Royle, J.A. & King, D.I. (2011) Inference about density and temporary emigration in unmarked populations. Ecology, 92, 1429-1435. Efford, M.G. & Dawson, D.K. (2012) Occupancy in continuous habitat. Ecosphere, 3, art. 32, http://dx.doi.org/10.1890/ES11-00308.1. Cabeza, M., Araújo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. & Moilanen, A. (2004) Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41, 252-262. Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008) Statistical analysis and modelling of spatial point patterns. John Wiley and Sons, Chichester. Fithian, W. & Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 7, 1917-1939. Dorazio, R.M. (2007) On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology, 88, 2773-2782. Wiegand, T., Gunatilleke, S. & Gunatilleke, N. (2007a) Species associations in a heterogenous Sri Lankan dipterocarp forest. The American Naturalist, 170, E77-E95. Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327-338. Cressie, N. & Wikle, C.K. (2011) Statistics for spatio-temporal data. John Wiley and Sons, Hoboken, NJ. Royle, J.A. & Nichols, J.D. (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology, 84, 777-790. Bowden, R. (1973) The theory of parametric identification. Econometrica, 41, 1069-1074. Balderama, E., Schoenberg, F.P., Murray, E. & Rundel, P.W. (2012) Application of branching models in the study of invasive species. Journal of the American Statistical Association, 107, 467-476. Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402. Högmander, H. & Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions. Biometrics, 55, 1051-1058. Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B. (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC. Yoccoz, N.G., Nichols, J.D. & Boulinier, T. (2001) Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446-453. Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15-30. Lahoz-Monfort, J.J., Guillera-Arroita, G. & Wintle, B.A. (2014) Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23, 504-515. Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197. Pearce, J.L. & Boyce, M.S. (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405-412. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. Gormley, A.M., Forsyth, D.M., Griffioen, P., Lindeman, M., Ramsey, D.S.L., Scroggie, M.P. & Woodford, L. (2013) Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48, 25-34. Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. (2007b) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102. Dorazio, R.M. (2013) Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data. PLoS ONE, 8, e84017. Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281. Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. Møller, J. & Waagepetersen, R.P. (2004) Statistical inference and simulation for spatial point processes. Chapman and Hall, Boca Raton, FL. Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K. & Possingham, H.P. (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications, 13, 1790-1801. Lee, A.J., Scott, A.J. & Wild, C.J. (2006) Fitting binary regression models with case-augmented samples. Biometrika, 93, 385-397. Dorazio, R.M. (2012) Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics, 68, 1303-1312. Royle, J.A. & Dorazio, R.M. (2008) Hierarchical modeling and inference in ecology. Academic Press, Amsterdam. Peterman, W.E., Crawford, J.A. & Kuhns, A.R. (2011) Using species distribution and occupancy modeling to guide survey efforts and assess species status. Journal for Nature Conservation, 21, 114-121. Chakraborty, A., Gelfand, A.E., Wilson, A.M., Latimer, A.M. & Silander, J.A. (2011) Point pattern modelling for degraded presence-only data over large regions. Applied Statistics, 60, 757-776. Phillips, S.J. & Elith, J. (2013) On estimating probability of presence from use-availability or presence-background data. Ecology, 94, 1409-1419. Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178. Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. Chen, G., Kéry, M., Plattner, M., Ma, K. & Gardner, B. (2013) Imperfect detection is the rule rather than the exception in plant distribution studies. Journal of Ecology, 101, 183-191. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Sólymos, P., Lele, S. & Bayne, E. (2012) Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23, 197-205. Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics, 64, 377-385. Grabarnik, P. & Särkkä, A. (2004) Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions. Ecological Modelling, 220, 1232-1240. Higgins, S.I., O'Hara, R.B. & Römermann, C. (2012) A niche for biology in species distribution models. Journal of Biogeography, 39, 2091-2095. Royle, J.A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115. Lele, S.R. & Keim, J.L. (2006) Weighted distributions and estimation of resource selection probability functions. Ecology, 87, 3021-3028. Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009. Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.H.C. & Veran, S. (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243. 2009; 40 2013; 69 2013; 4 2004; 60 2010; 17 2011; 60 2003; 13 2013; 7 2013; 8 2007a; 170 2014; 23 1973; 41 2010; 119 2002; 83 2013; 94 2006; 29 1999; 55 2011; 21 2001; 16 2008; 64 2012; 68 2009; 19 2003; 84 2012; 23 2010; 4 2006; 93 2004; 41 2004; 220 2013; 48 2013; 88 2011 2013; 101 2008 2012; 39 2004 2002 2012; 35 2004; 106 2012; 107 2007; 13 2007b; 88 2012; 3 2006; 87 2006; 43 2006; 190 2011; 92 2005; 8 2014 2007; 88 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 Royle J.A. (e_1_2_9_44_1) 2008 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 Cressie N. (e_1_2_9_10_1) 2011 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 R Core Team (e_1_2_9_41_1) 2014 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 Scott J.M. (e_1_2_9_46_1) 2002 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 Møller J. (e_1_2_9_34_1) 2004 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Chen, G., Kéry, M., Plattner, M., Ma, K. & Gardner, B. (2013) Imperfect detection is the rule rather than the exception in plant distribution studies. Journal of Ecology, 101, 183-191. – reference: Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.H.C. & Veran, S. (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243. – reference: Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K. & Possingham, H.P. (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications, 13, 1790-1801. – reference: Lele, S.R. & Keim, J.L. (2006) Weighted distributions and estimation of resource selection probability functions. Ecology, 87, 3021-3028. – reference: Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. – reference: R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. – reference: Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178. – reference: Dorazio, R.M. (2012) Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics, 68, 1303-1312. – reference: Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008) Statistical analysis and modelling of spatial point patterns. John Wiley and Sons, Chichester. – reference: Fithian, W. & Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 7, 1917-1939. – reference: Phillips, S.J. & Elith, J. (2013) On estimating probability of presence from use-availability or presence-background data. Ecology, 94, 1409-1419. – reference: Cabeza, M., Araújo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. & Moilanen, A. (2004) Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41, 252-262. – reference: Högmander, H. & Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions. Biometrics, 55, 1051-1058. – reference: Pearce, J.L. & Boyce, M.S. (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405-412. – reference: Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B. (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC. – reference: Royle, J.A. & Nichols, J.D. (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology, 84, 777-790. – reference: Cressie, N. & Wikle, C.K. (2011) Statistics for spatio-temporal data. John Wiley and Sons, Hoboken, NJ. – reference: Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15-30. – reference: Efford, M.G. & Dawson, D.K. (2012) Occupancy in continuous habitat. Ecosphere, 3, art. 32, http://dx.doi.org/10.1890/ES11-00308.1. – reference: Dorazio, R.M. (2007) On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology, 88, 2773-2782. – reference: Efford, M. (2004) Density estimation in live-trapping studies. Oikos, 106, 598-610. – reference: Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B. & Singer, A. (2012) Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeograpy, 39, 2119-2131. – reference: Chandler, R.B., Royle, J.A. & King, D.I. (2011) Inference about density and temporary emigration in unmarked populations. Ecology, 92, 1429-1435. – reference: Newbold, T., Reader, T., El-Gabbas, A., Berg, W., Shohdi, W.M., Zalat, S., El Din, S.B. & Gilbert, F. (2010) Testing the accuracy of species distribution models using species records from a new field survey. Oikos, 119, 1326-1334. – reference: Grabarnik, P. & Särkkä, A. (2004) Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions. Ecological Modelling, 220, 1232-1240. – reference: Møller, J. & Waagepetersen, R.P. (2004) Statistical inference and simulation for spatial point processes. Chapman and Hall, Boca Raton, FL. – reference: Balderama, E., Schoenberg, F.P., Murray, E. & Rundel, P.W. (2012) Application of branching models in the study of invasive species. Journal of the American Statistical Association, 107, 467-476. – reference: Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327-338. – reference: Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. – reference: Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281. – reference: Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. – reference: Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. (2007b) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102. – reference: Bowden, R. (1973) The theory of parametric identification. Econometrica, 41, 1069-1074. – reference: Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009. – reference: Yoccoz, N.G., Nichols, J.D. & Boulinier, T. (2001) Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446-453. – reference: Wiegand, T., Gunatilleke, S. & Gunatilleke, N. (2007a) Species associations in a heterogenous Sri Lankan dipterocarp forest. The American Naturalist, 170, E77-E95. – reference: Higgins, S.I., O'Hara, R.B. & Römermann, C. (2012) A niche for biology in species distribution models. Journal of Biogeography, 39, 2091-2095. – reference: Gormley, A.M., Forsyth, D.M., Griffioen, P., Lindeman, M., Ramsey, D.S.L., Scroggie, M.P. & Woodford, L. (2013) Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48, 25-34. – reference: Royle, J.A. & Dorazio, R.M. (2008) Hierarchical modeling and inference in ecology. Academic Press, Amsterdam. – reference: Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402. – reference: Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics, 64, 377-385. – reference: Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. – reference: Guisan, A., Graham, C.H., Elith, J. et al. (2007) Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13, 332-340. – reference: Lee, A.J., Scott, A.J. & Wild, C.J. (2006) Fitting binary regression models with case-augmented samples. Biometrika, 93, 385-397. – reference: Dorazio, R.M. (2013) Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data. PLoS ONE, 8, e84017. – reference: Lahoz-Monfort, J.J., Guillera-Arroita, G. & Wintle, B.A. (2014) Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23, 504-515. – reference: MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255. – reference: Royle, J.A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115. – reference: Sólymos, P., Lele, S. & Bayne, E. (2012) Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23, 197-205. – reference: Peterman, W.E., Crawford, J.A. & Kuhns, A.R. (2011) Using species distribution and occupancy modeling to guide survey efforts and assess species status. Journal for Nature Conservation, 21, 114-121. – reference: Chakraborty, A., Gelfand, A.E., Wilson, A.M., Latimer, A.M. & Silander, J.A. (2011) Point pattern modelling for degraded presence-only data over large regions. Applied Statistics, 60, 757-776. – reference: Goodsoe, W. & Harmon, L.J. (2012) How do species interactions affect species distribution models? Ecography, 35, 811-820. – reference: Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197. – year: 2011 – volume: 4 start-page: 236 year: 2013 end-page: 243 article-title: Presence‐only modelling using MAXENT: when can we trust the inferences? publication-title: Methods in Ecology and Evolution – volume: 64 start-page: 377 year: 2008 end-page: 385 article-title: Spatially explicit maximum likelihood methods for capture–recapture studies publication-title: Biometrics – volume: 88 start-page: 3088 year: 2007b end-page: 3102 article-title: Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering publication-title: Ecology – volume: 13 start-page: 1790 year: 2003 end-page: 1801 article-title: Improving precision and reducing bias in biological surveys: estimating false‐negative error rates publication-title: Ecological Applications – volume: 7 start-page: 1917 year: 2013 end-page: 1939 article-title: Finite‐sample equivalence in statistical models for presence‐only data publication-title: Annals of Applied Statistics – volume: 170 start-page: E77 year: 2007a end-page: E95 article-title: Species associations in a heterogenous Sri Lankan dipterocarp forest publication-title: The American Naturalist – volume: 83 start-page: 2248 year: 2002 end-page: 2255 article-title: Estimating site occupancy rates when detection probabilities are less than one publication-title: Ecology – volume: 60 start-page: 108 year: 2004 end-page: 115 article-title: ‐mixture models for estimating population size from spatially replicated counts publication-title: Biometrics – volume: 84 start-page: 777 year: 2003 end-page: 790 article-title: Estimating abundance from repeated presence–absence data or point counts publication-title: Ecology – year: 2014 – volume: 119 start-page: 1326 year: 2010 end-page: 1334 article-title: Testing the accuracy of species distribution models using species records from a new field survey publication-title: Oikos – volume: 106 start-page: 598 year: 2004 end-page: 610 article-title: Density estimation in live‐trapping studies publication-title: Oikos – volume: 13 start-page: 332 year: 2007 end-page: 340 article-title: Sensitivity of predictive species distribution models to change in grain size publication-title: Diversity and Distributions – volume: 39 start-page: 2091 year: 2012 end-page: 2095 article-title: A niche for biology in species distribution models publication-title: Journal of Biogeography – volume: 3 start-page: 327 year: 2012 end-page: 338 article-title: Selecting pseudo‐absences for species distribution models: how, where and how many? publication-title: Methods in Ecology and Evolution – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species' distributions from occurrence data publication-title: Ecography – year: 2008 – year: 2004 – volume: 101 start-page: 183 year: 2013 end-page: 191 article-title: Imperfect detection is the rule rather than the exception in plant distribution studies publication-title: Journal of Ecology – volume: 69 start-page: 274 year: 2013 end-page: 281 article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology publication-title: Biometrics – volume: 41 start-page: 252 year: 2004 end-page: 262 article-title: Combining probabilities of occurrence with spatial reserve design publication-title: Journal of Applied Ecology – volume: 21 start-page: 114 year: 2011 end-page: 121 article-title: Using species distribution and occupancy modeling to guide survey efforts and assess species status publication-title: Journal for Nature Conservation – volume: 43 start-page: 405 year: 2006 end-page: 412 article-title: Modelling distribution and abundance with presence‐only data publication-title: Journal of Applied Ecology – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 68 start-page: 1303 year: 2012 end-page: 1312 article-title: Predicting the geographic distribution of a species from presence‐only data subject to detection errors publication-title: Biometrics – volume: 88 start-page: 15 year: 2013 end-page: 30 article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling publication-title: Biological Reviews – volume: 41 start-page: 1069 year: 1973 end-page: 1074 article-title: The theory of parametric identification publication-title: Econometrica – volume: 88 start-page: 2773 year: 2007 end-page: 2782 article-title: On the choice of statistical models for estimating occurrence and extinction from animal surveys publication-title: Ecology – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 35 start-page: 811 year: 2012 end-page: 820 article-title: How do species interactions affect species distribution models? publication-title: Ecography – volume: 19 start-page: 181 year: 2009 end-page: 197 article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data publication-title: Ecological Applications – volume: 39 start-page: 2163 year: 2012 end-page: 2178 article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents publication-title: Journal of Biogeography – volume: 220 start-page: 1232 year: 2004 end-page: 1240 article-title: Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions publication-title: Ecological Modelling – volume: 4 start-page: 1383 year: 2010 end-page: 1402 article-title: Poisson point process models solve the ‘pseudo‐absence problem’ for presence‐only data in ecology publication-title: Annals of Applied Statistics – volume: 94 start-page: 1409 year: 2013 end-page: 1419 article-title: On estimating probability of presence from use‐availability or presence‐background data publication-title: Ecology – volume: 60 start-page: 757 year: 2011 end-page: 776 article-title: Point pattern modelling for degraded presence‐only data over large regions publication-title: Applied Statistics – volume: 107 start-page: 467 year: 2012 end-page: 476 article-title: Application of branching models in the study of invasive species publication-title: Journal of the American Statistical Association – volume: 8 start-page: e84017 year: 2013 article-title: Bayes and empirical Bayes estimators of abundance and density from spatial capture–recapture data publication-title: PLoS ONE – volume: 17 start-page: 43 year: 2010 end-page: 57 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Diversity and Distributions – volume: 87 start-page: 3021 year: 2006 end-page: 3028 article-title: Weighted distributions and estimation of resource selection probability functions publication-title: Ecology – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distribution: offering more than simple habitat models publication-title: Ecology Letters – volume: 93 start-page: 385 year: 2006 end-page: 397 article-title: Fitting binary regression models with case‐augmented samples publication-title: Biometrika – volume: 55 start-page: 1051 year: 1999 end-page: 1058 article-title: Multitype spatial point patterns with hierarchical interactions publication-title: Biometrics – volume: 3 year: 2012 article-title: Occupancy in continuous habitat publication-title: Ecosphere – volume: 23 start-page: 504 year: 2014 end-page: 515 article-title: Imperfect detection impacts the performance of species distribution models publication-title: Global Ecology and Biogeography – year: 2002 – volume: 16 start-page: 446 year: 2001 end-page: 453 article-title: Monitoring of biological diversity in space and time publication-title: Trends in Ecology and Evolution – volume: 39 start-page: 2119 year: 2012 end-page: 2131 article-title: Correlation and process in species distribution models: bridging a dichotomy publication-title: Journal of Biogeograpy – volume: 48 start-page: 25 year: 2013 end-page: 34 article-title: Using presence‐only and presence–absence data to estimate the current and potential distributions of established invasive species publication-title: Journal of Applied Ecology – volume: 92 start-page: 1429 year: 2011 end-page: 1435 article-title: Inference about density and temporary emigration in unmarked populations publication-title: Ecology – volume: 23 start-page: 197 year: 2012 end-page: 205 article-title: Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error publication-title: Environmetrics – ident: e_1_2_9_48_1 doi: 10.1890/02-5078 – ident: e_1_2_9_3_1 doi: 10.1111/j.2041-210X.2011.00172.x – ident: e_1_2_9_6_1 doi: 10.1111/j.0021-8901.2004.00905.x – volume-title: Statistics for spatio‐temporal data year: 2011 ident: e_1_2_9_10_1 – ident: e_1_2_9_32_1 doi: 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2 – ident: e_1_2_9_4_1 doi: 10.1111/j.1541-0420.2007.00927.x – ident: e_1_2_9_38_1 doi: 10.1890/12-1520.1 – ident: e_1_2_9_37_1 doi: 10.1016/j.jnc.2012.11.005 – ident: e_1_2_9_40_1 doi: 10.1890/07-2153.1 – volume-title: Predicting species occurrences: issues of accuracy and scale year: 2002 ident: e_1_2_9_46_1 – ident: e_1_2_9_54_1 doi: 10.1016/S0169-5347(01)02205-4 – ident: e_1_2_9_5_1 doi: 10.2307/1914036 – ident: e_1_2_9_52_1 doi: 10.1111/j.1469-185X.2012.00235.x – ident: e_1_2_9_30_1 doi: 10.1111/geb.12138 – volume-title: R: a language and environment for statistical computing year: 2014 ident: e_1_2_9_41_1 – ident: e_1_2_9_51_1 doi: 10.1890/06-1350.1 – ident: e_1_2_9_17_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_9_45_1 doi: 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2 – ident: e_1_2_9_11_1 doi: 10.1111/j.1541-0420.2012.01779.x – ident: e_1_2_9_43_1 doi: 10.1111/j.0006-341X.2004.00142.x – volume-title: Statistical inference and simulation for spatial point processes year: 2004 ident: e_1_2_9_34_1 – ident: e_1_2_9_25_1 doi: 10.1111/j.1472-4642.2007.00342.x – ident: e_1_2_9_22_1 doi: 10.1111/j.1365-2664.2010.01911.x – ident: e_1_2_9_18_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_9_8_1 doi: 10.1890/10-2433.1 – ident: e_1_2_9_26_1 doi: 10.1111/jbi.12029 – ident: e_1_2_9_35_1 doi: 10.1111/j.1600-0706.2009.18295.x – ident: e_1_2_9_47_1 doi: 10.1002/env.1149 – ident: e_1_2_9_2_1 doi: 10.1080/01621459.2011.641402 – ident: e_1_2_9_15_1 doi: 10.1111/j.0030-1299.2004.13043.x – volume-title: Hierarchical modeling and inference in ecology year: 2008 ident: e_1_2_9_44_1 – ident: e_1_2_9_14_1 doi: 10.1111/j.1365-2699.2011.02659.x – ident: e_1_2_9_50_1 doi: 10.1086/521240 – ident: e_1_2_9_31_1 doi: 10.1093/biomet/93.2.385 – ident: e_1_2_9_16_1 doi: 10.1890/ES11-00308.1 – ident: e_1_2_9_12_1 doi: 10.1890/07-0006.1 – ident: e_1_2_9_27_1 doi: 10.1111/j.0006-341X.1999.01051.x – ident: e_1_2_9_33_1 doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 – ident: e_1_2_9_21_1 doi: 10.1111/j.1600-0587.2011.07103.x – ident: e_1_2_9_23_1 doi: 10.1016/j.ecolmodel.2009.02.021 – ident: e_1_2_9_28_1 doi: 10.1002/9780470725160 – ident: e_1_2_9_29_1 doi: 10.1111/j.1365-2699.2011.02663.x – ident: e_1_2_9_19_1 doi: 10.1111/j.1472-4642.2010.00725.x – ident: e_1_2_9_42_1 doi: 10.1111/j.1541-0420.2012.01824.x – ident: e_1_2_9_49_1 doi: 10.1214/10-AOAS331 – ident: e_1_2_9_53_1 doi: 10.1111/2041-210x.12004 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pone.0084017 – ident: e_1_2_9_20_1 doi: 10.1214/13-AOAS667 – ident: e_1_2_9_9_1 doi: 10.1111/1365-2745.12021 – ident: e_1_2_9_7_1 doi: 10.1111/j.1467-9876.2011.00769.x – ident: e_1_2_9_24_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_9_36_1 doi: 10.1111/j.1365-2664.2005.01112.x – ident: e_1_2_9_39_1 doi: 10.1016/j.ecolmodel.2005.03.026 |
SSID | ssj0005456 |
Score | 2.5172832 |
Snippet | AIM: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence... Aim: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence... Aim During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence... Aim During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence... |
SourceID | proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1472 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Applied ecology Bias Biogeography Biological and medical sciences Data models Ecological modeling Ecological niche model ecologists Estimation bias Fundamental and applied biological sciences. Psychology General aspects MACROECOLOGICAL METHODS N-mixture model Opportunistic behavior Perceptual localization predictive biogeography Simulations site occupancy model Spatial distribution Spatial models spatial point process species distribution model Statistical analysis statistical models surveys Synecology temporal variation |
Title | Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data |
URI | https://api.istex.fr/ark:/67375/WNG-0K0ZN2RR-5/fulltext.pdf https://www.jstor.org/stable/43871461 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12216 https://www.proquest.com/docview/1619271365 https://www.proquest.com/docview/1627985503 https://www.proquest.com/docview/1663551491 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7WBcEXL6tlo-syisi-ZEkmyUyCTyrdXRT7UC0WEYbJXJayki5NK9Ynf4K_0V_iOZNLt6IivrX0pOmcnpn5TuY73yHkCTcschFTIfbWhgTF8TDneRpyHZnEwI6X-hP8NyN-NklfTbPpDnnW1cI0-hD9AzecGX69xgmuyvrKJD-35XHMWIxy28jVQkA03khHITJoKovg7oxNW1UhZPH0V27tRdecmgNCRed-6ciJyJRUNTjLNV0utmDoVTDrd6OTW-RjN46GhHJxvFqWx_rrLxKP_znQ2-Rmi1Lp8yas7pAdW-2R60OvcL3eI4PhpjwOzNr1ob5Lyk3zCQpomM4AlC-QMEKNXXrSV0VVZWi9Wny2a1rOVE1nFcWqJi8YDV-mWpUUOnf00tdGafvj23cYyJoinfUemZwM3708C9suDqFOheChYgXPjRU8S422zhYJvLGZKITBboLaaOZ0JFhaloVxWWy1U1FsjGC5c5bZZEB2q3ll9wnFMyNu8iRxJWSNvABwmjMDIFVleHqpA3LU_Z9StxLn2Gnjk-xSHfCl9L4MyOPe9LLR9fid0T4EhVTnsN7KyVuGT4e8_hHLA_LUR0p_sVpcIEdOZPL96FRGr6MPIzYeyywgAx9KvWGaQI6a8jggh1ux1RtACgy4VsDdD7pgk-3CUssYE16B8R6QR_3HsCTgOY-q7HyFNkwUKFSX_M0GkSakx_A7jnz0_dkN8nT4wr-4_--mD8gNcFfaEH8OyO5ysbIPAb4ty0M_T38CDB49cQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQvfAyqBcYwCKG9pEqcxEkkXvjoVtjWh7KKahKynNieqqF0alpEeeJP4G_kL-HO-eiKACHeGvWS1Nfz-Xf23e8IecYV84zHpIu9tSFAMdxNeBK6PPdUoGDFC-0J_smA90fhu3E03iAvmlqYih-i3XDDmWH9NU5w3JC-MsvPddb1GfP5JrmGHb2ROf_NcEUehdigqi2C9zM2rnmFMI-nvXVtNdo0cgoYFdX7pUlPxFxJWYK6TNXnYg2IXoWzdj06uE0-NiOp0lAuuot51s2__kLy-L9DvUNu1UCVvqws6y7Z0MU2ud6zJNfLbdLprSrkQKx2EeU9kq36T1AAxHQCuHyGOSNU6bnN-yqoLBQtF7PPekmziSzppKBY2GQ5o-FhsiZKoVNDL215VK5_fPsOI1lSzGi9T0YHvdPXfbdu5ODmYRxzV7KUJ0rHPApVro1OA7jQUZzGChsK5ipnJvdiFmZZqkzk69xIz1cqZokxmumgQ7aKaaF3CMVjI66SIDAZBI48BXyaMAU4VUZ4gJk7ZL_5Q0Ves5xjs41Pool2QJfC6tIhT1vRy4ra43dCO2AVQp6DyxWj9ww3iCwFEksc8tyaSnuznF1gmlwciQ-DQ-EdeWcDNhyKyCEda0utYBhAmBpy3yF7a8bVCkAUDNA2hrfvNtYmat9SCh9j3hjTEx3ypP0avAIe9chCTxcow-IUueqCv8kg2IQIGX7HvjW_P6tBHPZe2Q8P_l30MbnRPz05FsdvB0cPyU1QXVjlAe2SrflsoR8Bmptne3bS_gTEHUGN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2IRAvfAyqBcYwCKG9pEqcxEnEE7B2g0GFChUVQrKc2J6qobRqWkR54ifwG_kl3Ot8dEWAEG-tetPUt9f2ufG55xLyiCvmGY9JF3trQ4JiuJvwJHR57qlAwY4X2hP81wN-MgpfjqPxFnnS1MJU-hDtAzecGXa9xgk-U-bCJD_TWddnzOfb5FLIvRT7NhwN19pRCA2q0iK4PWPjWlYIaTztpRub0baRU4Co6N0vDTsRqZKyBG-Zqs3FBg69iGbtdtS_Tj42A6lYKOfd5SLr5l9_0Xj8z5HeINdqmEqfVnF1k2zpYpdc7lmJ69Uu6fTW9XFgVi8Q5S2SrbtPUIDDdAKofI6MEar0wrK-CioLRcvl_LNe0WwiSzopKJY1WcVo-DJZy6TQqaEzWxyV6x_fvsNAVhT5rLfJqN979_zErds4uHkYx9yVLOWJ0jGPQpVro9MA3ugoTmOF7QRzlTOTezELsyxVJvJ1bqTnKxWzxBjNdNAhO8W00HuE4qERV0kQmAzSRp4COk2YApQqIzy-zB1y2PyfIq81zrHVxifR5DrgS2F96ZCHremsEvb4ndEeBIWQZ7DgitFbho-HrAASSxzy2EZKe7GcnyNJLo7E-8Gx8E69DwM2HIrIIR0bSq1hGECSGnLfIQcbsdUaQA4MwDaGu-83wSbqlaUUPma8MZITHfKg_RjWBDzokYWeLtGGxSkq1QV_s0GoCfkx_I5DG31_doM47j2zL-78u-l9cuXNUV-8ejE4vUuugufCigS0T3YW86W-B1BukR3YKfsTymtAPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+imperfect+detection+and+survey+bias+in+statistical+analysis+of+presence%E2%80%90only+data&rft.jtitle=Global+ecology+and+biogeography&rft.au=Dorazio%2C+Robert+M.&rft.date=2014-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=12&rft.spage=1472&rft.epage=1484&rft_id=info:doi/10.1111%2Fgeb.12216&rft.externalDBID=10.1111%252Fgeb.12216&rft.externalDocID=GEB12216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |