Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data

AIM: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analy...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 23; no. 12; pp. 1472 - 1484
Main Author Dorazio, Robert M
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Science 01.12.2014
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AIM: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence‐only data, but these models have largely ignored the effects of imperfect detection and survey bias. In this paper I describe a model‐based approach for the analysis of presence‐only data that accounts for errors in the detection of individuals and for biased selection of survey locations. INNOVATION: I develop a hierarchical, statistical model that allows presence‐only data to be analysed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detection of individuals encountered during opportunistic surveys and the detection of individuals encountered during planned surveys. MAIN CONCLUSIONS: Using mathematical proof and simulation‐based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence‐only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high‐quality data (from planned surveys) can be used to leverage the information in presence‐only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence‐only data is widely applicable. In addition, since the point‐process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions.
AbstractList Aim: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence-only data, but these models have largely ignored the effects of imperfect detection and survey bias. In this paper I describe a model-based approach for the analysis of presence-only data that accounts for errors in the detection of individuals and for biased selection of survey locations. Innovation: I develop a hierarchical, statistical model that allows presence-only data to be analysed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detection of individuals encountered during opportunistic surveys and the detection of individuals encountered during planned surveys. Main conclusions: Using mathematical proof and simulation-based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence-only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high-quality data (from planned surveys) can be used to leverage the information in presence-only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence-only data is widely applicable. In addition, since the point-process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions.
Aim During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence observed in opportunistic surveys with spatially referenced covariates of occurrence. Several statistical models have been proposed for the analysis of presence‐only data, but these models have largely ignored the effects of imperfect detection and survey bias. In this paper I describe a model‐based approach for the analysis of presence‐only data that accounts for errors in the detection of individuals and for biased selection of survey locations. Innovation I develop a hierarchical, statistical model that allows presence‐only data to be analysed in conjunction with data acquired independently in planned surveys. One component of the model specifies the spatial distribution of individuals within a bounded, geographic region as a realization of a spatial point process. A second component of the model specifies two kinds of observations, the detection of individuals encountered during opportunistic surveys and the detection of individuals encountered during planned surveys. Main conclusions Using mathematical proof and simulation‐based comparisons, I demonstrate that biases induced by errors in detection or biased selection of survey locations can be reduced or eliminated by using the hierarchical model to analyse presence‐only data in conjunction with counts observed in planned surveys. I show that a relatively small number of high‐quality data (from planned surveys) can be used to leverage the information in presence‐only observations, which usually have broad spatial coverage but may not be informative of both occurrence and detectability of individuals. Because a variety of sampling protocols can be used in planned surveys, this approach to the analysis of presence‐only data is widely applicable. In addition, since the point‐process model is formulated at the level of an individual, it can be extended to account for biological interactions between individuals and temporal changes in their spatial distributions.
Author Dorazio, Robert M.
Author_xml – sequence: 1
  fullname: Dorazio, Robert M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28915476$$DView record in Pascal Francis
BookMark eNqNksFu1DAQhiNUJNrCgQdAWEJIcEhrO7GdHEtVFkRVpEIF4mI5znjlJWsvdtKSG4_AM_IkOGS7hwokfBlb8_0j-f_nINtz3kGWPSb4iKRzvITmiFBK-L1sn5Sc5xUtqr3dnX5-kB3EuMIYs5Lx_aw50doPrrduiYwPyK43EAzoHrXQp2K9Q8q1KA7hGkbUWBWRdSj2qrext1p1qa26MdqIvEGbABGchl8_fnrXjahVvXqY3Teqi_BoWw-zq9dnH0_f5OfvF29PT85zXQrBc0VrXrUgOCtbDQbqIj2AiVq0rC64bjU1GgtaNk3dGkZAG4VJ2wpaGQMUisPsxTx3E_y3AWIv1zZq6DrlwA9REs4LxkhZk_9AqagrxnCR0Gd30JUfQvryRJGaClJwlqjnW0rF5IkJymkb5SbYtQqjpFVNWCl44o5nTgcfYwAjtZ2s9K4PynaSYDnFKFOM8k-MSfHyjuJ26N_Y7fQb28H4b1Auzl7dKp7MilXsfdgpyqISaWMmo_K5n8KG77u-Cl8lF4Vg8tPFQuJ3-MsFvbyUkw9PZ94oL9UyJA-uPlBMWFq4FDKtit8Z69Fv
CODEN GEBIFS
CitedBy_id crossref_primary_10_1111_geb_12988
crossref_primary_10_1002_eap_2117
crossref_primary_10_1016_j_ecolind_2022_109487
crossref_primary_10_1017_ext_2024_22
crossref_primary_10_1038_ncomms9221
crossref_primary_10_1111_ddi_13416
crossref_primary_10_1016_j_foreco_2019_117642
crossref_primary_10_1111_ecog_04122
crossref_primary_10_1002_ecy_3204
crossref_primary_10_1016_j_ecolmodel_2019_108735
crossref_primary_10_1111_1365_2664_14163
crossref_primary_10_1111_brv_12727
crossref_primary_10_1111_2041_210X_14368
crossref_primary_10_1186_s43170_020_00016_5
crossref_primary_10_1214_24_AOAS1924
crossref_primary_10_1016_j_fishres_2025_107321
crossref_primary_10_1038_s41559_019_0826_1
crossref_primary_10_1111_geb_13792
crossref_primary_10_1214_21_AOAS1569
crossref_primary_10_3390_biology11040563
crossref_primary_10_1007_s10980_015_0327_9
crossref_primary_10_1002_ecy_1710
crossref_primary_10_1002_ecy_1831
crossref_primary_10_1038_s41598_023_32886_w
crossref_primary_10_3389_fevo_2021_682124
crossref_primary_10_3389_fmars_2022_939692
crossref_primary_10_1111_ecog_05843
crossref_primary_10_47603_manovol5n1_31_35
crossref_primary_10_1002_env_2462
crossref_primary_10_1073_pnas_1904807116
crossref_primary_10_1111_2041_210X_13565
crossref_primary_10_1111_geb_12453
crossref_primary_10_1111_cobi_12688
crossref_primary_10_1111_2041_210X_12352
crossref_primary_10_1155_2023_6685108
crossref_primary_10_1111_2041_210X_14252
crossref_primary_10_1002_eap_2893
crossref_primary_10_1002_ecs2_3878
crossref_primary_10_1016_j_baae_2022_08_001
crossref_primary_10_1214_21_AOAS1472
crossref_primary_10_1111_1365_2656_13763
crossref_primary_10_1016_j_tree_2023_05_010
crossref_primary_10_1002_ece3_71029
crossref_primary_10_1111_geb_13491
crossref_primary_10_1002_ece3_3725
crossref_primary_10_1111_ecog_06048
crossref_primary_10_3389_fevo_2021_693602
crossref_primary_10_1111_icad_12345
crossref_primary_10_1002_ecm_1372
crossref_primary_10_1111_2041_210X_13614
crossref_primary_10_1111_2041_210X_13457
crossref_primary_10_1111_ecog_04385
crossref_primary_10_1016_j_gecco_2021_e01662
crossref_primary_10_7717_peerj_3324
crossref_primary_10_1038_s41598_019_44075_9
crossref_primary_10_1111_2041_210X_13297
crossref_primary_10_1111_2041_210X_12242
crossref_primary_10_1371_journal_pone_0215794
crossref_primary_10_1002_jwmg_21968
crossref_primary_10_1007_s10980_021_01262_2
crossref_primary_10_1371_journal_pone_0265730
crossref_primary_10_1186_s12898_015_0038_8
crossref_primary_10_1111_ddi_12631
crossref_primary_10_1038_s41598_022_23603_0
crossref_primary_10_1002_eap_2647
crossref_primary_10_1016_j_ecoinf_2021_101501
crossref_primary_10_1038_s41598_019_46376_5
crossref_primary_10_1007_s10530_022_02976_3
crossref_primary_10_1007_s11356_023_31131_1
crossref_primary_10_1111_1440_1703_12222
crossref_primary_10_1111_2041_210X_12815
crossref_primary_10_1007_s11252_024_01634_x
crossref_primary_10_1111_2041_210X_12499
crossref_primary_10_1111_ecog_07086
crossref_primary_10_1016_j_tree_2019_08_006
crossref_primary_10_1111_ecog_06391
crossref_primary_10_3390_e27010006
crossref_primary_10_1016_j_ecolmodel_2022_110255
crossref_primary_10_1080_10618600_2023_2182311
crossref_primary_10_1111_2041_210X_14282
crossref_primary_10_1111_ddi_13176
crossref_primary_10_1111_ele_12624
crossref_primary_10_1111_geb_12268
crossref_primary_10_1111_aec_12274
crossref_primary_10_7717_peerj_13490
crossref_primary_10_1016_j_spasta_2023_100756
crossref_primary_10_1002_eap_1866
crossref_primary_10_1186_s40068_023_00312_9
crossref_primary_10_1002_ecy_3769
crossref_primary_10_1111_ecog_02303
crossref_primary_10_1371_journal_pone_0308552
crossref_primary_10_1111_ecog_04321
crossref_primary_10_1002_ecy_2710
crossref_primary_10_1139_cjfas_2022_0279
crossref_primary_10_1007_s42519_023_00336_5
crossref_primary_10_1016_j_fishres_2018_10_011
crossref_primary_10_1093_icesjms_fsz075
crossref_primary_10_1111_2041_210X_13110
crossref_primary_10_1002_ece3_8082
crossref_primary_10_1002_ecy_4292
crossref_primary_10_1111_2041_210X_13196
crossref_primary_10_1016_j_biocon_2020_108501
crossref_primary_10_1111_geb_12539
crossref_primary_10_1111_ddi_12776
crossref_primary_10_1111_ddi_13749
crossref_primary_10_1002_eap_2427
crossref_primary_10_1111_ecog_06219
crossref_primary_10_3389_fevo_2022_944116
crossref_primary_10_1016_j_biocon_2022_109715
crossref_primary_10_1016_j_biocon_2017_10_017
crossref_primary_10_3389_fevo_2022_881247
crossref_primary_10_1111_jbi_14622
crossref_primary_10_1007_s00267_015_0613_y
crossref_primary_10_1111_2041_210X_14458
crossref_primary_10_1111_ecog_06451
crossref_primary_10_1111_2041_210X_13002
crossref_primary_10_1016_j_scitotenv_2023_167133
crossref_primary_10_1016_j_oneear_2020_09_010
crossref_primary_10_1371_journal_pone_0190706
crossref_primary_10_1007_s12080_018_0387_y
crossref_primary_10_1038_s41598_022_16104_7
crossref_primary_10_1007_s13364_022_00622_w
crossref_primary_10_1016_j_biocon_2020_108675
crossref_primary_10_1002_ecy_2777
crossref_primary_10_1111_1365_2656_14012
crossref_primary_10_1007_s40823_016_0008_7
crossref_primary_10_1111_1365_2745_70009
crossref_primary_10_1002_eap_2619
crossref_primary_10_3390_ani11123426
crossref_primary_10_1007_s13253_025_00684_8
crossref_primary_10_1111_ecog_02445
crossref_primary_10_3390_environments4040081
crossref_primary_10_1007_s40808_024_02017_z
crossref_primary_10_1111_jbi_14335
crossref_primary_10_1111_2041_210X_13811
crossref_primary_10_1186_s40064_016_3583_5
crossref_primary_10_1002_ecy_2093
crossref_primary_10_1186_s40537_025_01078_w
crossref_primary_10_1002_ecs2_3165
crossref_primary_10_1002_2688_8319_12048
crossref_primary_10_1002_ecs2_4376
crossref_primary_10_1111_geb_12483
crossref_primary_10_1016_j_biocon_2019_108374
crossref_primary_10_1126_science_ade2541
crossref_primary_10_1002_ecy_2709
crossref_primary_10_1111_geb_12514
crossref_primary_10_1002_eap_1754
crossref_primary_10_1002_ece3_7330
crossref_primary_10_1111_een_13307
crossref_primary_10_1111_ecog_04616
crossref_primary_10_1002_ece3_10793
crossref_primary_10_1002_ecy_3637
crossref_primary_10_1016_j_ecolmodel_2022_109910
crossref_primary_10_1111_2041_210X_12738
crossref_primary_10_1111_2041_210X_13948
crossref_primary_10_1016_j_spasta_2020_100418
crossref_primary_10_1007_s40808_022_01417_3
crossref_primary_10_1111_ecog_05146
crossref_primary_10_1111_oik_08215
crossref_primary_10_1038_s41467_017_00923_8
crossref_primary_10_1002_ecs2_3273
crossref_primary_10_1002_ecs2_3790
crossref_primary_10_1016_j_ecoinf_2023_102155
crossref_primary_10_1017_S0376892919000055
crossref_primary_10_1111_1365_2664_14633
crossref_primary_10_1007_s11252_020_01071_6
crossref_primary_10_1007_s13253_023_00558_x
crossref_primary_10_1111_gcb_16114
crossref_primary_10_1002_env_2446
crossref_primary_10_1007_s12080_018_0389_9
crossref_primary_10_1007_s42519_022_00302_7
Cites_doi 10.1890/02-5078
10.1111/j.2041-210X.2011.00172.x
10.1111/j.0021-8901.2004.00905.x
10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
10.1111/j.1541-0420.2007.00927.x
10.1890/12-1520.1
10.1016/j.jnc.2012.11.005
10.1890/07-2153.1
10.1016/S0169-5347(01)02205-4
10.2307/1914036
10.1111/j.1469-185X.2012.00235.x
10.1111/geb.12138
10.1890/06-1350.1
10.1146/annurev.ecolsys.110308.120159
10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
10.1111/j.1541-0420.2012.01779.x
10.1111/j.0006-341X.2004.00142.x
10.1111/j.1472-4642.2007.00342.x
10.1111/j.1365-2664.2010.01911.x
10.1111/j.2006.0906-7590.04596.x
10.1890/10-2433.1
10.1111/jbi.12029
10.1111/j.1600-0706.2009.18295.x
10.1002/env.1149
10.1080/01621459.2011.641402
10.1111/j.0030-1299.2004.13043.x
10.1111/j.1365-2699.2011.02659.x
10.1086/521240
10.1093/biomet/93.2.385
10.1890/ES11-00308.1
10.1890/07-0006.1
10.1111/j.0006-341X.1999.01051.x
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1111/j.1600-0587.2011.07103.x
10.1016/j.ecolmodel.2009.02.021
10.1002/9780470725160
10.1111/j.1365-2699.2011.02663.x
10.1111/j.1472-4642.2010.00725.x
10.1111/j.1541-0420.2012.01824.x
10.1214/10-AOAS331
10.1111/2041-210x.12004
10.1371/journal.pone.0084017
10.1214/13-AOAS667
10.1111/1365-2745.12021
10.1111/j.1467-9876.2011.00769.x
10.1111/j.1461-0248.2005.00792.x
10.1111/j.1365-2664.2005.01112.x
10.1016/j.ecolmodel.2005.03.026
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons Ltd.
2014 John Wiley & Sons Ltd
2015 INIST-CNRS
Copyright © 2014 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons Ltd.
– notice: 2014 John Wiley & Sons Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 John Wiley & Sons Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/geb.12216
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts
Ecology Abstracts

AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
EndPage 1484
ExternalDocumentID 3479644731
28915476
10_1111_geb_12216
GEB12216
43871461
ark_67375_WNG_0K0ZN2RR_5
US201500077628
Genre technicalNote
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACHIC
ACPOU
ACPRK
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FBQ
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WXSBR
XG1
ZZTAW
~KM
ADACV
AEUQT
AFPWT
BSCLL
DOOOF
EQZMY
ESX
JSODD
WRC
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c4776-a2968de7654dcefe93de7e5797d5936cdc2fc0724bb9df51ecfa01dd728ffe2e3
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 18:28:42 EDT 2025
Thu Jul 10 22:12:20 EDT 2025
Fri Jul 25 03:44:45 EDT 2025
Wed Apr 02 07:26:07 EDT 2025
Tue Jul 01 01:46:05 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Wed Jan 22 16:21:54 EST 2025
Thu Jul 03 22:44:23 EDT 2025
Wed Oct 30 09:52:22 EDT 2024
Thu Apr 03 09:46:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Statistical analysis
Ecological niche model
Biogeography
Ecology
predictive biogeography
species distribution model
site occupancy model
spatial point process
Spatial distribution
N-mixture model
Geographic distribution
Ecological niche
Models
Detection
Distribution range
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4776-a2968de7654dcefe93de7e5797d5936cdc2fc0724bb9df51ecfa01dd728ffe2e3
Notes http://dx.doi.org/10.1111/geb.12216
Appendix S1 Fisher information matrix.Appendix S2 R code (R Core Team, 2014) used to simulate and analyse data in opportunistic and planned surveys.
istex:E2AEEBEAA6894C56AC5032EE7048DF659CF2D336
ArticleID:GEB12216
ark:/67375/WNG-0K0ZN2RR-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1619271365
PQPubID 1066347
PageCount 13
ParticipantIDs proquest_miscellaneous_1663551491
proquest_miscellaneous_1627985503
proquest_journals_1619271365
pascalfrancis_primary_28915476
crossref_citationtrail_10_1111_geb_12216
crossref_primary_10_1111_geb_12216
wiley_primary_10_1111_geb_12216_GEB12216
jstor_primary_43871461
istex_primary_ark_67375_WNG_0K0ZN2RR_5
fao_agris_US201500077628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationTitleAlternate Global Ecology and Biogeography
PublicationYear 2014
Publisher Blackwell Science
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Goodsoe, W. & Harmon, L.J. (2012) How do species interactions affect species distribution models? Ecography, 35, 811-820.
Efford, M. (2004) Density estimation in live-trapping studies. Oikos, 106, 598-610.
Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B. & Singer, A. (2012) Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeograpy, 39, 2119-2131.
MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
Guisan, A., Graham, C.H., Elith, J. et al. (2007) Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13, 332-340.
Newbold, T., Reader, T., El-Gabbas, A., Berg, W., Shohdi, W.M., Zalat, S., El Din, S.B. & Gilbert, F. (2010) Testing the accuracy of species distribution models using species records from a new field survey. Oikos, 119, 1326-1334.
Chandler, R.B., Royle, J.A. & King, D.I. (2011) Inference about density and temporary emigration in unmarked populations. Ecology, 92, 1429-1435.
Efford, M.G. & Dawson, D.K. (2012) Occupancy in continuous habitat. Ecosphere, 3, art. 32, http://dx.doi.org/10.1890/ES11-00308.1.
Cabeza, M., Araújo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. & Moilanen, A. (2004) Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41, 252-262.
Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008) Statistical analysis and modelling of spatial point patterns. John Wiley and Sons, Chichester.
Fithian, W. & Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 7, 1917-1939.
Dorazio, R.M. (2007) On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology, 88, 2773-2782.
Wiegand, T., Gunatilleke, S. & Gunatilleke, N. (2007a) Species associations in a heterogenous Sri Lankan dipterocarp forest. The American Naturalist, 170, E77-E95.
Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327-338.
Cressie, N. & Wikle, C.K. (2011) Statistics for spatio-temporal data. John Wiley and Sons, Hoboken, NJ.
Royle, J.A. & Nichols, J.D. (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology, 84, 777-790.
Bowden, R. (1973) The theory of parametric identification. Econometrica, 41, 1069-1074.
Balderama, E., Schoenberg, F.P., Murray, E. & Rundel, P.W. (2012) Application of branching models in the study of invasive species. Journal of the American Statistical Association, 107, 467-476.
Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402.
Högmander, H. & Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions. Biometrics, 55, 1051-1058.
Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B. (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC.
Yoccoz, N.G., Nichols, J.D. & Boulinier, T. (2001) Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446-453.
Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15-30.
Lahoz-Monfort, J.J., Guillera-Arroita, G. & Wintle, B.A. (2014) Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23, 504-515.
Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
Pearce, J.L. & Boyce, M.S. (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405-412.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
Gormley, A.M., Forsyth, D.M., Griffioen, P., Lindeman, M., Ramsey, D.S.L., Scroggie, M.P. & Woodford, L. (2013) Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48, 25-34.
Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.
Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. (2007b) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102.
Dorazio, R.M. (2013) Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data. PLoS ONE, 8, e84017.
Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281.
Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
Møller, J. & Waagepetersen, R.P. (2004) Statistical inference and simulation for spatial point processes. Chapman and Hall, Boca Raton, FL.
Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K. & Possingham, H.P. (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications, 13, 1790-1801.
Lee, A.J., Scott, A.J. & Wild, C.J. (2006) Fitting binary regression models with case-augmented samples. Biometrika, 93, 385-397.
Dorazio, R.M. (2012) Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics, 68, 1303-1312.
Royle, J.A. & Dorazio, R.M. (2008) Hierarchical modeling and inference in ecology. Academic Press, Amsterdam.
Peterman, W.E., Crawford, J.A. & Kuhns, A.R. (2011) Using species distribution and occupancy modeling to guide survey efforts and assess species status. Journal for Nature Conservation, 21, 114-121.
Chakraborty, A., Gelfand, A.E., Wilson, A.M., Latimer, A.M. & Silander, J.A. (2011) Point pattern modelling for degraded presence-only data over large regions. Applied Statistics, 60, 757-776.
Phillips, S.J. & Elith, J. (2013) On estimating probability of presence from use-availability or presence-background data. Ecology, 94, 1409-1419.
Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178.
Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
Chen, G., Kéry, M., Plattner, M., Ma, K. & Gardner, B. (2013) Imperfect detection is the rule rather than the exception in plant distribution studies. Journal of Ecology, 101, 183-191.
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Sólymos, P., Lele, S. & Bayne, E. (2012) Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23, 197-205.
Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics, 64, 377-385.
Grabarnik, P. & Särkkä, A. (2004) Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions. Ecological Modelling, 220, 1232-1240.
Higgins, S.I., O'Hara, R.B. & Römermann, C. (2012) A niche for biology in species distribution models. Journal of Biogeography, 39, 2091-2095.
Royle, J.A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
Lele, S.R. & Keim, J.L. (2006) Weighted distributions and estimation of resource selection probability functions. Ecology, 87, 3021-3028.
Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.H.C. & Veran, S. (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243.
2009; 40
2013; 69
2013; 4
2004; 60
2010; 17
2011; 60
2003; 13
2013; 7
2013; 8
2007a; 170
2014; 23
1973; 41
2010; 119
2002; 83
2013; 94
2006; 29
1999; 55
2011; 21
2001; 16
2008; 64
2012; 68
2009; 19
2003; 84
2012; 23
2010; 4
2006; 93
2004; 41
2004; 220
2013; 48
2013; 88
2011
2013; 101
2008
2012; 39
2004
2002
2012; 35
2004; 106
2012; 107
2007; 13
2007b; 88
2012; 3
2006; 87
2006; 43
2006; 190
2011; 92
2005; 8
2014
2007; 88
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Royle J.A. (e_1_2_9_44_1) 2008
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
Cressie N. (e_1_2_9_10_1) 2011
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
R Core Team (e_1_2_9_41_1) 2014
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
Scott J.M. (e_1_2_9_46_1) 2002
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
Møller J. (e_1_2_9_34_1) 2004
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Chen, G., Kéry, M., Plattner, M., Ma, K. & Gardner, B. (2013) Imperfect detection is the rule rather than the exception in plant distribution studies. Journal of Ecology, 101, 183-191.
– reference: Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Grant, E.H.C. & Veran, S. (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243.
– reference: Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K. & Possingham, H.P. (2003) Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications, 13, 1790-1801.
– reference: Lele, S.R. & Keim, J.L. (2006) Weighted distributions and estimation of resource selection probability functions. Ecology, 87, 3021-3028.
– reference: Elith, J. & Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697.
– reference: R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
– reference: Kissling, W.D., Dormann, C.F., Groeneveld, J., Hickler, T., Kühn, I., McInerny, G.J., Montoya, J.M., Römermann, C., Schiffers, K., Schurr, F.M., Singer, A., Svenning, J.C., Zimmermann, N.E. & O'Hara, R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163-2178.
– reference: Dorazio, R.M. (2012) Predicting the geographic distribution of a species from presence-only data subject to detection errors. Biometrics, 68, 1303-1312.
– reference: Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008) Statistical analysis and modelling of spatial point patterns. John Wiley and Sons, Chichester.
– reference: Fithian, W. & Hastie, T. (2013) Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 7, 1917-1939.
– reference: Phillips, S.J. & Elith, J. (2013) On estimating probability of presence from use-availability or presence-background data. Ecology, 94, 1409-1419.
– reference: Cabeza, M., Araújo, M.B., Wilson, R.J., Thomas, C.D., Cowley, M.J.R. & Moilanen, A. (2004) Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology, 41, 252-262.
– reference: Högmander, H. & Särkkä, A. (1999) Multitype spatial point patterns with hierarchical interactions. Biometrics, 55, 1051-1058.
– reference: Pearce, J.L. & Boyce, M.S. (2006) Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43, 405-412.
– reference: Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A. & Samson, F.B. (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC.
– reference: Royle, J.A. & Nichols, J.D. (2003) Estimating abundance from repeated presence-absence data or point counts. Ecology, 84, 777-790.
– reference: Cressie, N. & Wikle, C.K. (2011) Statistics for spatio-temporal data. John Wiley and Sons, Hoboken, NJ.
– reference: Wisz, M.S., Pottier, J., Kissling, W.D. et al. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15-30.
– reference: Efford, M.G. & Dawson, D.K. (2012) Occupancy in continuous habitat. Ecosphere, 3, art. 32, http://dx.doi.org/10.1890/ES11-00308.1.
– reference: Dorazio, R.M. (2007) On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology, 88, 2773-2782.
– reference: Efford, M. (2004) Density estimation in live-trapping studies. Oikos, 106, 598-610.
– reference: Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B. & Singer, A. (2012) Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeograpy, 39, 2119-2131.
– reference: Chandler, R.B., Royle, J.A. & King, D.I. (2011) Inference about density and temporary emigration in unmarked populations. Ecology, 92, 1429-1435.
– reference: Newbold, T., Reader, T., El-Gabbas, A., Berg, W., Shohdi, W.M., Zalat, S., El Din, S.B. & Gilbert, F. (2010) Testing the accuracy of species distribution models using species records from a new field survey. Oikos, 119, 1326-1334.
– reference: Grabarnik, P. & Särkkä, A. (2004) Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions. Ecological Modelling, 220, 1232-1240.
– reference: Møller, J. & Waagepetersen, R.P. (2004) Statistical inference and simulation for spatial point processes. Chapman and Hall, Boca Raton, FL.
– reference: Balderama, E., Schoenberg, F.P., Murray, E. & Rundel, P.W. (2012) Application of branching models in the study of invasive species. Journal of the American Statistical Association, 107, 467-476.
– reference: Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327-338.
– reference: Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
– reference: Renner, I.W. & Warton, D.I. (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274-281.
– reference: Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
– reference: Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. (2007b) Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology, 88, 3088-3102.
– reference: Bowden, R. (1973) The theory of parametric identification. Econometrica, 41, 1069-1074.
– reference: Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
– reference: Yoccoz, N.G., Nichols, J.D. & Boulinier, T. (2001) Monitoring of biological diversity in space and time. Trends in Ecology and Evolution, 16, 446-453.
– reference: Wiegand, T., Gunatilleke, S. & Gunatilleke, N. (2007a) Species associations in a heterogenous Sri Lankan dipterocarp forest. The American Naturalist, 170, E77-E95.
– reference: Higgins, S.I., O'Hara, R.B. & Römermann, C. (2012) A niche for biology in species distribution models. Journal of Biogeography, 39, 2091-2095.
– reference: Gormley, A.M., Forsyth, D.M., Griffioen, P., Lindeman, M., Ramsey, D.S.L., Scroggie, M.P. & Woodford, L. (2013) Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48, 25-34.
– reference: Royle, J.A. & Dorazio, R.M. (2008) Hierarchical modeling and inference in ecology. Academic Press, Amsterdam.
– reference: Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402.
– reference: Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics, 64, 377-385.
– reference: Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2010) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.
– reference: Guisan, A., Graham, C.H., Elith, J. et al. (2007) Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13, 332-340.
– reference: Lee, A.J., Scott, A.J. & Wild, C.J. (2006) Fitting binary regression models with case-augmented samples. Biometrika, 93, 385-397.
– reference: Dorazio, R.M. (2013) Bayes and empirical Bayes estimators of abundance and density from spatial capture-recapture data. PLoS ONE, 8, e84017.
– reference: Lahoz-Monfort, J.J., Guillera-Arroita, G. & Wintle, B.A. (2014) Imperfect detection impacts the performance of species distribution models. Global Ecology and Biogeography, 23, 504-515.
– reference: MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
– reference: Royle, J.A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115.
– reference: Sólymos, P., Lele, S. & Bayne, E. (2012) Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23, 197-205.
– reference: Peterman, W.E., Crawford, J.A. & Kuhns, A.R. (2011) Using species distribution and occupancy modeling to guide survey efforts and assess species status. Journal for Nature Conservation, 21, 114-121.
– reference: Chakraborty, A., Gelfand, A.E., Wilson, A.M., Latimer, A.M. & Silander, J.A. (2011) Point pattern modelling for degraded presence-only data over large regions. Applied Statistics, 60, 757-776.
– reference: Goodsoe, W. & Harmon, L.J. (2012) How do species interactions affect species distribution models? Ecography, 35, 811-820.
– reference: Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
– year: 2011
– volume: 4
  start-page: 236
  year: 2013
  end-page: 243
  article-title: Presence‐only modelling using MAXENT: when can we trust the inferences?
  publication-title: Methods in Ecology and Evolution
– volume: 64
  start-page: 377
  year: 2008
  end-page: 385
  article-title: Spatially explicit maximum likelihood methods for capture–recapture studies
  publication-title: Biometrics
– volume: 88
  start-page: 3088
  year: 2007b
  end-page: 3102
  article-title: Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering
  publication-title: Ecology
– volume: 13
  start-page: 1790
  year: 2003
  end-page: 1801
  article-title: Improving precision and reducing bias in biological surveys: estimating false‐negative error rates
  publication-title: Ecological Applications
– volume: 7
  start-page: 1917
  year: 2013
  end-page: 1939
  article-title: Finite‐sample equivalence in statistical models for presence‐only data
  publication-title: Annals of Applied Statistics
– volume: 170
  start-page: E77
  year: 2007a
  end-page: E95
  article-title: Species associations in a heterogenous Sri Lankan dipterocarp forest
  publication-title: The American Naturalist
– volume: 83
  start-page: 2248
  year: 2002
  end-page: 2255
  article-title: Estimating site occupancy rates when detection probabilities are less than one
  publication-title: Ecology
– volume: 60
  start-page: 108
  year: 2004
  end-page: 115
  article-title: ‐mixture models for estimating population size from spatially replicated counts
  publication-title: Biometrics
– volume: 84
  start-page: 777
  year: 2003
  end-page: 790
  article-title: Estimating abundance from repeated presence–absence data or point counts
  publication-title: Ecology
– year: 2014
– volume: 119
  start-page: 1326
  year: 2010
  end-page: 1334
  article-title: Testing the accuracy of species distribution models using species records from a new field survey
  publication-title: Oikos
– volume: 106
  start-page: 598
  year: 2004
  end-page: 610
  article-title: Density estimation in live‐trapping studies
  publication-title: Oikos
– volume: 13
  start-page: 332
  year: 2007
  end-page: 340
  article-title: Sensitivity of predictive species distribution models to change in grain size
  publication-title: Diversity and Distributions
– volume: 39
  start-page: 2091
  year: 2012
  end-page: 2095
  article-title: A niche for biology in species distribution models
  publication-title: Journal of Biogeography
– volume: 3
  start-page: 327
  year: 2012
  end-page: 338
  article-title: Selecting pseudo‐absences for species distribution models: how, where and how many?
  publication-title: Methods in Ecology and Evolution
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species' distributions from occurrence data
  publication-title: Ecography
– year: 2008
– year: 2004
– volume: 101
  start-page: 183
  year: 2013
  end-page: 191
  article-title: Imperfect detection is the rule rather than the exception in plant distribution studies
  publication-title: Journal of Ecology
– volume: 69
  start-page: 274
  year: 2013
  end-page: 281
  article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
  publication-title: Biometrics
– volume: 41
  start-page: 252
  year: 2004
  end-page: 262
  article-title: Combining probabilities of occurrence with spatial reserve design
  publication-title: Journal of Applied Ecology
– volume: 21
  start-page: 114
  year: 2011
  end-page: 121
  article-title: Using species distribution and occupancy modeling to guide survey efforts and assess species status
  publication-title: Journal for Nature Conservation
– volume: 43
  start-page: 405
  year: 2006
  end-page: 412
  article-title: Modelling distribution and abundance with presence‐only data
  publication-title: Journal of Applied Ecology
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 68
  start-page: 1303
  year: 2012
  end-page: 1312
  article-title: Predicting the geographic distribution of a species from presence‐only data subject to detection errors
  publication-title: Biometrics
– volume: 88
  start-page: 15
  year: 2013
  end-page: 30
  article-title: The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling
  publication-title: Biological Reviews
– volume: 41
  start-page: 1069
  year: 1973
  end-page: 1074
  article-title: The theory of parametric identification
  publication-title: Econometrica
– volume: 88
  start-page: 2773
  year: 2007
  end-page: 2782
  article-title: On the choice of statistical models for estimating occurrence and extinction from animal surveys
  publication-title: Ecology
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 35
  start-page: 811
  year: 2012
  end-page: 820
  article-title: How do species interactions affect species distribution models?
  publication-title: Ecography
– volume: 19
  start-page: 181
  year: 2009
  end-page: 197
  article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo‐absence data
  publication-title: Ecological Applications
– volume: 39
  start-page: 2163
  year: 2012
  end-page: 2178
  article-title: Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents
  publication-title: Journal of Biogeography
– volume: 220
  start-page: 1232
  year: 2004
  end-page: 1240
  article-title: Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions
  publication-title: Ecological Modelling
– volume: 4
  start-page: 1383
  year: 2010
  end-page: 1402
  article-title: Poisson point process models solve the ‘pseudo‐absence problem’ for presence‐only data in ecology
  publication-title: Annals of Applied Statistics
– volume: 94
  start-page: 1409
  year: 2013
  end-page: 1419
  article-title: On estimating probability of presence from use‐availability or presence‐background data
  publication-title: Ecology
– volume: 60
  start-page: 757
  year: 2011
  end-page: 776
  article-title: Point pattern modelling for degraded presence‐only data over large regions
  publication-title: Applied Statistics
– volume: 107
  start-page: 467
  year: 2012
  end-page: 476
  article-title: Application of branching models in the study of invasive species
  publication-title: Journal of the American Statistical Association
– volume: 8
  start-page: e84017
  year: 2013
  article-title: Bayes and empirical Bayes estimators of abundance and density from spatial capture–recapture data
  publication-title: PLoS ONE
– volume: 17
  start-page: 43
  year: 2010
  end-page: 57
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Diversity and Distributions
– volume: 87
  start-page: 3021
  year: 2006
  end-page: 3028
  article-title: Weighted distributions and estimation of resource selection probability functions
  publication-title: Ecology
– volume: 8
  start-page: 993
  year: 2005
  end-page: 1009
  article-title: Predicting species distribution: offering more than simple habitat models
  publication-title: Ecology Letters
– volume: 93
  start-page: 385
  year: 2006
  end-page: 397
  article-title: Fitting binary regression models with case‐augmented samples
  publication-title: Biometrika
– volume: 55
  start-page: 1051
  year: 1999
  end-page: 1058
  article-title: Multitype spatial point patterns with hierarchical interactions
  publication-title: Biometrics
– volume: 3
  year: 2012
  article-title: Occupancy in continuous habitat
  publication-title: Ecosphere
– volume: 23
  start-page: 504
  year: 2014
  end-page: 515
  article-title: Imperfect detection impacts the performance of species distribution models
  publication-title: Global Ecology and Biogeography
– year: 2002
– volume: 16
  start-page: 446
  year: 2001
  end-page: 453
  article-title: Monitoring of biological diversity in space and time
  publication-title: Trends in Ecology and Evolution
– volume: 39
  start-page: 2119
  year: 2012
  end-page: 2131
  article-title: Correlation and process in species distribution models: bridging a dichotomy
  publication-title: Journal of Biogeograpy
– volume: 48
  start-page: 25
  year: 2013
  end-page: 34
  article-title: Using presence‐only and presence–absence data to estimate the current and potential distributions of established invasive species
  publication-title: Journal of Applied Ecology
– volume: 92
  start-page: 1429
  year: 2011
  end-page: 1435
  article-title: Inference about density and temporary emigration in unmarked populations
  publication-title: Ecology
– volume: 23
  start-page: 197
  year: 2012
  end-page: 205
  article-title: Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error
  publication-title: Environmetrics
– ident: e_1_2_9_48_1
  doi: 10.1890/02-5078
– ident: e_1_2_9_3_1
  doi: 10.1111/j.2041-210X.2011.00172.x
– ident: e_1_2_9_6_1
  doi: 10.1111/j.0021-8901.2004.00905.x
– volume-title: Statistics for spatio‐temporal data
  year: 2011
  ident: e_1_2_9_10_1
– ident: e_1_2_9_32_1
  doi: 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1541-0420.2007.00927.x
– ident: e_1_2_9_38_1
  doi: 10.1890/12-1520.1
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jnc.2012.11.005
– ident: e_1_2_9_40_1
  doi: 10.1890/07-2153.1
– volume-title: Predicting species occurrences: issues of accuracy and scale
  year: 2002
  ident: e_1_2_9_46_1
– ident: e_1_2_9_54_1
  doi: 10.1016/S0169-5347(01)02205-4
– ident: e_1_2_9_5_1
  doi: 10.2307/1914036
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1469-185X.2012.00235.x
– ident: e_1_2_9_30_1
  doi: 10.1111/geb.12138
– volume-title: R: a language and environment for statistical computing
  year: 2014
  ident: e_1_2_9_41_1
– ident: e_1_2_9_51_1
  doi: 10.1890/06-1350.1
– ident: e_1_2_9_17_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_9_45_1
  doi: 10.1890/0012-9658(2003)084[0777:EAFRPA]2.0.CO;2
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1541-0420.2012.01779.x
– ident: e_1_2_9_43_1
  doi: 10.1111/j.0006-341X.2004.00142.x
– volume-title: Statistical inference and simulation for spatial point processes
  year: 2004
  ident: e_1_2_9_34_1
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1472-4642.2007.00342.x
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1365-2664.2010.01911.x
– ident: e_1_2_9_18_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_9_8_1
  doi: 10.1890/10-2433.1
– ident: e_1_2_9_26_1
  doi: 10.1111/jbi.12029
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1600-0706.2009.18295.x
– ident: e_1_2_9_47_1
  doi: 10.1002/env.1149
– ident: e_1_2_9_2_1
  doi: 10.1080/01621459.2011.641402
– ident: e_1_2_9_15_1
  doi: 10.1111/j.0030-1299.2004.13043.x
– volume-title: Hierarchical modeling and inference in ecology
  year: 2008
  ident: e_1_2_9_44_1
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1365-2699.2011.02659.x
– ident: e_1_2_9_50_1
  doi: 10.1086/521240
– ident: e_1_2_9_31_1
  doi: 10.1093/biomet/93.2.385
– ident: e_1_2_9_16_1
  doi: 10.1890/ES11-00308.1
– ident: e_1_2_9_12_1
  doi: 10.1890/07-0006.1
– ident: e_1_2_9_27_1
  doi: 10.1111/j.0006-341X.1999.01051.x
– ident: e_1_2_9_33_1
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1600-0587.2011.07103.x
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ecolmodel.2009.02.021
– ident: e_1_2_9_28_1
  doi: 10.1002/9780470725160
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1365-2699.2011.02663.x
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1472-4642.2010.00725.x
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1541-0420.2012.01824.x
– ident: e_1_2_9_49_1
  doi: 10.1214/10-AOAS331
– ident: e_1_2_9_53_1
  doi: 10.1111/2041-210x.12004
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0084017
– ident: e_1_2_9_20_1
  doi: 10.1214/13-AOAS667
– ident: e_1_2_9_9_1
  doi: 10.1111/1365-2745.12021
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1467-9876.2011.00769.x
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1461-0248.2005.00792.x
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1365-2664.2005.01112.x
– ident: e_1_2_9_39_1
  doi: 10.1016/j.ecolmodel.2005.03.026
SSID ssj0005456
Score 2.5172832
Snippet AIM: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence...
Aim: During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence...
Aim During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence...
Aim During the past decade ecologists have attempted to estimate the parameters of species distribution models by combining locations of species presence...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1472
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
Bias
Biogeography
Biological and medical sciences
Data models
Ecological modeling
Ecological niche model
ecologists
Estimation bias
Fundamental and applied biological sciences. Psychology
General aspects
MACROECOLOGICAL METHODS
N-mixture model
Opportunistic behavior
Perceptual localization
predictive biogeography
Simulations
site occupancy model
Spatial distribution
Spatial models
spatial point process
species distribution model
Statistical analysis
statistical models
surveys
Synecology
temporal variation
Title Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data
URI https://api.istex.fr/ark:/67375/WNG-0K0ZN2RR-5/fulltext.pdf
https://www.jstor.org/stable/43871461
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12216
https://www.proquest.com/docview/1619271365
https://www.proquest.com/docview/1627985503
https://www.proquest.com/docview/1663551491
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7WBcEXL6tlo-syisi-ZEkmyUyCTyrdXRT7UC0WEYbJXJayki5NK9Ynf4K_0V_iOZNLt6IivrX0pOmcnpn5TuY73yHkCTcschFTIfbWhgTF8TDneRpyHZnEwI6X-hP8NyN-NklfTbPpDnnW1cI0-hD9AzecGX69xgmuyvrKJD-35XHMWIxy28jVQkA03khHITJoKovg7oxNW1UhZPH0V27tRdecmgNCRed-6ciJyJRUNTjLNV0utmDoVTDrd6OTW-RjN46GhHJxvFqWx_rrLxKP_znQ2-Rmi1Lp8yas7pAdW-2R60OvcL3eI4PhpjwOzNr1ob5Lyk3zCQpomM4AlC-QMEKNXXrSV0VVZWi9Wny2a1rOVE1nFcWqJi8YDV-mWpUUOnf00tdGafvj23cYyJoinfUemZwM3708C9suDqFOheChYgXPjRU8S422zhYJvLGZKITBboLaaOZ0JFhaloVxWWy1U1FsjGC5c5bZZEB2q3ll9wnFMyNu8iRxJWSNvABwmjMDIFVleHqpA3LU_Z9StxLn2Gnjk-xSHfCl9L4MyOPe9LLR9fid0T4EhVTnsN7KyVuGT4e8_hHLA_LUR0p_sVpcIEdOZPL96FRGr6MPIzYeyywgAx9KvWGaQI6a8jggh1ux1RtACgy4VsDdD7pgk-3CUssYE16B8R6QR_3HsCTgOY-q7HyFNkwUKFSX_M0GkSakx_A7jnz0_dkN8nT4wr-4_--mD8gNcFfaEH8OyO5ysbIPAb4ty0M_T38CDB49cQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQvfAyqBcYwCKG9pEqcxEkkXvjoVtjWh7KKahKynNieqqF0alpEeeJP4G_kL-HO-eiKACHeGvWS1Nfz-Xf23e8IecYV84zHpIu9tSFAMdxNeBK6PPdUoGDFC-0J_smA90fhu3E03iAvmlqYih-i3XDDmWH9NU5w3JC-MsvPddb1GfP5JrmGHb2ROf_NcEUehdigqi2C9zM2rnmFMI-nvXVtNdo0cgoYFdX7pUlPxFxJWYK6TNXnYg2IXoWzdj06uE0-NiOp0lAuuot51s2__kLy-L9DvUNu1UCVvqws6y7Z0MU2ud6zJNfLbdLprSrkQKx2EeU9kq36T1AAxHQCuHyGOSNU6bnN-yqoLBQtF7PPekmziSzppKBY2GQ5o-FhsiZKoVNDL215VK5_fPsOI1lSzGi9T0YHvdPXfbdu5ODmYRxzV7KUJ0rHPApVro1OA7jQUZzGChsK5ipnJvdiFmZZqkzk69xIz1cqZokxmumgQ7aKaaF3CMVjI66SIDAZBI48BXyaMAU4VUZ4gJk7ZL_5Q0Ves5xjs41Pool2QJfC6tIhT1vRy4ra43dCO2AVQp6DyxWj9ww3iCwFEksc8tyaSnuznF1gmlwciQ-DQ-EdeWcDNhyKyCEda0utYBhAmBpy3yF7a8bVCkAUDNA2hrfvNtYmat9SCh9j3hjTEx3ypP0avAIe9chCTxcow-IUueqCv8kg2IQIGX7HvjW_P6tBHPZe2Q8P_l30MbnRPz05FsdvB0cPyU1QXVjlAe2SrflsoR8Bmptne3bS_gTEHUGN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2IRAvfAyqBcYwCKG9pEqcxEnEE7B2g0GFChUVQrKc2J6qobRqWkR54ifwG_kl3Ot8dEWAEG-tetPUt9f2ufG55xLyiCvmGY9JF3trQ4JiuJvwJHR57qlAwY4X2hP81wN-MgpfjqPxFnnS1MJU-hDtAzecGXa9xgk-U-bCJD_TWddnzOfb5FLIvRT7NhwN19pRCA2q0iK4PWPjWlYIaTztpRub0baRU4Co6N0vDTsRqZKyBG-Zqs3FBg69iGbtdtS_Tj42A6lYKOfd5SLr5l9_0Xj8z5HeINdqmEqfVnF1k2zpYpdc7lmJ69Uu6fTW9XFgVi8Q5S2SrbtPUIDDdAKofI6MEar0wrK-CioLRcvl_LNe0WwiSzopKJY1WcVo-DJZy6TQqaEzWxyV6x_fvsNAVhT5rLfJqN979_zErds4uHkYx9yVLOWJ0jGPQpVro9MA3ugoTmOF7QRzlTOTezELsyxVJvJ1bqTnKxWzxBjNdNAhO8W00HuE4qERV0kQmAzSRp4COk2YApQqIzy-zB1y2PyfIq81zrHVxifR5DrgS2F96ZCHremsEvb4ndEeBIWQZ7DgitFbho-HrAASSxzy2EZKe7GcnyNJLo7E-8Gx8E69DwM2HIrIIR0bSq1hGECSGnLfIQcbsdUaQA4MwDaGu-83wSbqlaUUPma8MZITHfKg_RjWBDzokYWeLtGGxSkq1QV_s0GoCfkx_I5DG31_doM47j2zL-78u-l9cuXNUV-8ejE4vUuugufCigS0T3YW86W-B1BukR3YKfsTymtAPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+imperfect+detection+and+survey+bias+in+statistical+analysis+of+presence%E2%80%90only+data&rft.jtitle=Global+ecology+and+biogeography&rft.au=Dorazio%2C+Robert+M.&rft.date=2014-12-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=23&rft.issue=12&rft.spage=1472&rft.epage=1484&rft_id=info:doi/10.1111%2Fgeb.12216&rft.externalDBID=10.1111%252Fgeb.12216&rft.externalDocID=GEB12216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon