Mechanical Properties of Graphene Foam and Graphene Foam—Tissue Composites

Graphene foam (GF), a 3‐dimensional derivative of graphene, has received much attention recently for applications in tissue engineering due to its unique mechanical, electrical, and thermal properties. Although GF is an appealing material for cartilage tissue engineering, the mechanical properties o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 20; no. 9
Main Authors Yocham, Katie M., Scott, Crystal, Fujimoto, Kiyo, Brown, Raquel, Tanasse, Emily, Oxford, Julia T., Lujan, Trevor J., Estrada, David
Format Journal Article
LanguageEnglish
Published Germany 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene foam (GF), a 3‐dimensional derivative of graphene, has received much attention recently for applications in tissue engineering due to its unique mechanical, electrical, and thermal properties. Although GF is an appealing material for cartilage tissue engineering, the mechanical properties of GF‐tissue composites under dynamic compressive loads have not yet been reported. The objective of this study is to measure the elastic and viscoelastic properties of GF and GF‐tissue composites under unconfined compression when quasi‐static and dynamic loads are applied at strain magnitudes below 20%. The mechanical tests demonstrate a 46% increase in the elastic modulus and a 29% increase in the equilibrium modulus after 28‐days of cell culture as compared to GF soaked in tissue culture medium for 24 h. There is no significant difference in the amount of stress relaxation, however, the phase shift demonstrates a significant increase between pure GF and GF that has been soaked in tissue culture medium for 24 h. Furthermore, the authors have shown that ATDC5 chondrocyte progenitor cells are viable on graphene foam and have identified the cellular contribution to the mechanical strength and viscoelastic properties of GF‐tissue composites, with important implications for cartilage tissue engineering. Graphene foam is used as a bioscaffold for ATDC5 chondrocyte progenitor cells. The elastic and viscoelastic properties of graphene foam grown by chemical vapor deposition, and graphene foam—soft tissue composites, are measured under unconfined compression. These data represent the first such measurements for chondrogenic tissue engineered on graphene bioscaffolds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1438-1656
1527-2648
DOI:10.1002/adem.201800166