Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed
• Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resi...
Saved in:
Published in | The New phytologist Vol. 229; no. 6; pp. 3253 - 3268 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.03.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates.
• A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana.
• Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar.
• Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. |
---|---|
AbstractList | • Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates.
• A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana.
• Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar.
• Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates.A selection of yeast‐expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana.Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar.Supported by three‐dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast‐expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana . Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three‐dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that A. thaliana CYP706A3, with the most promiscuous activity on mono- and sesquiterpenes for flower defense, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by 3D modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. Summary Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast‐expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three‐dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism. |
Author | Zumsteg, Julie André, François Miesch, Laurence Navrot, Nicolas Abdollahi, Fatemeh Lallemand, Etienne Alebrahim, Mohammad Taghi Werck-Reichhart, Danièle Ngov, Chheng Zheng, Yongxiang Villette, Claire |
Author_xml | – sequence: 1 givenname: Fatemeh surname: Abdollahi fullname: Abdollahi, Fatemeh – sequence: 2 givenname: Mohammad Taghi surname: Alebrahim fullname: Alebrahim, Mohammad Taghi – sequence: 3 givenname: Chheng surname: Ngov fullname: Ngov, Chheng – sequence: 4 givenname: Etienne surname: Lallemand fullname: Lallemand, Etienne – sequence: 5 givenname: Yongxiang surname: Zheng fullname: Zheng, Yongxiang – sequence: 6 givenname: Claire surname: Villette fullname: Villette, Claire – sequence: 7 givenname: Julie surname: Zumsteg fullname: Zumsteg, Julie – sequence: 8 givenname: François surname: André fullname: André, François – sequence: 9 givenname: Nicolas surname: Navrot fullname: Navrot, Nicolas – sequence: 10 givenname: Danièle surname: Werck-Reichhart fullname: Werck-Reichhart, Danièle – sequence: 11 givenname: Laurence surname: Miesch fullname: Miesch, Laurence |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33253456$$D View this record in MEDLINE/PubMed https://hal.science/hal-03102331$$DView record in HAL |
BookMark | eNqFks2O0zAUhS00iOkMLHgAkCU2sMiM_5MsRxXQkSroAiRYWU5yrbpK7RInHcoj8NQ4_UNCILyxdfWdI5977xW68MEDQs8puaHp3PrN8obmlKlHaEKFKrOC8vwCTQhhRaaE-nKJrmJcEUJKqdgTdMk5k1xINUE_7703PeBNF9Yu1oPrdzhY3C8BT78ucqKwNWvX7osLIQkG_2O3hjgKtq5JD4NjUpmqBVwH38P3HtvQ7R1gG9qhd8GP6sZ513fBeNc6D7iD6GJvfA3YefwA0DxFj61pIzw73tfo87u3n6azbP7x_f30bp7VIs9VxkRT1dQIS2oJQlTc2pyWRvGi4KxpiKmKhhDLZVkZm0tgIOqilJWSpAKRW36N3hx8l6bVm86tTbfTwTg9u5vrsUY4JYxzuqWJfX1gU9xvA8Rej12CtjUewhA1k4KIkvGi_D8qlCKC0Vwm9NUf6CoMnU-hE1USQomkLFEvj9RQraE5f_U0vATcHoC6CzF2YHWdBjH2u--MazUlelwPndZD79fjd_Sz4mT6N_bo_uBa2P0b1B8Ws5PixUGxin3ozgqWp0SsLPkv9sLRwA |
CitedBy_id | crossref_primary_10_3389_fpls_2024_1490036 crossref_primary_10_1021_acs_jafc_0c07458 crossref_primary_10_1073_pnas_2103378118 crossref_primary_10_3390_ijms222010953 crossref_primary_10_1371_journal_pone_0319151 crossref_primary_10_3389_fpls_2021_634018 crossref_primary_10_3390_biom13020394 crossref_primary_10_3390_plants11233199 crossref_primary_10_3390_toxics10060320 crossref_primary_10_1016_j_molp_2022_12_007 crossref_primary_10_1021_acsomega_4c11069 crossref_primary_10_1002_ps_6737 crossref_primary_10_1016_j_molp_2021_06_028 crossref_primary_10_1002_ps_6947 crossref_primary_10_3390_agronomy12123053 crossref_primary_10_1002_ps_6764 crossref_primary_10_1002_ps_7523 crossref_primary_10_1002_ps_8458 crossref_primary_10_1007_s11540_021_09498_w crossref_primary_10_3390_horticulturae7110451 crossref_primary_10_1007_s10142_023_00971_y crossref_primary_10_1016_j_pestbp_2022_105211 crossref_primary_10_1021_acs_jafc_4c00804 |
Cites_doi | 10.1111/nph.14139 10.1038/30484 10.1093/molbev/msx160 10.1017/S0043174500059610 10.1093/bioinformatics/btz828 10.1016/S0014-5793(01)03045-9 10.1104/pp.114.244814 10.1016/j.ymben.2013.02.003 10.1104/pp.18.00998 10.1016/j.plantsci.2019.02.010 10.1038/ncomms13026 10.1002/ps.4790 10.1007/s11103-006-0058-z 10.1016/j.plantsci.2019.02.019 10.1002/jcc.21256 10.3389/fpls.2018.00097 10.1016/j.tig.2013.06.001 10.2307/3870706 10.1017/S0890037X00035843 10.1002/ps.4441 10.1104/pp.103.037432 10.1016/j.febslet.2014.01.061 10.1046/j.1365-313X.1998.00099.x 10.1016/S0021-9258(20)82244-3 10.1021/acs.jafc.8b02283 10.1104/pp.19.00979 10.1073/pnas.1221179110 10.1016/S0076-6879(96)72008-6 10.1111/j.1365-313X.2011.04529.x 10.1105/tpc.113.117382 10.1017/S0043174500080826 10.1111/tpj.14373 10.1002/jcc.21922 10.1002/ps.2780430405 10.1002/ps.2284 10.1111/wre.12068 10.1002/jcc.21334 10.1104/pp.113.232843 10.1104/pp.114.242750 10.1093/nar/gkn072 10.1105/tpc.19.00320 10.1104/pp.005801 10.1038/ncomms4606 10.1017/S0890037X00032796 10.1074/jbc.REV120.013572 10.1111/tpj.15040 10.1021/ci300604z 10.1146/annurev-arplant-042809-112119 10.1111/tpj.12514 10.1111/nph.15552 10.1104/pp.118.3.1049 10.1002/ps.5561 10.1016/j.ymben.2013.08.001 |
ContentType | Journal Article |
Copyright | 2020 The Authors © 2020 New Phytologist Foundation 2020 The Authors New Phytologist © 2020 New Phytologist Foundation 2020 The Authors New Phytologist © 2020 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 The Authors © 2020 New Phytologist Foundation – notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation – notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES |
DOI | 10.1111/nph.17126 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 3268 |
ExternalDocumentID | oai_HAL_hal_03102331v1 33253456 10_1111_nph_17126 NPH17126 27001299 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: University of Mohaghegh Ardabili – fundername: Université de Strasbourg |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASGY AASVR ABEFU ABEML ABXSQ ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c4776-24dbc1a4f0c5e44b3ff719a638832dd0ab8d00f359baf75e2e4c895b650be47f3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Thu Jul 10 07:22:13 EDT 2025 Fri Jul 11 18:23:40 EDT 2025 Thu Jul 10 17:42:23 EDT 2025 Fri Jul 25 12:09:48 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Tue Jul 01 02:28:36 EDT 2025 Thu Apr 24 23:11:00 EDT 2025 Wed Jan 22 16:30:20 EST 2025 Thu Jul 03 21:34:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | cytochrome P450 oxygenases evolution of weed herbicide resistance dinitroanilines terpenoid metabolism enzyme promiscuity herbicide metabolism |
Language | English |
License | 2020 The Authors New Phytologist © 2020 New Phytologist Foundation. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4776-24dbc1a4f0c5e44b3ff719a638832dd0ab8d00f359baf75e2e4c895b650be47f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6032-6470 0000-0003-2839-1624 0000-0003-2564-5529 0000-0003-2869-4262 0000-0001-8772-1182 0000-0002-0369-9908 0000-0002-2141-1808 0000-0002-6653-4289 0000-0003-2013-9766 0000-0003-1742-2800 0000-0003-2523-2951 |
OpenAccessLink | https://hal.science/hal-03102331 |
PMID | 33253456 |
PQID | 2490010512 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | hal_primary_oai_HAL_hal_03102331v1 proquest_miscellaneous_2540492389 proquest_miscellaneous_2466042175 proquest_journals_2490010512 pubmed_primary_33253456 crossref_citationtrail_10_1111_nph_17126 crossref_primary_10_1111_nph_17126 wiley_primary_10_1111_nph_17126_NPH17126 jstor_primary_27001299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 1957; 11 2013; 29 2013; 25 1963; 43 2013; 28 2019; 99 2019; 12 2013; 20 2008; 36 1998; 118 2001; 508 2019; 283 1998; 393 2010; 61 2017; 73 1992; 6 2013; 18 2018; 9 2014; 5 2004; 136 2006; 61 2020; 295 2018; 178 2013; 53 2017; 34 2011; 66 2018; 74 2013; 110 2014; 165 2012; 68 2014; 166 1998; 10 1998; 14 1994; 32 2014; 54 2002; 130 2021; 105 2020; 36 1993 2020; 76 2018; 66 1964; 239 2017; 213 2012; 33 2019; 221 2016; 7 2009; 30 2015; 27 2019; 181 2009; 31 2001; 9 1995; 43 1996; 272 1994; 3 2014; 78 2014; 588 e_1_2_7_5_1 e_1_2_7_3_1 Broster JC (e_1_2_7_7_1) 2013; 28 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Whitehead CW (e_1_2_7_58_1) 1963; 43 Boachon B (e_1_2_7_6_1) 2015; 27 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 Streibig JC (e_1_2_7_54_1) 1993 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 Lowe DB (e_1_2_7_37_1) 2001; 9 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 Switzer CM (e_1_2_7_56_1) 1957; 11 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Trott O (e_1_2_7_57_1) 2009; 31 |
References_xml | – volume: 66 start-page: 194 year: 2011 end-page: 211 article-title: A P450‐centric view of plant evolution publication-title: The Plant Journal – volume: 36 start-page: 2295 year: 2008 end-page: 2300 article-title: PROMALS3D: a tool for multiple sequence and structure alignment publication-title: Nucleic Acids Research – volume: 27 start-page: 2972 year: 2015 end-page: 2990 article-title: CYP76C1 (cytochrome P450)‐mediated linalool metabolism and the formation of volatile and soluble linalool oxides in flowers: a strategy for defense against floral antagonists publication-title: The Plant Cell – volume: 166 start-page: 1106 year: 2014 end-page: 1118 article-title: Metabolism‐based herbicide resistance and cross‐resistance in crop weeds: a threat to herbicide sustainability and global crop production publication-title: Plant Physiology – volume: 110 start-page: 5812 year: 2013 end-page: 5817 article-title: Key role for a glutathione transferase in multiple‐herbicide resistance in grass weeds publication-title: Proceedings of the National Academy of Sciences, USA – volume: 3 start-page: 544 year: 1994 end-page: 551 article-title: Confirmation of trifluralin resistant green foxtail ( ) in Manitoba publication-title: Weed Technology – volume: 11 start-page: 315 year: 1957 end-page: 318 article-title: The existence of 2,4‐D resistant strains of wild carrot publication-title: North‐eastern Weed Control Conference – volume: 73 start-page: 410 year: 2017 end-page: 417 article-title: Phorate can reverse P450 metabolism‐based herbicide resistance in publication-title: Pest Management Science – volume: 31 start-page: 455 year: 2009 end-page: 461 article-title: AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: Journal of Computational Chemistry – volume: 118 start-page: 1049 year: 1998 end-page: 56 article-title: The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics publication-title: Plant Physiology – volume: 9 start-page: 97 year: 2018 article-title: Novel α‐tubulin mutations conferring resistance to dinitroaniline herbicides in publication-title: Frontiers in Plant Science – volume: 221 start-page: 2112 year: 2019 end-page: 2122 article-title: CYP81A P450s are involved in concomitant cross‐resistance to acetolactate synthase and acetyl‐CoA carboxylase herbicides in publication-title: New Phytologist – volume: 9 start-page: 1019 year: 2001 end-page: 1025 article-title: Biology and molecular analysis of dinitroaniline‐resistant L publication-title: International Turfgrass Society Research Journal – volume: 213 start-page: 264 year: 2017 end-page: 274 article-title: A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine publication-title: New Phytologist – volume: 34 start-page: 2041 year: 2017 end-page: 2056 article-title: Gene duplication leads to altered membrane topology of a cytochrome P450 enzyme in seed plants publication-title: Molecular Biology and Evolution – start-page: 29 year: 1993 end-page: 55 – volume: 105 start-page: 79 year: 2021 end-page: 92 article-title: Cytochrome P450 CYP81A10v7 in confers metabolic resistance to herbicides across at least five modes of action publication-title: The Plant Journal – volume: 295 start-page: 10307 year: 2020 end-page: 10330 article-title: Mechanisms of evolved herbicide resistance publication-title: Journal of Biological Chemistry – volume: 33 start-page: 119 year: 2012 end-page: 133 article-title: Quantum mechanically derived AMBER‐compatible heme parameters for various states of the cytochrome P450 catalytic cycle publication-title: Computers & Chemistry – volume: 588 start-page: 1001 year: 2014 end-page: 1007 article-title: Valencene oxidase CYP706M1 from Alaska cedar ( ) publication-title: FEBS Letters – volume: 283 start-page: 321 year: 2019 end-page: 328 article-title: Role of CYP81A cytochrome P450s in clomazone metabolism in publication-title: Plant Science – volume: 61 start-page: 317 year: 2010 end-page: 347 article-title: Evolution in action: plants resistant to herbicides publication-title: Annual Reviews in Plant Biology – volume: 20 start-page: 221 year: 2013 end-page: 232 article-title: Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway publication-title: Metabolic Engineering – volume: 99 start-page: 924 year: 2019 end-page: 936 article-title: Evolution of coumaroyl conjugate 3‐hydroxylases in land plants: lignin biosynthesis and defense publication-title: The Plant Journal – volume: 393 start-page: 260 year: 1998 end-page: 263 article-title: Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin publication-title: Nature – volume: 5 start-page: 3606 year: 2014 end-page: 3618 article-title: The seco‐iridoid pathway from publication-title: Nature Communications – volume: 43 start-page: 273 year: 1995 end-page: 277 article-title: Phytotoxicity of trifluoromethy‐ and methyl‐substituted dinitroaniline herbicides on resistant and susceptible populations of black‐grass ( ) publication-title: Pest Management Science – volume: 36 start-page: 1765 year: 2020 end-page: 1771 article-title: QMEANDisCo – distance constraints applied on model quality estimation publication-title: Bioinformatics – volume: 18 start-page: 25 year: 2013 end-page: 35 article-title: Challenges and pitfalls of P450‐dependent (+)‐valencene bioconversion by publication-title: Metabolic Enineering – volume: 61 start-page: 933 year: 2006 end-page: 943 article-title: Map‐based cloning of a novel rice cytochrome P450 gene that confers resistance to two different classes of herbicides publication-title: Plant Molecular Biology – volume: 74 start-page: 925 year: 2018 end-page: 932 article-title: Dinitroaniline herbicide resistance in a multiple‐resistant population publication-title: Pest Management Science – volume: 181 start-page: 1519 year: 2019 end-page: 1534 article-title: Aldo‐keto reductase metabolizes glyphosate and confers glyphosate resistance in publication-title: Plant Physiology – volume: 6 start-page: 587 year: 1992 end-page: 591 article-title: Resistance of Palmer amaranth ( ) to the dinitroaniline ( ) to the dinitroaniline herbicides publication-title: Weed Technology – volume: 272 start-page: 51 year: 1996 end-page: 64 article-title: Yeast expression of animal and plant P450s in optimized redox environments publication-title: Method in Enzymology – volume: 508 start-page: 215 year: 2001 end-page: 220 article-title: Geraniol 10‐hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis publication-title: FEBS Letters – volume: 29 start-page: 649 year: 2013 end-page: 658 article-title: Deciphering the evolution of herbicide resistance in weeds publication-title: Trends in Genetics – volume: 66 start-page: 7589 year: 2018 end-page: 7596 article-title: Enhanced trifluralin metabolism can confer resistance in publication-title: Journal of Agricultural and Food Chemistry – volume: 165 start-page: 618 year: 2014 end-page: 629 article-title: Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in publication-title: Plant Physiology – volume: 178 start-page: 1081 year: 2018 end-page: 1095 article-title: Reconfigured cyanogenic glucoside biosynthesis in involves a cytochrome P450 CYP706C55 publication-title: Plant Physiology – volume: 78 start-page: 865 year: 2014 end-page: 876 article-title: RNA‐Seq transcriptome analysis to identify genes involved in metabolism‐based diclofop resistance in publication-title: The Plant Journal – volume: 43 start-page: 55 year: 1995 end-page: 62 article-title: Dinitroaniline herbicide resistance in rigid ryegrass ( ) publication-title: Weed Science – volume: 68 start-page: 422 year: 2012 end-page: 429 article-title: Mutation of alpha‐tubulin genes in trifluralin‐resistant water foxtail ( ) publication-title: Pest Management Science – volume: 25 start-page: 4640 year: 2013 end-page: 4657 article-title: Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in flowers publication-title: The Plant Cell – volume: 136 start-page: 3920 year: 2004 end-page: 3932 article-title: Molecular bases for sensitivity to tubulin‐binding herbicides in green foxtail publication-title: Plant Physiology – volume: 239 start-page: 2370 year: 1964 end-page: 2378 article-title: The carbon monoxide‐binding pigment of liver microsomes publication-title: Journal Biological Chemistry – volume: 12 start-page: 2947 year: 2019 end-page: 2972 article-title: A promiscuous CYP706A3 reduces terpene volatile emission from flowers, affecting florivores and the floral microbiome publication-title: The Plant Cell – volume: 43 start-page: 255 year: 1963 end-page: 262 article-title: The differential response of strains of wild carrot to 2,4‐D and related herbicides publication-title: Plant Science – volume: 76 start-page: 645 year: 2020 end-page: 652 article-title: A Val‐202‐Phe α‐tubulin mutation and enhanced metabolism confer dinitroaniline resistance in a single population publication-title: Pest Management Science – volume: 130 start-page: 179 year: 2002 end-page: 189 article-title: Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke publication-title: Plant Physiology – volume: 283 start-page: 189 year: 2019 end-page: 194 article-title: Genetic inheritance of dinitroaniline resistance in an annual ryegrass population publication-title: Plant Science – volume: 10 start-page: 297 year: 1998 end-page: 308 article-title: α‐Tubulin missense mutations correlate with antimicrotubule drug resistance in publication-title: The Plant Cell – volume: 53 start-page: 1893 year: 2013 end-page: 1904 article-title: Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise publication-title: Journal of Chemical Information and Modeling – volume: 166 start-page: 1149 year: 2014 end-page: 1161 article-title: Dual function of the cytochrome P450 CYP76 family from in the metabolism of monoterpenols and phenylurea herbicides publication-title: Plant Physiology – volume: 7 year: 2016 article-title: Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism publication-title: Nature Communications – volume: 14 start-page: 111 year: 1998 end-page: 120 article-title: Molecular cloning and functional expression in yeast of CYP76B1, a xenobiotic‐inducible 7‐ethoxycoumarin ‐deethylase from publication-title: The Plant Journal – volume: 32 start-page: 591 year: 1994 end-page: 594 article-title: Resistance of goosegrass ( ) to dinitroaniline herbicides publication-title: Weed Science – volume: 28 start-page: 126 year: 2013 end-page: 142 article-title: Herbicide resistance levels in annual ryegrass ( Gaud.) and wild oat ( spp.) in southwestern New South Wales publication-title: Plant Protection Science – volume: 54 start-page: 314 year: 2014 end-page: 324 article-title: Multiple herbicide‐resistant (annual ryegrass) now dominates across the Western Australian grain belt publication-title: Weed Research – volume: 30 start-page: 2785 year: 2009 end-page: 2791 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: Computers & Chemistry – ident: e_1_2_7_31_1 doi: 10.1111/nph.14139 – ident: e_1_2_7_3_1 doi: 10.1038/30484 – ident: e_1_2_7_51_1 doi: 10.1093/molbev/msx160 – ident: e_1_2_7_42_1 doi: 10.1017/S0043174500059610 – ident: e_1_2_7_55_1 doi: 10.1093/bioinformatics/btz828 – ident: e_1_2_7_15_1 doi: 10.1016/S0014-5793(01)03045-9 – ident: e_1_2_7_29_1 doi: 10.1104/pp.114.244814 – ident: e_1_2_7_22_1 doi: 10.1016/j.ymben.2013.02.003 – ident: e_1_2_7_27_1 doi: 10.1104/pp.18.00998 – ident: e_1_2_7_25_1 doi: 10.1016/j.plantsci.2019.02.010 – ident: e_1_2_7_36_1 doi: 10.1038/ncomms13026 – ident: e_1_2_7_13_1 doi: 10.1002/ps.4790 – ident: e_1_2_7_46_1 doi: 10.1007/s11103-006-0058-z – ident: e_1_2_7_12_1 doi: 10.1016/j.plantsci.2019.02.019 – ident: e_1_2_7_40_1 doi: 10.1002/jcc.21256 – ident: e_1_2_7_14_1 doi: 10.3389/fpls.2018.00097 – ident: e_1_2_7_17_1 doi: 10.1016/j.tig.2013.06.001 – ident: e_1_2_7_59_1 doi: 10.2307/3870706 – ident: e_1_2_7_24_1 doi: 10.1017/S0890037X00035843 – ident: e_1_2_7_8_1 doi: 10.1002/ps.4441 – ident: e_1_2_7_18_1 doi: 10.1104/pp.103.037432 – ident: e_1_2_7_9_1 doi: 10.1016/j.febslet.2014.01.061 – volume: 28 start-page: 126 year: 2013 ident: e_1_2_7_7_1 article-title: Herbicide resistance levels in annual ryegrass (Lolium rigidum Gaud.) and wild oat (Avena spp.) in southwestern New South Wales publication-title: Plant Protection Science – ident: e_1_2_7_4_1 doi: 10.1046/j.1365-313X.1998.00099.x – ident: e_1_2_7_44_1 doi: 10.1016/S0021-9258(20)82244-3 – ident: e_1_2_7_11_1 doi: 10.1021/acs.jafc.8b02283 – ident: e_1_2_7_47_1 doi: 10.1104/pp.19.00979 – start-page: 29 volume-title: Herbicide Bioassay year: 1993 ident: e_1_2_7_54_1 – volume: 9 start-page: 1019 year: 2001 ident: e_1_2_7_37_1 article-title: Biology and molecular analysis of dinitroaniline‐resistant Poa annua L publication-title: International Turfgrass Society Research Journal – volume: 11 start-page: 315 year: 1957 ident: e_1_2_7_56_1 article-title: The existence of 2,4‐D resistant strains of wild carrot publication-title: North‐eastern Weed Control Conference – ident: e_1_2_7_16_1 doi: 10.1073/pnas.1221179110 – ident: e_1_2_7_49_1 doi: 10.1016/S0076-6879(96)72008-6 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-313X.2011.04529.x – ident: e_1_2_7_23_1 doi: 10.1105/tpc.113.117382 – ident: e_1_2_7_38_1 doi: 10.1017/S0043174500080826 – ident: e_1_2_7_2_1 doi: 10.1111/tpj.14373 – ident: e_1_2_7_53_1 doi: 10.1002/jcc.21922 – ident: e_1_2_7_34_1 doi: 10.1002/ps.2780430405 – ident: e_1_2_7_28_1 doi: 10.1002/ps.2284 – ident: e_1_2_7_45_1 doi: 10.1111/wre.12068 – volume: 31 start-page: 455 year: 2009 ident: e_1_2_7_57_1 article-title: AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.21334 – ident: e_1_2_7_32_1 doi: 10.1104/pp.113.232843 – volume: 43 start-page: 255 year: 1963 ident: e_1_2_7_58_1 article-title: The differential response of strains of wild carrot to 2,4‐D and related herbicides publication-title: Plant Science – ident: e_1_2_7_60_1 doi: 10.1104/pp.114.242750 – ident: e_1_2_7_48_1 doi: 10.1093/nar/gkn072 – ident: e_1_2_7_5_1 doi: 10.1105/tpc.19.00320 – ident: e_1_2_7_19_1 doi: 10.1104/pp.005801 – ident: e_1_2_7_39_1 doi: 10.1038/ncomms4606 – volume: 27 start-page: 2972 year: 2015 ident: e_1_2_7_6_1 article-title: CYP76C1 (cytochrome P450)‐mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers: a strategy for defense against floral antagonists publication-title: The Plant Cell – ident: e_1_2_7_41_1 doi: 10.1017/S0890037X00032796 – ident: e_1_2_7_20_1 doi: 10.1074/jbc.REV120.013572 – ident: e_1_2_7_26_1 doi: 10.1111/tpj.15040 – ident: e_1_2_7_35_1 doi: 10.1021/ci300604z – ident: e_1_2_7_50_1 doi: 10.1146/annurev-arplant-042809-112119 – ident: e_1_2_7_21_1 doi: 10.1111/tpj.12514 – ident: e_1_2_7_33_1 doi: 10.1111/nph.15552 – ident: e_1_2_7_52_1 doi: 10.1104/pp.118.3.1049 – ident: e_1_2_7_10_1 doi: 10.1002/ps.5561 – ident: e_1_2_7_30_1 doi: 10.1016/j.ymben.2013.08.001 |
SSID | ssj0009562 |
Score | 2.47383 |
Snippet | • Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The... Summary Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The... Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular... |
SourceID | hal proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3253 |
SubjectTerms | active sites Arabidopsis - genetics Arabidopsis thaliana Biochemistry, Molecular Biology Context cytochrome P-450 Cytochrome P-450 Enzyme System - genetics Cytochrome P450 cytochrome P450 oxygenases Cytochromes Cytochromes P450 dinitroanilines enzyme promiscuity Enzymes Eucalyptus Evolution evolution of weed herbicide resistance flowers Food production herbicide metabolism Herbicide resistance Herbicide Resistance - genetics Herbicides Herbicides - pharmacology Life Sciences Metabolism microtubules Monoterpenes monoterpenoids Physicochemical processes Physicochemical properties Phytopathology and phytopharmacy Plant Weeds - genetics Sesquiterpenes sesquiterpenoids Substrates sustainable agriculture Sustainable food systems Sustainable production Terpenes terpenoid metabolism Three dimensional models Vegetal Biology Weeds Yeast Yeasts |
Title | Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed |
URI | https://www.jstor.org/stable/27001299 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17126 https://www.ncbi.nlm.nih.gov/pubmed/33253456 https://www.proquest.com/docview/2490010512 https://www.proquest.com/docview/2466042175 https://www.proquest.com/docview/2540492389 https://hal.science/hal-03102331 |
Volume | 229 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKxYEL70KgVAZx4JJV_MpDnEpFtSCoVohKi4QUxY6trmidarNb1P4EfjUzzkNtVRDiFiXjxHa-8XxOxp8JeV2J2hgIDTA3KTj-Zqxj7XQdK8uYZjVQAoaLkz8fpNND-XGu5hvk7bAWptOHGD-4oWeE8RodvNLtJSf3p0cTljGOctuYq4WE6Au_JLib8kGBOZXpvFcVwiyeseSVWHTrCDMhu6TEm-jmVfYaws_-PfJ9qHiXdfJjsl7pibm4pun4ny27T-72tJTudjh6QDasf0huv2uAOp4_Ir8-eA-clMLTARZmDcydNo4Cd6R732ZZktLuOwmenEmVUOsvzk9sS_t1fi2taAulcJkWxeR4iAgU2HK4gz3r0Y-lIZIuVsum8gtsBl3aFvktAJMuPP0JkfYxOdx__3VvGvebOMRGZlkac1lrwyrpEqOslFo4l7GiAreHsaSuk0rndZI4oQpduUxZbqXJC6WBOWorMye2yKZvvH1KqLJgn2cGIqiWnNeFLtJC5Mrk0gFzSSLyZnidpekVznGjjeNymOlAz5ahZyPyajQ97WQ9bjQCTIzXUYh7uvupxHMoqMqFYGcsIlsBMqNZ-JMPVYzI9oChsh8X2hImu2FPUsYj8nK8jK8Oc928bdZok6YwlAKv-4sNEG2U1svhMU86fI4VEIIrAbwYuiOg7M8NLA9m03Dw7N9Nn5M7HNN6QhreNtlcLdf2BfCyld4JDvgb4n4xgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaggQX3i2BAgZx4JJV_MhL4lIqqhS2qxVqpeWAothx1BWtU212i9qfwK9mxnmoRQUhbpEzTvyY8Xy2x58JeVuIUmtwDTA3STluM5a-qlTph4YxxUqABAwPJx9MouxIfpqFszXyvj8L0_JDDAtuaBluvEYDxwXpK1Zuz45HLGY8Wie38EZvN6H6wq9Q7ka852COZDTreIUwjmfIes0brR9jLGQblngT4LyOX50D2rtPvvVFb-NOvo9WSzXSl7-xOv5v3R6Qex0ypTutKj0ka8Y-Irc_1IAeLx6Tn_vWAiyl8HvQDL0C8E7rigJ8pLtfp3EQ0XapBBOnMgyosZcXp6ah3VG_hha0gVx4UotifDw4BQqA2X3BnHcGgLnBmc6Xi7qwc6wHXZgGIS7oJp1b-gOc7RNytPfxcDfzu3scfC3jOPK5LJVmhawCHRoplaiqmKUFWD4MJ2UZFCopg6ASYaqKKg4NN1InaagAPCoj40pskg1bW_OU0NCAfBJrcKJKcl6mKo1SkYQ6kRWAl8Aj7_r-zHVHco53bZzk_WQHWjZ3LeuRN4PoWcvscaMQKMXwHrm4s51xjmnIqcqFYOfMI5tOZwYxt5kPRfTIdq9EeTc0NDnMd921pIx75PXwGrsOw92sqVcoE0UwmgK0-4sMYG1k10vgN1utgg4FEIKHAqAxNIdTsz9XMJ9MM_fw7N9FX5E72eHBOB_vTz4_J3c5Rvm4qLxtsrFcrMwLgGlL9dJZ4y_e0zWc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2gRAvfG8EBhjEAy-tYsd2EvE0NqoORlUhJhUJKYodW6uApGraoe0n8Ku51_nQhgZCvEXJdWI75_oeJ9fHhLzMo8IYCA0wN0k5_mYsBtrpYiAtY5oVQAkYLk7-MFHjY_FuJmcb5HW3FqbRh-g_uKFn-PEaHXxRuAtOXi5OhixmXG2Sa0KFCUL64CO_oLireCfBrISatbJCmMbTF70UjDZPMBWyyUq8im9epq8-_oxuky9dzZu0k6_D9UoPzflvoo7_2bQ75FbLS-leA6S7ZMOW98j1NxVwx7P75OdhWQIppfB0wIVZA3WnlaNAHun-52kcKtp8KMGTUyFDasvzs--2pu1Cv5rmtIZSuE6LYnY8hAQKdNnfwZ628MfSEErnq2WVl3NsBl3aGgkuIJPOS_oDQu0Dcjx6-2l_PGh3cRgYEcdqwEWhDcuFC420QujIuZilOfg9DCZFEeY6KcLQRTLVuYul5VaYJJUaqKO2InbRNtkqq9I-JFRasE9iAyFUC86LVKcqjRJpEuGAuoQBedW9zsy0Eue408a3rJvqQM9mvmcD8qI3XTS6HlcaASb666jEPd47yvAcKqryKGKnLCDbHjK9mf-VD1UMyG6HoawdGOoMZrt-U1LGA_K8v4yvDpPdSlut0UYpGEuB2P3FBpg2ausl8JidBp99BaKIywiIMXSHR9mfG5hNpmN_8OjfTZ-RG9ODUXZ0OHn_mNzkmOLjU_J2ydZqubZPgKOt9FPvi78AMk40VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innate+promiscuity+of+the+CYP706+family+of+P450+enzymes+provides+a+suitable+context+for+the+evolution+of+dinitroaniline+resistance+in+weed&rft.jtitle=The+New+phytologist&rft.au=Abdollahi%2C+Fatemeh&rft.au=Alebrahim%2C+Mohammad+Taghi&rft.au=Ngov%2C+Chheng&rft.au=Lallemand%2C+Etienne&rft.date=2021-03-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=229&rft.issue=6&rft.spage=3253&rft.epage=3268&rft_id=info:doi/10.1111%2Fnph.17126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |