Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed

• Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resi...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 229; no. 6; pp. 3253 - 3268
Main Authors Abdollahi, Fatemeh, Alebrahim, Mohammad Taghi, Ngov, Chheng, Lallemand, Etienne, Zheng, Yongxiang, Villette, Claire, Zumsteg, Julie, André, François, Navrot, Nicolas, Werck-Reichhart, Danièle, Miesch, Laurence
Format Journal Article
LanguageEnglish
Published England Wiley 01.03.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. • A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. • Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. • Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
AbstractList • Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. • A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. • Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. • Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates.A selection of yeast‐expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana.Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar.Supported by three‐dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast‐expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana . Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three‐dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that A. thaliana CYP706A3, with the most promiscuous activity on mono- and sesquiterpenes for flower defense, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by 3D modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast-expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three-dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Summary Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular drivers of this evolution are poorly understood. We tested here the hypothesis that a suitable context for the emergence of herbicide resistance could be provided by plant enzymes with high innate promiscuity with regard to their natural substrates. A selection of yeast‐expressed plant cytochrome P450 enzymes with well documented narrow to broad promiscuity when metabolizing natural substrates was tested for herbicide metabolism competence. The positive candidate was assayed for capacity to confer herbicide tolerance in Arabidopsis thaliana. Our data demonstrate that Arabidopsis thaliana CYP706A3, with the most promiscuous activity on monoterpenes and sesquiterpenes for flower defence, can also oxidize plant microtubule assembly inhibitors, dinitroanilines. Ectopic overexpression of CYP706A3 confers dinitroaniline resistance. We show, in addition, that the capacity to metabolize dinitroanilines is shared by other members of the CYP706 family from plants as diverse as eucalyptus and cedar. Supported by three‐dimensional (3D) modelling of CYP706A3, the properties of enzyme active site and substrate access channel are discussed together with the shared physicochemical properties of the natural and exogenous substrates to explain herbicide metabolism.
Author Zumsteg, Julie
André, François
Miesch, Laurence
Navrot, Nicolas
Abdollahi, Fatemeh
Lallemand, Etienne
Alebrahim, Mohammad Taghi
Werck-Reichhart, Danièle
Ngov, Chheng
Zheng, Yongxiang
Villette, Claire
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Abdollahi
  fullname: Abdollahi, Fatemeh
– sequence: 2
  givenname: Mohammad Taghi
  surname: Alebrahim
  fullname: Alebrahim, Mohammad Taghi
– sequence: 3
  givenname: Chheng
  surname: Ngov
  fullname: Ngov, Chheng
– sequence: 4
  givenname: Etienne
  surname: Lallemand
  fullname: Lallemand, Etienne
– sequence: 5
  givenname: Yongxiang
  surname: Zheng
  fullname: Zheng, Yongxiang
– sequence: 6
  givenname: Claire
  surname: Villette
  fullname: Villette, Claire
– sequence: 7
  givenname: Julie
  surname: Zumsteg
  fullname: Zumsteg, Julie
– sequence: 8
  givenname: François
  surname: André
  fullname: André, François
– sequence: 9
  givenname: Nicolas
  surname: Navrot
  fullname: Navrot, Nicolas
– sequence: 10
  givenname: Danièle
  surname: Werck-Reichhart
  fullname: Werck-Reichhart, Danièle
– sequence: 11
  givenname: Laurence
  surname: Miesch
  fullname: Miesch, Laurence
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33253456$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03102331$$DView record in HAL
BookMark eNqFks2O0zAUhS00iOkMLHgAkCU2sMiM_5MsRxXQkSroAiRYWU5yrbpK7RInHcoj8NQ4_UNCILyxdfWdI5977xW68MEDQs8puaHp3PrN8obmlKlHaEKFKrOC8vwCTQhhRaaE-nKJrmJcEUJKqdgTdMk5k1xINUE_7703PeBNF9Yu1oPrdzhY3C8BT78ucqKwNWvX7osLIQkG_2O3hjgKtq5JD4NjUpmqBVwH38P3HtvQ7R1gG9qhd8GP6sZ513fBeNc6D7iD6GJvfA3YefwA0DxFj61pIzw73tfo87u3n6azbP7x_f30bp7VIs9VxkRT1dQIS2oJQlTc2pyWRvGi4KxpiKmKhhDLZVkZm0tgIOqilJWSpAKRW36N3hx8l6bVm86tTbfTwTg9u5vrsUY4JYxzuqWJfX1gU9xvA8Rej12CtjUewhA1k4KIkvGi_D8qlCKC0Vwm9NUf6CoMnU-hE1USQomkLFEvj9RQraE5f_U0vATcHoC6CzF2YHWdBjH2u--MazUlelwPndZD79fjd_Sz4mT6N_bo_uBa2P0b1B8Ws5PixUGxin3ozgqWp0SsLPkv9sLRwA
CitedBy_id crossref_primary_10_3389_fpls_2024_1490036
crossref_primary_10_1021_acs_jafc_0c07458
crossref_primary_10_1073_pnas_2103378118
crossref_primary_10_3390_ijms222010953
crossref_primary_10_1371_journal_pone_0319151
crossref_primary_10_3389_fpls_2021_634018
crossref_primary_10_3390_biom13020394
crossref_primary_10_3390_plants11233199
crossref_primary_10_3390_toxics10060320
crossref_primary_10_1016_j_molp_2022_12_007
crossref_primary_10_1021_acsomega_4c11069
crossref_primary_10_1002_ps_6737
crossref_primary_10_1016_j_molp_2021_06_028
crossref_primary_10_1002_ps_6947
crossref_primary_10_3390_agronomy12123053
crossref_primary_10_1002_ps_6764
crossref_primary_10_1002_ps_7523
crossref_primary_10_1002_ps_8458
crossref_primary_10_1007_s11540_021_09498_w
crossref_primary_10_3390_horticulturae7110451
crossref_primary_10_1007_s10142_023_00971_y
crossref_primary_10_1016_j_pestbp_2022_105211
crossref_primary_10_1021_acs_jafc_4c00804
Cites_doi 10.1111/nph.14139
10.1038/30484
10.1093/molbev/msx160
10.1017/S0043174500059610
10.1093/bioinformatics/btz828
10.1016/S0014-5793(01)03045-9
10.1104/pp.114.244814
10.1016/j.ymben.2013.02.003
10.1104/pp.18.00998
10.1016/j.plantsci.2019.02.010
10.1038/ncomms13026
10.1002/ps.4790
10.1007/s11103-006-0058-z
10.1016/j.plantsci.2019.02.019
10.1002/jcc.21256
10.3389/fpls.2018.00097
10.1016/j.tig.2013.06.001
10.2307/3870706
10.1017/S0890037X00035843
10.1002/ps.4441
10.1104/pp.103.037432
10.1016/j.febslet.2014.01.061
10.1046/j.1365-313X.1998.00099.x
10.1016/S0021-9258(20)82244-3
10.1021/acs.jafc.8b02283
10.1104/pp.19.00979
10.1073/pnas.1221179110
10.1016/S0076-6879(96)72008-6
10.1111/j.1365-313X.2011.04529.x
10.1105/tpc.113.117382
10.1017/S0043174500080826
10.1111/tpj.14373
10.1002/jcc.21922
10.1002/ps.2780430405
10.1002/ps.2284
10.1111/wre.12068
10.1002/jcc.21334
10.1104/pp.113.232843
10.1104/pp.114.242750
10.1093/nar/gkn072
10.1105/tpc.19.00320
10.1104/pp.005801
10.1038/ncomms4606
10.1017/S0890037X00032796
10.1074/jbc.REV120.013572
10.1111/tpj.15040
10.1021/ci300604z
10.1146/annurev-arplant-042809-112119
10.1111/tpj.12514
10.1111/nph.15552
10.1104/pp.118.3.1049
10.1002/ps.5561
10.1016/j.ymben.2013.08.001
ContentType Journal Article
Copyright 2020 The Authors © 2020 New Phytologist Foundation
2020 The Authors New Phytologist © 2020 New Phytologist Foundation
2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors © 2020 New Phytologist Foundation
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/nph.17126
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

MEDLINE - Academic
MEDLINE
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 3268
ExternalDocumentID oai_HAL_hal_03102331v1
33253456
10_1111_nph_17126
NPH17126
27001299
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: University of Mohaghegh Ardabili
– fundername: Université de Strasbourg
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c4776-24dbc1a4f0c5e44b3ff719a638832dd0ab8d00f359baf75e2e4c895b650be47f3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Thu Jul 10 07:22:13 EDT 2025
Fri Jul 11 18:23:40 EDT 2025
Thu Jul 10 17:42:23 EDT 2025
Fri Jul 25 12:09:48 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Tue Jul 01 02:28:36 EDT 2025
Thu Apr 24 23:11:00 EDT 2025
Wed Jan 22 16:30:20 EST 2025
Thu Jul 03 21:34:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords cytochrome P450 oxygenases
evolution of weed herbicide resistance
dinitroanilines
terpenoid metabolism
enzyme promiscuity
herbicide metabolism
Language English
License 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4776-24dbc1a4f0c5e44b3ff719a638832dd0ab8d00f359baf75e2e4c895b650be47f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6032-6470
0000-0003-2839-1624
0000-0003-2564-5529
0000-0003-2869-4262
0000-0001-8772-1182
0000-0002-0369-9908
0000-0002-2141-1808
0000-0002-6653-4289
0000-0003-2013-9766
0000-0003-1742-2800
0000-0003-2523-2951
OpenAccessLink https://hal.science/hal-03102331
PMID 33253456
PQID 2490010512
PQPubID 2026848
PageCount 16
ParticipantIDs hal_primary_oai_HAL_hal_03102331v1
proquest_miscellaneous_2540492389
proquest_miscellaneous_2466042175
proquest_journals_2490010512
pubmed_primary_33253456
crossref_citationtrail_10_1111_nph_17126
crossref_primary_10_1111_nph_17126
wiley_primary_10_1111_nph_17126_NPH17126
jstor_primary_27001299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1957; 11
2013; 29
2013; 25
1963; 43
2013; 28
2019; 99
2019; 12
2013; 20
2008; 36
1998; 118
2001; 508
2019; 283
1998; 393
2010; 61
2017; 73
1992; 6
2013; 18
2018; 9
2014; 5
2004; 136
2006; 61
2020; 295
2018; 178
2013; 53
2017; 34
2011; 66
2018; 74
2013; 110
2014; 165
2012; 68
2014; 166
1998; 10
1998; 14
1994; 32
2014; 54
2002; 130
2021; 105
2020; 36
1993
2020; 76
2018; 66
1964; 239
2017; 213
2012; 33
2019; 221
2016; 7
2009; 30
2015; 27
2019; 181
2009; 31
2001; 9
1995; 43
1996; 272
1994; 3
2014; 78
2014; 588
e_1_2_7_5_1
e_1_2_7_3_1
Broster JC (e_1_2_7_7_1) 2013; 28
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Whitehead CW (e_1_2_7_58_1) 1963; 43
Boachon B (e_1_2_7_6_1) 2015; 27
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Streibig JC (e_1_2_7_54_1) 1993
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
Lowe DB (e_1_2_7_37_1) 2001; 9
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
Switzer CM (e_1_2_7_56_1) 1957; 11
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Trott O (e_1_2_7_57_1) 2009; 31
References_xml – volume: 66
  start-page: 194
  year: 2011
  end-page: 211
  article-title: A P450‐centric view of plant evolution
  publication-title: The Plant Journal
– volume: 36
  start-page: 2295
  year: 2008
  end-page: 2300
  article-title: PROMALS3D: a tool for multiple sequence and structure alignment
  publication-title: Nucleic Acids Research
– volume: 27
  start-page: 2972
  year: 2015
  end-page: 2990
  article-title: CYP76C1 (cytochrome P450)‐mediated linalool metabolism and the formation of volatile and soluble linalool oxides in flowers: a strategy for defense against floral antagonists
  publication-title: The Plant Cell
– volume: 166
  start-page: 1106
  year: 2014
  end-page: 1118
  article-title: Metabolism‐based herbicide resistance and cross‐resistance in crop weeds: a threat to herbicide sustainability and global crop production
  publication-title: Plant Physiology
– volume: 110
  start-page: 5812
  year: 2013
  end-page: 5817
  article-title: Key role for a glutathione transferase in multiple‐herbicide resistance in grass weeds
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 3
  start-page: 544
  year: 1994
  end-page: 551
  article-title: Confirmation of trifluralin resistant green foxtail ( ) in Manitoba
  publication-title: Weed Technology
– volume: 11
  start-page: 315
  year: 1957
  end-page: 318
  article-title: The existence of 2,4‐D resistant strains of wild carrot
  publication-title: North‐eastern Weed Control Conference
– volume: 73
  start-page: 410
  year: 2017
  end-page: 417
  article-title: Phorate can reverse P450 metabolism‐based herbicide resistance in
  publication-title: Pest Management Science
– volume: 31
  start-page: 455
  year: 2009
  end-page: 461
  article-title: AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: Journal of Computational Chemistry
– volume: 118
  start-page: 1049
  year: 1998
  end-page: 56
  article-title: The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics
  publication-title: Plant Physiology
– volume: 9
  start-page: 97
  year: 2018
  article-title: Novel α‐tubulin mutations conferring resistance to dinitroaniline herbicides in
  publication-title: Frontiers in Plant Science
– volume: 221
  start-page: 2112
  year: 2019
  end-page: 2122
  article-title: CYP81A P450s are involved in concomitant cross‐resistance to acetolactate synthase and acetyl‐CoA carboxylase herbicides in
  publication-title: New Phytologist
– volume: 9
  start-page: 1019
  year: 2001
  end-page: 1025
  article-title: Biology and molecular analysis of dinitroaniline‐resistant L
  publication-title: International Turfgrass Society Research Journal
– volume: 213
  start-page: 264
  year: 2017
  end-page: 274
  article-title: A grapevine cytochrome P450 generates the precursor of wine lactone, a key odorant in wine
  publication-title: New Phytologist
– volume: 34
  start-page: 2041
  year: 2017
  end-page: 2056
  article-title: Gene duplication leads to altered membrane topology of a cytochrome P450 enzyme in seed plants
  publication-title: Molecular Biology and Evolution
– start-page: 29
  year: 1993
  end-page: 55
– volume: 105
  start-page: 79
  year: 2021
  end-page: 92
  article-title: Cytochrome P450 CYP81A10v7 in confers metabolic resistance to herbicides across at least five modes of action
  publication-title: The Plant Journal
– volume: 295
  start-page: 10307
  year: 2020
  end-page: 10330
  article-title: Mechanisms of evolved herbicide resistance
  publication-title: Journal of Biological Chemistry
– volume: 33
  start-page: 119
  year: 2012
  end-page: 133
  article-title: Quantum mechanically derived AMBER‐compatible heme parameters for various states of the cytochrome P450 catalytic cycle
  publication-title: Computers & Chemistry
– volume: 588
  start-page: 1001
  year: 2014
  end-page: 1007
  article-title: Valencene oxidase CYP706M1 from Alaska cedar ( )
  publication-title: FEBS Letters
– volume: 283
  start-page: 321
  year: 2019
  end-page: 328
  article-title: Role of CYP81A cytochrome P450s in clomazone metabolism in
  publication-title: Plant Science
– volume: 61
  start-page: 317
  year: 2010
  end-page: 347
  article-title: Evolution in action: plants resistant to herbicides
  publication-title: Annual Reviews in Plant Biology
– volume: 20
  start-page: 221
  year: 2013
  end-page: 232
  article-title: Geraniol hydroxylase and hydroxygeraniol oxidase activities of the CYP76 family of cytochrome P450 enzymes and potential for engineering the early steps of the (seco)iridoid pathway
  publication-title: Metabolic Engineering
– volume: 99
  start-page: 924
  year: 2019
  end-page: 936
  article-title: Evolution of coumaroyl conjugate 3‐hydroxylases in land plants: lignin biosynthesis and defense
  publication-title: The Plant Journal
– volume: 393
  start-page: 260
  year: 1998
  end-page: 263
  article-title: Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin
  publication-title: Nature
– volume: 5
  start-page: 3606
  year: 2014
  end-page: 3618
  article-title: The seco‐iridoid pathway from
  publication-title: Nature Communications
– volume: 43
  start-page: 273
  year: 1995
  end-page: 277
  article-title: Phytotoxicity of trifluoromethy‐ and methyl‐substituted dinitroaniline herbicides on resistant and susceptible populations of black‐grass ( )
  publication-title: Pest Management Science
– volume: 36
  start-page: 1765
  year: 2020
  end-page: 1771
  article-title: QMEANDisCo – distance constraints applied on model quality estimation
  publication-title: Bioinformatics
– volume: 18
  start-page: 25
  year: 2013
  end-page: 35
  article-title: Challenges and pitfalls of P450‐dependent (+)‐valencene bioconversion by
  publication-title: Metabolic Enineering
– volume: 61
  start-page: 933
  year: 2006
  end-page: 943
  article-title: Map‐based cloning of a novel rice cytochrome P450 gene that confers resistance to two different classes of herbicides
  publication-title: Plant Molecular Biology
– volume: 74
  start-page: 925
  year: 2018
  end-page: 932
  article-title: Dinitroaniline herbicide resistance in a multiple‐resistant population
  publication-title: Pest Management Science
– volume: 181
  start-page: 1519
  year: 2019
  end-page: 1534
  article-title: Aldo‐keto reductase metabolizes glyphosate and confers glyphosate resistance in
  publication-title: Plant Physiology
– volume: 6
  start-page: 587
  year: 1992
  end-page: 591
  article-title: Resistance of Palmer amaranth ( ) to the dinitroaniline ( ) to the dinitroaniline herbicides
  publication-title: Weed Technology
– volume: 272
  start-page: 51
  year: 1996
  end-page: 64
  article-title: Yeast expression of animal and plant P450s in optimized redox environments
  publication-title: Method in Enzymology
– volume: 508
  start-page: 215
  year: 2001
  end-page: 220
  article-title: Geraniol 10‐hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis
  publication-title: FEBS Letters
– volume: 29
  start-page: 649
  year: 2013
  end-page: 658
  article-title: Deciphering the evolution of herbicide resistance in weeds
  publication-title: Trends in Genetics
– volume: 66
  start-page: 7589
  year: 2018
  end-page: 7596
  article-title: Enhanced trifluralin metabolism can confer resistance in
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 165
  start-page: 618
  year: 2014
  end-page: 629
  article-title: Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in
  publication-title: Plant Physiology
– volume: 178
  start-page: 1081
  year: 2018
  end-page: 1095
  article-title: Reconfigured cyanogenic glucoside biosynthesis in involves a cytochrome P450 CYP706C55
  publication-title: Plant Physiology
– volume: 78
  start-page: 865
  year: 2014
  end-page: 876
  article-title: RNA‐Seq transcriptome analysis to identify genes involved in metabolism‐based diclofop resistance in
  publication-title: The Plant Journal
– volume: 43
  start-page: 55
  year: 1995
  end-page: 62
  article-title: Dinitroaniline herbicide resistance in rigid ryegrass ( )
  publication-title: Weed Science
– volume: 68
  start-page: 422
  year: 2012
  end-page: 429
  article-title: Mutation of alpha‐tubulin genes in trifluralin‐resistant water foxtail ( )
  publication-title: Pest Management Science
– volume: 25
  start-page: 4640
  year: 2013
  end-page: 4657
  article-title: Gene coexpression analysis reveals complex metabolism of the monoterpene alcohol linalool in flowers
  publication-title: The Plant Cell
– volume: 136
  start-page: 3920
  year: 2004
  end-page: 3932
  article-title: Molecular bases for sensitivity to tubulin‐binding herbicides in green foxtail
  publication-title: Plant Physiology
– volume: 239
  start-page: 2370
  year: 1964
  end-page: 2378
  article-title: The carbon monoxide‐binding pigment of liver microsomes
  publication-title: Journal Biological Chemistry
– volume: 12
  start-page: 2947
  year: 2019
  end-page: 2972
  article-title: A promiscuous CYP706A3 reduces terpene volatile emission from flowers, affecting florivores and the floral microbiome
  publication-title: The Plant Cell
– volume: 43
  start-page: 255
  year: 1963
  end-page: 262
  article-title: The differential response of strains of wild carrot to 2,4‐D and related herbicides
  publication-title: Plant Science
– volume: 76
  start-page: 645
  year: 2020
  end-page: 652
  article-title: A Val‐202‐Phe α‐tubulin mutation and enhanced metabolism confer dinitroaniline resistance in a single population
  publication-title: Pest Management Science
– volume: 130
  start-page: 179
  year: 2002
  end-page: 189
  article-title: Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke
  publication-title: Plant Physiology
– volume: 283
  start-page: 189
  year: 2019
  end-page: 194
  article-title: Genetic inheritance of dinitroaniline resistance in an annual ryegrass population
  publication-title: Plant Science
– volume: 10
  start-page: 297
  year: 1998
  end-page: 308
  article-title: α‐Tubulin missense mutations correlate with antimicrotubule drug resistance in
  publication-title: The Plant Cell
– volume: 53
  start-page: 1893
  year: 2013
  end-page: 1904
  article-title: Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise
  publication-title: Journal of Chemical Information and Modeling
– volume: 166
  start-page: 1149
  year: 2014
  end-page: 1161
  article-title: Dual function of the cytochrome P450 CYP76 family from in the metabolism of monoterpenols and phenylurea herbicides
  publication-title: Plant Physiology
– volume: 7
  year: 2016
  article-title: Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism
  publication-title: Nature Communications
– volume: 14
  start-page: 111
  year: 1998
  end-page: 120
  article-title: Molecular cloning and functional expression in yeast of CYP76B1, a xenobiotic‐inducible 7‐ethoxycoumarin ‐deethylase from
  publication-title: The Plant Journal
– volume: 32
  start-page: 591
  year: 1994
  end-page: 594
  article-title: Resistance of goosegrass ( ) to dinitroaniline herbicides
  publication-title: Weed Science
– volume: 28
  start-page: 126
  year: 2013
  end-page: 142
  article-title: Herbicide resistance levels in annual ryegrass ( Gaud.) and wild oat ( spp.) in southwestern New South Wales
  publication-title: Plant Protection Science
– volume: 54
  start-page: 314
  year: 2014
  end-page: 324
  article-title: Multiple herbicide‐resistant (annual ryegrass) now dominates across the Western Australian grain belt
  publication-title: Weed Research
– volume: 30
  start-page: 2785
  year: 2009
  end-page: 2791
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: Computers & Chemistry
– ident: e_1_2_7_31_1
  doi: 10.1111/nph.14139
– ident: e_1_2_7_3_1
  doi: 10.1038/30484
– ident: e_1_2_7_51_1
  doi: 10.1093/molbev/msx160
– ident: e_1_2_7_42_1
  doi: 10.1017/S0043174500059610
– ident: e_1_2_7_55_1
  doi: 10.1093/bioinformatics/btz828
– ident: e_1_2_7_15_1
  doi: 10.1016/S0014-5793(01)03045-9
– ident: e_1_2_7_29_1
  doi: 10.1104/pp.114.244814
– ident: e_1_2_7_22_1
  doi: 10.1016/j.ymben.2013.02.003
– ident: e_1_2_7_27_1
  doi: 10.1104/pp.18.00998
– ident: e_1_2_7_25_1
  doi: 10.1016/j.plantsci.2019.02.010
– ident: e_1_2_7_36_1
  doi: 10.1038/ncomms13026
– ident: e_1_2_7_13_1
  doi: 10.1002/ps.4790
– ident: e_1_2_7_46_1
  doi: 10.1007/s11103-006-0058-z
– ident: e_1_2_7_12_1
  doi: 10.1016/j.plantsci.2019.02.019
– ident: e_1_2_7_40_1
  doi: 10.1002/jcc.21256
– ident: e_1_2_7_14_1
  doi: 10.3389/fpls.2018.00097
– ident: e_1_2_7_17_1
  doi: 10.1016/j.tig.2013.06.001
– ident: e_1_2_7_59_1
  doi: 10.2307/3870706
– ident: e_1_2_7_24_1
  doi: 10.1017/S0890037X00035843
– ident: e_1_2_7_8_1
  doi: 10.1002/ps.4441
– ident: e_1_2_7_18_1
  doi: 10.1104/pp.103.037432
– ident: e_1_2_7_9_1
  doi: 10.1016/j.febslet.2014.01.061
– volume: 28
  start-page: 126
  year: 2013
  ident: e_1_2_7_7_1
  article-title: Herbicide resistance levels in annual ryegrass (Lolium rigidum Gaud.) and wild oat (Avena spp.) in southwestern New South Wales
  publication-title: Plant Protection Science
– ident: e_1_2_7_4_1
  doi: 10.1046/j.1365-313X.1998.00099.x
– ident: e_1_2_7_44_1
  doi: 10.1016/S0021-9258(20)82244-3
– ident: e_1_2_7_11_1
  doi: 10.1021/acs.jafc.8b02283
– ident: e_1_2_7_47_1
  doi: 10.1104/pp.19.00979
– start-page: 29
  volume-title: Herbicide Bioassay
  year: 1993
  ident: e_1_2_7_54_1
– volume: 9
  start-page: 1019
  year: 2001
  ident: e_1_2_7_37_1
  article-title: Biology and molecular analysis of dinitroaniline‐resistant Poa annua L
  publication-title: International Turfgrass Society Research Journal
– volume: 11
  start-page: 315
  year: 1957
  ident: e_1_2_7_56_1
  article-title: The existence of 2,4‐D resistant strains of wild carrot
  publication-title: North‐eastern Weed Control Conference
– ident: e_1_2_7_16_1
  doi: 10.1073/pnas.1221179110
– ident: e_1_2_7_49_1
  doi: 10.1016/S0076-6879(96)72008-6
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-313X.2011.04529.x
– ident: e_1_2_7_23_1
  doi: 10.1105/tpc.113.117382
– ident: e_1_2_7_38_1
  doi: 10.1017/S0043174500080826
– ident: e_1_2_7_2_1
  doi: 10.1111/tpj.14373
– ident: e_1_2_7_53_1
  doi: 10.1002/jcc.21922
– ident: e_1_2_7_34_1
  doi: 10.1002/ps.2780430405
– ident: e_1_2_7_28_1
  doi: 10.1002/ps.2284
– ident: e_1_2_7_45_1
  doi: 10.1111/wre.12068
– volume: 31
  start-page: 455
  year: 2009
  ident: e_1_2_7_57_1
  article-title: AutoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.21334
– ident: e_1_2_7_32_1
  doi: 10.1104/pp.113.232843
– volume: 43
  start-page: 255
  year: 1963
  ident: e_1_2_7_58_1
  article-title: The differential response of strains of wild carrot to 2,4‐D and related herbicides
  publication-title: Plant Science
– ident: e_1_2_7_60_1
  doi: 10.1104/pp.114.242750
– ident: e_1_2_7_48_1
  doi: 10.1093/nar/gkn072
– ident: e_1_2_7_5_1
  doi: 10.1105/tpc.19.00320
– ident: e_1_2_7_19_1
  doi: 10.1104/pp.005801
– ident: e_1_2_7_39_1
  doi: 10.1038/ncomms4606
– volume: 27
  start-page: 2972
  year: 2015
  ident: e_1_2_7_6_1
  article-title: CYP76C1 (cytochrome P450)‐mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers: a strategy for defense against floral antagonists
  publication-title: The Plant Cell
– ident: e_1_2_7_41_1
  doi: 10.1017/S0890037X00032796
– ident: e_1_2_7_20_1
  doi: 10.1074/jbc.REV120.013572
– ident: e_1_2_7_26_1
  doi: 10.1111/tpj.15040
– ident: e_1_2_7_35_1
  doi: 10.1021/ci300604z
– ident: e_1_2_7_50_1
  doi: 10.1146/annurev-arplant-042809-112119
– ident: e_1_2_7_21_1
  doi: 10.1111/tpj.12514
– ident: e_1_2_7_33_1
  doi: 10.1111/nph.15552
– ident: e_1_2_7_52_1
  doi: 10.1104/pp.118.3.1049
– ident: e_1_2_7_10_1
  doi: 10.1002/ps.5561
– ident: e_1_2_7_30_1
  doi: 10.1016/j.ymben.2013.08.001
SSID ssj0009562
Score 2.47383
Snippet • Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The...
Summary Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The...
Increased metabolism is one of the main causes for evolution of herbicide resistance in weeds, a major challenge for sustainable food production. The molecular...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3253
SubjectTerms active sites
Arabidopsis - genetics
Arabidopsis thaliana
Biochemistry, Molecular Biology
Context
cytochrome P-450
Cytochrome P-450 Enzyme System - genetics
Cytochrome P450
cytochrome P450 oxygenases
Cytochromes
Cytochromes P450
dinitroanilines
enzyme promiscuity
Enzymes
Eucalyptus
Evolution
evolution of weed herbicide resistance
flowers
Food production
herbicide metabolism
Herbicide resistance
Herbicide Resistance - genetics
Herbicides
Herbicides - pharmacology
Life Sciences
Metabolism
microtubules
Monoterpenes
monoterpenoids
Physicochemical processes
Physicochemical properties
Phytopathology and phytopharmacy
Plant Weeds - genetics
Sesquiterpenes
sesquiterpenoids
Substrates
sustainable agriculture
Sustainable food systems
Sustainable production
Terpenes
terpenoid metabolism
Three dimensional models
Vegetal Biology
Weeds
Yeast
Yeasts
Title Innate promiscuity of the CYP706 family of P450 enzymes provides a suitable context for the evolution of dinitroaniline resistance in weed
URI https://www.jstor.org/stable/27001299
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17126
https://www.ncbi.nlm.nih.gov/pubmed/33253456
https://www.proquest.com/docview/2490010512
https://www.proquest.com/docview/2466042175
https://www.proquest.com/docview/2540492389
https://hal.science/hal-03102331
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKxYEL70KgVAZx4JJV_MpDnEpFtSCoVohKi4QUxY6trmidarNb1P4EfjUzzkNtVRDiFiXjxHa-8XxOxp8JeV2J2hgIDTA3KTj-Zqxj7XQdK8uYZjVQAoaLkz8fpNND-XGu5hvk7bAWptOHGD-4oWeE8RodvNLtJSf3p0cTljGOctuYq4WE6Au_JLib8kGBOZXpvFcVwiyeseSVWHTrCDMhu6TEm-jmVfYaws_-PfJ9qHiXdfJjsl7pibm4pun4ny27T-72tJTudjh6QDasf0huv2uAOp4_Ir8-eA-clMLTARZmDcydNo4Cd6R732ZZktLuOwmenEmVUOsvzk9sS_t1fi2taAulcJkWxeR4iAgU2HK4gz3r0Y-lIZIuVsum8gtsBl3aFvktAJMuPP0JkfYxOdx__3VvGvebOMRGZlkac1lrwyrpEqOslFo4l7GiAreHsaSuk0rndZI4oQpduUxZbqXJC6WBOWorMye2yKZvvH1KqLJgn2cGIqiWnNeFLtJC5Mrk0gFzSSLyZnidpekVznGjjeNymOlAz5ahZyPyajQ97WQ9bjQCTIzXUYh7uvupxHMoqMqFYGcsIlsBMqNZ-JMPVYzI9oChsh8X2hImu2FPUsYj8nK8jK8Oc928bdZok6YwlAKv-4sNEG2U1svhMU86fI4VEIIrAbwYuiOg7M8NLA9m03Dw7N9Nn5M7HNN6QhreNtlcLdf2BfCyld4JDvgb4n4xgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaggQX3i2BAgZx4JJV_MhL4lIqqhS2qxVqpeWAothx1BWtU212i9qfwK9mxnmoRQUhbpEzTvyY8Xy2x58JeVuIUmtwDTA3STluM5a-qlTph4YxxUqABAwPJx9MouxIfpqFszXyvj8L0_JDDAtuaBluvEYDxwXpK1Zuz45HLGY8Wie38EZvN6H6wq9Q7ka852COZDTreIUwjmfIes0brR9jLGQblngT4LyOX50D2rtPvvVFb-NOvo9WSzXSl7-xOv5v3R6Qex0ypTutKj0ka8Y-Irc_1IAeLx6Tn_vWAiyl8HvQDL0C8E7rigJ8pLtfp3EQ0XapBBOnMgyosZcXp6ah3VG_hha0gVx4UotifDw4BQqA2X3BnHcGgLnBmc6Xi7qwc6wHXZgGIS7oJp1b-gOc7RNytPfxcDfzu3scfC3jOPK5LJVmhawCHRoplaiqmKUFWD4MJ2UZFCopg6ASYaqKKg4NN1InaagAPCoj40pskg1bW_OU0NCAfBJrcKJKcl6mKo1SkYQ6kRWAl8Aj7_r-zHVHco53bZzk_WQHWjZ3LeuRN4PoWcvscaMQKMXwHrm4s51xjmnIqcqFYOfMI5tOZwYxt5kPRfTIdq9EeTc0NDnMd921pIx75PXwGrsOw92sqVcoE0UwmgK0-4sMYG1k10vgN1utgg4FEIKHAqAxNIdTsz9XMJ9MM_fw7N9FX5E72eHBOB_vTz4_J3c5Rvm4qLxtsrFcrMwLgGlL9dJZ4y_e0zWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2gRAvfG8EBhjEAy-tYsd2EvE0NqoORlUhJhUJKYodW6uApGraoe0n8Ku51_nQhgZCvEXJdWI75_oeJ9fHhLzMo8IYCA0wN0k5_mYsBtrpYiAtY5oVQAkYLk7-MFHjY_FuJmcb5HW3FqbRh-g_uKFn-PEaHXxRuAtOXi5OhixmXG2Sa0KFCUL64CO_oLireCfBrISatbJCmMbTF70UjDZPMBWyyUq8im9epq8-_oxuky9dzZu0k6_D9UoPzflvoo7_2bQ75FbLS-leA6S7ZMOW98j1NxVwx7P75OdhWQIppfB0wIVZA3WnlaNAHun-52kcKtp8KMGTUyFDasvzs--2pu1Cv5rmtIZSuE6LYnY8hAQKdNnfwZ628MfSEErnq2WVl3NsBl3aGgkuIJPOS_oDQu0Dcjx6-2l_PGh3cRgYEcdqwEWhDcuFC420QujIuZilOfg9DCZFEeY6KcLQRTLVuYul5VaYJJUaqKO2InbRNtkqq9I-JFRasE9iAyFUC86LVKcqjRJpEuGAuoQBedW9zsy0Eue408a3rJvqQM9mvmcD8qI3XTS6HlcaASb666jEPd47yvAcKqryKGKnLCDbHjK9mf-VD1UMyG6HoawdGOoMZrt-U1LGA_K8v4yvDpPdSlut0UYpGEuB2P3FBpg2ausl8JidBp99BaKIywiIMXSHR9mfG5hNpmN_8OjfTZ-RG9ODUXZ0OHn_mNzkmOLjU_J2ydZqubZPgKOt9FPvi78AMk40VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innate+promiscuity+of+the+CYP706+family+of+P450+enzymes+provides+a+suitable+context+for+the+evolution+of+dinitroaniline+resistance+in+weed&rft.jtitle=The+New+phytologist&rft.au=Abdollahi%2C+Fatemeh&rft.au=Alebrahim%2C+Mohammad+Taghi&rft.au=Ngov%2C+Chheng&rft.au=Lallemand%2C+Etienne&rft.date=2021-03-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=229&rft.issue=6&rft.spage=3253&rft.epage=3268&rft_id=info:doi/10.1111%2Fnph.17126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_17126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon