Understanding Brønsted‐Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory

Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to cha...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 19; no. 4; pp. 341 - 358
Main Authors Van der Mynsbrugge, Jeroen, Janda, Amber, Lin, Li‐Chiang, Van Speybroeck, Veronique, Head‐Gordon, Martin, Bell, Alexis T.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 19.02.2018
ChemPubSoc Europe
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads‐H+) and the intrinsic rate coefficient of the reaction (kint) at reaction temperatures, since kapp is proportional to the product of Kads‐H+ and kint. We show that Kads‐H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational‐bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads‐H+ and kint. Cracking alkanes! Acidic zeolites are widely used as catalysts to promote the cracking of high molecular weight hydrocarbons to lighter products required for gaseous and liquid fuels. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts combining experimental measurements and theoretical simulations to elucidate the influence of the zeolite structure on the catalytic activity at the Brønsted acid sites.
AbstractList Abstract Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k app ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (K ads‐H+ ) and the intrinsic rate coefficient of the reaction (k int ) at reaction temperatures, since k app is proportional to the product of K ads‐H+ and k int . We show that K ads‐H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational‐bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C 3 –C 6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k app and its components, K ads‐H+ and k int .
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+ ) and the intrinsic rate coefficient of the reaction (kint ) at reaction temperatures, since kapp is proportional to the product of Kads-H+ and kint . We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3 -C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads-H+ and kint .
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads‐H+) and the intrinsic rate coefficient of the reaction (kint) at reaction temperatures, since kapp is proportional to the product of Kads‐H+ and kint. We show that Kads‐H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational‐bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads‐H+ and kint. Cracking alkanes! Acidic zeolites are widely used as catalysts to promote the cracking of high molecular weight hydrocarbons to lighter products required for gaseous and liquid fuels. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts combining experimental measurements and theoretical simulations to elucidate the influence of the zeolite structure on the catalytic activity at the Brønsted acid sites.
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (K ) and the intrinsic rate coefficient of the reaction (k ) at reaction temperatures, since k is proportional to the product of K and k . We show that K cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C -C alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k and its components, K and k .
The front cover artwork is provided by Bell and co-workers. The image shows a butane molecule adsorbed at a Brønsted acid site inside the pores of zeolite H-MFI, surrounded by the products of monomolecular cracking and dehydrogenation reactions catalyzed by these sites. Read the full text of the Minireview at 10.1002/cphc.201701084.
Author Head‐Gordon, Martin
Van der Mynsbrugge, Jeroen
Janda, Amber
Lin, Li‐Chiang
Van Speybroeck, Veronique
Bell, Alexis T.
Author_xml – sequence: 1
  givenname: Jeroen
  orcidid: 0000-0003-3852-4726
  surname: Van der Mynsbrugge
  fullname: Van der Mynsbrugge, Jeroen
  organization: Ghent University, Tech Lane Ghent Science Park Campus A
– sequence: 2
  givenname: Amber
  orcidid: 0000-0001-8545-448X
  surname: Janda
  fullname: Janda, Amber
  organization: Stanford University
– sequence: 3
  givenname: Li‐Chiang
  orcidid: 0000-0002-2821-9501
  surname: Lin
  fullname: Lin, Li‐Chiang
  organization: The Ohio State University
– sequence: 4
  givenname: Veronique
  orcidid: 0000-0003-2206-178X
  surname: Van Speybroeck
  fullname: Van Speybroeck, Veronique
  organization: Ghent University, Tech Lane Ghent Science Park Campus A
– sequence: 5
  givenname: Martin
  orcidid: 0000-0002-4309-6669
  surname: Head‐Gordon
  fullname: Head‐Gordon, Martin
  organization: University of California
– sequence: 6
  givenname: Alexis T.
  orcidid: 0000-0002-5738-4645
  surname: Bell
  fullname: Bell, Alexis T.
  email: alexbell@berkeley.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29239509$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1571096$$D View this record in Osti.gov
BookMark eNqFkb9uFDEQhy0URP5AS4ksaGjusL32eV0eq0AiBRGhpKGxdr3jnMOufdhewVHxAkg8Dj1vwpPg0x1BoqGyZX3z88x8x-jABw8IPaZkTglhL8x6ZeaMUEkoqfk9dER5pWZywenB_s5ZJQ7RcUq3hJCaSPoAHTLFKiWIOkLfrn0PMeXW987f4Jfx5w-fMvS_vn5fGtfjps3tsPkCPX4TfBjDAGYa2ojfQWuyCz7hYPFy-NB6SNh5_B7C4DLgyxDLQ7fBTRg757fZ5z65m1VO2MYw4tPPa4huBJ9x-RtfrSDEzUN037ZDgkf78wRdvzq9as5mF29fnzfLi5nhUvJZbYS01lJaEdEJCcoqRWpJqWo7qKAmdc0oVJxLwYVQFbMCFlVvO17X3UKJ6gQ93eWGlJ1OpnRsViZ4DyZrKiQlalGg5ztoHcPHCVLWo0sGhqHMGqakqZKSMi6ZKuizf9DbMEVfRtCsWFKMl8UXar6jTAwpRbB6XTbQxo2mRG9t6q1NfWezFDzZx07dCP0d_kdfAdQO-OQG2PwnTjeXZ83f8N-u3K8R
CitedBy_id crossref_primary_10_1002_cctc_201902039
crossref_primary_10_1039_D4SC00603H
crossref_primary_10_1002_chem_201800793
crossref_primary_10_1016_j_ctta_2024_100135
crossref_primary_10_1016_j_jcat_2021_08_048
crossref_primary_10_1021_acscatal_3c00391
crossref_primary_10_1021_acscatal_2c04192
crossref_primary_10_1021_acscatal_2c05493
crossref_primary_10_1021_acscatal_9b01775
crossref_primary_10_1039_D0CS01459A
crossref_primary_10_1002_chem_201801785
crossref_primary_10_1021_acs_jpcc_3c01403
crossref_primary_10_1016_j_jmgm_2021_107896
crossref_primary_10_1016_j_jcat_2020_12_008
crossref_primary_10_1021_acscatal_0c02937
crossref_primary_10_1021_acs_jpcc_4c01199
crossref_primary_10_1080_08927022_2019_1626990
crossref_primary_10_1016_j_micromeso_2021_111605
crossref_primary_10_3390_catal8120626
crossref_primary_10_1021_acs_chemrev_2c00896
crossref_primary_10_1039_D1RA02427B
crossref_primary_10_1016_j_jcat_2021_05_010
crossref_primary_10_1016_j_coche_2019_04_002
Cites_doi 10.1080/01614940.2013.822266
10.1016/S1387-1811(99)00204-8
10.1002/wcms.1103
10.1021/cs500189v
10.1016/S0167-2991(08)60776-4
10.1103/PhysRevLett.90.238302
10.1016/0254-0584(87)90048-4
10.1021/acscatal.7b00290
10.1039/b810189b
10.1016/0021-9517(75)90293-6
10.1016/S0167-2991(07)80974-8
10.1021/acscatal.6b01025
10.1021/jp9706487
10.1039/c1cp21731c
10.1016/j.jcat.2015.04.015
10.1016/j.jcat.2016.05.018
10.1021/jp056707v
10.1016/0144-2449(94)90134-1
10.1016/S0166-9834(00)82206-X
10.1016/j.jcat.2016.11.010
10.1146/annurev.physchem.53.082301.113146
10.1002/anie.200702628
10.1021/jp106536m
10.1016/S1387-1811(99)00239-5
10.1016/S0167-2991(02)80007-6
10.1016/j.jcat.2014.01.007
10.1039/C5CS00029G
10.1021/cs400706e
10.1142/p267
10.1016/0021-9517(80)90386-3
10.1021/ja070094d
10.1021/ar200138n
10.1021/ci100099g
10.1021/acs.jpcc.6b09703
10.1016/j.apcata.2011.03.009
10.1021/ct2001655
10.1021/jacs.5b11355
10.1002/chem.201200497
10.1021/jp303321s
10.1016/j.cej.2012.06.157
10.1021/acs.jctc.5b01177
10.1021/acscatal.6b03646
10.1021/ct500291x
10.1021/acs.jpcc.5b01715
10.1016/j.jcat.2010.10.018
10.1016/j.molcata.2004.11.009
10.1103/PhysRev.140.A1133
10.1007/978-94-009-6128-9_7
10.1039/b819435c
10.1021/ja501361v
10.1126/science.3576184
10.1007/978-3-662-03764-5_5
10.1021/jp000417r
10.1016/S0021-9517(02)93697-3
10.1016/S0144-2449(96)00127-3
10.1021/cm301629a
10.1021/jp045424k
10.1063/1.3265715
10.1021/jp054605z
10.1016/S1387-1811(99)00244-9
10.1021/jp045571i
10.1016/j.micromeso.2012.04.052
10.1002/ange.200702628
10.1021/ja3089372
10.1021/acs.jpcc.5b01739
10.1016/j.jcat.2005.04.017
10.1021/ct1005505
10.1073/pnas.202427399
10.1007/s10562-014-1438-7
10.1002/cctc.201402146
10.1103/PhysRevLett.78.2690
10.1016/j.jcat.2006.08.022
10.1021/ja4081937
10.1002/cjoc.200890215
10.1021/jp9061913
10.1038/309589a0
10.1039/B807755J
10.1039/b009589n
10.1002/chem.201500473
10.1016/S0926-860X(98)00301-9
10.1007/s11244-009-9271-8
10.1016/S0167-2991(08)63680-0
10.1039/B608262A
10.1021/jp9818941
10.1016/0021-9517(74)90297-8
10.1016/j.cpc.2004.12.014
10.1038/nature06552
10.1016/j.jcat.2007.11.003
10.1002/0471231509.ch1
10.1021/ja808292c
10.1021/jp509921r
10.1039/c3cc40731d
10.1103/PhysRev.136.B864
10.1021/jp108338g
10.1021/acscatal.5b01133
10.1021/jp402506m
10.1063/1.1948367
10.1006/jcat.1995.1304
10.1002/9783527699827.ch40
10.1021/cr00035a006
10.1021/jp982538l
10.1021/jp502804q
10.1063/1.1410978
10.1016/j.jcat.2004.02.003
10.1039/C4CS00146J
10.1039/dc9817200317
10.1021/jp101262y
10.1080/01614940.2012.632662
10.1063/1.2834918
10.1063/1.2789429
10.1146/annurev-chembioeng-061010-114108
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID NPM
AAYXX
CITATION
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/cphc.201701084
DatabaseName PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 358
ExternalDocumentID 1571096
10_1002_cphc_201701084
29239509
CPHC201701084
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Ghent University Special Research Fund (BOF)
– fundername: Chevron Energy Techonolgy Company
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
NPM
AAYXX
CITATION
K9.
7X8
AAJUZ
AAPBV
ABCVL
ABHUG
ADDAD
AGJLS
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c4774-8c57fff11305b57e9f99087119abe3e808821e34475455932f5e63dfb488b6953
IEDL.DBID DR2
ISSN 1439-4235
IngestDate Fri May 19 00:57:52 EDT 2023
Wed Jul 24 11:36:06 EDT 2024
Thu Oct 10 15:40:17 EDT 2024
Fri Aug 23 02:08:49 EDT 2024
Wed Oct 16 01:00:32 EDT 2024
Sat Aug 24 00:53:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords adsorption
activation enthalpy
zeolites
activation entropy
confinement
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4774-8c57fff11305b57e9f99087119abe3e808821e34475455932f5e63dfb488b6953
Notes J.V.d.M. and A.J. contributed equally to this work
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
USDOE Office of Science (SC)
AC02-05CH11231
Chevron Energy Techonolgy Company
Ghent University Special Research Fund (BOF)
ORCID 0000-0002-5738-4645
0000-0002-2821-9501
0000-0003-3852-4726
0000-0003-2206-178X
0000-0001-8545-448X
0000-0002-4309-6669
0000000338524726
0000000228219501
000000032206178X
000000018545448X
0000000243096669
0000000257384645
OpenAccessLink https://www.osti.gov/servlets/purl/1571096
PMID 29239509
PQID 2002924807
PQPubID 986334
PageCount 18
ParticipantIDs osti_scitechconnect_1571096
proquest_miscellaneous_1977124729
proquest_journals_2002924807
crossref_primary_10_1002_cphc_201701084
pubmed_primary_29239509
wiley_primary_10_1002_cphc_201701084_CPHC201701084
PublicationCentury 2000
PublicationDate February 19, 2018
PublicationDateYYYYMMDD 2018-02-19
PublicationDate_xml – month: 02
  year: 2018
  text: February 19, 2018
  day: 19
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
ChemPubSoc Europe
Publisher_xml – name: Wiley Subscription Services, Inc
– name: ChemPubSoc Europe
References 2011; 115
2013; 3
1990; 59
2015; 145
1965; 140
2002; 99
2009; 113
2012; 18
2014; 136
1964; 136
2009; 11
2012; 134
2002; 142
2013; 55
2007; 170
1987; 236
2010; 114
2013; 117
2005; 229
2008; 26
1985
2005; 109
1984
1999; 179
1981; 72
2012; 24
2014; 10
2011; 2
2005; 233
1980; 61
1975; 39
2006; 110
2008; 128
1994
1995; 157
1999; 103
2014; 312
1994; 85
2011; 7
2014; 43
2016; 12
1999
2016; 6
2000; 104
2005; 123
2007 2007; 46 119
2002; 123
2012; 207–208
2015; 119
2012; 45
2008; 253
2012; 116
2010; 50
2017; 7
1990; 10
2002; 53
2013; 166
2011; 13
2011; 398
2012; 54
2016; 340
2011; 277
2009; 52
2014; 4
2003; 90
2001
2015; 44
1997; 101
1997; 18
2017; 121
2014; 6
2006; 244
2014; 118
1995; 95
2007; 129
2015; 5
1974; 33
2004; 224
2007; 127
2013; 49
2002; 211
1984; 309
2006; 8
2015; 329
2008; 10
2002
2009; 131
1987; 17
2012; 2
2005; 167
1997; 78
2015; 21
2013; 135
2017
2016; 138
2000; 35–36
2008; 451
2017; 345
2001; 115
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
Haag W. O. (e_1_2_7_17_1) 1984
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Haag W. O. (e_1_2_7_53_1) 1994
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_1_1
Gabelica Z. (e_1_2_7_45_1) 1984
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_47_2
e_1_2_7_28_1
Thomas J. M. (e_1_2_7_43_1) 1985
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_99_1
Guisnet M. (e_1_2_7_2_1) 2002
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 103
  start-page: 1462
  year: 1999
  end-page: 1476
  publication-title: J. Phys. Chem. B
– volume: 104
  start-page: 4844
  year: 2000
  end-page: 4848
  publication-title: J. Phys. Chem. B
– start-page: 327
  year: 1999
  end-page: 376
– volume: 127
  start-page: 164108
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 95
  start-page: 559
  year: 1995
  end-page: 614
  publication-title: Chem. Rev.
– volume: 207–208
  start-page: 490
  year: 2012
  end-page: 496
  publication-title: Chem. Eng. J.
– volume: 340
  start-page: 227
  year: 2016
  end-page: 235
  publication-title: J. Catal.
– volume: 4
  start-page: 2351
  year: 2014
  end-page: 2358
  publication-title: ACS Catal.
– volume: 167
  start-page: 103
  year: 2005
  end-page: 128
  publication-title: Comput. Phys. Commun.
– volume: 115
  start-page: 9169
  year: 2001
  end-page: 9183
  publication-title: J. Chem. Phys.
– volume: 309
  start-page: 589
  year: 1984
  end-page: 591
  publication-title: Nature
– volume: 59
  start-page: 311
  year: 1990
  end-page: 331
  publication-title: Appl. Catal.
– volume: 128
  start-page: 084106
  year: 2008
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 5414
  year: 1997
  end-page: 5419
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 49
  year: 1987
  end-page: 71
  publication-title: Mater. Chem. Phys.
– volume: 166
  start-page: 176
  year: 2013
  end-page: 184
  publication-title: Microporous Mesoporous Mater.
– volume: 253
  start-page: 221
  year: 2008
  end-page: 224
  publication-title: J. Catal.
– volume: 50
  start-page: 1736
  year: 2010
  end-page: 1750
  publication-title: J. Chem. Inf. Model.
– volume: 129
  start-page: 4919
  year: 2007
  end-page: 4924
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 429
  year: 1994
  end-page: 507
  publication-title: Stud. Surf. Sci. Catal.
– volume: 224
  start-page: 50
  year: 2004
  end-page: 59
  publication-title: J. Catal.
– volume: 7
  start-page: 1090
  year: 2011
  end-page: 1101
  publication-title: J. Chem. Theory Comput.
– volume: 7
  start-page: 4230
  year: 2017
  end-page: 4234
  publication-title: ACS Catal.
– volume: 53
  start-page: 291
  year: 2002
  end-page: 318
  publication-title: Annu. Rev. Phys. Chem.
– start-page: 305
  year: 1984
  end-page: 316
– volume: 43
  start-page: 7326
  year: 2014
  end-page: 7357
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 135
  year: 2012
  end-page: 223
  publication-title: Catal. Rev.
– volume: 78
  start-page: 2690
  year: 1997
  end-page: 2693
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 454
  year: 2013
  end-page: 515
  publication-title: Catal. Rev.
– volume: 131
  start-page: 214508
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 12562
  year: 2002
  end-page: 12566
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 136
  start-page: 8296
  year: 2014
  end-page: 8306
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 19937
  year: 2009
  end-page: 19956
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 1131
  year: 2009
  end-page: 1161
  publication-title: Top Catal.
– volume: 157
  start-page: 388
  year: 1995
  end-page: 395
  publication-title: J. Catal.
– volume: 11
  start-page: 1237
  year: 2009
  end-page: 1247
  publication-title: Phys. Chem. Chem. Phys.
– volume: 114
  start-page: 10229
  year: 2010
  end-page: 10239
  publication-title: J. Phys. Chem. C
– volume: 103
  start-page: 818
  year: 1999
  end-page: 824
  publication-title: J. Phys. Chem. B
– year: 2002
– volume: 117
  start-page: 12600
  year: 2013
  end-page: 12611
  publication-title: J. Phys. Chem. C
– volume: 90
  start-page: 238302
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 453
  year: 2011
  end-page: 477
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– start-page: 1055
  year: 2017
  end-page: 1100
– volume: 6
  start-page: 1906
  year: 2014
  end-page: 1918
  publication-title: ChemCatChem
– volume: 116
  start-page: 15406
  year: 2012
  end-page: 15414
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 75
  year: 1997
  end-page: 81
  publication-title: Zeolites
– volume: 39
  start-page: 155
  year: 1975
  end-page: 157
  publication-title: J. Catal.
– volume: 136
  start-page: 864
  year: 1964
  publication-title: Phys. Rev.
– volume: 61
  start-page: 390
  year: 1980
  end-page: 396
  publication-title: J. Catal.
– volume: 236
  start-page: 564
  year: 1987
  end-page: 568
  publication-title: Science
– volume: 211
  start-page: 198
  year: 2002
  end-page: 207
  publication-title: J. Catal.
– volume: 345
  start-page: 53
  year: 2017
  end-page: 69
  publication-title: J. Catal.
– volume: 7
  start-page: 2685
  year: 2017
  end-page: 2697
  publication-title: ACS Catal.
– volume: 35–36
  start-page: 483
  year: 2000
  end-page: 494
  publication-title: Microporous Mesoporous Mater.
– volume: 35–36
  start-page: 11
  year: 2000
  end-page: 20
  publication-title: Microporous Mesoporous Mater.
– start-page: 199
  year: 1985
  end-page: 374
– volume: 312
  start-page: 58
  year: 2014
  end-page: 68
  publication-title: J. Catal.
– volume: 119
  start-page: 10427
  year: 2015
  end-page: 10438
  publication-title: J. Phys. Chem. C
– volume: 329
  start-page: 32
  year: 2015
  end-page: 48
  publication-title: J. Catal.
– volume: 11
  start-page: 2939
  year: 2009
  end-page: 2958
  publication-title: Phys. Chem. Chem. Phys.
– volume: 45
  start-page: 229
  year: 2012
  end-page: 238
  publication-title: Acc. Chem. Res.
– volume: 398
  start-page: 1
  year: 2011
  end-page: 17
  publication-title: Appl. Catal. A
– volume: 10
  start-page: 235
  year: 1990
  end-page: 242
  publication-title: Zeolites
– volume: 109
  start-page: 6714
  year: 2005
  end-page: 6721
  publication-title: J. Phys. Chem. B
– volume: 229
  start-page: 77
  year: 2005
  end-page: 85
  publication-title: J. Mol. Catal. A
– volume: 115
  start-page: 8005
  year: 2011
  end-page: 8013
  publication-title: J. Phys. Chem. C
– volume: 110
  start-page: 2455
  year: 2006
  end-page: 2460
  publication-title: J. Phys. Chem. A
– volume: 119
  start-page: 6128
  year: 2015
  end-page: 6137
  publication-title: J. Phys. Chem. C
– volume: 44
  start-page: 7044
  year: 2015
  end-page: 7111
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 3231
  year: 2012
  end-page: 3239
  publication-title: Chem. Mater.
– volume: 138
  start-page: 4739
  year: 2016
  end-page: 4756
  publication-title: J. Am. Chem. Soc.
– start-page: 970
  year: 2001
  end-page: 971
  publication-title: Chem. Commun.
– volume: 49
  start-page: 3491
  year: 2013
  end-page: 3509
  publication-title: Chem. Commun.
– start-page: 1375
  year: 1994
  end-page: 1394
– volume: 6
  start-page: 4536
  year: 2016
  end-page: 4548
  publication-title: ACS Catal.
– volume: 10
  start-page: 6615
  year: 2008
  end-page: 6620
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 3955
  year: 2006
  end-page: 3965
  publication-title: Phys. Chem. Chem. Phys.
– volume: 18
  start-page: 9955
  year: 2012
  end-page: 9964
  publication-title: Chemistry
– volume: 131
  start-page: 1958
  year: 2009
  end-page: 1971
  publication-title: J. Am. Chem. Soc.
– start-page: 193
  year: 1984
  end-page: 210
– volume: 140
  start-page: 1133
  year: 1965
  end-page: 1138
  publication-title: Phys. Rev.
– volume: 5
  start-page: 5741
  year: 2015
  end-page: 5755
  publication-title: ACS Catal.
– volume: 33
  start-page: 497
  year: 1974
  end-page: 499
  publication-title: J. Catal.
– volume: 179
  start-page: 71
  year: 1999
  end-page: 86
  publication-title: Appl. Catal. A
– volume: 13
  start-page: 17339
  year: 2011
  end-page: 17358
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46 119
  start-page: 7286 7424
  year: 2007 2007
  end-page: 7289 7427
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 118
  start-page: 21409
  year: 2014
  end-page: 21419
  publication-title: J. Phys. Chem. C
– volume: 121
  start-page: 1618
  year: 2017
  end-page: 1638
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1695
  year: 2011
  end-page: 1703
  publication-title: J. Chem. Theory Comput.
– volume: 21
  start-page: 9385
  year: 2015
  end-page: 9396
  publication-title: Chem. Eur. J.
– volume: 35–36
  start-page: 425
  year: 2000
  end-page: 433
  publication-title: Microporous Mesoporous Mater.
– volume: 233
  start-page: 100
  year: 2005
  end-page: 108
  publication-title: J. Catal.
– volume: 170
  start-page: 1167
  year: 2007
  end-page: 1173
  publication-title: Stud. Surf. Sci. Catal.
– volume: 451
  start-page: 671
  year: 2008
  end-page: 678
  publication-title: Nature
– volume: 115
  start-page: 1204
  year: 2011
  end-page: 1219
  publication-title: J. Phys. Chem. C
– volume: 119
  start-page: 1840
  year: 2015
  end-page: 1850
  publication-title: J. Phys. Chem. C
– volume: 123
  start-page: 1
  year: 2002
  end-page: 78
  publication-title: Adv. Chem. Phys.
– volume: 3
  start-page: 2556
  year: 2013
  end-page: 2567
  publication-title: ACS Catal.
– volume: 10
  start-page: 2479
  year: 2014
  end-page: 2487
  publication-title: J. Chem. Theory Comput.
– volume: 109
  start-page: 6676
  year: 2005
  end-page: 6687
  publication-title: J. Phys. Chem. B
– volume: 135
  start-page: 19193
  year: 2013
  end-page: 19207
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 23
  year: 2002
  end-page: 30
  publication-title: Stud. Surf. Sci. Catal.
– volume: 244
  start-page: 163
  year: 2006
  end-page: 168
  publication-title: J. Catal.
– volume: 26
  start-page: 1173
  year: 2008
  end-page: 1180
  publication-title: Chin. J. Chem.
– volume: 12
  start-page: 2861
  year: 2016
  end-page: 2870
  publication-title: J. Chem. Theory Comput.
– volume: 134
  start-page: 19468
  year: 2012
  end-page: 19476
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 771
  year: 2012
  end-page: 779
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 123
  start-page: 084101
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 72
  start-page: 317
  year: 1981
  end-page: 330
  publication-title: Faraday Discuss. Chem. Soc.
– volume: 277
  start-page: 104
  year: 2011
  end-page: 116
  publication-title: J. Catal.
– volume: 109
  start-page: 10734
  year: 2005
  end-page: 10741
  publication-title: J. Phys. Chem. A
– volume: 145
  start-page: 162
  year: 2015
  end-page: 172
  publication-title: Catal. Lett.
– ident: e_1_2_7_49_1
  doi: 10.1080/01614940.2013.822266
– ident: e_1_2_7_18_1
  doi: 10.1016/S1387-1811(99)00204-8
– ident: e_1_2_7_99_1
  doi: 10.1002/wcms.1103
– ident: e_1_2_7_28_1
  doi: 10.1021/cs500189v
– ident: e_1_2_7_44_1
  doi: 10.1016/S0167-2991(08)60776-4
– ident: e_1_2_7_103_1
  doi: 10.1103/PhysRevLett.90.238302
– ident: e_1_2_7_69_1
  doi: 10.1016/0254-0584(87)90048-4
– ident: e_1_2_7_78_1
  doi: 10.1021/acscatal.7b00290
– ident: e_1_2_7_76_1
  doi: 10.1039/b810189b
– ident: e_1_2_7_68_1
  doi: 10.1016/0021-9517(75)90293-6
– ident: e_1_2_7_11_1
  doi: 10.1016/S0167-2991(07)80974-8
– ident: e_1_2_7_27_1
  doi: 10.1021/acscatal.6b01025
– ident: e_1_2_7_58_1
  doi: 10.1021/jp9706487
– ident: e_1_2_7_70_1
  doi: 10.1039/c1cp21731c
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jcat.2015.04.015
– ident: e_1_2_7_91_1
  doi: 10.1016/j.jcat.2016.05.018
– ident: e_1_2_7_64_1
  doi: 10.1021/jp056707v
– ident: e_1_2_7_33_1
  doi: 10.1016/0144-2449(94)90134-1
– ident: e_1_2_7_20_1
  doi: 10.1016/S0166-9834(00)82206-X
– ident: e_1_2_7_92_1
  doi: 10.1016/j.jcat.2016.11.010
– ident: e_1_2_7_110_1
  doi: 10.1146/annurev.physchem.53.082301.113146
– ident: e_1_2_7_47_1
  doi: 10.1002/anie.200702628
– ident: e_1_2_7_59_1
  doi: 10.1021/jp106536m
– ident: e_1_2_7_6_1
  doi: 10.1016/S1387-1811(99)00239-5
– ident: e_1_2_7_40_1
  doi: 10.1016/S0167-2991(02)80007-6
– ident: e_1_2_7_5_1
  doi: 10.1016/j.jcat.2014.01.007
– ident: e_1_2_7_96_1
  doi: 10.1039/C5CS00029G
– ident: e_1_2_7_106_1
  doi: 10.1021/cs400706e
– volume-title: Zeolites for Cleaner Technologies
  year: 2002
  ident: e_1_2_7_2_1
  doi: 10.1142/p267
  contributor:
    fullname: Guisnet M.
– ident: e_1_2_7_52_1
  doi: 10.1016/0021-9517(80)90386-3
– ident: e_1_2_7_41_1
  doi: 10.1021/ja070094d
– ident: e_1_2_7_13_1
  doi: 10.1021/ar200138n
– start-page: 199
  volume-title: Advances in Catalysis,
  year: 1985
  ident: e_1_2_7_43_1
  contributor:
    fullname: Thomas J. M.
– ident: e_1_2_7_87_1
  doi: 10.1021/ci100099g
– ident: e_1_2_7_32_1
  doi: 10.1021/acs.jpcc.6b09703
– ident: e_1_2_7_4_1
  doi: 10.1016/j.apcata.2011.03.009
– ident: e_1_2_7_81_1
  doi: 10.1021/ct2001655
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.5b11355
– ident: e_1_2_7_83_1
  doi: 10.1002/chem.201200497
– ident: e_1_2_7_77_1
  doi: 10.1021/jp303321s
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cej.2012.06.157
– ident: e_1_2_7_90_1
  doi: 10.1021/acs.jctc.5b01177
– ident: e_1_2_7_31_1
  doi: 10.1021/acscatal.6b03646
– ident: e_1_2_7_88_1
  doi: 10.1021/ct500291x
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.jpcc.5b01715
– ident: e_1_2_7_109_1
  doi: 10.1016/j.jcat.2010.10.018
– ident: e_1_2_7_63_1
  doi: 10.1016/j.molcata.2004.11.009
– ident: e_1_2_7_72_1
  doi: 10.1103/PhysRev.140.A1133
– start-page: 193
  volume-title: Zeolites: Science and Technology
  year: 1984
  ident: e_1_2_7_45_1
  doi: 10.1007/978-94-009-6128-9_7
  contributor:
    fullname: Gabelica Z.
– ident: e_1_2_7_84_1
  doi: 10.1039/b819435c
– ident: e_1_2_7_42_1
  doi: 10.1021/ja501361v
– ident: e_1_2_7_100_1
  doi: 10.1126/science.3576184
– ident: e_1_2_7_15_1
  doi: 10.1007/978-3-662-03764-5_5
– ident: e_1_2_7_35_1
  doi: 10.1021/jp000417r
– ident: e_1_2_7_37_1
  doi: 10.1016/S0021-9517(02)93697-3
– ident: e_1_2_7_56_1
  doi: 10.1016/S0144-2449(96)00127-3
– ident: e_1_2_7_48_1
  doi: 10.1021/cm301629a
– ident: e_1_2_7_105_1
  doi: 10.1021/jp045424k
– ident: e_1_2_7_112_1
  doi: 10.1063/1.3265715
– ident: e_1_2_7_62_1
  doi: 10.1021/jp054605z
– ident: e_1_2_7_39_1
  doi: 10.1016/S1387-1811(99)00244-9
– ident: e_1_2_7_104_1
  doi: 10.1021/jp045571i
– ident: e_1_2_7_30_1
  doi: 10.1016/j.micromeso.2012.04.052
– ident: e_1_2_7_47_2
  doi: 10.1002/ange.200702628
– ident: e_1_2_7_93_1
  doi: 10.1021/ja3089372
– ident: e_1_2_7_89_1
  doi: 10.1021/acs.jpcc.5b01739
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jcat.2005.04.017
– ident: e_1_2_7_85_1
  doi: 10.1021/ct1005505
– ident: e_1_2_7_97_1
  doi: 10.1073/pnas.202427399
– ident: e_1_2_7_66_1
  doi: 10.1007/s10562-014-1438-7
– ident: e_1_2_7_107_1
  doi: 10.1002/cctc.201402146
– ident: e_1_2_7_102_1
  doi: 10.1103/PhysRevLett.78.2690
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jcat.2006.08.022
– start-page: 305
  volume-title: Proceedings - International Congress on Catalysis, 8th,
  year: 1984
  ident: e_1_2_7_17_1
  contributor:
    fullname: Haag W. O.
– ident: e_1_2_7_22_1
  doi: 10.1021/ja4081937
– ident: e_1_2_7_65_1
  doi: 10.1002/cjoc.200890215
– ident: e_1_2_7_34_1
  doi: 10.1021/jp9061913
– ident: e_1_2_7_54_1
  doi: 10.1038/309589a0
– ident: e_1_2_7_46_1
  doi: 10.1039/B807755J
– ident: e_1_2_7_36_1
  doi: 10.1039/b009589n
– ident: e_1_2_7_108_1
  doi: 10.1002/chem.201500473
– ident: e_1_2_7_26_1
  doi: 10.1016/S0926-860X(98)00301-9
– ident: e_1_2_7_3_1
  doi: 10.1007/s11244-009-9271-8
– start-page: 1375
  volume-title: Zeolites and Related Microporous Materials: State of the Art 1994—Proceedings of the 10th International Zeolite Conference
  year: 1994
  ident: e_1_2_7_53_1
  doi: 10.1016/S0167-2991(08)63680-0
  contributor:
    fullname: Haag W. O.
– ident: e_1_2_7_73_1
  doi: 10.1039/B608262A
– ident: e_1_2_7_38_1
  doi: 10.1021/jp9818941
– ident: e_1_2_7_67_1
  doi: 10.1016/0021-9517(74)90297-8
– ident: e_1_2_7_95_1
  doi: 10.1016/j.cpc.2004.12.014
– ident: e_1_2_7_16_1
  doi: 10.1038/nature06552
– ident: e_1_2_7_57_1
  doi: 10.1016/j.jcat.2007.11.003
– ident: e_1_2_7_111_1
  doi: 10.1002/0471231509.ch1
– ident: e_1_2_7_8_1
  doi: 10.1021/ja808292c
– ident: e_1_2_7_82_1
  doi: 10.1021/jp509921r
– ident: e_1_2_7_14_1
  doi: 10.1039/c3cc40731d
– ident: e_1_2_7_71_1
  doi: 10.1103/PhysRev.136.B864
– ident: e_1_2_7_61_1
  doi: 10.1021/jp108338g
– ident: e_1_2_7_7_1
  doi: 10.1021/acscatal.5b01133
– ident: e_1_2_7_51_1
  doi: 10.1021/jp402506m
– ident: e_1_2_7_98_1
  doi: 10.1063/1.1948367
– ident: e_1_2_7_55_1
  doi: 10.1006/jcat.1995.1304
– ident: e_1_2_7_80_1
  doi: 10.1002/9783527699827.ch40
– ident: e_1_2_7_1_1
  doi: 10.1021/cr00035a006
– ident: e_1_2_7_60_1
  doi: 10.1021/jp982538l
– ident: e_1_2_7_94_1
  doi: 10.1021/jp502804q
– ident: e_1_2_7_101_1
  doi: 10.1063/1.1410978
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jcat.2004.02.003
– ident: e_1_2_7_74_1
  doi: 10.1039/C4CS00146J
– ident: e_1_2_7_21_1
  doi: 10.1039/dc9817200317
– ident: e_1_2_7_23_1
  doi: 10.1021/jp101262y
– ident: e_1_2_7_50_1
  doi: 10.1080/01614940.2012.632662
– ident: e_1_2_7_75_1
  doi: 10.1063/1.2834918
– ident: e_1_2_7_86_1
  doi: 10.1063/1.2789429
– ident: e_1_2_7_79_1
  doi: 10.1146/annurev-chembioeng-061010-114108
SSID ssj0008071
Score 2.401077
SecondaryResourceType review_article
Snippet Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels....
Abstract Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for...
The front cover artwork is provided by Bell and co-workers. The image shows a butane molecule adsorbed at a Brønsted acid site inside the pores of zeolite...
SourceID osti
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 341
SubjectTerms activation enthalpy
activation entropy
Adsorption
Alkanes
Ambient temperature
Catalysis
Catalytic activity
Chemical reactions
Computer simulation
confinement
Cracking (chemical engineering)
Dehydrogenation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Reaction kinetics
Zeolites
Title Understanding Brønsted‐Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201701084
https://www.ncbi.nlm.nih.gov/pubmed/29239509
https://www.proquest.com/docview/2002924807
https://search.proquest.com/docview/1977124729
https://www.osti.gov/servlets/purl/1571096
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZlL-2lP-mfmzSoUOjJiWVLtnzcugmbQEsIXQi9CMse0ZBgh3j3kJz6AoU-Tu99kz5JZ6y1ky2FQnuzMbJlaUbzjTTzDWOvdYmgG2oZEtNmSAdzoda2DiMg61gCCNsHyH5IZ3N5eKJObmXxe36IccONNKNfr0nBS9vt3pCGVhefiYKQ-MQjTYSgIskopuvd8Q1_lI68xyXpuDNO1MDaGMW7683XrNKkRe36E-JcB7C9Bdp_wMqh7z7w5GxnubA71fVvtI7_83MP2f0VPOVTL0-P2B1oNtjdYqgK95h9nd_OhuFvL398b2jH9OeXb9PqtOYFbQddXUPN31O6xFB8lx-Dz6DoeOv49PysxCWWnzb8E1AAHvCjFv1-bq84LlC2L1rBD5qOdg46TikwfG8sRcDx29xzCjxh8_29j8UsXJV0CCuJQDPUlcqccwItp7Iqg9yhNUSfTeSlhQQ0AX4BPQuhRF8niZ2CNKmdxXXGprlKnrJJ0zbwnHFZulS6qK6ztJLCpTlIJ5MMdAqqdCIN2JthSs2FZ-4wnqM5NjS8ZhzegG3SjBvEHEScW1GEUbUwQlGcKr5naxAEs9Lvjop3xui5onwF7NX4GKeCjltwBNtlZwRCa0RP6L0E7JkXoLEj2DjJEasFLO7F4C89NMXRrBjvXvxLo012D681BZyLfItNFpdLeIl4amG3e535BbXhGIk
link.rule.ids 230,315,783,787,888,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BcigX_n9CCxgJiVPa_NhZ57iEVltoq6rqSoiLFSdjURUlVbN7aE-8ABKPw5034UmYSTYpi5CQ4LhZeeO1ZzzfjGe-AXipcwLdWEqfmTZ9vpjztbalHyBbxxwxtG2C7EEyncm371WfTci1MB0_xBBwY81oz2tWcA5Ib12xhhZnH5mDkAnFAy2vww3S-ZibGLw5umKQ0kHnc0m-8Ixi1fM2BtHW6vgVuzSqSb_-hDlXIWxrg3Zug-1n36WenG4u5nazuPyN2PG__t4duLVEqGLSidRduIbVPVjL-sZw9-HL7NeCGPH6_Pu3ioOmPz5_nRQnpcg4InRxiaXY54qJvv-uOMKuiKIRtROTT6c5nbLipBIfkHPwUBzW5PoLeyHojLJt3wqxWzUcPGgEV8GI7aEbgaB3i45W4AHMdraPs6m_7OrgF5Kwpq8LNXbOhWQ8lVVjTB0ZRHLbwjS3GKNmzB9iS0Qoyd2JI6cwiUtn6aixSarihzCq6gofg5C5S6QLynKcFDJ0SYrSyXiMOkGVuzDx4FW_p-asI-8wHU1zZHh5zbC8HqzzlhuCHcydW3CSUTE3oeJUVfqdjV4SzFLFG-7fGZHzSgLmwYvha9oKvnGhFawXjQkJXROAIgfGg0edBA0TocFxSnDNg6iVg7_M0GSH02z49ORfBj2Htenx_p7Z2z14tw436bnm_PMw3YDR_HyBTwleze2zVoF-AirIHKM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BIgEX_qGhBYyExCltfpxsclzSrrb8VKuKlSouVpyMRdUqWTW7h_bECyDxONx5E56EmXiTdhESEhyTyIljz3i-sWe-AXiV5AS6sZQuM226fDDnJokuXQ_ZOuaIvm4DZA_iyUy-PYqOrmTxW36IfsONNaNdr1nB56XZuSQNLeafmYKQ-cS9RF6HGzIOPQ7q2j28JJBKPOtyST7vDMKoo230gp319mtmaVCTev0Jcq4j2NYEje9C3nXeRp6cbC8Xeru4-I3X8X_-7h7cWeFTMbICdR-uYfUAbmVdWbiH8HV2NR1GvDn78b3iLdOfX76NiuNSZLwfdH6BpfjA-RJd9V1xiDaFohG1EaPTk5zWWHFciU_IEXgopjU5_kKfC1qhdFu1QuxXDW8dNIJzYMReX4tA0LeFJRV4BLPx3sds4q5qOriFJKTpJkU0NMb4ZDojHQ0xNWQOyWnz01xjiAkjfh9bGkJJzk4YmAjjsDSaFhodp1H4GAZVXeEGCJmbWBqvLIdxIX0TpyiNDIeYxBjlxo8deN1NqZpb6g5lSZoDxcOr-uF1YJNnXBHoYObcgkOMioXyIw5UpfdsdYKgVgrecPXOgFxXki8HXvaPaSr4vIVGsF42yidsTfCJ3BcHnlgB6jtCjcOUwJoDQSsGf-mhyqaTrL96-i-NXsDN6e5Yvd8_eLcJt-l2wsHnfroFg8XZEp8Rtlro5636_AK9sBtS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Br%C3%B8nsted-Acid+Catalyzed+Monomolecular+Reactions+of+Alkanes+in+Zeolite+Pores+by+Combining+Insights+from+Experiment+and+Theory&rft.jtitle=Chemphyschem&rft.au=VanderMynsbrugge%2C+Jeroen&rft.au=Janda%2C+Amber&rft.au=Lin%2C+Li-Chiang&rft.au=VanSpeybroeck%2C+Veronique&rft.date=2018-02-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=19&rft.issue=4&rft.spage=341&rft_id=info:doi/10.1002%2Fcphc.201701084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon