Understanding Brønsted‐Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to cha...
Saved in:
Published in | Chemphyschem Vol. 19; no. 4; pp. 341 - 358 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
19.02.2018
ChemPubSoc Europe |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads‐H+) and the intrinsic rate coefficient of the reaction (kint) at reaction temperatures, since kapp is proportional to the product of Kads‐H+ and kint. We show that Kads‐H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational‐bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads‐H+ and kint.
Cracking alkanes! Acidic zeolites are widely used as catalysts to promote the cracking of high molecular weight hydrocarbons to lighter products required for gaseous and liquid fuels. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts combining experimental measurements and theoretical simulations to elucidate the influence of the zeolite structure on the catalytic activity at the Brønsted acid sites. |
---|---|
AbstractList | Abstract
Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k
app
), it is necessary to identify the equilibrium constant for adsorption into the reactant state (K
ads‐H+
) and the intrinsic rate coefficient of the reaction (k
int
) at reaction temperatures, since k
app
is proportional to the product of K
ads‐H+
and k
int
. We show that K
ads‐H+
cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational‐bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C
3
–C
6
alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k
app
and its components, K
ads‐H+
and k
int
. Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads-H+ ) and the intrinsic rate coefficient of the reaction (kint ) at reaction temperatures, since kapp is proportional to the product of Kads-H+ and kint . We show that Kads-H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3 -C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads-H+ and kint . Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (kapp), it is necessary to identify the equilibrium constant for adsorption into the reactant state (Kads‐H+) and the intrinsic rate coefficient of the reaction (kint) at reaction temperatures, since kapp is proportional to the product of Kads‐H+ and kint. We show that Kads‐H+ cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational‐bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of kapp and its components, Kads‐H+ and kint. Cracking alkanes! Acidic zeolites are widely used as catalysts to promote the cracking of high molecular weight hydrocarbons to lighter products required for gaseous and liquid fuels. Using monomolecular cracking and dehydrogenation of C3–C6 alkanes as an example, we review recent efforts combining experimental measurements and theoretical simulations to elucidate the influence of the zeolite structure on the catalytic activity at the Brønsted acid sites. Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels. However, the ways in which the zeolite structure affects the catalytic activity at Brønsted protons are not fully understood. One way to characterize the influence of the zeolite structure on the catalysis is to study alkane cracking and dehydrogenation at very low conversion, conditions for which the kinetics are well defined. To understand the effects of zeolite structure on the measured rate coefficient (k ), it is necessary to identify the equilibrium constant for adsorption into the reactant state (K ) and the intrinsic rate coefficient of the reaction (k ) at reaction temperatures, since k is proportional to the product of K and k . We show that K cannot be calculated from experimental adsorption data collected near ambient temperature, but can, however, be estimated accurately from configurational-bias Monte Carlo (CBMC) simulations. Using monomolecular cracking and dehydrogenation of C -C alkanes as an example, we review recent efforts aimed at elucidating the influence of the acid site location and the zeolite framework structure on the observed values of k and its components, K and k . The front cover artwork is provided by Bell and co-workers. The image shows a butane molecule adsorbed at a Brønsted acid site inside the pores of zeolite H-MFI, surrounded by the products of monomolecular cracking and dehydrogenation reactions catalyzed by these sites. Read the full text of the Minireview at 10.1002/cphc.201701084. |
Author | Head‐Gordon, Martin Van der Mynsbrugge, Jeroen Janda, Amber Lin, Li‐Chiang Van Speybroeck, Veronique Bell, Alexis T. |
Author_xml | – sequence: 1 givenname: Jeroen orcidid: 0000-0003-3852-4726 surname: Van der Mynsbrugge fullname: Van der Mynsbrugge, Jeroen organization: Ghent University, Tech Lane Ghent Science Park Campus A – sequence: 2 givenname: Amber orcidid: 0000-0001-8545-448X surname: Janda fullname: Janda, Amber organization: Stanford University – sequence: 3 givenname: Li‐Chiang orcidid: 0000-0002-2821-9501 surname: Lin fullname: Lin, Li‐Chiang organization: The Ohio State University – sequence: 4 givenname: Veronique orcidid: 0000-0003-2206-178X surname: Van Speybroeck fullname: Van Speybroeck, Veronique organization: Ghent University, Tech Lane Ghent Science Park Campus A – sequence: 5 givenname: Martin orcidid: 0000-0002-4309-6669 surname: Head‐Gordon fullname: Head‐Gordon, Martin organization: University of California – sequence: 6 givenname: Alexis T. orcidid: 0000-0002-5738-4645 surname: Bell fullname: Bell, Alexis T. email: alexbell@berkeley.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29239509$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1571096$$D View this record in Osti.gov |
BookMark | eNqFkb9uFDEQhy0URP5AS4ksaGjusL32eV0eq0AiBRGhpKGxdr3jnMOufdhewVHxAkg8Dj1vwpPg0x1BoqGyZX3z88x8x-jABw8IPaZkTglhL8x6ZeaMUEkoqfk9dER5pWZywenB_s5ZJQ7RcUq3hJCaSPoAHTLFKiWIOkLfrn0PMeXW987f4Jfx5w-fMvS_vn5fGtfjps3tsPkCPX4TfBjDAGYa2ojfQWuyCz7hYPFy-NB6SNh5_B7C4DLgyxDLQ7fBTRg757fZ5z65m1VO2MYw4tPPa4huBJ9x-RtfrSDEzUN037ZDgkf78wRdvzq9as5mF29fnzfLi5nhUvJZbYS01lJaEdEJCcoqRWpJqWo7qKAmdc0oVJxLwYVQFbMCFlVvO17X3UKJ6gQ93eWGlJ1OpnRsViZ4DyZrKiQlalGg5ztoHcPHCVLWo0sGhqHMGqakqZKSMi6ZKuizf9DbMEVfRtCsWFKMl8UXar6jTAwpRbB6XTbQxo2mRG9t6q1NfWezFDzZx07dCP0d_kdfAdQO-OQG2PwnTjeXZ83f8N-u3K8R |
CitedBy_id | crossref_primary_10_1002_cctc_201902039 crossref_primary_10_1039_D4SC00603H crossref_primary_10_1002_chem_201800793 crossref_primary_10_1016_j_ctta_2024_100135 crossref_primary_10_1016_j_jcat_2021_08_048 crossref_primary_10_1021_acscatal_3c00391 crossref_primary_10_1021_acscatal_2c04192 crossref_primary_10_1021_acscatal_2c05493 crossref_primary_10_1021_acscatal_9b01775 crossref_primary_10_1039_D0CS01459A crossref_primary_10_1002_chem_201801785 crossref_primary_10_1021_acs_jpcc_3c01403 crossref_primary_10_1016_j_jmgm_2021_107896 crossref_primary_10_1016_j_jcat_2020_12_008 crossref_primary_10_1021_acscatal_0c02937 crossref_primary_10_1021_acs_jpcc_4c01199 crossref_primary_10_1080_08927022_2019_1626990 crossref_primary_10_1016_j_micromeso_2021_111605 crossref_primary_10_3390_catal8120626 crossref_primary_10_1021_acs_chemrev_2c00896 crossref_primary_10_1039_D1RA02427B crossref_primary_10_1016_j_jcat_2021_05_010 crossref_primary_10_1016_j_coche_2019_04_002 |
Cites_doi | 10.1080/01614940.2013.822266 10.1016/S1387-1811(99)00204-8 10.1002/wcms.1103 10.1021/cs500189v 10.1016/S0167-2991(08)60776-4 10.1103/PhysRevLett.90.238302 10.1016/0254-0584(87)90048-4 10.1021/acscatal.7b00290 10.1039/b810189b 10.1016/0021-9517(75)90293-6 10.1016/S0167-2991(07)80974-8 10.1021/acscatal.6b01025 10.1021/jp9706487 10.1039/c1cp21731c 10.1016/j.jcat.2015.04.015 10.1016/j.jcat.2016.05.018 10.1021/jp056707v 10.1016/0144-2449(94)90134-1 10.1016/S0166-9834(00)82206-X 10.1016/j.jcat.2016.11.010 10.1146/annurev.physchem.53.082301.113146 10.1002/anie.200702628 10.1021/jp106536m 10.1016/S1387-1811(99)00239-5 10.1016/S0167-2991(02)80007-6 10.1016/j.jcat.2014.01.007 10.1039/C5CS00029G 10.1021/cs400706e 10.1142/p267 10.1016/0021-9517(80)90386-3 10.1021/ja070094d 10.1021/ar200138n 10.1021/ci100099g 10.1021/acs.jpcc.6b09703 10.1016/j.apcata.2011.03.009 10.1021/ct2001655 10.1021/jacs.5b11355 10.1002/chem.201200497 10.1021/jp303321s 10.1016/j.cej.2012.06.157 10.1021/acs.jctc.5b01177 10.1021/acscatal.6b03646 10.1021/ct500291x 10.1021/acs.jpcc.5b01715 10.1016/j.jcat.2010.10.018 10.1016/j.molcata.2004.11.009 10.1103/PhysRev.140.A1133 10.1007/978-94-009-6128-9_7 10.1039/b819435c 10.1021/ja501361v 10.1126/science.3576184 10.1007/978-3-662-03764-5_5 10.1021/jp000417r 10.1016/S0021-9517(02)93697-3 10.1016/S0144-2449(96)00127-3 10.1021/cm301629a 10.1021/jp045424k 10.1063/1.3265715 10.1021/jp054605z 10.1016/S1387-1811(99)00244-9 10.1021/jp045571i 10.1016/j.micromeso.2012.04.052 10.1002/ange.200702628 10.1021/ja3089372 10.1021/acs.jpcc.5b01739 10.1016/j.jcat.2005.04.017 10.1021/ct1005505 10.1073/pnas.202427399 10.1007/s10562-014-1438-7 10.1002/cctc.201402146 10.1103/PhysRevLett.78.2690 10.1016/j.jcat.2006.08.022 10.1021/ja4081937 10.1002/cjoc.200890215 10.1021/jp9061913 10.1038/309589a0 10.1039/B807755J 10.1039/b009589n 10.1002/chem.201500473 10.1016/S0926-860X(98)00301-9 10.1007/s11244-009-9271-8 10.1016/S0167-2991(08)63680-0 10.1039/B608262A 10.1021/jp9818941 10.1016/0021-9517(74)90297-8 10.1016/j.cpc.2004.12.014 10.1038/nature06552 10.1016/j.jcat.2007.11.003 10.1002/0471231509.ch1 10.1021/ja808292c 10.1021/jp509921r 10.1039/c3cc40731d 10.1103/PhysRev.136.B864 10.1021/jp108338g 10.1021/acscatal.5b01133 10.1021/jp402506m 10.1063/1.1948367 10.1006/jcat.1995.1304 10.1002/9783527699827.ch40 10.1021/cr00035a006 10.1021/jp982538l 10.1021/jp502804q 10.1063/1.1410978 10.1016/j.jcat.2004.02.003 10.1039/C4CS00146J 10.1039/dc9817200317 10.1021/jp101262y 10.1080/01614940.2012.632662 10.1063/1.2834918 10.1063/1.2789429 10.1146/annurev-chembioeng-061010-114108 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | NPM AAYXX CITATION K9. 7X8 OIOZB OTOTI |
DOI | 10.1002/cphc.201701084 |
DatabaseName | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 358 |
ExternalDocumentID | 1571096 10_1002_cphc_201701084 29239509 CPHC201701084 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Ghent University Special Research Fund (BOF) – fundername: Chevron Energy Techonolgy Company |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ SV3 UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- NPM AAYXX CITATION K9. 7X8 AAJUZ AAPBV ABCVL ABHUG ADDAD AGJLS OIOZB OTOTI PQEST |
ID | FETCH-LOGICAL-c4774-8c57fff11305b57e9f99087119abe3e808821e34475455932f5e63dfb488b6953 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 |
IngestDate | Fri May 19 00:57:52 EDT 2023 Wed Jul 24 11:36:06 EDT 2024 Thu Oct 10 15:40:17 EDT 2024 Fri Aug 23 02:08:49 EDT 2024 Wed Oct 16 01:00:32 EDT 2024 Sat Aug 24 00:53:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | adsorption activation enthalpy zeolites activation entropy confinement |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4774-8c57fff11305b57e9f99087119abe3e808821e34475455932f5e63dfb488b6953 |
Notes | J.V.d.M. and A.J. contributed equally to this work ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 USDOE Office of Science (SC) AC02-05CH11231 Chevron Energy Techonolgy Company Ghent University Special Research Fund (BOF) |
ORCID | 0000-0002-5738-4645 0000-0002-2821-9501 0000-0003-3852-4726 0000-0003-2206-178X 0000-0001-8545-448X 0000-0002-4309-6669 0000000338524726 0000000228219501 000000032206178X 000000018545448X 0000000243096669 0000000257384645 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1571096 |
PMID | 29239509 |
PQID | 2002924807 |
PQPubID | 986334 |
PageCount | 18 |
ParticipantIDs | osti_scitechconnect_1571096 proquest_miscellaneous_1977124729 proquest_journals_2002924807 crossref_primary_10_1002_cphc_201701084 pubmed_primary_29239509 wiley_primary_10_1002_cphc_201701084_CPHC201701084 |
PublicationCentury | 2000 |
PublicationDate | February 19, 2018 |
PublicationDateYYYYMMDD | 2018-02-19 |
PublicationDate_xml | – month: 02 year: 2018 text: February 19, 2018 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | Chemphyschem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc ChemPubSoc Europe |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: ChemPubSoc Europe |
References | 2011; 115 2013; 3 1990; 59 2015; 145 1965; 140 2002; 99 2009; 113 2012; 18 2014; 136 1964; 136 2009; 11 2012; 134 2002; 142 2013; 55 2007; 170 1987; 236 2010; 114 2013; 117 2005; 229 2008; 26 1985 2005; 109 1984 1999; 179 1981; 72 2012; 24 2014; 10 2011; 2 2005; 233 1980; 61 1975; 39 2006; 110 2008; 128 1994 1995; 157 1999; 103 2014; 312 1994; 85 2011; 7 2014; 43 2016; 12 1999 2016; 6 2000; 104 2005; 123 2007 2007; 46 119 2002; 123 2012; 207–208 2015; 119 2012; 45 2008; 253 2012; 116 2010; 50 2017; 7 1990; 10 2002; 53 2013; 166 2011; 13 2011; 398 2012; 54 2016; 340 2011; 277 2009; 52 2014; 4 2003; 90 2001 2015; 44 1997; 101 1997; 18 2017; 121 2014; 6 2006; 244 2014; 118 1995; 95 2007; 129 2015; 5 1974; 33 2004; 224 2007; 127 2013; 49 2002; 211 1984; 309 2006; 8 2015; 329 2008; 10 2002 2009; 131 1987; 17 2012; 2 2005; 167 1997; 78 2015; 21 2013; 135 2017 2016; 138 2000; 35–36 2008; 451 2017; 345 2001; 115 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 Haag W. O. (e_1_2_7_17_1) 1984 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Haag W. O. (e_1_2_7_53_1) 1994 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_1_1 Gabelica Z. (e_1_2_7_45_1) 1984 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_47_2 e_1_2_7_28_1 Thomas J. M. (e_1_2_7_43_1) 1985 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_99_1 Guisnet M. (e_1_2_7_2_1) 2002 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 103 start-page: 1462 year: 1999 end-page: 1476 publication-title: J. Phys. Chem. B – volume: 104 start-page: 4844 year: 2000 end-page: 4848 publication-title: J. Phys. Chem. B – start-page: 327 year: 1999 end-page: 376 – volume: 127 start-page: 164108 year: 2007 publication-title: J. Chem. Phys. – volume: 95 start-page: 559 year: 1995 end-page: 614 publication-title: Chem. Rev. – volume: 207–208 start-page: 490 year: 2012 end-page: 496 publication-title: Chem. Eng. J. – volume: 340 start-page: 227 year: 2016 end-page: 235 publication-title: J. Catal. – volume: 4 start-page: 2351 year: 2014 end-page: 2358 publication-title: ACS Catal. – volume: 167 start-page: 103 year: 2005 end-page: 128 publication-title: Comput. Phys. Commun. – volume: 115 start-page: 9169 year: 2001 end-page: 9183 publication-title: J. Chem. Phys. – volume: 309 start-page: 589 year: 1984 end-page: 591 publication-title: Nature – volume: 59 start-page: 311 year: 1990 end-page: 331 publication-title: Appl. Catal. – volume: 128 start-page: 084106 year: 2008 publication-title: J. Chem. Phys. – volume: 101 start-page: 5414 year: 1997 end-page: 5419 publication-title: J. Phys. Chem. B – volume: 17 start-page: 49 year: 1987 end-page: 71 publication-title: Mater. Chem. Phys. – volume: 166 start-page: 176 year: 2013 end-page: 184 publication-title: Microporous Mesoporous Mater. – volume: 253 start-page: 221 year: 2008 end-page: 224 publication-title: J. Catal. – volume: 50 start-page: 1736 year: 2010 end-page: 1750 publication-title: J. Chem. Inf. Model. – volume: 129 start-page: 4919 year: 2007 end-page: 4924 publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 429 year: 1994 end-page: 507 publication-title: Stud. Surf. Sci. Catal. – volume: 224 start-page: 50 year: 2004 end-page: 59 publication-title: J. Catal. – volume: 7 start-page: 1090 year: 2011 end-page: 1101 publication-title: J. Chem. Theory Comput. – volume: 7 start-page: 4230 year: 2017 end-page: 4234 publication-title: ACS Catal. – volume: 53 start-page: 291 year: 2002 end-page: 318 publication-title: Annu. Rev. Phys. Chem. – start-page: 305 year: 1984 end-page: 316 – volume: 43 start-page: 7326 year: 2014 end-page: 7357 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 135 year: 2012 end-page: 223 publication-title: Catal. Rev. – volume: 78 start-page: 2690 year: 1997 end-page: 2693 publication-title: Phys. Rev. Lett. – volume: 55 start-page: 454 year: 2013 end-page: 515 publication-title: Catal. Rev. – volume: 131 start-page: 214508 year: 2009 publication-title: J. Chem. Phys. – volume: 99 start-page: 12562 year: 2002 end-page: 12566 publication-title: Proc. Natl. Acad. Sci. USA – volume: 136 start-page: 8296 year: 2014 end-page: 8306 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 19937 year: 2009 end-page: 19956 publication-title: J. Phys. Chem. C – volume: 52 start-page: 1131 year: 2009 end-page: 1161 publication-title: Top Catal. – volume: 157 start-page: 388 year: 1995 end-page: 395 publication-title: J. Catal. – volume: 11 start-page: 1237 year: 2009 end-page: 1247 publication-title: Phys. Chem. Chem. Phys. – volume: 114 start-page: 10229 year: 2010 end-page: 10239 publication-title: J. Phys. Chem. C – volume: 103 start-page: 818 year: 1999 end-page: 824 publication-title: J. Phys. Chem. B – year: 2002 – volume: 117 start-page: 12600 year: 2013 end-page: 12611 publication-title: J. Phys. Chem. C – volume: 90 start-page: 238302 year: 2003 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 453 year: 2011 end-page: 477 publication-title: Annu. Rev. Chem. Biomol. Eng. – start-page: 1055 year: 2017 end-page: 1100 – volume: 6 start-page: 1906 year: 2014 end-page: 1918 publication-title: ChemCatChem – volume: 116 start-page: 15406 year: 2012 end-page: 15414 publication-title: J. Phys. Chem. C – volume: 18 start-page: 75 year: 1997 end-page: 81 publication-title: Zeolites – volume: 39 start-page: 155 year: 1975 end-page: 157 publication-title: J. Catal. – volume: 136 start-page: 864 year: 1964 publication-title: Phys. Rev. – volume: 61 start-page: 390 year: 1980 end-page: 396 publication-title: J. Catal. – volume: 236 start-page: 564 year: 1987 end-page: 568 publication-title: Science – volume: 211 start-page: 198 year: 2002 end-page: 207 publication-title: J. Catal. – volume: 345 start-page: 53 year: 2017 end-page: 69 publication-title: J. Catal. – volume: 7 start-page: 2685 year: 2017 end-page: 2697 publication-title: ACS Catal. – volume: 35–36 start-page: 483 year: 2000 end-page: 494 publication-title: Microporous Mesoporous Mater. – volume: 35–36 start-page: 11 year: 2000 end-page: 20 publication-title: Microporous Mesoporous Mater. – start-page: 199 year: 1985 end-page: 374 – volume: 312 start-page: 58 year: 2014 end-page: 68 publication-title: J. Catal. – volume: 119 start-page: 10427 year: 2015 end-page: 10438 publication-title: J. Phys. Chem. C – volume: 329 start-page: 32 year: 2015 end-page: 48 publication-title: J. Catal. – volume: 11 start-page: 2939 year: 2009 end-page: 2958 publication-title: Phys. Chem. Chem. Phys. – volume: 45 start-page: 229 year: 2012 end-page: 238 publication-title: Acc. Chem. Res. – volume: 398 start-page: 1 year: 2011 end-page: 17 publication-title: Appl. Catal. A – volume: 10 start-page: 235 year: 1990 end-page: 242 publication-title: Zeolites – volume: 109 start-page: 6714 year: 2005 end-page: 6721 publication-title: J. Phys. Chem. B – volume: 229 start-page: 77 year: 2005 end-page: 85 publication-title: J. Mol. Catal. A – volume: 115 start-page: 8005 year: 2011 end-page: 8013 publication-title: J. Phys. Chem. C – volume: 110 start-page: 2455 year: 2006 end-page: 2460 publication-title: J. Phys. Chem. A – volume: 119 start-page: 6128 year: 2015 end-page: 6137 publication-title: J. Phys. Chem. C – volume: 44 start-page: 7044 year: 2015 end-page: 7111 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 3231 year: 2012 end-page: 3239 publication-title: Chem. Mater. – volume: 138 start-page: 4739 year: 2016 end-page: 4756 publication-title: J. Am. Chem. Soc. – start-page: 970 year: 2001 end-page: 971 publication-title: Chem. Commun. – volume: 49 start-page: 3491 year: 2013 end-page: 3509 publication-title: Chem. Commun. – start-page: 1375 year: 1994 end-page: 1394 – volume: 6 start-page: 4536 year: 2016 end-page: 4548 publication-title: ACS Catal. – volume: 10 start-page: 6615 year: 2008 end-page: 6620 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 3955 year: 2006 end-page: 3965 publication-title: Phys. Chem. Chem. Phys. – volume: 18 start-page: 9955 year: 2012 end-page: 9964 publication-title: Chemistry – volume: 131 start-page: 1958 year: 2009 end-page: 1971 publication-title: J. Am. Chem. Soc. – start-page: 193 year: 1984 end-page: 210 – volume: 140 start-page: 1133 year: 1965 end-page: 1138 publication-title: Phys. Rev. – volume: 5 start-page: 5741 year: 2015 end-page: 5755 publication-title: ACS Catal. – volume: 33 start-page: 497 year: 1974 end-page: 499 publication-title: J. Catal. – volume: 179 start-page: 71 year: 1999 end-page: 86 publication-title: Appl. Catal. A – volume: 13 start-page: 17339 year: 2011 end-page: 17358 publication-title: Phys. Chem. Chem. Phys. – volume: 46 119 start-page: 7286 7424 year: 2007 2007 end-page: 7289 7427 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 118 start-page: 21409 year: 2014 end-page: 21419 publication-title: J. Phys. Chem. C – volume: 121 start-page: 1618 year: 2017 end-page: 1638 publication-title: J. Phys. Chem. C – volume: 7 start-page: 1695 year: 2011 end-page: 1703 publication-title: J. Chem. Theory Comput. – volume: 21 start-page: 9385 year: 2015 end-page: 9396 publication-title: Chem. Eur. J. – volume: 35–36 start-page: 425 year: 2000 end-page: 433 publication-title: Microporous Mesoporous Mater. – volume: 233 start-page: 100 year: 2005 end-page: 108 publication-title: J. Catal. – volume: 170 start-page: 1167 year: 2007 end-page: 1173 publication-title: Stud. Surf. Sci. Catal. – volume: 451 start-page: 671 year: 2008 end-page: 678 publication-title: Nature – volume: 115 start-page: 1204 year: 2011 end-page: 1219 publication-title: J. Phys. Chem. C – volume: 119 start-page: 1840 year: 2015 end-page: 1850 publication-title: J. Phys. Chem. C – volume: 123 start-page: 1 year: 2002 end-page: 78 publication-title: Adv. Chem. Phys. – volume: 3 start-page: 2556 year: 2013 end-page: 2567 publication-title: ACS Catal. – volume: 10 start-page: 2479 year: 2014 end-page: 2487 publication-title: J. Chem. Theory Comput. – volume: 109 start-page: 6676 year: 2005 end-page: 6687 publication-title: J. Phys. Chem. B – volume: 135 start-page: 19193 year: 2013 end-page: 19207 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 23 year: 2002 end-page: 30 publication-title: Stud. Surf. Sci. Catal. – volume: 244 start-page: 163 year: 2006 end-page: 168 publication-title: J. Catal. – volume: 26 start-page: 1173 year: 2008 end-page: 1180 publication-title: Chin. J. Chem. – volume: 12 start-page: 2861 year: 2016 end-page: 2870 publication-title: J. Chem. Theory Comput. – volume: 134 start-page: 19468 year: 2012 end-page: 19476 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 771 year: 2012 end-page: 779 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 123 start-page: 084101 year: 2005 publication-title: J. Chem. Phys. – volume: 72 start-page: 317 year: 1981 end-page: 330 publication-title: Faraday Discuss. Chem. Soc. – volume: 277 start-page: 104 year: 2011 end-page: 116 publication-title: J. Catal. – volume: 109 start-page: 10734 year: 2005 end-page: 10741 publication-title: J. Phys. Chem. A – volume: 145 start-page: 162 year: 2015 end-page: 172 publication-title: Catal. Lett. – ident: e_1_2_7_49_1 doi: 10.1080/01614940.2013.822266 – ident: e_1_2_7_18_1 doi: 10.1016/S1387-1811(99)00204-8 – ident: e_1_2_7_99_1 doi: 10.1002/wcms.1103 – ident: e_1_2_7_28_1 doi: 10.1021/cs500189v – ident: e_1_2_7_44_1 doi: 10.1016/S0167-2991(08)60776-4 – ident: e_1_2_7_103_1 doi: 10.1103/PhysRevLett.90.238302 – ident: e_1_2_7_69_1 doi: 10.1016/0254-0584(87)90048-4 – ident: e_1_2_7_78_1 doi: 10.1021/acscatal.7b00290 – ident: e_1_2_7_76_1 doi: 10.1039/b810189b – ident: e_1_2_7_68_1 doi: 10.1016/0021-9517(75)90293-6 – ident: e_1_2_7_11_1 doi: 10.1016/S0167-2991(07)80974-8 – ident: e_1_2_7_27_1 doi: 10.1021/acscatal.6b01025 – ident: e_1_2_7_58_1 doi: 10.1021/jp9706487 – ident: e_1_2_7_70_1 doi: 10.1039/c1cp21731c – ident: e_1_2_7_29_1 doi: 10.1016/j.jcat.2015.04.015 – ident: e_1_2_7_91_1 doi: 10.1016/j.jcat.2016.05.018 – ident: e_1_2_7_64_1 doi: 10.1021/jp056707v – ident: e_1_2_7_33_1 doi: 10.1016/0144-2449(94)90134-1 – ident: e_1_2_7_20_1 doi: 10.1016/S0166-9834(00)82206-X – ident: e_1_2_7_92_1 doi: 10.1016/j.jcat.2016.11.010 – ident: e_1_2_7_110_1 doi: 10.1146/annurev.physchem.53.082301.113146 – ident: e_1_2_7_47_1 doi: 10.1002/anie.200702628 – ident: e_1_2_7_59_1 doi: 10.1021/jp106536m – ident: e_1_2_7_6_1 doi: 10.1016/S1387-1811(99)00239-5 – ident: e_1_2_7_40_1 doi: 10.1016/S0167-2991(02)80007-6 – ident: e_1_2_7_5_1 doi: 10.1016/j.jcat.2014.01.007 – ident: e_1_2_7_96_1 doi: 10.1039/C5CS00029G – ident: e_1_2_7_106_1 doi: 10.1021/cs400706e – volume-title: Zeolites for Cleaner Technologies year: 2002 ident: e_1_2_7_2_1 doi: 10.1142/p267 contributor: fullname: Guisnet M. – ident: e_1_2_7_52_1 doi: 10.1016/0021-9517(80)90386-3 – ident: e_1_2_7_41_1 doi: 10.1021/ja070094d – ident: e_1_2_7_13_1 doi: 10.1021/ar200138n – start-page: 199 volume-title: Advances in Catalysis, year: 1985 ident: e_1_2_7_43_1 contributor: fullname: Thomas J. M. – ident: e_1_2_7_87_1 doi: 10.1021/ci100099g – ident: e_1_2_7_32_1 doi: 10.1021/acs.jpcc.6b09703 – ident: e_1_2_7_4_1 doi: 10.1016/j.apcata.2011.03.009 – ident: e_1_2_7_81_1 doi: 10.1021/ct2001655 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.5b11355 – ident: e_1_2_7_83_1 doi: 10.1002/chem.201200497 – ident: e_1_2_7_77_1 doi: 10.1021/jp303321s – ident: e_1_2_7_19_1 doi: 10.1016/j.cej.2012.06.157 – ident: e_1_2_7_90_1 doi: 10.1021/acs.jctc.5b01177 – ident: e_1_2_7_31_1 doi: 10.1021/acscatal.6b03646 – ident: e_1_2_7_88_1 doi: 10.1021/ct500291x – ident: e_1_2_7_24_1 doi: 10.1021/acs.jpcc.5b01715 – ident: e_1_2_7_109_1 doi: 10.1016/j.jcat.2010.10.018 – ident: e_1_2_7_63_1 doi: 10.1016/j.molcata.2004.11.009 – ident: e_1_2_7_72_1 doi: 10.1103/PhysRev.140.A1133 – start-page: 193 volume-title: Zeolites: Science and Technology year: 1984 ident: e_1_2_7_45_1 doi: 10.1007/978-94-009-6128-9_7 contributor: fullname: Gabelica Z. – ident: e_1_2_7_84_1 doi: 10.1039/b819435c – ident: e_1_2_7_42_1 doi: 10.1021/ja501361v – ident: e_1_2_7_100_1 doi: 10.1126/science.3576184 – ident: e_1_2_7_15_1 doi: 10.1007/978-3-662-03764-5_5 – ident: e_1_2_7_35_1 doi: 10.1021/jp000417r – ident: e_1_2_7_37_1 doi: 10.1016/S0021-9517(02)93697-3 – ident: e_1_2_7_56_1 doi: 10.1016/S0144-2449(96)00127-3 – ident: e_1_2_7_48_1 doi: 10.1021/cm301629a – ident: e_1_2_7_105_1 doi: 10.1021/jp045424k – ident: e_1_2_7_112_1 doi: 10.1063/1.3265715 – ident: e_1_2_7_62_1 doi: 10.1021/jp054605z – ident: e_1_2_7_39_1 doi: 10.1016/S1387-1811(99)00244-9 – ident: e_1_2_7_104_1 doi: 10.1021/jp045571i – ident: e_1_2_7_30_1 doi: 10.1016/j.micromeso.2012.04.052 – ident: e_1_2_7_47_2 doi: 10.1002/ange.200702628 – ident: e_1_2_7_93_1 doi: 10.1021/ja3089372 – ident: e_1_2_7_89_1 doi: 10.1021/acs.jpcc.5b01739 – ident: e_1_2_7_12_1 doi: 10.1016/j.jcat.2005.04.017 – ident: e_1_2_7_85_1 doi: 10.1021/ct1005505 – ident: e_1_2_7_97_1 doi: 10.1073/pnas.202427399 – ident: e_1_2_7_66_1 doi: 10.1007/s10562-014-1438-7 – ident: e_1_2_7_107_1 doi: 10.1002/cctc.201402146 – ident: e_1_2_7_102_1 doi: 10.1103/PhysRevLett.78.2690 – ident: e_1_2_7_25_1 doi: 10.1016/j.jcat.2006.08.022 – start-page: 305 volume-title: Proceedings - International Congress on Catalysis, 8th, year: 1984 ident: e_1_2_7_17_1 contributor: fullname: Haag W. O. – ident: e_1_2_7_22_1 doi: 10.1021/ja4081937 – ident: e_1_2_7_65_1 doi: 10.1002/cjoc.200890215 – ident: e_1_2_7_34_1 doi: 10.1021/jp9061913 – ident: e_1_2_7_54_1 doi: 10.1038/309589a0 – ident: e_1_2_7_46_1 doi: 10.1039/B807755J – ident: e_1_2_7_36_1 doi: 10.1039/b009589n – ident: e_1_2_7_108_1 doi: 10.1002/chem.201500473 – ident: e_1_2_7_26_1 doi: 10.1016/S0926-860X(98)00301-9 – ident: e_1_2_7_3_1 doi: 10.1007/s11244-009-9271-8 – start-page: 1375 volume-title: Zeolites and Related Microporous Materials: State of the Art 1994—Proceedings of the 10th International Zeolite Conference year: 1994 ident: e_1_2_7_53_1 doi: 10.1016/S0167-2991(08)63680-0 contributor: fullname: Haag W. O. – ident: e_1_2_7_73_1 doi: 10.1039/B608262A – ident: e_1_2_7_38_1 doi: 10.1021/jp9818941 – ident: e_1_2_7_67_1 doi: 10.1016/0021-9517(74)90297-8 – ident: e_1_2_7_95_1 doi: 10.1016/j.cpc.2004.12.014 – ident: e_1_2_7_16_1 doi: 10.1038/nature06552 – ident: e_1_2_7_57_1 doi: 10.1016/j.jcat.2007.11.003 – ident: e_1_2_7_111_1 doi: 10.1002/0471231509.ch1 – ident: e_1_2_7_8_1 doi: 10.1021/ja808292c – ident: e_1_2_7_82_1 doi: 10.1021/jp509921r – ident: e_1_2_7_14_1 doi: 10.1039/c3cc40731d – ident: e_1_2_7_71_1 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_7_61_1 doi: 10.1021/jp108338g – ident: e_1_2_7_7_1 doi: 10.1021/acscatal.5b01133 – ident: e_1_2_7_51_1 doi: 10.1021/jp402506m – ident: e_1_2_7_98_1 doi: 10.1063/1.1948367 – ident: e_1_2_7_55_1 doi: 10.1006/jcat.1995.1304 – ident: e_1_2_7_80_1 doi: 10.1002/9783527699827.ch40 – ident: e_1_2_7_1_1 doi: 10.1021/cr00035a006 – ident: e_1_2_7_60_1 doi: 10.1021/jp982538l – ident: e_1_2_7_94_1 doi: 10.1021/jp502804q – ident: e_1_2_7_101_1 doi: 10.1063/1.1410978 – ident: e_1_2_7_10_1 doi: 10.1016/j.jcat.2004.02.003 – ident: e_1_2_7_74_1 doi: 10.1039/C4CS00146J – ident: e_1_2_7_21_1 doi: 10.1039/dc9817200317 – ident: e_1_2_7_23_1 doi: 10.1021/jp101262y – ident: e_1_2_7_50_1 doi: 10.1080/01614940.2012.632662 – ident: e_1_2_7_75_1 doi: 10.1063/1.2834918 – ident: e_1_2_7_86_1 doi: 10.1063/1.2789429 – ident: e_1_2_7_79_1 doi: 10.1146/annurev-chembioeng-061010-114108 |
SSID | ssj0008071 |
Score | 2.401077 |
SecondaryResourceType | review_article |
Snippet | Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for transportation fuels.... Abstract Acidic zeolites are effective catalysts for the cracking of large hydrocarbon molecules into lower molecular weight products required for... The front cover artwork is provided by Bell and co-workers. The image shows a butane molecule adsorbed at a Brønsted acid site inside the pores of zeolite... |
SourceID | osti proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 341 |
SubjectTerms | activation enthalpy activation entropy Adsorption Alkanes Ambient temperature Catalysis Catalytic activity Chemical reactions Computer simulation confinement Cracking (chemical engineering) Dehydrogenation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Reaction kinetics Zeolites |
Title | Understanding Brønsted‐Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201701084 https://www.ncbi.nlm.nih.gov/pubmed/29239509 https://www.proquest.com/docview/2002924807 https://search.proquest.com/docview/1977124729 https://www.osti.gov/servlets/purl/1571096 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZlL-2lP-mfmzSoUOjJiWVLtnzcugmbQEsIXQi9CMse0ZBgh3j3kJz6AoU-Tu99kz5JZ6y1ky2FQnuzMbJlaUbzjTTzDWOvdYmgG2oZEtNmSAdzoda2DiMg61gCCNsHyH5IZ3N5eKJObmXxe36IccONNKNfr0nBS9vt3pCGVhefiYKQ-MQjTYSgIskopuvd8Q1_lI68xyXpuDNO1MDaGMW7683XrNKkRe36E-JcB7C9Bdp_wMqh7z7w5GxnubA71fVvtI7_83MP2f0VPOVTL0-P2B1oNtjdYqgK95h9nd_OhuFvL398b2jH9OeXb9PqtOYFbQddXUPN31O6xFB8lx-Dz6DoeOv49PysxCWWnzb8E1AAHvCjFv1-bq84LlC2L1rBD5qOdg46TikwfG8sRcDx29xzCjxh8_29j8UsXJV0CCuJQDPUlcqccwItp7Iqg9yhNUSfTeSlhQQ0AX4BPQuhRF8niZ2CNKmdxXXGprlKnrJJ0zbwnHFZulS6qK6ztJLCpTlIJ5MMdAqqdCIN2JthSs2FZ-4wnqM5NjS8ZhzegG3SjBvEHEScW1GEUbUwQlGcKr5naxAEs9Lvjop3xui5onwF7NX4GKeCjltwBNtlZwRCa0RP6L0E7JkXoLEj2DjJEasFLO7F4C89NMXRrBjvXvxLo012D681BZyLfItNFpdLeIl4amG3e535BbXhGIk |
link.rule.ids | 230,315,783,787,888,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BcigX_n9CCxgJiVPa_NhZ57iEVltoq6rqSoiLFSdjURUlVbN7aE-8ABKPw5034UmYSTYpi5CQ4LhZeeO1ZzzfjGe-AXipcwLdWEqfmTZ9vpjztbalHyBbxxwxtG2C7EEyncm371WfTci1MB0_xBBwY81oz2tWcA5Ib12xhhZnH5mDkAnFAy2vww3S-ZibGLw5umKQ0kHnc0m-8Ixi1fM2BtHW6vgVuzSqSb_-hDlXIWxrg3Zug-1n36WenG4u5nazuPyN2PG__t4duLVEqGLSidRduIbVPVjL-sZw9-HL7NeCGPH6_Pu3ioOmPz5_nRQnpcg4InRxiaXY54qJvv-uOMKuiKIRtROTT6c5nbLipBIfkHPwUBzW5PoLeyHojLJt3wqxWzUcPGgEV8GI7aEbgaB3i45W4AHMdraPs6m_7OrgF5Kwpq8LNXbOhWQ8lVVjTB0ZRHLbwjS3GKNmzB9iS0Qoyd2JI6cwiUtn6aixSarihzCq6gofg5C5S6QLynKcFDJ0SYrSyXiMOkGVuzDx4FW_p-asI-8wHU1zZHh5zbC8HqzzlhuCHcydW3CSUTE3oeJUVfqdjV4SzFLFG-7fGZHzSgLmwYvha9oKvnGhFawXjQkJXROAIgfGg0edBA0TocFxSnDNg6iVg7_M0GSH02z49ORfBj2Htenx_p7Z2z14tw436bnm_PMw3YDR_HyBTwleze2zVoF-AirIHKM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7BIgEX_qGhBYyExCltfpxsclzSrrb8VKuKlSouVpyMRdUqWTW7h_bECyDxONx5E56EmXiTdhESEhyTyIljz3i-sWe-AXiV5AS6sZQuM226fDDnJokuXQ_ZOuaIvm4DZA_iyUy-PYqOrmTxW36IfsONNaNdr1nB56XZuSQNLeafmYKQ-cS9RF6HGzIOPQ7q2j28JJBKPOtyST7vDMKoo230gp319mtmaVCTev0Jcq4j2NYEje9C3nXeRp6cbC8Xeru4-I3X8X_-7h7cWeFTMbICdR-uYfUAbmVdWbiH8HV2NR1GvDn78b3iLdOfX76NiuNSZLwfdH6BpfjA-RJd9V1xiDaFohG1EaPTk5zWWHFciU_IEXgopjU5_kKfC1qhdFu1QuxXDW8dNIJzYMReX4tA0LeFJRV4BLPx3sds4q5qOriFJKTpJkU0NMb4ZDojHQ0xNWQOyWnz01xjiAkjfh9bGkJJzk4YmAjjsDSaFhodp1H4GAZVXeEGCJmbWBqvLIdxIX0TpyiNDIeYxBjlxo8deN1NqZpb6g5lSZoDxcOr-uF1YJNnXBHoYObcgkOMioXyIw5UpfdsdYKgVgrecPXOgFxXki8HXvaPaSr4vIVGsF42yidsTfCJ3BcHnlgB6jtCjcOUwJoDQSsGf-mhyqaTrL96-i-NXsDN6e5Yvd8_eLcJt-l2wsHnfroFg8XZEp8Rtlro5636_AK9sBtS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Br%C3%B8nsted-Acid+Catalyzed+Monomolecular+Reactions+of+Alkanes+in+Zeolite+Pores+by+Combining+Insights+from+Experiment+and+Theory&rft.jtitle=Chemphyschem&rft.au=VanderMynsbrugge%2C+Jeroen&rft.au=Janda%2C+Amber&rft.au=Lin%2C+Li-Chiang&rft.au=VanSpeybroeck%2C+Veronique&rft.date=2018-02-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=19&rft.issue=4&rft.spage=341&rft_id=info:doi/10.1002%2Fcphc.201701084&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |