Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments

Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to e...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 176; no. 6; pp. e70003 - n/a
Main Authors Moine, Amedeo, Chitarra, Walter, Nerva, Luca, Agliassa, Chiara, Gambino, Giorgio, Secchi, Francesca, Pagliarani, Chiara, Boccacci, Paolo
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.11.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.
AbstractList Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L).To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes.Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence.Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the 'San Giovanni' cultivar (SG), the non-suckering rootstock 'Dundee' (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well-irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with 'Dundee' rootstock positively affected the ability of 'San Giovanni' plants to endure drought by increasing their intrinsic water use efficiency and facilitating post-rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non-suckering rootstocks could therefore represent a promising and environmentally-friendly strategy for improving the adaptability of hazelnut to water deficit.Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the 'San Giovanni' cultivar (SG), the non-suckering rootstock 'Dundee' (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well-irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with 'Dundee' rootstock positively affected the ability of 'San Giovanni' plants to endure drought by increasing their intrinsic water use efficiency and facilitating post-rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non-suckering rootstocks could therefore represent a promising and environmentally-friendly strategy for improving the adaptability of hazelnut to water deficit.
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut ( Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock‐mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut ( Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the ‘San Giovanni’ cultivar (SG), the non‐suckering rootstock ‘Dundee’ (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well‐irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with ‘Dundee’ rootstock positively affected the ability of ‘San Giovanni’ plants to endure drought by increasing their intrinsic water use efficiency and facilitating post‐rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non‐suckering rootstocks could therefore represent a promising and environmentally‐friendly strategy for improving the adaptability of hazelnut to water deficit.
Author Agliassa, Chiara
Gambino, Giorgio
Nerva, Luca
Boccacci, Paolo
Moine, Amedeo
Chitarra, Walter
Pagliarani, Chiara
Secchi, Francesca
AuthorAffiliation 3 Department of Agricultural Forest and Food Sciences – University of Torino (DISAFA‐UNITO) Grugliasco (TO) Italy
4 Present address: Green Has Italia S.p.A. Canale (CN) Italy
2 Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE) Conegliano (TV) Italy
1 Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP) Torino Italy
AuthorAffiliation_xml – name: 4 Present address: Green Has Italia S.p.A. Canale (CN) Italy
– name: 3 Department of Agricultural Forest and Food Sciences – University of Torino (DISAFA‐UNITO) Grugliasco (TO) Italy
– name: 2 Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE) Conegliano (TV) Italy
– name: 1 Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP) Torino Italy
Author_xml – sequence: 1
  givenname: Amedeo
  orcidid: 0000-0002-2324-9760
  surname: Moine
  fullname: Moine, Amedeo
  organization: Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)
– sequence: 2
  givenname: Walter
  orcidid: 0000-0002-5382-3794
  surname: Chitarra
  fullname: Chitarra, Walter
  organization: Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)
– sequence: 3
  givenname: Luca
  orcidid: 0000-0001-5009-5798
  surname: Nerva
  fullname: Nerva, Luca
  organization: Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)
– sequence: 4
  givenname: Chiara
  surname: Agliassa
  fullname: Agliassa, Chiara
  organization: Forest and Food Sciences – University of Torino (DISAFA‐UNITO)
– sequence: 5
  givenname: Giorgio
  orcidid: 0000-0003-1590-4478
  surname: Gambino
  fullname: Gambino, Giorgio
  organization: Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)
– sequence: 6
  givenname: Francesca
  orcidid: 0000-0002-3161-1643
  surname: Secchi
  fullname: Secchi, Francesca
  organization: Forest and Food Sciences – University of Torino (DISAFA‐UNITO)
– sequence: 7
  givenname: Chiara
  orcidid: 0000-0003-4656-6192
  surname: Pagliarani
  fullname: Pagliarani, Chiara
  email: chiara.pagliarani@cnr.it
  organization: Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)
– sequence: 8
  givenname: Paolo
  orcidid: 0000-0001-8574-0478
  surname: Boccacci
  fullname: Boccacci, Paolo
  organization: Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39658794$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNPCghdAltjAYlLfxhOvUBVBQYpEF7C2HNuTceoZB9vTKjsegAXPyJPgXIqgAglvLJ_znf9cfM7AyRAGC8BzjKa4nIvNxk8bhBB9BCaYClFRVLMTMCkWXAmKm1NwltIaIcw5Jk_AKRW8njWCTcC3q6ja7IYVvHO5g0X4x9fvadQ3Nu6MMYScctA30A06WpVsgiaGcdVlmIO3UQ3aFh-ch7j1Y4Lq1nqvBgUXU5i7PQk33Ta54MPKaeWhGgxcuqA72x_eZj2m3Nshp6fgcat8ss-O9zn4_O7tp_n7avHx6sP8clFp1jS0skwxNqO25ZwJy1tGiCWNVYwaUi9FbZaGGNIaw3RtFKqNJmJJMWYWN0hpQc_Bm4PuZlz21uiSOyovN9H1Km5lUE7-6RlcJ1fhVmLMKcEMFYVXR4UYvow2Zdm7pPet2zAmSXEZMMdYkP9AGeeEH9CXD9B1GONQRrGjBCZ1PZsV6sXv1f8q-_5TC3BxAHQMKUXbSu2yyi7smnFeYiR3ayPL2sj92pSI1w8i7kX_xh7V75y323-D8vp6cYj4CdnJ1ig
CitedBy_id crossref_primary_10_3390_agronomy15010148
Cites_doi 10.1093/oxfordjournals.pcp.a029093
10.17660/ActaHortic.2011.922.43
10.1093/aob/mcf079
10.17660/ActaHortic.1994.351.25
10.1186/s12870-023-04109-x
10.1007/s11103-011-9748-2
10.1046/j.1365-3040.2002.00747.x
10.1007/s11032-015-0195-7
10.1038/nature01843
10.1093/treephys/tpz102
10.1016/0304-4238(91)90010-V
10.1007/s40626-016-0057-7
10.1111/pce.12182
10.17660/ActaHortic.2014.1052.23
10.1002/ps.7660
10.1093/treephys/20.11.725
10.3390/agronomy10020170
10.1111/mec.12969
10.1038/s41438-020-00348-3
10.3389/fpls.2021.813902
10.1002/bies.201200181
10.17660/ActaHortic.2018.1226.27
10.1016/j.plaphy.2020.05.014
10.1093/jexbot/49.321.693
10.1146/annurev.arplant.56.032604.144046
10.1093/treephys/tpab164
10.1007/s00425-024-04333-1
10.1007/s00122-019-03331-2
10.3389/fpls.2015.00572
10.1046/j.0016-8025.2001.00824.x
10.1093/treephys/tpz032
10.1007/s40626-016-0070-x
10.1007/s11295-021-01526-7
10.1111/jac.12369
10.17660/ActaHortic.2000.537.109
10.1038/s41598-017-00471-7
10.1016/j.agsy.2020.102982
10.17660/ActaHortic.2009.845.41
10.1016/j.scienta.2016.11.022
10.4161/psb.6.10.17088
10.1111/nph.15911
10.1016/j.envexpbot.2013.04.001
10.1016/j.tplants.2018.04.001
10.17660/ActaHortic.1994.351.50
10.1104/pp.114.237511
10.1073/pnas.96.26.15354
10.1073/pnas.220426197
10.3390/plants11243416
10.1007/978-3-030-23112-5_6
10.1104/pp.106.089367
10.3390/horticulturae7090267
10.1002/pca.1078
10.1016/j.jplph.2018.11.019
10.21273/JASHS.130.4.543
10.3390/biom14030250
10.17660/ActaHortic.2009.845.8
10.1016/j.scienta.2023.112817
10.1111/j.1469-8137.2008.02592.x
10.17660/ActaHortic.2023.1379.43
10.1007/s00382-016-3276-3
10.1016/j.scienta.2021.110725
10.17660/ActaHortic.2005.686.27
10.1038/hortres.2014.2
10.1111/j.1471-8286.2005.01121.x
10.1111/plb.13363
10.1016/j.agwat.2019.105897
10.1046/j.1365-313x.2001.01096.x
10.1111/ele.12374
10.17660/ActaHortic.2009.845.47
10.1093/treephys/tpt074
10.1016/j.tplants.2010.04.006
10.1016/j.envexpbot.2019.103814
10.3390/agriculture10050159
10.1093/treephys/tpx149
10.1016/j.plaphy.2020.07.028
10.17660/ActaHortic.2014.1052.18
10.1007/s00299-021-02720-6
10.1007/978-3-030-27423-8_3
10.3390/horticulturae9050593
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
– notice: 2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
5PM
DOI 10.1111/ppl.70003
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
CrossRef


AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate Moine et al
EISSN 1399-3054
EndPage n/a
ExternalDocumentID PMC11632140
39658794
10_1111_ppl_70003
PPL70003
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Fondazione Cassa di Risparmio di Torino
– fundername: Fondazione Cassa di Risparmio di Cuneo
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBTR
ACBWZ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TWZ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
CGR
CUY
CVF
ECM
EIF
ESX
NPM
PKN
WRC
7SN
7ST
8FD
C1K
FR3
P64
RC3
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c4773-e4a4483ef6649e6f422e27ea43d25b95dbd2d2fdd4c5da05dc29b3114e170ac93
IEDL.DBID DR2
ISSN 0031-9317
1399-3054
IngestDate Thu Aug 21 18:29:32 EDT 2025
Fri Jul 11 05:11:25 EDT 2025
Thu Jul 10 23:40:44 EDT 2025
Fri Jul 25 12:11:59 EDT 2025
Wed Feb 19 02:18:01 EST 2025
Tue Jul 01 05:06:40 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Wed Aug 20 07:24:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
2024 The Author(s). Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4773-e4a4483ef6649e6f422e27ea43d25b95dbd2d2fdd4c5da05dc29b3114e170ac93
Notes These authors equally contributed to this work as senior authors
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by M. Bitterlich
ORCID 0000-0002-2324-9760
0000-0003-1590-4478
0000-0002-5382-3794
0000-0001-5009-5798
0000-0003-4656-6192
0000-0002-3161-1643
0000-0001-8574-0478
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.70003
PMID 39658794
PQID 3149125588
PQPubID 1096353
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11632140
proquest_miscellaneous_3165861192
proquest_miscellaneous_3146626192
proquest_journals_3149125588
pubmed_primary_39658794
crossref_citationtrail_10_1111_ppl_70003
crossref_primary_10_1111_ppl_70003
wiley_primary_10_1111_ppl_70003_PPL70003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November/December 2024
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Denmark
– name: Malden
PublicationTitle Physiologia plantarum
PublicationTitleAlternate Physiol Plant
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2015; 35
1998; 49
2017; 7
2023; 79
2023; 1379
2010; 15
2005; 130
2022; 293
2007; 143
2023; 9
2022; 24
2020; 206
2020; 10
2014; 23
2019; 166
2014; 1
2020; 7
1993; 78
2018; 1226
2011; 922
1991; 47
2023; 23
2017; 38
2002; 89
2000; 53
2000; 97
1999; 96
2014; 17
2009; 845
2014; 7
2016; 48
2014; 164
2019; 232
2021; 7
2015; 6
2021; 45
2024; 327
2008; 19
1994; 351
2000; 20
2019; 39
2011; 75
2022; 45
2019; 223
2020; 228
1996
2013; 93
2021; 186
2022; 41
2001; 27
2024; 14
2018; 23
2011; 6
2017; 214
2008; 180
2002; 25
2021; 12
2003; 424
2013; 33
2024; 259
2020; 153
2013; 35
2005; 686
2021; 17
2005; 5
2014; 1052
2022; 12
2019
2014; 37
1997; 38
2020; 155
2022; 11
2016; 28
2005; 56
2019; 132
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
Pacchiarelli A (e_1_2_10_59_1) 2023; 1379
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Lagerstedt H. (e_1_2_10_42_1) 1993; 78
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
Porter JR (e_1_2_10_64_1) 2014; 7
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Bijelić S (e_1_2_10_11_1) 2021; 12
e_1_2_10_71_1
e_1_2_10_73_1
Mehlenbacher SA (e_1_2_10_52_1) 2021; 45
Thompson MM (e_1_2_10_78_1) 1996
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 75
  start-page: 451
  year: 2011
  end-page: 466
  article-title: Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity
  publication-title: Plant Molecular Biology
– volume: 45
  start-page: 9
  year: 2021
  end-page: 142
  article-title: Hazelnut Breeding
  publication-title: Plant breeding reviews
– volume: 7
  start-page: 267
  year: 2021
  article-title: Advances in hazelnut ( L.) rootstocks worldwide
  publication-title: Horticulturae
– volume: 164
  start-page: 1789
  year: 2014
  end-page: 1799
  article-title: Down‐regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism
  publication-title: Plant Physiology
– volume: 206
  start-page: 28
  year: 2020
  end-page: 42
  article-title: Kaolin and seaweed‐based extracts can be used as middle and long‐term strategy to mitigate negative effects of climate change in physiological performance of hazelnut tree
  publication-title: Journal of Agronomy and Crop Science
– volume: 7
  start-page: 485
  year: 2014
  end-page: 533
  article-title: Food security and food production systems. In: IPCC Working Group II. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press
  publication-title: Chapter
– volume: 35
  start-page: 1
  year: 2015
  end-page: 14
  article-title: In silico mining, characterization and cross‐species transferability of EST‐SSR markers for European hazelnut ( L.)
  publication-title: Molecular Breeding
– volume: 93
  start-page: 20
  year: 2013
  end-page: 26
  article-title: Rootstock control of scion response to water stress in grapevine
  publication-title: Environmental and Experimental Botany
– volume: 214
  start-page: 122
  year: 2017
  end-page: 132
  article-title: How water supply during leaf development drives water stress response in saplings
  publication-title: Scientia Horticulturae
– volume: 28
  start-page: 53
  year: 2016
  end-page: 66
  article-title: Grapevine adaptations to water stress: new perspectives about soil/plant interactions
  publication-title: Theoretical and Experimental Plant Physiology
– volume: 7
  start-page: 126
  year: 2020
  article-title: Molecular memory of Flavescence dorée phytoplasma in recovering grapevines
  publication-title: Horticulture Research
– volume: 49
  start-page: 693
  year: 1998
  end-page: 700
  article-title: Effects of water stress on vessel size and xylem hydraulic conductivity in L
  publication-title: Journal of Experimental Botany
– volume: 14
  start-page: 250
  year: 2024
  article-title: Comparative analysis of dehydrins from woody plant species
  publication-title: Biomolecules
– volume: 845
  start-page: 283
  year: 2009
  end-page: 286
  article-title: Contrasting fruit properties of hazelnut cultivars grown on different rootstocks
  publication-title: Acta Horticulturae
– volume: 28
  start-page: 43
  year: 2016
  end-page: 157
  article-title: The influence of grapevine rootstocks on scion growth and drought resistance
  publication-title: Theoretical and Experimental Plant Physiology
– volume: 47
  start-page: 271
  year: 1991
  end-page: 282
  article-title: Chilling requirements of hazelnut cultivars
  publication-title: Scientia Horticulturae
– volume: 1379
  start-page: 31
  year: 2023
  article-title: Effect of Dundee rootstock on growth, morphology, and nutrient uptake in ‘Tonda di Giffoni’ hazelnut
  publication-title: Acta Horticulturae
– volume: 259
  start-page: 60
  year: 2024
  article-title: Plant biomarkers as early detection tools in stress management in food crops, a review
  publication-title: Planta
– volume: 12
  year: 2021
  article-title: Advances in nursery production of hazelnut plants in Serbia − Successful grafting of different L. cultivars and clones onto L. rootstock.
  publication-title: Plant Science
– volume: 5
  start-page: 934
  year: 2005
  end-page: 937
  article-title: Characterization and evaluation of microsatellite loci in European hazelnut ( L.) and their transferability to other species
  publication-title: Molecular Ecology Notes
– volume: 922
  start-page: 333
  year: 2011
  end-page: 340
  article-title: Effects of water availability on hazelnut yield and seed composition during fruit growth
  publication-title: Acta Horticulturae
– volume: 15
  start-page: 395
  year: 2010
  end-page: 401
  article-title: ABA perception and signalling
  publication-title: Trends in Plant Science
– volume: 33
  start-page: 1061
  year: 2013
  end-page: 1075
  article-title: Physiological, biochemical and molecular responses in four rootstocks submitted to drought stress
  publication-title: Tree Physiology
– volume: 10
  start-page: 159
  year: 2020
  article-title: Mid‐term impact of climate change on hazelnut yield
  publication-title: Agriculture
– volume: 79
  start-page: 4569
  year: 2023
  end-page: 4588
  article-title: Effects of fungicide application on physiological and molecular responses of grapevine ( L.): a comparison between copper and sulfur fungicides applied alone and in combination with novel fungicides
  publication-title: Pest Management Science
– volume: 41
  start-page: 519
  year: 2022
  end-page: 533
  article-title: Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants
  publication-title: Plant Cell and Reports
– volume: 39
  start-page: 1855
  year: 2019
  end-page: 1866
  article-title: Rootstock determines the drought resistance of poplar grafting combinations
  publication-title: Tree Physiology
– volume: 20
  start-page: 725
  year: 2000
  end-page: 734
  article-title: Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest
  publication-title: Tree Physiology
– volume: 1
  start-page: 2
  year: 2014
  article-title: A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes
  publication-title: Horticulture Research
– volume: 223
  start-page: 1888
  year: 2019
  end-page: 1903
  article-title: A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade‐off in poplar
  publication-title: New Phytologist
– volume: 12
  year: 2022
  article-title: Agronomical and physiological behaviour of Spanish hazelnut selection “Negret‐N9” grafted on non‐suckering rootstocks
  publication-title: Frontiers in Plant Science
– volume: 19
  start-page: 520
  year: 2008
  end-page: 525
  article-title: A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants
  publication-title: Phytochemical Analysis
– volume: 845
  start-page: 309
  year: 2009
  end-page: 314
  article-title: Effects of irrigation on growth and yield components of hazelnut ( L.) in Central Italy
  publication-title: Acta Horticulturae
– volume: 1052
  start-page: 179
  year: 2014
  end-page: 185
  article-title: Long term evaluation of hazelnut response to drip irrigation
  publication-title: Acta Horticulturae
– volume: 53
  start-page: 903
  year: 2000
  end-page: 910
  article-title: Irrigation of L.: effects on canopy development and production of young plants
  publication-title: Acta Horticulturae
– volume: 424
  start-page: 901
  year: 2003
  end-page: 908
  article-title: The role of stomata in sensing and driving environmental change
  publication-title: Nature
– volume: 180
  start-page: 642
  year: 2008
  end-page: 651
  article-title: An abscisic acid‐related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought
  publication-title: New Phytologist
– volume: 155
  start-page: 105
  year: 2020
  end-page: 113
  article-title: Metabolic and genes expression analyses involved in proline metabolism of two rose species under drought stress
  publication-title: Plant Physiology and Biochemistry
– volume: 38
  start-page: 1095
  year: 1997
  end-page: 1102
  article-title: Regulation of levels of proline as an osmolyte in plants under water stress
  publication-title: Plant Cell Physiology
– volume: 845
  start-page: 89
  year: 2009
  end-page: 94
  article-title: Performance of 'Negret' hazelnut cultivar grafted on 4 rootstocks in Catalonia (Spain)
  publication-title: Acta Horticulturae
– volume: 351
  start-page: 463
  year: 1994
  end-page: 472
  article-title: Physiological, growth and yield responses of hazelnut ( L.) to different irrigation regimes
  publication-title: Acta Horticulturae
– volume: 186
  year: 2021
  article-title: Climate change impacts on phenology and yield of hazelnut in Australia
  publication-title: Agricultural Systems
– volume: 153
  start-page: 81
  year: 2020
  end-page: 91
  article-title: Roots play a key role in drought‐tolerance of poplars as suggested by reciprocal grafting between male and female clones
  publication-title: Plant Physiology and Biochemistry
– volume: 23
  start-page: 513
  year: 2018
  end-page: 522
  article-title: ABA Transport and plant water stress responses
  publication-title: Trends in Plant Science
– start-page: 73
  year: 2019
  end-page: 97
– volume: 228
  year: 2020
  article-title: Rootstocks modulate the physiology and growth responses to water deficit and long‐term recovery in grafted stone fruit trees
  publication-title: Agricultural Water Management
– volume: 38
  start-page: 696
  year: 2017
  end-page: 705
  article-title: Relationship between stomatal density, size and speed of opening in Sumatran rainforest species
  publication-title: Tree Physiology
– volume: 45
  start-page: 939
  year: 2022
  end-page: 957
  article-title: Carbon allocation strategies and water uptake in young grafted and own‐rooted hazelnut ( L.) cultivars
  publication-title: Tree Physiology
– volume: 23
  start-page: 5771
  year: 2014
  end-page: 5790
  article-title: Association genetics, geography, and ecophysiology link stomatal patterning in with carbon gain and disease resistance trade‐offs
  publication-title: Molecular Ecology
– volume: 11
  start-page: 3416
  year: 2022
  article-title: Advances in sucker control for sustainable European hazelnut ( L.) cultivation
  publication-title: Plants
– volume: 17
  start-page: 48
  year: 2021
  article-title: Comparison of selection methods for the establishment of a core collection using SSR markers for hazelnut ( L.) accessions from European germplasm repositories
  publication-title: Tree Genetics and Genomes
– volume: 143
  start-page: 78
  year: 2007
  end-page: 87
  article-title: The mechanical diversity of stomata and its significance in gas‐exchange control
  publication-title: Plant Physiology
– volume: 1379
  start-page: 303
  year: 2023
  end-page: 308
  article-title: Grafted hazelnut: a sustainable agricultural practice to face summer stressful conditions
  publication-title: Acta Horticulturae
– volume: 6
  start-page: 572
  year: 2015
  article-title: P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions
  publication-title: Frontiers in Plant Science
– volume: 78
  start-page: 94
  year: 1993
  end-page: 101
  article-title: Newberg and Dundee, two new filbert rootstocks
  publication-title: Proceedings of the Nut Growers Society of Oregon
– volume: 24
  start-page: 227
  year: 2022
  end-page: 239
  article-title: Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms
  publication-title: Plant Biology
– volume: 89
  start-page: 895
  year: 2002
  end-page: 905
  article-title: Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter
  publication-title: Annals of Botany
– volume: 293
  year: 2022
  article-title: Grafting commercial cultivars of almonds on accurate rootstocks mitigates adverse effects of drought stress
  publication-title: Scientia Horticulturae
– volume: 6
  start-page: 1503
  year: 2011
  end-page: 1509
  article-title: Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms
  publication-title: Plant Signaling and Behaviour
– volume: 1052
  start-page: 145
  year: 2014
  end-page: 150
  article-title: Last results in the evaluation of ‘Negret’ hazelnut cultivar grafted on non‐suckering rootstocks in Spain
  publication-title: Acta Horticulturae
– volume: 10
  start-page: 170
  year: 2020
  article-title: Effects of different microbial inocula on tomato tolerance to water deficit
  publication-title: Agronomy
– volume: 48
  start-page: 3425
  year: 2016
  end-page: 3440
  article-title: Separating climate change signals into thermodynamic, lapserate and circulation effects: theory and application to the European summer climate
  publication-title: Climate Dynamics
– volume: 1226
  start-page: 181
  year: 2018
  end-page: 188
  article-title: Stomatal sensitivity in (L.): first analysis from a global dataset
  publication-title: Acta Horticulturae
– volume: 17
  start-page: 1580
  year: 2014
  end-page: 1590
  article-title: Global analysis of plasticity in turgor loss point, a key drought tolerance trait
  publication-title: Ecology Letter
– volume: 351
  start-page: 247
  year: 1994
  end-page: 255
  article-title: Influence of soil water levels on assimilation and water use efficiency in hazelnut
  publication-title: Acta Horticulturae
– volume: 132
  start-page: 1607
  year: 2019
  end-page: 1638
  article-title: Drought and heat stress‐related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops
  publication-title: Theoretical and Applied Genetics
– volume: 56
  start-page: 165
  year: 2005
  end-page: 185
  article-title: Abscisic acid biosynthesis and catabolism
  publication-title: Annual Review of Plant Biology
– volume: 686
  start-page: 201
  year: 2005
  end-page: 206
  article-title: Effect of irrigation on physiological and biochemical traits of hazelnut ( L.)
  publication-title: Acta Horticulturae
– volume: 25
  start-page: 223
  year: 2002
  end-page: 228
  article-title: A possible stress physiological role of abscisic acid conjugates in root‐to‐shoot signalling
  publication-title: Plant Cell and Environment
– volume: 7
  start-page: 332
  year: 2017
  article-title: Dual regulation of water retention and cell growth by a stress‐associated protein (SAP) gene in
  publication-title: Scientific Reports
– volume: 35
  start-page: 639
  year: 2013
  end-page: 648
  article-title: SAPs as novel regulators of abiotic stress response in plants
  publication-title: BioEssays
– volume: 327
  year: 2024
  article-title: Assessment of leaf water potential and stomatal conductance as early signs of stress in young hazelnut tree in Willamette valley
  publication-title: Scientia Horticulturae
– volume: 23
  start-page: 110
  year: 2023
  article-title: Physiological, biochemical and molecular responses associated with drought tolerance in grafted grapevine
  publication-title: BMC Plant Biology
– volume: 232
  start-page: 241
  year: 2019
  end-page: 247
  article-title: Intra‐specific variability of stomatal sensitivity to vapour pressure deficit in L.: a candidate factor influencing different adaptability to different climates?
  publication-title: Journal of Plant Physiology
– volume: 39
  start-page: 1285
  year: 2019
  end-page: 1299
  article-title: Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress
  publication-title: Tree Physiology
– volume: 25
  start-page: 195
  year: 2002
  end-page: 210
  article-title: ABA‐based chemical signalling: the co‐ordination of responses to stress in plants
  publication-title: Plant Cell and Environment
– volume: 166
  year: 2019
  article-title: Comparative transcriptome analysis of the regulation of ABA signaling genes in different rootstock grafted tomato seedlings under drought stress
  publication-title: Environmental and Experimental Botany
– volume: 37
  start-page: 617
  year: 2014
  end-page: 626
  article-title: Rapid hydraulic recovery in after drought: linkages between stem hydraulics and leaf gas exchange
  publication-title: Plant Cell and Environment
– volume: 9
  start-page: 593
  year: 2023
  article-title: Trend analysis of different climate parameters and watering requirements for hazelnut in central Italy related to climate change
  publication-title: Horticulturae
– start-page: 125
  year: 1996
  end-page: 184
– volume: 130
  start-page: 543
  year: 2005
  end-page: 549
  article-title: Microsatellite markers in the hazelnut: isolation, characterization and cross‐species amplification in
  publication-title: Journal of the American Society for Horticultural Science
– volume: 96
  start-page: 15354
  year: 1999
  end-page: 15361
  article-title: The 9‐cis‐epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water‐stressed bean
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 27
  start-page: 325
  year: 2001
  end-page: 333
  article-title: Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in
  publication-title: The Plant Journal
– volume: 97
  start-page: 12908
  year: 2000
  end-page: 12913
  article-title: The Arabidopsis aldehyde oxidase 3 ( ) gene product catalyzes the final step in abscisic acid biosynthesis in leaves
  publication-title: Proceedings of the National Academy of Sciences USA
– start-page: 157
  year: 2019
  end-page: 219
– ident: e_1_2_10_84_1
  doi: 10.1093/oxfordjournals.pcp.a029093
– ident: e_1_2_10_10_1
  doi: 10.17660/ActaHortic.2011.922.43
– ident: e_1_2_10_51_1
  doi: 10.1093/aob/mcf079
– ident: e_1_2_10_79_1
  doi: 10.17660/ActaHortic.1994.351.25
– ident: e_1_2_10_35_1
  doi: 10.1186/s12870-023-04109-x
– ident: e_1_2_10_37_1
  doi: 10.1007/s11103-011-9748-2
– ident: e_1_2_10_75_1
  doi: 10.1046/j.1365-3040.2002.00747.x
– ident: e_1_2_10_14_1
  doi: 10.1007/s11032-015-0195-7
– ident: e_1_2_10_30_1
  doi: 10.1038/nature01843
– start-page: 125
  volume-title: Fruit breeding: nuts
  year: 1996
  ident: e_1_2_10_78_1
– ident: e_1_2_10_28_1
  doi: 10.1093/treephys/tpz102
– ident: e_1_2_10_53_1
  doi: 10.1016/0304-4238(91)90010-V
– ident: e_1_2_10_44_1
  doi: 10.1007/s40626-016-0057-7
– ident: e_1_2_10_48_1
  doi: 10.1111/pce.12182
– ident: e_1_2_10_20_1
  doi: 10.17660/ActaHortic.2014.1052.23
– volume: 45
  start-page: 9
  year: 2021
  ident: e_1_2_10_52_1
  article-title: Hazelnut Breeding
  publication-title: Plant breeding reviews
– ident: e_1_2_10_55_1
  doi: 10.1002/ps.7660
– ident: e_1_2_10_31_1
  doi: 10.1093/treephys/20.11.725
– ident: e_1_2_10_47_1
  doi: 10.3390/agronomy10020170
– ident: e_1_2_10_49_1
  doi: 10.1111/mec.12969
– ident: e_1_2_10_60_1
  doi: 10.1038/s41438-020-00348-3
– ident: e_1_2_10_72_1
  doi: 10.3389/fpls.2021.813902
– ident: e_1_2_10_26_1
  doi: 10.1002/bies.201200181
– ident: e_1_2_10_61_1
  doi: 10.17660/ActaHortic.2018.1226.27
– ident: e_1_2_10_18_1
  doi: 10.1016/j.plaphy.2020.05.014
– ident: e_1_2_10_46_1
  doi: 10.1093/jexbot/49.321.693
– ident: e_1_2_10_56_1
  doi: 10.1146/annurev.arplant.56.032604.144046
– ident: e_1_2_10_62_1
  doi: 10.1093/treephys/tpab164
– ident: e_1_2_10_3_1
  doi: 10.1007/s00425-024-04333-1
– ident: e_1_2_10_65_1
  doi: 10.1007/s00122-019-03331-2
– ident: e_1_2_10_70_1
  doi: 10.3389/fpls.2015.00572
– ident: e_1_2_10_83_1
  doi: 10.1046/j.0016-8025.2001.00824.x
– ident: e_1_2_10_74_1
  doi: 10.1093/treephys/tpz032
– ident: e_1_2_10_85_1
  doi: 10.1007/s40626-016-0070-x
– ident: e_1_2_10_13_1
  doi: 10.1007/s11295-021-01526-7
– ident: e_1_2_10_16_1
  doi: 10.1111/jac.12369
– ident: e_1_2_10_8_1
  doi: 10.17660/ActaHortic.2000.537.109
– ident: e_1_2_10_43_1
  doi: 10.1038/s41598-017-00471-7
– ident: e_1_2_10_34_1
  doi: 10.1016/j.agsy.2020.102982
– ident: e_1_2_10_54_1
  doi: 10.17660/ActaHortic.2009.845.41
– ident: e_1_2_10_17_1
  doi: 10.1016/j.scienta.2016.11.022
– ident: e_1_2_10_29_1
  doi: 10.4161/psb.6.10.17088
– ident: e_1_2_10_50_1
  doi: 10.1111/nph.15911
– ident: e_1_2_10_81_1
  doi: 10.1016/j.envexpbot.2013.04.001
– ident: e_1_2_10_41_1
  doi: 10.1016/j.tplants.2018.04.001
– ident: e_1_2_10_27_1
  doi: 10.17660/ActaHortic.1994.351.50
– ident: e_1_2_10_76_1
  doi: 10.1104/pp.114.237511
– ident: e_1_2_10_66_1
  doi: 10.1073/pnas.96.26.15354
– ident: e_1_2_10_77_1
  doi: 10.1073/pnas.220426197
– ident: e_1_2_10_58_1
  doi: 10.3390/plants11243416
– ident: e_1_2_10_15_1
  doi: 10.1007/978-3-030-23112-5_6
– ident: e_1_2_10_23_1
  doi: 10.1104/pp.106.089367
– ident: e_1_2_10_73_1
  doi: 10.3390/horticulturae7090267
– ident: e_1_2_10_24_1
  doi: 10.1002/pca.1078
– ident: e_1_2_10_19_1
  doi: 10.1016/j.jplph.2018.11.019
– ident: e_1_2_10_7_1
  doi: 10.21273/JASHS.130.4.543
– ident: e_1_2_10_38_1
  doi: 10.3390/biom14030250
– ident: e_1_2_10_80_1
  doi: 10.17660/ActaHortic.2009.845.8
– ident: e_1_2_10_4_1
  doi: 10.1016/j.scienta.2023.112817
– ident: e_1_2_10_45_1
  doi: 10.1111/j.1469-8137.2008.02592.x
– volume: 1379
  start-page: 31
  year: 2023
  ident: e_1_2_10_59_1
  article-title: Effect of Dundee rootstock on growth, morphology, and nutrient uptake in ‘Tonda di Giffoni’ hazelnut
  publication-title: Acta Horticulturae
– ident: e_1_2_10_63_1
  doi: 10.17660/ActaHortic.2023.1379.43
– ident: e_1_2_10_40_1
  doi: 10.1007/s00382-016-3276-3
– ident: e_1_2_10_68_1
  doi: 10.1016/j.scienta.2021.110725
– ident: e_1_2_10_21_1
  doi: 10.17660/ActaHortic.2005.686.27
– ident: e_1_2_10_32_1
  doi: 10.1038/hortres.2014.2
– ident: e_1_2_10_12_1
  doi: 10.1111/j.1471-8286.2005.01121.x
– ident: e_1_2_10_25_1
  doi: 10.1111/plb.13363
– ident: e_1_2_10_57_1
  doi: 10.1016/j.agwat.2019.105897
– ident: e_1_2_10_33_1
  doi: 10.1046/j.1365-313x.2001.01096.x
– ident: e_1_2_10_6_1
  doi: 10.1111/ele.12374
– ident: e_1_2_10_9_1
  doi: 10.17660/ActaHortic.2009.845.47
– ident: e_1_2_10_36_1
  doi: 10.1093/treephys/tpt074
– ident: e_1_2_10_67_1
  doi: 10.1016/j.tplants.2010.04.006
– ident: e_1_2_10_86_1
  doi: 10.1016/j.envexpbot.2019.103814
– ident: e_1_2_10_5_1
  doi: 10.3390/agriculture10050159
– ident: e_1_2_10_39_1
  doi: 10.1093/treephys/tpx149
– volume: 78
  start-page: 94
  year: 1993
  ident: e_1_2_10_42_1
  article-title: Newberg and Dundee, two new filbert rootstocks
  publication-title: Proceedings of the Nut Growers Society of Oregon
– volume: 12
  year: 2021
  ident: e_1_2_10_11_1
  article-title: Advances in nursery production of hazelnut plants in Serbia − Successful grafting of different Corylus avellana L. cultivars and clones onto Corylus colurna L. rootstock. Frontiers
  publication-title: Plant Science
– ident: e_1_2_10_2_1
  doi: 10.1016/j.plaphy.2020.07.028
– volume: 7
  start-page: 485
  year: 2014
  ident: e_1_2_10_64_1
  article-title: Food security and food production systems. In: IPCC Working Group II. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press
  publication-title: Chapter
– ident: e_1_2_10_71_1
  doi: 10.17660/ActaHortic.2014.1052.18
– ident: e_1_2_10_69_1
  doi: 10.1007/s00299-021-02720-6
– ident: e_1_2_10_22_1
  doi: 10.1007/978-3-030-27423-8_3
– ident: e_1_2_10_82_1
  doi: 10.3390/horticulturae9050593
SSID ssj0016612
Score 2.4453492
Snippet Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e70003
SubjectTerms Abscisic acid
Abscisic Acid - metabolism
Adaptability
Adaptation
Adaptation, Physiological - genetics
biometry
Corylus - genetics
Corylus - physiology
Corylus avellana
Cultivars
Dehydration
drought
Drought Resistance
drought tolerance
Droughts
Environmental stress
Fruit crops
fruits
Gas exchange
Gene Expression Regulation, Plant
Genes
Genotype
Genotypes
Grafting
Hazelnuts
hormone metabolism
Leaves
Molecular modelling
Original Research
Physiology
Plant Leaves - genetics
Plant Leaves - physiology
Plant Roots - genetics
Plant Roots - physiology
Plants (botany)
Proline
Proline - metabolism
Recovery
Rehydration
Rootstocks
Stress response
Stress, Physiological
Water - metabolism
Water - physiology
Water deficit
Water potential
Water stress
Water use
Water use efficiency
woody plants
Title Grafting with non‐suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fppl.70003
https://www.ncbi.nlm.nih.gov/pubmed/39658794
https://www.proquest.com/docview/3149125588
https://www.proquest.com/docview/3146626192
https://www.proquest.com/docview/3165861192
https://pubmed.ncbi.nlm.nih.gov/PMC11632140
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG7WxYMX34_RdWnFg5cMk35lgiddXBdZZRAX9iCEfgXHHROZJMJ68gd48Df6S6zqTsKOqyLeknSFpDv1-KqpfEXIo5nSwpSpSxz4vkRILxItynliPcRyzaS2JW4NvHqtDo7Ey2N5vEWeDP_CRH6IccMNLSP4azRwbZozRg4gbZrNItMn1mohIHozUkelEHciUzhPkxyCZM8qhFU8452bsegcwDxfJ3kWv4YAtH-FvBtePdadnEy71kztl19YHf9zblfJ5R6Y0qdRk66RLV9dJxef1QAeT2-Qby_WusQKaYobt7Sqqx9fvzehJgMvAvxuAUXaE7qsEIY2vqEuNABqaVuvPHbv8DBG9-r16aprqP6MVVeVpodT2rcKomGTZfDFVFeOmiX28_oYz92Hrgkl8c1NcrT__O3eQdI3ckisyDKeeKEhC-S-VErkXpWCMc8yrwV3TJpcOuOYY6VzwkqnZ9JZlhsOmZpPs5m2Ob9FtmFi_g6hSG-mlQc34zIhcmZECV-X5xZxm5RuQh4Pn7SwPcs5NttYFUO2A2tbhLWdkIej6KdI7fE7oZ1BL4reupuCQ1qJT5vPJ-TBOAx2acPa-boLMkqF9PRvMoD_VBpkbkdVG9-EIysPOMsJmW8o4SiAvOCbI9XyfeAHTwFjM0icYS2Ckv15dsVicRgO7v676D1yiQGwi_9j7pDtdt35-wDMWrNLLjCx2A12-BPKfjo-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VBQkuvB-BAgviwMVRvLtexxIXqCgB0qpCrdQLsta7axEabBTbSOXED-DAb-SXMLN-qKGAELc4O1G863l8Mxp_A_B4orTM8tAGFn1fICMnAy3zaWAcxnLNI21yKg3s7qnZoXx9FB1twNP-XZiWH2IouJFleH9NBk4F6VNWjihtHE881ec5mujtE6q3A3lUiJGn5QoXYZBgmOx4haiPZ_jpejQ6AzHPdkqeRrA-BO1chnf9zbedJ8fjps7G5ssvvI7_u7srcKnDpuxZq0xXYcMV1-D88xLx48l1-PZypXNqkmZUu2VFWfz4-r3ybRn0JSLwGoGkOWaLgpBo5Spm_QygmtXl0tEAD4drbLtcnSybiunP1HhVaDYfs25aEPN1lt4dM11Yli1opNfH9tp-aCrfFV_dgMOdFwfbs6Cb5RAYGccicFJjIihcrpRMnMol547HTktheZQlkc0stzy3VprI6klkDU8ygcmaC-OJNom4CZu4MXcbGDGcaeXQ09hYyoRnMsfHKxJD0C2K7Aie9M80NR3ROc3bWKZ9woNnm_qzHcGjQfRTy-7xO6GtXjHSzsCrVGBmSf82nY7g4bCMpmn82bmy8TJK-Qz1bzIIAVXoZW61ujbciSBiHvSXI5iuaeEgQNTg6yvF4r2nCA8RZnPMnfEsvJb9eXfp_v7cf7jz76IP4MLsYHeezl_tvbkLFznivPb1zC3YrFeNu4c4rc7ue3P8Cc4mPYI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqFiEulGdZKGAQBy5ZJX4lESfashRYqhWiUg9IkeOHWLok1SZBKid-AAd-I7-kY-ehLgWEuCXxRImdeXxjTb5B6EkoJMttpAMNvi9g3LBAMpsEykAsl4RLZd3WwNsDsX_IXh_xozX0rP8XpuWHGDbcnGV4f-0M_ETbc0YOIG0ch57pc4OJMHEqvfdu4I6KIPC0VOE0ClKIkh2tkCvjGW5dDUYXEObFQsnzANZHoMkm-tC_e1t4cjxu6nysvv5C6_ifk7uGrnbIFD9vVek6WjPFDXRppwT0eHoTfX-5lNaVSGO3c4uLsvj57UflizLcRcDfNcBIdYznhcOhlamw9h2AalyXC-PadxgYw7vl8nTRVFh-cWVXhcTTMe56BWG_y9I7YywLjfO5a-j1uT3Xn5rK18RXt9Dh5MX73f2g6-QQKBbHNDBMQhpIjRWCpUZYRoghsZGMasLzlOtcE02s1kxxLUOuFUlzCqmaieJQqpTeRuswMXMHYcdvJoUBP6NjxlKSMwtfl6bKATfO9Qg97T9ppjqac9dtY5H16Q6sbebXdoQeD6InLbfH74S2e73IOvOuMgp5pXtakozQo2EYDFP5tTNl42WE8Pnp32QAAIrIy2y1qja8CXW0POAtRyhZUcJBwBGDr44U84-eIDwCkE0gc4a18Er259lls9nUH9z9d9GH6PJsb5JNXx28uYeuEAB57b-Z22i9XjbmPoC0On_gjfEMF3w8Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grafting+with+non-suckering+rootstock+increases+drought+tolerance+in+Corylus+avellana+L.+through+physiological+and+biochemical+adjustments&rft.jtitle=Physiologia+plantarum&rft.au=Moine%2C+Amedeo&rft.au=Chitarra%2C+Walter&rft.au=Nerva%2C+Luca&rft.au=Agliassa%2C+Chiara&rft.date=2024-11-01&rft.eissn=1399-3054&rft.volume=176&rft.issue=6&rft.spage=e70003&rft_id=info:doi/10.1111%2Fppl.70003&rft_id=info%3Apmid%2F39658794&rft.externalDocID=39658794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9317&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9317&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9317&client=summon