Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat
Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot ha...
Saved in:
Published in | Functional ecology Vol. 31; no. 12; pp. 2202 - 2211 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.12.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear.
We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat (HW) and 20 dominant species from a hot dry habitat (HD). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable.
Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD. Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index (SPI) facilitated higher transpiration capacity of the plants from HD. Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits.
Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD. We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves.
A plain language summary is available for this article.
Plain Language Summary |
---|---|
AbstractList | Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear.
We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat (HW) and 20 dominant species from a hot dry habitat (HD). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable.
Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD. Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index (SPI) facilitated higher transpiration capacity of the plants from HD. Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits.
Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD. We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves.
A plain language summary is available for this article.
Plain Language Summary Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear.We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat (HW) and 20 dominant species from a hot dry habitat (HD). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable.Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD. Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index (SPI) facilitated higher transpiration capacity of the plants from HD. Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits.Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD. We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves.A plain language summary is available for this article. Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear. We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat ( HW ) and 20 dominant species from a hot dry habitat ( HD ). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable. Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD . Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index ( SPI ) facilitated higher transpiration capacity of the plants from HD . Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits. Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD . We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves. A plain language summary is available for this article. |
Author | Chen, Yajun Fu, Peili Fan, Zexin Lin, Hua Zhang, Houlei |
Author_xml | – sequence: 1 givenname: Hua surname: Lin fullname: Lin, Hua – sequence: 2 givenname: Yajun surname: Chen fullname: Chen, Yajun – sequence: 3 givenname: Houlei surname: Zhang fullname: Zhang, Houlei – sequence: 4 givenname: Peili surname: Fu fullname: Fu, Peili – sequence: 5 givenname: Zexin surname: Fan fullname: Fan, Zexin |
BookMark | eNqFUc1LHDEcDcVCV-vZUyHgxctoPmYmM0dZ1BaEHtqeQ5L5xc0ym0yTLLIn_3Uzrop40FwS8t77fbx3iA588IDQCSXntJwLytumYjVvzinrGf-CFq8_B2hBWNtXXd3yb-gwpTUhpG8YW6CHPzkGfwcRmxBG5-8wWAsmJxwszlH5NLmosgseKz_gEZTF02qXnFHjjLs9cxqVLy8bwwYrvAoZD3GHV0q7rDLOK-XfYveQX7Dv6KtVY4Lj5_sI_bu--rv8Wd3-vvm1vLytTC0Er9oWKAVtuWLQ97rm3ALRwFpDGKsH3Q1CaE1qMWjFW9EJ0w8cjKHaMEs540fobF93iuH_FlKWG5cMjGVuCNskGaGE0bp4Uqin76jrsI2-TCdpL0qPhgheWM2eZWJIKYKVZt6nGDW7MkpK5ByLnEOQcwjyKZaiu3inm6LbqLj7QPHc6d6NsPuMLq-vli-6H3vdOuUQX3V113SsrMEfAel7qho |
CitedBy_id | crossref_primary_10_3389_fenvs_2021_569428 crossref_primary_10_3389_fpls_2024_1399250 crossref_primary_10_1111_gcb_15976 crossref_primary_10_1111_ele_13516 crossref_primary_10_1098_rstb_2018_0209 crossref_primary_10_1016_j_flora_2024_152521 crossref_primary_10_1016_j_agwat_2024_108888 crossref_primary_10_1038_s41467_023_38496_4 crossref_primary_10_1007_s00442_023_05487_7 crossref_primary_10_3389_fevo_2018_00068 crossref_primary_10_1002_adma_202105009 crossref_primary_10_1093_aob_mcae098 crossref_primary_10_1016_j_scitotenv_2024_175899 crossref_primary_10_17151_luaz_2019_49_12 crossref_primary_10_1016_j_rse_2019_03_024 crossref_primary_10_1093_treephys_tpaa025 crossref_primary_10_3390_f10100890 crossref_primary_10_3390_agronomy13071879 crossref_primary_10_5897_AJPS2018_1659 crossref_primary_10_1111_pce_14568 crossref_primary_10_1111_pce_14683 crossref_primary_10_1186_s12870_025_06336_w crossref_primary_10_1016_j_scienta_2019_03_043 crossref_primary_10_3390_biology11050679 crossref_primary_10_1007_s00468_019_01816_7 crossref_primary_10_1016_j_flora_2021_151829 crossref_primary_10_1111_nph_20213 crossref_primary_10_1038_s41598_021_03235_6 crossref_primary_10_1590_1983_21252022v35n322rc crossref_primary_10_1016_j_envexpbot_2021_104768 crossref_primary_10_3390_plants10030474 crossref_primary_10_3390_rs16203840 crossref_primary_10_1093_jxb_erab021 crossref_primary_10_1016_j_agrformet_2023_109483 crossref_primary_10_1111_nph_15304 crossref_primary_10_1186_s13717_024_00556_y crossref_primary_10_1016_j_ppees_2023_125765 crossref_primary_10_1016_j_agrformet_2023_109766 crossref_primary_10_1093_treephys_tpac066 crossref_primary_10_3390_fire8030108 crossref_primary_10_1016_j_indic_2024_100415 crossref_primary_10_3390_su10114063 crossref_primary_10_1111_pce_13970 crossref_primary_10_1007_s12633_023_02713_y crossref_primary_10_3390_su14073957 crossref_primary_10_1016_j_plaphy_2020_05_024 crossref_primary_10_3389_fenvs_2021_701210 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120721 crossref_primary_10_1007_s40502_022_00707_3 crossref_primary_10_1007_s40725_023_00207_z crossref_primary_10_1088_1755_1315_1307_1_012008 crossref_primary_10_1088_1748_9326_abe3b9 crossref_primary_10_1093_treephys_tpac075 crossref_primary_10_1016_j_agrformet_2024_110206 crossref_primary_10_1016_j_scitotenv_2021_150416 crossref_primary_10_1016_j_scienta_2022_111824 crossref_primary_10_1111_pbi_13999 crossref_primary_10_1016_j_agee_2023_108479 crossref_primary_10_1016_j_xplc_2023_100629 crossref_primary_10_1111_gcb_14037 crossref_primary_10_1029_2019MS001790 crossref_primary_10_1111_nph_19558 crossref_primary_10_1177_1940082920920084 crossref_primary_10_1007_s10493_021_00617_3 crossref_primary_10_4236_cus_2021_91008 crossref_primary_10_1093_treephys_tpae022 crossref_primary_10_1016_j_agrformet_2022_108997 crossref_primary_10_3389_fphy_2022_1084142 crossref_primary_10_1016_j_agrformet_2018_07_012 crossref_primary_10_3389_fpls_2019_01715 crossref_primary_10_3923_ajps_2020_443_454 crossref_primary_10_1016_j_scitotenv_2022_159017 crossref_primary_10_3389_fpls_2024_1456740 crossref_primary_10_1007_s00442_023_05497_5 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121736 crossref_primary_10_1016_j_agrformet_2025_110456 crossref_primary_10_1016_j_heliyon_2024_e35105 crossref_primary_10_1111_nph_19388 crossref_primary_10_1177_1940082920949176 crossref_primary_10_3390_en16248032 crossref_primary_10_1016_j_scitotenv_2024_170650 crossref_primary_10_3390_agriculture15050551 crossref_primary_10_1038_s41598_022_22582_6 crossref_primary_10_3390_su13073910 crossref_primary_10_3390_w13243554 crossref_primary_10_1016_j_jplph_2021_153532 crossref_primary_10_1007_s44177_023_00043_7 crossref_primary_10_3390_plants13010142 crossref_primary_10_1371_journal_pone_0224462 crossref_primary_10_1073_pnas_2205682119 crossref_primary_10_3390_agronomy14050921 crossref_primary_10_3390_s20113261 crossref_primary_10_1016_j_marpolbul_2023_115043 crossref_primary_10_1111_pce_14050 crossref_primary_10_1016_j_jia_2023_05_005 crossref_primary_10_3390_agronomy12081807 crossref_primary_10_3390_f9060307 crossref_primary_10_1093_aobpla_plad002 crossref_primary_10_1111_tpj_16396 crossref_primary_10_1073_pnas_2408583121 crossref_primary_10_1111_nph_18842 crossref_primary_10_29133_yyutbd_1217359 crossref_primary_10_3390_plants11162174 crossref_primary_10_1111_nph_19413 crossref_primary_10_1016_j_scitotenv_2024_176366 crossref_primary_10_3390_atmos11080798 crossref_primary_10_3390_horticulturae7050116 crossref_primary_10_1111_plb_13460 crossref_primary_10_3389_fpls_2018_01199 crossref_primary_10_1029_2022WR034361 crossref_primary_10_1093_treephys_tpae161 crossref_primary_10_1111_pce_15279 crossref_primary_10_1111_nph_16429 crossref_primary_10_1111_pce_14060 |
Cites_doi | 10.1016/S0168-1923(97)00078-6 10.1093/aob/mcs172 10.2307/3544986 10.1007/978-1-4757-2855-2_4 10.1371/journal.pone.0054231 10.1111/j.1365-2435.2009.01678.x 10.1016/j.compag.2007.11.007 10.1071/BI9700309 10.1071/BT14204 10.1007/978-94-009-0173-5_803 10.1016/j.compag.2013.05.008 10.1007/978-1-4612-1626-1 10.1039/c0ee00686f 10.1111/pce.12817 10.1104/pp.11.2.343 10.1104/pp.111.173856 10.1007/BF00379514 10.6090/jarq.36.73 10.1093/treephys/19.7.435 10.1086/283787 10.1071/BT15198 10.1016/j.agrformet.2006.05.011 10.1111/j.1744-7429.2006.00146.x 10.1016/S0176-1617(99)80143-6 10.1111/j.1469-8137.1970.tb04050.x 10.1111/j.1469-8137.2012.04294.x 10.1002/j.1537-2197.1959.tb07076.x 10.1071/FP10010 10.1016/j.agrformet.2007.03.003 10.1007/BF00386920 10.1016/j.agrformet.2007.05.007 10.1111/j.1469-8137.2009.02854.x 10.1016/S0168-1923(99)00079-9 10.1111/btp.12355 10.1016/j.cub.2012.03.044 10.1071/FP10062 10.1111/j.1469-8137.2010.03439.x 10.1111/j.1469-8137.2012.04058.x 10.1111/j.1469-8137.1993.tb03898.x 10.1111/j.1469-8137.1976.tb01481.x 10.1111/1365-2745.12056 10.1016/0168-1923(90)90042-5 10.1111/j.1061-2971.2004.00324.x 10.1016/S0176-1617(11)80660-7 10.1016/0098-8472(89)90050-6 10.1046/j.1365-3040.2001.00712.x 10.1093/treephys/tpw059 |
ContentType | Journal Article |
Copyright | 2017 The Authors. © 2017 British Ecological Society 2017 The Authors. Functional Ecology © 2017 British Ecological Society Functional Ecology © 2017 British Ecological Society |
Copyright_xml | – notice: 2017 The Authors. © 2017 British Ecological Society – notice: 2017 The Authors. Functional Ecology © 2017 British Ecological Society – notice: Functional Ecology © 2017 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.12923 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 2211 |
ExternalDocumentID | 10_1111_1365_2435_12923 FEC12923 48582704 |
Genre | article |
GrantInformation_xml | – fundername: Applied Fundamental Research Program of Yunnan Province funderid: 2013FB078 – fundername: National Natural Science Foundation of China funderid: 31200307 – fundername: CAS President's International Fellowship Initiative funderid: 2016VBA036 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c4773-66e11ebf3a2e99b433fe0be26c0224db8d77bb047dba36787c9d3ecc1bc2f1323 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:33:13 EDT 2025 Fri Jul 25 20:10:26 EDT 2025 Thu Apr 24 23:09:32 EDT 2025 Tue Jul 01 01:15:47 EDT 2025 Wed Jan 22 16:48:43 EST 2025 Thu Jul 03 22:07:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4773-66e11ebf3a2e99b433fe0be26c0224db8d77bb047dba36787c9d3ecc1bc2f1323 |
Notes | Paper previously published as Standard Paper. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5623-8187 |
OpenAccessLink | https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12923 |
PQID | 1970475073 |
PQPubID | 1066355 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2010214522 proquest_journals_1970475073 crossref_citationtrail_10_1111_1365_2435_12923 crossref_primary_10_1111_1365_2435_12923 wiley_primary_10_1111_1365_2435_12923_FEC12923 jstor_primary_48582704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2017 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 40 1990; 51 2007; 146 1986; 70 2006; 38 2007; 144 2010; 188 1991; 60 1974 1993; 125 2014; 62 2013; 8 2006; 139 1998; 89 2016; 36 2011; 156 1976; 76 1994; 144 2010; 24 1999; 19 2013; 96 1973; 110 1970; 23 1999; 97 1981; 117 1983 1961; XV 2008; 61 2016; 49 2012; 22 1970; 69 2002; 36 2010; 37 1936; 11 2010 1998 2013; 101 2008 2007 1995 2003 2011; 4 2001; 24 1959; 46 1989; 29 2012; 194 2012; 196 2012; 110 2004; 12 2016; 64 2017 2009; 183 2014 1999; 155 2013 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_54_1 Monteith J. L. (e_1_2_9_33_1) 2013 Gates D. M. (e_1_2_9_17_1) 2003 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 Lin H. (e_1_2_9_28_1) 2017 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_55_1 Monteith J. L. (e_1_2_9_32_1) 2008 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 McNaughton K. G. (e_1_2_9_30_1) 1983 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Noffinger T. L. (e_1_2_9_36_1) 1961 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Nobel P. S. (e_1_2_9_35_1) 1974 |
References_xml | – volume: 61 start-page: 201 year: 2008 end-page: 212 article-title: CFD based determination of temperature and humidity at leaf surface publication-title: Computers and Electronics in Agriculture – volume: 196 start-page: 788 year: 2012 end-page: 798 article-title: Trade‐offs between leaf hydraulic capacity and drought vulnerability: Morpho‐anatomical bases, carbon costs and ecological consequences publication-title: New Phytologist – volume: 23 start-page: 309 year: 1970 end-page: 322 article-title: Convective heat transfer from narrow leaves publication-title: Australian Journal of Biological Sciences – start-page: 210 year: 1998 end-page: 229 – volume: 36 start-page: 73 year: 2002 end-page: 82 article-title: Comparison of the three‐temperature model and conventional models for estimating transpiration publication-title: Jarq‐Japan Agricultural Research Quarterly – start-page: 3413 year: 1995 end-page: 3416 – volume: 69 start-page: 65 year: 1970 end-page: 73 article-title: The effect of leaf hairs of on leaf energy exchange publication-title: New Phytologist – volume: 144 start-page: 680 year: 1994 end-page: 685 article-title: The effect of leaf‐hairs on blue and red fluorescence emission and on zeaxanthin cycle performance of L publication-title: Journal of Plant Physiology – volume: 188 start-page: 1113 year: 2010 end-page: 1123 article-title: Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms publication-title: New Phytologist – year: 2014 – year: 1998 – volume: 194 start-page: 477 year: 2012 end-page: 487 article-title: Do thick leaves avoid thermal damage in critically low wind speeds? publication-title: New Phytologist – volume: 70 start-page: 475 year: 1986 end-page: 480 article-title: Water use by the desert Cucurbit (L.) Schrad publication-title: Oecologia – volume: 117 start-page: 1011 year: 1981 end-page: 1014 article-title: Leaf size and leaf temperature in tropical vines publication-title: American Naturalist – year: 2008 – volume: 37 start-page: 488 year: 2010 end-page: 498 article-title: Viewing leaf structure and evolution from a hydraulic perspective publication-title: Functional Plant Biology – volume: 37 start-page: 840 year: 2010 end-page: 848 article-title: Primary nerve (vein) density influences spatial heterogeneity of photosynthetic response to drought in two species publication-title: Functional Plant Biology – volume: 97 start-page: 171 year: 1999 end-page: 185 article-title: Wind speed and leaf boundary layer conductance variation within tree crown – Consequences on leaf‐to‐atmosphere coupling and tree functions publication-title: Agricultural and Forest Meteorology – volume: 76 start-page: 453 year: 1976 end-page: 457 article-title: Effects of leaf hairs on heat and mass‐transfer – Reassessment publication-title: New Phytologist – volume: 101 start-page: 430 year: 2013 end-page: 440 article-title: Leaf adaptations of evergreen and deciduous trees of semi‐arid and humid savannas on three continents publication-title: Journal of Ecology – volume: 183 start-page: 13 year: 2009 end-page: 26 article-title: Leaves in the lowest and highest winds: Temperature, force and shape publication-title: New Phytologist – volume: 62 start-page: 657 year: 2014 end-page: 665 article-title: Temperature influences stomatal density and maximum potential water loss through stomata of subsp. along a latitude gradient in southern Australia publication-title: Australian Journal of Botany – volume: 49 start-page: 35 year: 2016 end-page: 44 article-title: Extreme thermal heterogeneity in structurally complex tropical rain forests publication-title: Biotropica – volume: 110 start-page: 1027 year: 2012 end-page: 1033 article-title: Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span publication-title: Annals of Botany – volume: 40 start-page: 872 year: 2017 end-page: 880 article-title: Xylem and stomata, coordinated through time and space publication-title: Plant Cell & Environent – volume: 8 start-page: e54231 year: 2013 article-title: Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations publication-title: PLoS ONE – volume: 156 start-page: 832 year: 2011 end-page: 843 article-title: Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture publication-title: Plant Physiology – volume: 4 start-page: 3364 year: 2011 end-page: 3367 article-title: Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective “cool roof” publication-title: Energy & Environmental Science – volume: 144 start-page: 180 year: 2007 end-page: 192 article-title: Leaf boundary layer conductance in ventilated greenhouses: An experimental approach publication-title: Agricultural and Forest Meteorology – volume: 89 start-page: 255 year: 1998 end-page: 267 article-title: Leaf boundary layer conductance in a vineyard in Portugal publication-title: Agricultural and Forest Meteorology – volume: 36 start-page: 1117 year: 2016 end-page: 1126 article-title: A novel pattern of leaf movement: The case of L publication-title: Tree Physiology – year: 2007 – year: 2003 – volume: 38 start-page: 306 year: 2006 end-page: 309 article-title: Tropical forests of Xishuangbanna, China publication-title: Biotropica – volume: 146 start-page: 29 year: 2007 end-page: 37 article-title: Tree species diversity affects canopy leaf temperatures in a mature temperate forest publication-title: Agricultural and Forest Meteorology – start-page: 1 year: 1983 end-page: 48 article-title: Predicting effects of vegetation changes on transpiration and evaporation publication-title: Water deficits and plant growth – volume: 11 start-page: 343 year: 1936 end-page: 364 article-title: Leaf temperatures and the cooling of leaves by radiation publication-title: Plant Physiology – volume: 139 start-page: 40 year: 2006 end-page: 54 article-title: Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy publication-title: Agricultural and Forest Meteorology – volume: 24 start-page: 485 year: 2010 end-page: 492 article-title: Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region publication-title: Functional Ecology – year: 2010 – volume: 22 start-page: R396 year: 2012 end-page: R397 article-title: High temperature exposure increases plant cooling capacity publication-title: Current Biology – year: 2017 article-title: Stronger cooling effects of transpiration and morphology of the plants from a hot dry habitat than from a hot wet habitat publication-title: Dryad Digital Repository – volume: 24 start-page: 631 year: 2001 end-page: 640 article-title: Computer‐based analysis of steady‐state and transient heat transfer of small‐sized leaves by free and mixed convection publication-title: Plant Cell & Environment – volume: XV start-page: 304 year: 1961 end-page: 306 article-title: Leaf and air temperature under Hawaii conditions publication-title: Pacific Science – volume: 12 start-page: 586 year: 2004 end-page: 596 article-title: Ecosystem thermal buffer capacity as an indicator of the restoration status of protected areas in the northern Ethiopian highlands publication-title: Restoration Ecology – volume: 29 start-page: 175 year: 1989 end-page: 185 article-title: Dynamic analysis of stomatal responses by an improved method of leaf heat‐balance publication-title: Environmental and Experimental Botany – volume: 64 start-page: 32 year: 2016 end-page: 44 article-title: Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature publication-title: Australian Journal of Botany – volume: 51 start-page: 63 year: 1990 end-page: 86 article-title: Estimation of transpiration by single trees – Comparison of a ventilated chamber, leaf energy budgets and a combination equation publication-title: Agricultural and Forest Meteorology – volume: 46 start-page: 713 year: 1959 end-page: 717 article-title: Leaf temperatures publication-title: American Journal of Botany – volume: 110 start-page: 29 year: 1973 end-page: 42 article-title: Stomatal responses to changes in temperature at Increasing water stress publication-title: Planta – year: 1974 – volume: 125 start-page: 477 year: 1993 end-page: 507 article-title: Tansley Review No. 59. Leaf boundary layers publication-title: New Phytologist – volume: 19 start-page: 435 year: 1999 end-page: 443 article-title: Boundary layer conductance, leaf temperature and transpiration of branches publication-title: Tree Physiology – volume: 155 start-page: 78 year: 1999 end-page: 85 article-title: Function of leaf hairs revisited: The hair layer on leaves reduces photoinhibition, but leads to higher leaf temperatures caused by lower transpiration rates publication-title: Journal of Plant Physiology – volume: 60 start-page: 11 year: 1991 end-page: 19 article-title: Differential mechanical defense ‐ herbivory, evapotranspiration, and leaf‐hairs publication-title: Oikos – volume: 96 start-page: 180 year: 2013 end-page: 201 article-title: Convective heat and mass exchange predictions at leaf surfaces: Applications, methods and perspectives publication-title: Computers and Electronics in Agriculture – year: 2013 – ident: e_1_2_9_14_1 doi: 10.1016/S0168-1923(97)00078-6 – ident: e_1_2_9_57_1 doi: 10.1093/aob/mcs172 – ident: e_1_2_9_56_1 – ident: e_1_2_9_52_1 doi: 10.2307/3544986 – ident: e_1_2_9_21_1 doi: 10.1007/978-1-4757-2855-2_4 – ident: e_1_2_9_45_1 doi: 10.1371/journal.pone.0054231 – ident: e_1_2_9_54_1 doi: 10.1111/j.1365-2435.2009.01678.x – ident: e_1_2_9_41_1 doi: 10.1016/j.compag.2007.11.007 – year: 2017 ident: e_1_2_9_28_1 article-title: Stronger cooling effects of transpiration and morphology of the plants from a hot dry habitat than from a hot wet habitat publication-title: Dryad Digital Repository – ident: e_1_2_9_47_1 doi: 10.1071/BI9700309 – ident: e_1_2_9_18_1 doi: 10.1071/BT14204 – ident: e_1_2_9_23_1 doi: 10.1007/978-94-009-0173-5_803 – ident: e_1_2_9_15_1 doi: 10.1016/j.compag.2013.05.008 – ident: e_1_2_9_8_1 doi: 10.1007/978-1-4612-1626-1 – volume-title: Biophysical ecology year: 2003 ident: e_1_2_9_17_1 – ident: e_1_2_9_55_1 doi: 10.1039/c0ee00686f – ident: e_1_2_9_7_1 doi: 10.1111/pce.12817 – ident: e_1_2_9_12_1 doi: 10.1104/pp.11.2.343 – ident: e_1_2_9_46_1 doi: 10.1104/pp.111.173856 – ident: e_1_2_9_3_1 doi: 10.1007/BF00379514 – start-page: 304 year: 1961 ident: e_1_2_9_36_1 article-title: Leaf and air temperature under Hawaii conditions publication-title: Pacific Science – volume-title: Introduction to biophysical plant physiology year: 1974 ident: e_1_2_9_35_1 – ident: e_1_2_9_38_1 doi: 10.6090/jarq.36.73 – ident: e_1_2_9_29_1 doi: 10.1093/treephys/19.7.435 – ident: e_1_2_9_16_1 doi: 10.1086/283787 – ident: e_1_2_9_31_1 doi: 10.1071/BT15198 – start-page: 1 year: 1983 ident: e_1_2_9_30_1 article-title: Predicting effects of vegetation changes on transpiration and evaporation publication-title: Water deficits and plant growth – ident: e_1_2_9_49_1 doi: 10.1016/j.agrformet.2006.05.011 – ident: e_1_2_9_9_1 doi: 10.1111/j.1744-7429.2006.00146.x – ident: e_1_2_9_39_1 doi: 10.1016/S0176-1617(99)80143-6 – ident: e_1_2_9_53_1 doi: 10.1111/j.1469-8137.1970.tb04050.x – ident: e_1_2_9_34_1 doi: 10.1111/j.1469-8137.2012.04294.x – ident: e_1_2_9_4_1 doi: 10.1002/j.1537-2197.1959.tb07076.x – ident: e_1_2_9_6_1 doi: 10.1071/FP10010 – ident: e_1_2_9_19_1 doi: 10.1016/j.agrformet.2007.03.003 – ident: e_1_2_9_44_1 doi: 10.1007/BF00386920 – ident: e_1_2_9_26_1 doi: 10.1016/j.agrformet.2007.05.007 – ident: e_1_2_9_58_1 – ident: e_1_2_9_51_1 doi: 10.1111/j.1469-8137.2009.02854.x – ident: e_1_2_9_13_1 doi: 10.1016/S0168-1923(99)00079-9 – ident: e_1_2_9_42_1 doi: 10.1111/btp.12355 – ident: e_1_2_9_11_1 doi: 10.1016/j.cub.2012.03.044 – ident: e_1_2_9_48_1 doi: 10.1071/FP10062 – volume-title: Principles of environmental physics year: 2008 ident: e_1_2_9_32_1 – ident: e_1_2_9_10_1 – ident: e_1_2_9_5_1 doi: 10.1111/j.1469-8137.2010.03439.x – ident: e_1_2_9_24_1 doi: 10.1111/j.1469-8137.2012.04058.x – ident: e_1_2_9_43_1 doi: 10.1111/j.1469-8137.1993.tb03898.x – ident: e_1_2_9_37_1 doi: 10.1111/j.1469-8137.1976.tb01481.x – ident: e_1_2_9_50_1 doi: 10.1111/1365-2745.12056 – ident: e_1_2_9_25_1 doi: 10.1016/0168-1923(90)90042-5 – ident: e_1_2_9_2_1 doi: 10.1111/j.1061-2971.2004.00324.x – volume-title: Principles of environmental physics: Plants, animals, and the atmosphere year: 2013 ident: e_1_2_9_33_1 – ident: e_1_2_9_22_1 doi: 10.1016/S0176-1617(11)80660-7 – ident: e_1_2_9_20_1 doi: 10.1016/0098-8472(89)90050-6 – ident: e_1_2_9_40_1 doi: 10.1046/j.1365-3040.2001.00712.x – ident: e_1_2_9_27_1 doi: 10.1093/treephys/tpw059 |
SSID | ssj0009522 |
Score | 2.5720475 |
Snippet | Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2202 |
SubjectTerms | canopy coevolution Cooling Cooling effects Diurnal Dominant species Epidermis Gas exchange greenhouses Habitats Heat exchange Heat stress Heat tolerance Heat transfer Herbivores hot dry hot wet insurance leaf temperature Leaves Overheating Photosynthesis PLANT PHYSIOLOGICAL ECOLOGY Plants rain Rainfall Seedlings Stomata synergism temperature Temperature effects temperature regulation thermal effect Thermal properties Thermodynamic properties Transpiration transpiration capacity |
Title | Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat |
URI | https://www.jstor.org/stable/48582704 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12923 https://www.proquest.com/docview/1970475073 https://www.proquest.com/docview/2010214522 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhUMilr3TppmlRIYdevNiSVrKPJewSCu2hTSA3o5fT0MVedr2E5JK_nhlJ3m4CpZTehEcDsjyj-SSPviHkxArrnFM-y3WhM1FqnZVcOvB4VWglnZ96vJz89Zs8uxBfLqdDNiHehYn8ENsDN_SMsF6jg2uz3nHymJ8F0X4CIYsh3yc-QVj0ne3Q7sb_CExWGURansh9MJfnif6juBRTEx-Bzl3oGmLP_AUxw6hjysmvyaY3E3v3hNDxv17rJXmekCn9HE3pFdnz7WvyLNaqvIXWzKbWaPb7chwopNVhfUjuf-C5-pVfUdthLaArmrJFaNfQPrCoX0eDo7p1dOF1Q5fJTlB-HXsuF5ibQ_HiC9X0Z9dTt7qlSCgOwJjiUf-u7Mb3g-wNuZjPzk_PslTgIbNCKZ5J6YvCm4Zr5qvKCM4bnxvPpEVk4UzplDImF8oZzSGqKls5DjZXGMsa2EbzEdlvu9a_JbSqGqkr2Pxo34i8YaW3WCtLCgP7V6PdmEyGz1vbxH6OL7aoh10QTnyNE1-HiR-TT1uFZST--HPXUbCXbT9RTkumcjEmx4MB1WlpWNdFBRLAaQr0Pm7F4NT4p0a3vtusaxYrroPxwriDtfxtDPV8dhoaR_-q8I4cMIQqIUXnmOz3q41_D0CrNx-CLz0A8IocsQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IIiBBfeKxYKGIkDl6wS22snR1TtaoG2B2il3iK_0lasktVuVqhc-HVm7GRJKyGEuFkaT2Q7M56H50HIOyusc075JNWZTkSudZJz6YDjVaaVdH7qMTn56FguTsWns-nZIBcm1ofYOdyQM8J9jQyODukBl8cALRD3E5BZjN8md7CvdzCrvrBB4d34ksBkkYCs5V15H4zmufGBa5IpBideUzuHymuQPvOHxPbrjkEn3ybb1kzsjxslHf9vY4_Ig045pR8iNT0mt3z9hNyN7SqvYDSz3Wg0-50fBwjdBbF5Sn5-Rdf6uV9T22A7oHPaBYzQpqJtKKR-GWmO6trRpdcVXXWkgvDLOHO1xPAcirkvVNOLpqVufUWxpjjoxhS9_UPYd9_2sGfkdD47OVgkXY-HxAqleCKlzzJvKq6ZLwojOK98ajyTFpULZ3KnlDGpUM5oDoJV2cJxILvMWFaBJc1HZK9uav-c0KKopC7A_tG-EmnFcm-xXZYUBkxYo92YTPr_W9quADpubFn2hhAefIkHX4aDH5P3O4RVrP3x56mjQDC7eSKf5kylYkz2ewoqu9thU2YFQEBVU4D3dgcGvsbHGl37ZrspWWy6DtQL6w7k8rc1lPPZQRi8-FeEN-Te4uTosDz8ePz5JbnPUHMJETv7ZK9db_0r0Lta8zow1i-6niDM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66onjxPTi6agQPXnroTjJJ91F2Z1hfi6gL3po818Whe5jpQdaLf92qpHucXRARb4FKNUn6q1QlqQchL6ywzjnls1wXOhOl1lnJpQOJV4VW0vmpx-Dk98fy6ES8-TIdvAkxFiblh9heuKFkxP0aBXzpwo6QJ_8s0PYTUFmMXyXXhMxLBPbhR7aTdzc9JDBZZaBqeZ_dB515Ln3ggmJKvokXrM5d2zUqn_ltYoZhJ5-Tb5NNZyb2x6WMjv81rzvkVm-a0lcJS3fJFd_cI9dTscpzaM1s3xrNfkfHAUO_Pazvk5-f8GL91K-obbEY0Cnt3UVoG2gX06ifJcRR3Ti68DrQZQ8UpJ-lnssFOudQjHyhmn5tO-pW5xQzioNlTPGuf5f23XcD7QE5mc8-HxxlfYWHzAqleCalLwpvAtfMV5URnAefG8-kRdPCmdIpZUwulDOag1pVtnIcQFcYywKco_mI7DVt4x8SWlVB6gpOP9oHkQdWeovFsqQwcIA12o3JZPi9te3Tn-PEFvVwDMKFr3Hh67jwY_Jyy7BMmT_-3HUU8bLtJ8ppyVQuxmR_AFDd7w3ruqiAAoaaAr7nWzJINT7V6Ma3m3XNUsl1AC-MO6Llb2Oo57OD2Hj0rwzPyI0Ph_P63evjt4_JTYZmS3TX2Sd73Wrjn4DR1ZmnUax-AU49H4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stronger+cooling+effects+of+transpiration+and+leaf+physical+traits+of+plants+from+a+hot+dry+habitat+than+from+a+hot+wet+habitat&rft.jtitle=Functional+ecology&rft.au=Lin%2C+Hua&rft.au=Chen%2C+Yajun&rft.au=Zhang%2C+Houlei&rft.au=Fu%2C+Peili&rft.date=2017-12-01&rft.issn=0269-8463&rft.volume=31&rft.issue=12+p.2202-2211&rft.spage=2202&rft.epage=2211&rft_id=info:doi/10.1111%2F1365-2435.12923&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |