Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat

Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot ha...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 31; no. 12; pp. 2202 - 2211
Main Authors Lin, Hua, Chen, Yajun, Zhang, Houlei, Fu, Peili, Fan, Zexin
Format Journal Article
LanguageEnglish
Published London Wiley 01.12.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear. We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat (HW) and 20 dominant species from a hot dry habitat (HD). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable. Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD. Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index (SPI) facilitated higher transpiration capacity of the plants from HD. Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits. Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD. We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves. A plain language summary is available for this article. Plain Language Summary
AbstractList Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear. We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat (HW) and 20 dominant species from a hot dry habitat (HD). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable. Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD. Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index (SPI) facilitated higher transpiration capacity of the plants from HD. Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits. Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD. We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves. A plain language summary is available for this article. Plain Language Summary
Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear.We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat (HW) and 20 dominant species from a hot dry habitat (HD). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable.Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD. Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index (SPI) facilitated higher transpiration capacity of the plants from HD. Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits.Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD. We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves.A plain language summary is available for this article.
Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different strategies to regulate leaf temperature. The relative importance of physical traits and transpiration for leaf temperature regulation in the hot habitat is still unclear. We investigated 22 leaf physical traits, transpiration, and thermal properties of 38 canopy species of seedlings in a greenhouse, including 18 dominant species from a hot wet habitat ( HW ) and 20 dominant species from a hot dry habitat ( HD ). To separate the impact of transpiration and leaf physical traits on leaf temperature, we measured the diurnal courses of leaf temperatures with and without transpiration. The temperature of a reference leaf beside each individual was measured simultaneously to render temperatures comparable. Generally, the species from HD showed lower leaf temperatures than the species from HW under the same conditions. Both transpiration capacity and cooling effect of leaf physical traits were stronger for the plants from HD . Active transpiration provides a suitable thermal environment for photosynthesis, while xeromorphic leaves can dampen heat stress when transpiration is suppressed. Higher vein density and stomatal pore area index ( SPI ) facilitated higher transpiration capacity of the plants from HD . Meanwhile, shorter leaves and thinner lower epidermis of the plants from HD were more efficient in heat transfer, although relationships were much weaker than the synergic effect of all the physical traits. Our results confirmed that transpiration and leaf physical traits provided double insurance for avoiding overheating, particularly for plant from HD . We emphasize that transpiration is a more effective way to cool leaves than physical traits when water is sufficient, which may be an important adaptation for plant from HD where rainfall is sporadic. Our results provide further insight into the relationship between physical traits and transpiration for the regulation of leaf temperature, and the co‐evolution of gas exchange and thermal regulation of leaves. A plain language summary is available for this article.
Author Chen, Yajun
Fu, Peili
Fan, Zexin
Lin, Hua
Zhang, Houlei
Author_xml – sequence: 1
  givenname: Hua
  surname: Lin
  fullname: Lin, Hua
– sequence: 2
  givenname: Yajun
  surname: Chen
  fullname: Chen, Yajun
– sequence: 3
  givenname: Houlei
  surname: Zhang
  fullname: Zhang, Houlei
– sequence: 4
  givenname: Peili
  surname: Fu
  fullname: Fu, Peili
– sequence: 5
  givenname: Zexin
  surname: Fan
  fullname: Fan, Zexin
BookMark eNqFUc1LHDEcDcVCV-vZUyHgxctoPmYmM0dZ1BaEHtqeQ5L5xc0ym0yTLLIn_3Uzrop40FwS8t77fbx3iA588IDQCSXntJwLytumYjVvzinrGf-CFq8_B2hBWNtXXd3yb-gwpTUhpG8YW6CHPzkGfwcRmxBG5-8wWAsmJxwszlH5NLmosgseKz_gEZTF02qXnFHjjLs9cxqVLy8bwwYrvAoZD3GHV0q7rDLOK-XfYveQX7Dv6KtVY4Lj5_sI_bu--rv8Wd3-vvm1vLytTC0Er9oWKAVtuWLQ97rm3ALRwFpDGKsH3Q1CaE1qMWjFW9EJ0w8cjKHaMEs540fobF93iuH_FlKWG5cMjGVuCNskGaGE0bp4Uqin76jrsI2-TCdpL0qPhgheWM2eZWJIKYKVZt6nGDW7MkpK5ByLnEOQcwjyKZaiu3inm6LbqLj7QPHc6d6NsPuMLq-vli-6H3vdOuUQX3V113SsrMEfAel7qho
CitedBy_id crossref_primary_10_3389_fenvs_2021_569428
crossref_primary_10_3389_fpls_2024_1399250
crossref_primary_10_1111_gcb_15976
crossref_primary_10_1111_ele_13516
crossref_primary_10_1098_rstb_2018_0209
crossref_primary_10_1016_j_flora_2024_152521
crossref_primary_10_1016_j_agwat_2024_108888
crossref_primary_10_1038_s41467_023_38496_4
crossref_primary_10_1007_s00442_023_05487_7
crossref_primary_10_3389_fevo_2018_00068
crossref_primary_10_1002_adma_202105009
crossref_primary_10_1093_aob_mcae098
crossref_primary_10_1016_j_scitotenv_2024_175899
crossref_primary_10_17151_luaz_2019_49_12
crossref_primary_10_1016_j_rse_2019_03_024
crossref_primary_10_1093_treephys_tpaa025
crossref_primary_10_3390_f10100890
crossref_primary_10_3390_agronomy13071879
crossref_primary_10_5897_AJPS2018_1659
crossref_primary_10_1111_pce_14568
crossref_primary_10_1111_pce_14683
crossref_primary_10_1186_s12870_025_06336_w
crossref_primary_10_1016_j_scienta_2019_03_043
crossref_primary_10_3390_biology11050679
crossref_primary_10_1007_s00468_019_01816_7
crossref_primary_10_1016_j_flora_2021_151829
crossref_primary_10_1111_nph_20213
crossref_primary_10_1038_s41598_021_03235_6
crossref_primary_10_1590_1983_21252022v35n322rc
crossref_primary_10_1016_j_envexpbot_2021_104768
crossref_primary_10_3390_plants10030474
crossref_primary_10_3390_rs16203840
crossref_primary_10_1093_jxb_erab021
crossref_primary_10_1016_j_agrformet_2023_109483
crossref_primary_10_1111_nph_15304
crossref_primary_10_1186_s13717_024_00556_y
crossref_primary_10_1016_j_ppees_2023_125765
crossref_primary_10_1016_j_agrformet_2023_109766
crossref_primary_10_1093_treephys_tpac066
crossref_primary_10_3390_fire8030108
crossref_primary_10_1016_j_indic_2024_100415
crossref_primary_10_3390_su10114063
crossref_primary_10_1111_pce_13970
crossref_primary_10_1007_s12633_023_02713_y
crossref_primary_10_3390_su14073957
crossref_primary_10_1016_j_plaphy_2020_05_024
crossref_primary_10_3389_fenvs_2021_701210
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120721
crossref_primary_10_1007_s40502_022_00707_3
crossref_primary_10_1007_s40725_023_00207_z
crossref_primary_10_1088_1755_1315_1307_1_012008
crossref_primary_10_1088_1748_9326_abe3b9
crossref_primary_10_1093_treephys_tpac075
crossref_primary_10_1016_j_agrformet_2024_110206
crossref_primary_10_1016_j_scitotenv_2021_150416
crossref_primary_10_1016_j_scienta_2022_111824
crossref_primary_10_1111_pbi_13999
crossref_primary_10_1016_j_agee_2023_108479
crossref_primary_10_1016_j_xplc_2023_100629
crossref_primary_10_1111_gcb_14037
crossref_primary_10_1029_2019MS001790
crossref_primary_10_1111_nph_19558
crossref_primary_10_1177_1940082920920084
crossref_primary_10_1007_s10493_021_00617_3
crossref_primary_10_4236_cus_2021_91008
crossref_primary_10_1093_treephys_tpae022
crossref_primary_10_1016_j_agrformet_2022_108997
crossref_primary_10_3389_fphy_2022_1084142
crossref_primary_10_1016_j_agrformet_2018_07_012
crossref_primary_10_3389_fpls_2019_01715
crossref_primary_10_3923_ajps_2020_443_454
crossref_primary_10_1016_j_scitotenv_2022_159017
crossref_primary_10_3389_fpls_2024_1456740
crossref_primary_10_1007_s00442_023_05497_5
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121736
crossref_primary_10_1016_j_agrformet_2025_110456
crossref_primary_10_1016_j_heliyon_2024_e35105
crossref_primary_10_1111_nph_19388
crossref_primary_10_1177_1940082920949176
crossref_primary_10_3390_en16248032
crossref_primary_10_1016_j_scitotenv_2024_170650
crossref_primary_10_3390_agriculture15050551
crossref_primary_10_1038_s41598_022_22582_6
crossref_primary_10_3390_su13073910
crossref_primary_10_3390_w13243554
crossref_primary_10_1016_j_jplph_2021_153532
crossref_primary_10_1007_s44177_023_00043_7
crossref_primary_10_3390_plants13010142
crossref_primary_10_1371_journal_pone_0224462
crossref_primary_10_1073_pnas_2205682119
crossref_primary_10_3390_agronomy14050921
crossref_primary_10_3390_s20113261
crossref_primary_10_1016_j_marpolbul_2023_115043
crossref_primary_10_1111_pce_14050
crossref_primary_10_1016_j_jia_2023_05_005
crossref_primary_10_3390_agronomy12081807
crossref_primary_10_3390_f9060307
crossref_primary_10_1093_aobpla_plad002
crossref_primary_10_1111_tpj_16396
crossref_primary_10_1073_pnas_2408583121
crossref_primary_10_1111_nph_18842
crossref_primary_10_29133_yyutbd_1217359
crossref_primary_10_3390_plants11162174
crossref_primary_10_1111_nph_19413
crossref_primary_10_1016_j_scitotenv_2024_176366
crossref_primary_10_3390_atmos11080798
crossref_primary_10_3390_horticulturae7050116
crossref_primary_10_1111_plb_13460
crossref_primary_10_3389_fpls_2018_01199
crossref_primary_10_1029_2022WR034361
crossref_primary_10_1093_treephys_tpae161
crossref_primary_10_1111_pce_15279
crossref_primary_10_1111_nph_16429
crossref_primary_10_1111_pce_14060
Cites_doi 10.1016/S0168-1923(97)00078-6
10.1093/aob/mcs172
10.2307/3544986
10.1007/978-1-4757-2855-2_4
10.1371/journal.pone.0054231
10.1111/j.1365-2435.2009.01678.x
10.1016/j.compag.2007.11.007
10.1071/BI9700309
10.1071/BT14204
10.1007/978-94-009-0173-5_803
10.1016/j.compag.2013.05.008
10.1007/978-1-4612-1626-1
10.1039/c0ee00686f
10.1111/pce.12817
10.1104/pp.11.2.343
10.1104/pp.111.173856
10.1007/BF00379514
10.6090/jarq.36.73
10.1093/treephys/19.7.435
10.1086/283787
10.1071/BT15198
10.1016/j.agrformet.2006.05.011
10.1111/j.1744-7429.2006.00146.x
10.1016/S0176-1617(99)80143-6
10.1111/j.1469-8137.1970.tb04050.x
10.1111/j.1469-8137.2012.04294.x
10.1002/j.1537-2197.1959.tb07076.x
10.1071/FP10010
10.1016/j.agrformet.2007.03.003
10.1007/BF00386920
10.1016/j.agrformet.2007.05.007
10.1111/j.1469-8137.2009.02854.x
10.1016/S0168-1923(99)00079-9
10.1111/btp.12355
10.1016/j.cub.2012.03.044
10.1071/FP10062
10.1111/j.1469-8137.2010.03439.x
10.1111/j.1469-8137.2012.04058.x
10.1111/j.1469-8137.1993.tb03898.x
10.1111/j.1469-8137.1976.tb01481.x
10.1111/1365-2745.12056
10.1016/0168-1923(90)90042-5
10.1111/j.1061-2971.2004.00324.x
10.1016/S0176-1617(11)80660-7
10.1016/0098-8472(89)90050-6
10.1046/j.1365-3040.2001.00712.x
10.1093/treephys/tpw059
ContentType Journal Article
Copyright 2017 The Authors. © 2017 British Ecological Society
2017 The Authors. Functional Ecology © 2017 British Ecological Society
Functional Ecology © 2017 British Ecological Society
Copyright_xml – notice: 2017 The Authors. © 2017 British Ecological Society
– notice: 2017 The Authors. Functional Ecology © 2017 British Ecological Society
– notice: Functional Ecology © 2017 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.12923
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts
CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 2211
ExternalDocumentID 10_1111_1365_2435_12923
FEC12923
48582704
Genre article
GrantInformation_xml – fundername: Applied Fundamental Research Program of Yunnan Province
  funderid: 2013FB078
– fundername: National Natural Science Foundation of China
  funderid: 31200307
– fundername: CAS President's International Fellowship Initiative
  funderid: 2016VBA036
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c4773-66e11ebf3a2e99b433fe0be26c0224db8d77bb047dba36787c9d3ecc1bc2f1323
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:33:13 EDT 2025
Fri Jul 25 20:10:26 EDT 2025
Thu Apr 24 23:09:32 EDT 2025
Tue Jul 01 01:15:47 EDT 2025
Wed Jan 22 16:48:43 EST 2025
Thu Jul 03 22:07:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4773-66e11ebf3a2e99b433fe0be26c0224db8d77bb047dba36787c9d3ecc1bc2f1323
Notes Paper previously published as Standard Paper.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5623-8187
OpenAccessLink https://besjournals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12923
PQID 1970475073
PQPubID 1066355
PageCount 10
ParticipantIDs proquest_miscellaneous_2010214522
proquest_journals_1970475073
crossref_citationtrail_10_1111_1365_2435_12923
crossref_primary_10_1111_1365_2435_12923
wiley_primary_10_1111_1365_2435_12923_FEC12923
jstor_primary_48582704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2017
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 40
1990; 51
2007; 146
1986; 70
2006; 38
2007; 144
2010; 188
1991; 60
1974
1993; 125
2014; 62
2013; 8
2006; 139
1998; 89
2016; 36
2011; 156
1976; 76
1994; 144
2010; 24
1999; 19
2013; 96
1973; 110
1970; 23
1999; 97
1981; 117
1983
1961; XV
2008; 61
2016; 49
2012; 22
1970; 69
2002; 36
2010; 37
1936; 11
2010
1998
2013; 101
2008
2007
1995
2003
2011; 4
2001; 24
1959; 46
1989; 29
2012; 194
2012; 196
2012; 110
2004; 12
2016; 64
2017
2009; 183
2014
1999; 155
2013
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
Monteith J. L. (e_1_2_9_33_1) 2013
Gates D. M. (e_1_2_9_17_1) 2003
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
Lin H. (e_1_2_9_28_1) 2017
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_55_1
Monteith J. L. (e_1_2_9_32_1) 2008
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
McNaughton K. G. (e_1_2_9_30_1) 1983
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Noffinger T. L. (e_1_2_9_36_1) 1961
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Nobel P. S. (e_1_2_9_35_1) 1974
References_xml – volume: 61
  start-page: 201
  year: 2008
  end-page: 212
  article-title: CFD based determination of temperature and humidity at leaf surface
  publication-title: Computers and Electronics in Agriculture
– volume: 196
  start-page: 788
  year: 2012
  end-page: 798
  article-title: Trade‐offs between leaf hydraulic capacity and drought vulnerability: Morpho‐anatomical bases, carbon costs and ecological consequences
  publication-title: New Phytologist
– volume: 23
  start-page: 309
  year: 1970
  end-page: 322
  article-title: Convective heat transfer from narrow leaves
  publication-title: Australian Journal of Biological Sciences
– start-page: 210
  year: 1998
  end-page: 229
– volume: 36
  start-page: 73
  year: 2002
  end-page: 82
  article-title: Comparison of the three‐temperature model and conventional models for estimating transpiration
  publication-title: Jarq‐Japan Agricultural Research Quarterly
– start-page: 3413
  year: 1995
  end-page: 3416
– volume: 69
  start-page: 65
  year: 1970
  end-page: 73
  article-title: The effect of leaf hairs of on leaf energy exchange
  publication-title: New Phytologist
– volume: 144
  start-page: 680
  year: 1994
  end-page: 685
  article-title: The effect of leaf‐hairs on blue and red fluorescence emission and on zeaxanthin cycle performance of L
  publication-title: Journal of Plant Physiology
– volume: 188
  start-page: 1113
  year: 2010
  end-page: 1123
  article-title: Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms
  publication-title: New Phytologist
– year: 2014
– year: 1998
– volume: 194
  start-page: 477
  year: 2012
  end-page: 487
  article-title: Do thick leaves avoid thermal damage in critically low wind speeds?
  publication-title: New Phytologist
– volume: 70
  start-page: 475
  year: 1986
  end-page: 480
  article-title: Water use by the desert Cucurbit (L.) Schrad
  publication-title: Oecologia
– volume: 117
  start-page: 1011
  year: 1981
  end-page: 1014
  article-title: Leaf size and leaf temperature in tropical vines
  publication-title: American Naturalist
– year: 2008
– volume: 37
  start-page: 488
  year: 2010
  end-page: 498
  article-title: Viewing leaf structure and evolution from a hydraulic perspective
  publication-title: Functional Plant Biology
– volume: 37
  start-page: 840
  year: 2010
  end-page: 848
  article-title: Primary nerve (vein) density influences spatial heterogeneity of photosynthetic response to drought in two species
  publication-title: Functional Plant Biology
– volume: 97
  start-page: 171
  year: 1999
  end-page: 185
  article-title: Wind speed and leaf boundary layer conductance variation within tree crown – Consequences on leaf‐to‐atmosphere coupling and tree functions
  publication-title: Agricultural and Forest Meteorology
– volume: 76
  start-page: 453
  year: 1976
  end-page: 457
  article-title: Effects of leaf hairs on heat and mass‐transfer – Reassessment
  publication-title: New Phytologist
– volume: 101
  start-page: 430
  year: 2013
  end-page: 440
  article-title: Leaf adaptations of evergreen and deciduous trees of semi‐arid and humid savannas on three continents
  publication-title: Journal of Ecology
– volume: 183
  start-page: 13
  year: 2009
  end-page: 26
  article-title: Leaves in the lowest and highest winds: Temperature, force and shape
  publication-title: New Phytologist
– volume: 62
  start-page: 657
  year: 2014
  end-page: 665
  article-title: Temperature influences stomatal density and maximum potential water loss through stomata of subsp. along a latitude gradient in southern Australia
  publication-title: Australian Journal of Botany
– volume: 49
  start-page: 35
  year: 2016
  end-page: 44
  article-title: Extreme thermal heterogeneity in structurally complex tropical rain forests
  publication-title: Biotropica
– volume: 110
  start-page: 1027
  year: 2012
  end-page: 1033
  article-title: Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span
  publication-title: Annals of Botany
– volume: 40
  start-page: 872
  year: 2017
  end-page: 880
  article-title: Xylem and stomata, coordinated through time and space
  publication-title: Plant Cell & Environent
– volume: 8
  start-page: e54231
  year: 2013
  article-title: Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations
  publication-title: PLoS ONE
– volume: 156
  start-page: 832
  year: 2011
  end-page: 843
  article-title: Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture
  publication-title: Plant Physiology
– volume: 4
  start-page: 3364
  year: 2011
  end-page: 3367
  article-title: Highly reflective superhydrophobic white coating inspired by poplar leaf hairs toward an effective “cool roof”
  publication-title: Energy & Environmental Science
– volume: 144
  start-page: 180
  year: 2007
  end-page: 192
  article-title: Leaf boundary layer conductance in ventilated greenhouses: An experimental approach
  publication-title: Agricultural and Forest Meteorology
– volume: 89
  start-page: 255
  year: 1998
  end-page: 267
  article-title: Leaf boundary layer conductance in a vineyard in Portugal
  publication-title: Agricultural and Forest Meteorology
– volume: 36
  start-page: 1117
  year: 2016
  end-page: 1126
  article-title: A novel pattern of leaf movement: The case of L
  publication-title: Tree Physiology
– year: 2007
– year: 2003
– volume: 38
  start-page: 306
  year: 2006
  end-page: 309
  article-title: Tropical forests of Xishuangbanna, China
  publication-title: Biotropica
– volume: 146
  start-page: 29
  year: 2007
  end-page: 37
  article-title: Tree species diversity affects canopy leaf temperatures in a mature temperate forest
  publication-title: Agricultural and Forest Meteorology
– start-page: 1
  year: 1983
  end-page: 48
  article-title: Predicting effects of vegetation changes on transpiration and evaporation
  publication-title: Water deficits and plant growth
– volume: 11
  start-page: 343
  year: 1936
  end-page: 364
  article-title: Leaf temperatures and the cooling of leaves by radiation
  publication-title: Plant Physiology
– volume: 139
  start-page: 40
  year: 2006
  end-page: 54
  article-title: Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy
  publication-title: Agricultural and Forest Meteorology
– volume: 24
  start-page: 485
  year: 2010
  end-page: 492
  article-title: Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region
  publication-title: Functional Ecology
– year: 2010
– volume: 22
  start-page: R396
  year: 2012
  end-page: R397
  article-title: High temperature exposure increases plant cooling capacity
  publication-title: Current Biology
– year: 2017
  article-title: Stronger cooling effects of transpiration and morphology of the plants from a hot dry habitat than from a hot wet habitat
  publication-title: Dryad Digital Repository
– volume: 24
  start-page: 631
  year: 2001
  end-page: 640
  article-title: Computer‐based analysis of steady‐state and transient heat transfer of small‐sized leaves by free and mixed convection
  publication-title: Plant Cell & Environment
– volume: XV
  start-page: 304
  year: 1961
  end-page: 306
  article-title: Leaf and air temperature under Hawaii conditions
  publication-title: Pacific Science
– volume: 12
  start-page: 586
  year: 2004
  end-page: 596
  article-title: Ecosystem thermal buffer capacity as an indicator of the restoration status of protected areas in the northern Ethiopian highlands
  publication-title: Restoration Ecology
– volume: 29
  start-page: 175
  year: 1989
  end-page: 185
  article-title: Dynamic analysis of stomatal responses by an improved method of leaf heat‐balance
  publication-title: Environmental and Experimental Botany
– volume: 64
  start-page: 32
  year: 2016
  end-page: 44
  article-title: Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature
  publication-title: Australian Journal of Botany
– volume: 51
  start-page: 63
  year: 1990
  end-page: 86
  article-title: Estimation of transpiration by single trees – Comparison of a ventilated chamber, leaf energy budgets and a combination equation
  publication-title: Agricultural and Forest Meteorology
– volume: 46
  start-page: 713
  year: 1959
  end-page: 717
  article-title: Leaf temperatures
  publication-title: American Journal of Botany
– volume: 110
  start-page: 29
  year: 1973
  end-page: 42
  article-title: Stomatal responses to changes in temperature at Increasing water stress
  publication-title: Planta
– year: 1974
– volume: 125
  start-page: 477
  year: 1993
  end-page: 507
  article-title: Tansley Review No. 59. Leaf boundary layers
  publication-title: New Phytologist
– volume: 19
  start-page: 435
  year: 1999
  end-page: 443
  article-title: Boundary layer conductance, leaf temperature and transpiration of branches
  publication-title: Tree Physiology
– volume: 155
  start-page: 78
  year: 1999
  end-page: 85
  article-title: Function of leaf hairs revisited: The hair layer on leaves reduces photoinhibition, but leads to higher leaf temperatures caused by lower transpiration rates
  publication-title: Journal of Plant Physiology
– volume: 60
  start-page: 11
  year: 1991
  end-page: 19
  article-title: Differential mechanical defense ‐ herbivory, evapotranspiration, and leaf‐hairs
  publication-title: Oikos
– volume: 96
  start-page: 180
  year: 2013
  end-page: 201
  article-title: Convective heat and mass exchange predictions at leaf surfaces: Applications, methods and perspectives
  publication-title: Computers and Electronics in Agriculture
– year: 2013
– ident: e_1_2_9_14_1
  doi: 10.1016/S0168-1923(97)00078-6
– ident: e_1_2_9_57_1
  doi: 10.1093/aob/mcs172
– ident: e_1_2_9_56_1
– ident: e_1_2_9_52_1
  doi: 10.2307/3544986
– ident: e_1_2_9_21_1
  doi: 10.1007/978-1-4757-2855-2_4
– ident: e_1_2_9_45_1
  doi: 10.1371/journal.pone.0054231
– ident: e_1_2_9_54_1
  doi: 10.1111/j.1365-2435.2009.01678.x
– ident: e_1_2_9_41_1
  doi: 10.1016/j.compag.2007.11.007
– year: 2017
  ident: e_1_2_9_28_1
  article-title: Stronger cooling effects of transpiration and morphology of the plants from a hot dry habitat than from a hot wet habitat
  publication-title: Dryad Digital Repository
– ident: e_1_2_9_47_1
  doi: 10.1071/BI9700309
– ident: e_1_2_9_18_1
  doi: 10.1071/BT14204
– ident: e_1_2_9_23_1
  doi: 10.1007/978-94-009-0173-5_803
– ident: e_1_2_9_15_1
  doi: 10.1016/j.compag.2013.05.008
– ident: e_1_2_9_8_1
  doi: 10.1007/978-1-4612-1626-1
– volume-title: Biophysical ecology
  year: 2003
  ident: e_1_2_9_17_1
– ident: e_1_2_9_55_1
  doi: 10.1039/c0ee00686f
– ident: e_1_2_9_7_1
  doi: 10.1111/pce.12817
– ident: e_1_2_9_12_1
  doi: 10.1104/pp.11.2.343
– ident: e_1_2_9_46_1
  doi: 10.1104/pp.111.173856
– ident: e_1_2_9_3_1
  doi: 10.1007/BF00379514
– start-page: 304
  year: 1961
  ident: e_1_2_9_36_1
  article-title: Leaf and air temperature under Hawaii conditions
  publication-title: Pacific Science
– volume-title: Introduction to biophysical plant physiology
  year: 1974
  ident: e_1_2_9_35_1
– ident: e_1_2_9_38_1
  doi: 10.6090/jarq.36.73
– ident: e_1_2_9_29_1
  doi: 10.1093/treephys/19.7.435
– ident: e_1_2_9_16_1
  doi: 10.1086/283787
– ident: e_1_2_9_31_1
  doi: 10.1071/BT15198
– start-page: 1
  year: 1983
  ident: e_1_2_9_30_1
  article-title: Predicting effects of vegetation changes on transpiration and evaporation
  publication-title: Water deficits and plant growth
– ident: e_1_2_9_49_1
  doi: 10.1016/j.agrformet.2006.05.011
– ident: e_1_2_9_9_1
  doi: 10.1111/j.1744-7429.2006.00146.x
– ident: e_1_2_9_39_1
  doi: 10.1016/S0176-1617(99)80143-6
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1469-8137.1970.tb04050.x
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1469-8137.2012.04294.x
– ident: e_1_2_9_4_1
  doi: 10.1002/j.1537-2197.1959.tb07076.x
– ident: e_1_2_9_6_1
  doi: 10.1071/FP10010
– ident: e_1_2_9_19_1
  doi: 10.1016/j.agrformet.2007.03.003
– ident: e_1_2_9_44_1
  doi: 10.1007/BF00386920
– ident: e_1_2_9_26_1
  doi: 10.1016/j.agrformet.2007.05.007
– ident: e_1_2_9_58_1
– ident: e_1_2_9_51_1
  doi: 10.1111/j.1469-8137.2009.02854.x
– ident: e_1_2_9_13_1
  doi: 10.1016/S0168-1923(99)00079-9
– ident: e_1_2_9_42_1
  doi: 10.1111/btp.12355
– ident: e_1_2_9_11_1
  doi: 10.1016/j.cub.2012.03.044
– ident: e_1_2_9_48_1
  doi: 10.1071/FP10062
– volume-title: Principles of environmental physics
  year: 2008
  ident: e_1_2_9_32_1
– ident: e_1_2_9_10_1
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1469-8137.2010.03439.x
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1469-8137.2012.04058.x
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1469-8137.1993.tb03898.x
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1469-8137.1976.tb01481.x
– ident: e_1_2_9_50_1
  doi: 10.1111/1365-2745.12056
– ident: e_1_2_9_25_1
  doi: 10.1016/0168-1923(90)90042-5
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1061-2971.2004.00324.x
– volume-title: Principles of environmental physics: Plants, animals, and the atmosphere
  year: 2013
  ident: e_1_2_9_33_1
– ident: e_1_2_9_22_1
  doi: 10.1016/S0176-1617(11)80660-7
– ident: e_1_2_9_20_1
  doi: 10.1016/0098-8472(89)90050-6
– ident: e_1_2_9_40_1
  doi: 10.1046/j.1365-3040.2001.00712.x
– ident: e_1_2_9_27_1
  doi: 10.1093/treephys/tpw059
SSID ssj0009522
Score 2.5720475
Snippet Leaf temperature exerts an important impact on the microenvironment and physiological processes of leaves. Plants from different habitats have different...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2202
SubjectTerms canopy
coevolution
Cooling
Cooling effects
Diurnal
Dominant species
Epidermis
Gas exchange
greenhouses
Habitats
Heat exchange
Heat stress
Heat tolerance
Heat transfer
Herbivores
hot dry
hot wet
insurance
leaf temperature
Leaves
Overheating
Photosynthesis
PLANT PHYSIOLOGICAL ECOLOGY
Plants
rain
Rainfall
Seedlings
Stomata
synergism
temperature
Temperature effects
temperature regulation
thermal effect
Thermal properties
Thermodynamic properties
Transpiration
transpiration capacity
Title Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat
URI https://www.jstor.org/stable/48582704
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12923
https://www.proquest.com/docview/1970475073
https://www.proquest.com/docview/2010214522
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhUMilr3TppmlRIYdevNiSVrKPJewSCu2hTSA3o5fT0MVedr2E5JK_nhlJ3m4CpZTehEcDsjyj-SSPviHkxArrnFM-y3WhM1FqnZVcOvB4VWglnZ96vJz89Zs8uxBfLqdDNiHehYn8ENsDN_SMsF6jg2uz3nHymJ8F0X4CIYsh3yc-QVj0ne3Q7sb_CExWGURansh9MJfnif6juBRTEx-Bzl3oGmLP_AUxw6hjysmvyaY3E3v3hNDxv17rJXmekCn9HE3pFdnz7WvyLNaqvIXWzKbWaPb7chwopNVhfUjuf-C5-pVfUdthLaArmrJFaNfQPrCoX0eDo7p1dOF1Q5fJTlB-HXsuF5ibQ_HiC9X0Z9dTt7qlSCgOwJjiUf-u7Mb3g-wNuZjPzk_PslTgIbNCKZ5J6YvCm4Zr5qvKCM4bnxvPpEVk4UzplDImF8oZzSGqKls5DjZXGMsa2EbzEdlvu9a_JbSqGqkr2Pxo34i8YaW3WCtLCgP7V6PdmEyGz1vbxH6OL7aoh10QTnyNE1-HiR-TT1uFZST--HPXUbCXbT9RTkumcjEmx4MB1WlpWNdFBRLAaQr0Pm7F4NT4p0a3vtusaxYrroPxwriDtfxtDPV8dhoaR_-q8I4cMIQqIUXnmOz3q41_D0CrNx-CLz0A8IocsQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0IIiBBfeKxYKGIkDl6wS22snR1TtaoG2B2il3iK_0lasktVuVqhc-HVm7GRJKyGEuFkaT2Q7M56H50HIOyusc075JNWZTkSudZJz6YDjVaaVdH7qMTn56FguTsWns-nZIBcm1ofYOdyQM8J9jQyODukBl8cALRD3E5BZjN8md7CvdzCrvrBB4d34ksBkkYCs5V15H4zmufGBa5IpBideUzuHymuQPvOHxPbrjkEn3ybb1kzsjxslHf9vY4_Ig045pR8iNT0mt3z9hNyN7SqvYDSz3Wg0-50fBwjdBbF5Sn5-Rdf6uV9T22A7oHPaBYzQpqJtKKR-GWmO6trRpdcVXXWkgvDLOHO1xPAcirkvVNOLpqVufUWxpjjoxhS9_UPYd9_2sGfkdD47OVgkXY-HxAqleCKlzzJvKq6ZLwojOK98ajyTFpULZ3KnlDGpUM5oDoJV2cJxILvMWFaBJc1HZK9uav-c0KKopC7A_tG-EmnFcm-xXZYUBkxYo92YTPr_W9quADpubFn2hhAefIkHX4aDH5P3O4RVrP3x56mjQDC7eSKf5kylYkz2ewoqu9thU2YFQEBVU4D3dgcGvsbHGl37ZrspWWy6DtQL6w7k8rc1lPPZQRi8-FeEN-Te4uTosDz8ePz5JbnPUHMJETv7ZK9db_0r0Lta8zow1i-6niDM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66onjxPTi6agQPXnroTjJJ91F2Z1hfi6gL3po818Whe5jpQdaLf92qpHucXRARb4FKNUn6q1QlqQchL6ywzjnls1wXOhOl1lnJpQOJV4VW0vmpx-Dk98fy6ES8-TIdvAkxFiblh9heuKFkxP0aBXzpwo6QJ_8s0PYTUFmMXyXXhMxLBPbhR7aTdzc9JDBZZaBqeZ_dB515Ln3ggmJKvokXrM5d2zUqn_ltYoZhJ5-Tb5NNZyb2x6WMjv81rzvkVm-a0lcJS3fJFd_cI9dTscpzaM1s3xrNfkfHAUO_Pazvk5-f8GL91K-obbEY0Cnt3UVoG2gX06ifJcRR3Ti68DrQZQ8UpJ-lnssFOudQjHyhmn5tO-pW5xQzioNlTPGuf5f23XcD7QE5mc8-HxxlfYWHzAqleCalLwpvAtfMV5URnAefG8-kRdPCmdIpZUwulDOag1pVtnIcQFcYywKco_mI7DVt4x8SWlVB6gpOP9oHkQdWeovFsqQwcIA12o3JZPi9te3Tn-PEFvVwDMKFr3Hh67jwY_Jyy7BMmT_-3HUU8bLtJ8ppyVQuxmR_AFDd7w3ruqiAAoaaAr7nWzJINT7V6Ma3m3XNUsl1AC-MO6Llb2Oo57OD2Hj0rwzPyI0Ph_P63evjt4_JTYZmS3TX2Sd73Wrjn4DR1ZmnUax-AU49H4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stronger+cooling+effects+of+transpiration+and+leaf+physical+traits+of+plants+from+a+hot+dry+habitat+than+from+a+hot+wet+habitat&rft.jtitle=Functional+ecology&rft.au=Lin%2C+Hua&rft.au=Chen%2C+Yajun&rft.au=Zhang%2C+Houlei&rft.au=Fu%2C+Peili&rft.date=2017-12-01&rft.issn=0269-8463&rft.volume=31&rft.issue=12+p.2202-2211&rft.spage=2202&rft.epage=2211&rft_id=info:doi/10.1111%2F1365-2435.12923&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon