Advances in Modeling Interactions Between Sea Ice and Ocean Surface Waves
Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to meltin...
Saved in:
Published in | Journal of advances in modeling earth systems Vol. 11; no. 12; pp. 4167 - 4181 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.12.2019
American Geophysical Union (AGU) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity.
Plain Language Summary
In the outer margins of polar sea ice cover, complex interactions occur between sea ice and ocean surface waves. Waves travel through sea ice with properties of in‐ice waves dependent on the size of sea ice floes, which are discrete pieces of sea ice. Sea ice may be fractured by waves, and waves determine the type of sea ice formation that occurs. This study presents advances in numerical modeling of these processes, including communication between a sea ice model and a wave model. We investigate how different physical processes determine the perimeter of sea ice floes exposed to the ocean. This in turn determines the amount of melt that occurs at the edge of sea ice floes.
Key Points
A new global prognostic coupled ocean surface wave‐sea ice model has important climate feedbacks
Sea ice forms as either pancake or nilas depending on stress exerted by ocean surface waves
Wave‐related processes drive variability in floe perimeter and therefore determine lateral melt |
---|---|
AbstractList | Abstract Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. Plain Language Summary In the outer margins of polar sea ice cover, complex interactions occur between sea ice and ocean surface waves. Waves travel through sea ice with properties of in‐ice waves dependent on the size of sea ice floes, which are discrete pieces of sea ice. Sea ice may be fractured by waves, and waves determine the type of sea ice formation that occurs. This study presents advances in numerical modeling of these processes, including communication between a sea ice model and a wave model. We investigate how different physical processes determine the perimeter of sea ice floes exposed to the ocean. This in turn determines the amount of melt that occurs at the edge of sea ice floes. Key Points A new global prognostic coupled ocean surface wave‐sea ice model has important climate feedbacks Sea ice forms as either pancake or nilas depending on stress exerted by ocean surface waves Wave‐related processes drive variability in floe perimeter and therefore determine lateral melt Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. In the outer margins of polar sea ice cover, complex interactions occur between sea ice and ocean surface waves. Waves travel through sea ice with properties of in‐ice waves dependent on the size of sea ice floes, which are discrete pieces of sea ice. Sea ice may be fractured by waves, and waves determine the type of sea ice formation that occurs. This study presents advances in numerical modeling of these processes, including communication between a sea ice model and a wave model. We investigate how different physical processes determine the perimeter of sea ice floes exposed to the ocean. This in turn determines the amount of melt that occurs at the edge of sea ice floes. A new global prognostic coupled ocean surface wave‐sea ice model has important climate feedbacks Sea ice forms as either pancake or nilas depending on stress exerted by ocean surface waves Wave‐related processes drive variability in floe perimeter and therefore determine lateral melt |
Author | Roach, Lettie A. Horvat, Christopher Dean, Samuel M. Bitz, Cecilia M. |
Author_xml | – sequence: 1 givenname: Lettie A. orcidid: 0000-0003-4189-3928 surname: Roach fullname: Roach, Lettie A. email: lroach@uw.edu organization: Victoria University of Wellington – sequence: 2 givenname: Cecilia M. orcidid: 0000-0002-9477-7499 surname: Bitz fullname: Bitz, Cecilia M. organization: University of Washington – sequence: 3 givenname: Christopher orcidid: 0000-0001-6512-0335 surname: Horvat fullname: Horvat, Christopher organization: Brown University – sequence: 4 givenname: Samuel M. surname: Dean fullname: Dean, Samuel M. organization: National Institute of Water and Atmospheric Research |
BookMark | eNp9UE1PGzEQtapUKqG99QesxLUp_o73mEahXUTEAVCP1sQeI0dbG-wNEf--C6kqhASnmXl6H6M3JZOUExLyldHvjPL2lFPWrq8oZUboD-SItZLPuNR68mL_RKa1binVWnN1RLqFf4DksDYxNevssY_ptunSgAXcEHOqzQ8c9oipuUJoOocNJN9cOoQR2ZUAI_IbHrB-Jh8D9BW__JvH5OZsdb38Nbu4_NktFxczJ-dzMdPat_PgtVO0lXJDpeMKzCagVOPNZZDeo6Jm4z0PijKGRgnFmZYCTVBGHJPu4OszbO1diX-gPNoM0T4DudxaKEN0PVruEZG2XoRNkIq3RmsDwWEQoI3U89Hr5OB1V_L9Dutgt3lX0vi-5UJKobSgemR9O7BcybUWDP9TGbVPxduXxY90_oru4gBPXQ4FYv-WSBxE-9jj47sB9nyxXvERFuIvchqTsQ |
CitedBy_id | crossref_primary_10_5194_tc_16_419_2022 crossref_primary_10_1134_S0015462823602012 crossref_primary_10_3389_fmars_2024_1413116 crossref_primary_10_1098_rsta_2021_0258 crossref_primary_10_3390_rs16142545 crossref_primary_10_31857_S0032823523030116 crossref_primary_10_1016_j_polar_2021_100716 crossref_primary_10_5194_gmd_15_803_2022 crossref_primary_10_1016_j_ocemod_2023_102305 crossref_primary_10_5194_tc_14_1971_2020 crossref_primary_10_1016_j_ocemod_2021_101779 crossref_primary_10_1016_j_ocemod_2021_101878 crossref_primary_10_5194_tc_13_2869_2019 crossref_primary_10_1007_s40641_020_00162_y crossref_primary_10_1098_rsta_2021_0263 crossref_primary_10_1029_2024JC021629 crossref_primary_10_1098_rsta_2021_0262 crossref_primary_10_1029_2020GL087629 crossref_primary_10_5194_tc_16_2565_2022 crossref_primary_10_1175_JPO_D_21_0238_1 crossref_primary_10_5194_tc_18_1215_2024 crossref_primary_10_5194_gmd_15_1155_2022 crossref_primary_10_5194_tc_17_407_2023 crossref_primary_10_1016_j_coldregions_2025_104449 crossref_primary_10_1017_aog_2020_36 crossref_primary_10_1088_1748_9326_adc01e crossref_primary_10_5194_cp_18_1729_2022 crossref_primary_10_1029_2023GL105703 crossref_primary_10_5194_essd_16_2917_2024 crossref_primary_10_5194_tc_17_3575_2023 crossref_primary_10_1017_aog_2020_31 crossref_primary_10_1007_s10236_020_01415_y crossref_primary_10_1029_2023JC020452 crossref_primary_10_3389_fmars_2021_713784 crossref_primary_10_5194_tc_14_2029_2020 crossref_primary_10_1029_2020GL092356 crossref_primary_10_5194_tc_16_1563_2022 crossref_primary_10_1175_JPO_D_21_0240_1 crossref_primary_10_5928_kaiyou_30_5_159 crossref_primary_10_1137_23M155904X crossref_primary_10_1098_rsta_2021_0257 crossref_primary_10_1098_rsta_2021_0254 crossref_primary_10_5194_tc_16_2325_2022 crossref_primary_10_5194_tc_16_4447_2022 crossref_primary_10_1098_rsta_2021_0252 crossref_primary_10_3390_geosciences12030110 crossref_primary_10_5194_tc_15_431_2021 crossref_primary_10_1098_rsta_2021_0251 |
Cites_doi | 10.3189/172756401781818239 10.1002/2014GL060809 10.1175/JCLI-D-11-00290.1 10.1002/2016GL069742 10.1016/j.ocemod.2013.05.010 10.1017/jfm.2016.21 10.1029/JC092iC07p07032 10.1017/S0022112089001096 10.5194/tc-13-2869-2019 10.1525/elementa.304 10.1525/elementa.305 10.5194/tc-11-1035-2017 10.1029/2007JC004434 10.1002/2013JC009557 10.1137/070710111 10.1029/2018GL079363 10.1029/92JC01755 10.1029/JC092iC07p07085 10.1002/2013RG000431 10.1175/JPO-D-13-0215.1 10.1002/2015JC010770 10.1002/2015JC011349 10.1029/JC089iC04p06477 10.1029/2003JC002123 10.1029/2000JC000449 10.5065/D6HH6H41 10.1073/pnas.1802011115 10.1029/93JC02695 10.1002/2016JC012573 10.1002/2017JC013693 10.5194/gmd-8-2221-2015 10.1098/rsta.2005.1601 10.1016/j.ocemod.2013.05.011 10.1002/2014JC010136 10.1016/j.dsr2.2007.12.016 10.1002/2015GL065224 10.5194/tc-2019-44 10.12952/journal.elementa.000126 10.1029/2005GL024556 10.1038/nature13262 10.1016/j.coldregions.2007.04.007 10.5194/tc-12-365-2018 10.1007/978-1-4899-5352-0_2 10.1034/j.1600-0870.2002.00243.x 10.1029/2017JC013692 10.1175/JTECH-D-16-0171.1 10.1103/PhysRevE.81.066123 10.5194/tc-9-2119-2015 10.1007/978-1-4899-5352-0_3 |
ContentType | Journal Article |
Copyright | 2019. The Authors. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. The Authors. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1029/2019MS001836 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) (Open Access) |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1942-2466 |
EndPage | 4181 |
ExternalDocumentID | oai_doaj_org_article_2deee09d3fbf45298668afcef3a68467 10_1029_2019MS001836 JAME21023 |
Genre | article |
GrantInformation_xml | – fundername: DOC | National Oceanic and Atmospheric Administration (NOAA) funderid: NA16NWS4620043 – fundername: Marsden Fund (Royal Society of New Zealand Marsden Fund) funderid: VUW-1408 – fundername: Ministry for Business Innovation and Employment (MBIE) funderid: C01X1445 – fundername: National Science Foundation (NSF) funderid: PLR-1643431 |
GroupedDBID | 0R~ 1OC 24P 29J 31~ 5VS 8-1 8FE 8FH AAHHS AAZKR ABDBF ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZFZN BCNDV BENPR BHPHI BKSAR CCPQU D1K EAD EAP EAS EBS EJD EPL ESX GODZA GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC K6- KQ8 LK5 M7R M~E O9- OK1 P2P PCBAR PIMPY PROAC RIG RNS TUS WIN ~OA AAYXX CITATION PHGZM PHGZT 7TG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS HZ~ PUEGO |
ID | FETCH-LOGICAL-c4773-66d97fd6c50944b04c25a8bfe4594424f4dde508bdd2f5011e853521643e8f583 |
IEDL.DBID | DOA |
ISSN | 1942-2466 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Fri Jul 25 08:29:26 EDT 2025 Tue Jul 01 00:58:21 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Wed Jan 22 16:35:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4773-66d97fd6c50944b04c25a8bfe4594424f4dde508bdd2f5011e853521643e8f583 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6512-0335 0000-0003-4189-3928 0000-0002-9477-7499 |
OpenAccessLink | https://doaj.org/article/2deee09d3fbf45298668afcef3a68467 |
PQID | 2344356306 |
PQPubID | 616667 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2deee09d3fbf45298668afcef3a68467 proquest_journals_2344356306 crossref_primary_10_1029_2019MS001836 crossref_citationtrail_10_1029_2019MS001836 wiley_primary_10_1029_2019MS001836_JAME21023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of advances in modeling earth systems |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
References | 2013a; 71 2014; 119 1987; 92 2006; 33 2019; 13 2018; 123 2002; 54 1984; 89 2015; 120 2013b; 71 2016; 121 2008; 55 2010; 81 2018; 45 2014; 41 2004; 109 1992; 97 2015; 9 2015; 8 2014; 44 2016; 4 2018; 6 2009; 51 2005; 363 2014; 509 1989; 202 2015; 42 2017; 11 2018; 115 1999; 36 2017; 34 2016; 43 2019 1986 1994; 99 2002; 107 2016 2015 2013 2008; 113 2012; 25 2017; 122 2014; 52 2018; 12 2001; 33 2016; 790 2007; 49 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 Boutin G. (e_1_2_8_8_1) 2019 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Michel W. H. (e_1_2_8_28_1) 1999; 36 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 43 start-page: 8083 year: 2016 end-page: 8090 article-title: Interaction of sea ice floe size, ocean eddies, and sea ice melting publication-title: Geophysical Research Letters – start-page: 1 year: 2019 end-page: 35 article-title: Impact of floe size distribution on seasonal fragmentation and melt of Arctic sea ice publication-title: The Cryosphere Discussions – volume: 36 start-page: 211 issue: 4 year: 1999 end-page: 227 article-title: Sea spectra revisited publication-title: Marine Technology – start-page: 165 year: 1986 end-page: 281 – volume: 13 start-page: 2869 year: 2019 end-page: 2885 article-title: Estimating the sea ice floe size distribution using satellite altimetry: Theory, climatology, and model comparison publication-title: The Cryosphere – volume: 45 start-page: 9721 issue: 18 year: 2018 end-page: 9730 article-title: Understanding melting due to ocean eddy heat fluxes at the edge of sea‐ice floes publication-title: Geophysical Research Letters – volume: 33 start-page: 361 issue: 2 year: 2001 end-page: 367 article-title: A conceptual model for pancake‐ice formation in a wave field publication-title: Annals of Glaciology – volume: 202 start-page: 43 year: 1989 end-page: 81 article-title: Spectral evolution of wind‐generated surface gravity waves in a dispersed ice field publication-title: Journal of Fluid Mechanics – volume: 54 start-page: 107 issue: 1 year: 2002 end-page: 123 article-title: A new parameterization of surface drag in the marginal sea ice zone publication-title: Tellus A – volume: 6 start-page: 48 issue: 1 year: 2018 article-title: Seasonal evolution of the sea‐ice floe size distribution in the Beaufort and Chukchi seas publication-title: Elementa: Science of the Anthropocene – volume: 120 start-page: 3484 year: 2015 end-page: 3498 article-title: Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments publication-title: Journal of Geophysical Research: Oceans – volume: 55 start-page: 933 issue: 8‐9 year: 2008 end-page: 942 article-title: Observed changes in sea‐ice floe size distribution during early summer in the western Weddell Sea publication-title: Deep Sea Research Part II: Topical Studies in Oceanography – volume: 121 start-page: 1502 year: 2016 end-page: 1525 article-title: Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer‐fall transition 2014 publication-title: Journal of Geophysical Research: Oceans – volume: 119 start-page: 8767 year: 2014 end-page: 8777 article-title: The seasonal evolution of sea ice floe size distribution publication-title: Journal of Geophysical Research: Oceans – start-page: 1 year: 2019 end-page: 39 article-title: Toward a coupled model to investigate wave‐sea ice interactions in the Arctic marginal ice zone publication-title: The Cryosphere Discussions – volume: 25 start-page: 3053 issue: 9 year: 2012 end-page: 3070 article-title: Climate sensitivity of the community climate system model, version 4 publication-title: Journal of Climate – volume: 509 start-page: 604 issue: 7502 year: 2014 end-page: 607 article-title: Storm‐induced sea‐ice breakup and the implications for ice extent publication-title: Nature – volume: 44 start-page: 1329 issue: 5 year: 2014 end-page: 1353 article-title: Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice publication-title: Journal of Physical Oceanography – year: 2019 – year: 2015 – volume: 107 start-page: 8048 issue: C10 year: 2002 article-title: Aerial observations of the evolution of ice surface conditions during summer publication-title: Journal of Geophysical Research – volume: 89 start-page: 6477 issue: C4 year: 1984 article-title: Measuring the sea ice floe size distribution publication-title: Journal of Geophysical Research – volume: 71 start-page: 92 year: 2013b end-page: 101 article-title: Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface publication-title: Ocean Modelling – volume: 92 start-page: 7032 issue: C7 year: 1987 article-title: The role of shortwave radiation in the summer decay of a sea ice cover publication-title: Journal of Geophysical Research – volume: 8 start-page: 2221 issue: 7 year: 2015 end-page: 2230 article-title: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model publication-title: Geoscientific Model Development – volume: 81 start-page: 066,123 issue: 6 year: 2010 article-title: Sea‐ice floe‐size distribution in the context of spontaneous scaling emergence in stochastic systems publication-title: Physical Review E – start-page: 9 year: 1986 end-page: 164 – volume: 4 start-page: 126 issue: 1 year: 2016 article-title: Modeling the seasonal evolution of the Arctic sea ice floe size distribution publication-title: Elementa: Science of the Anthropocene – volume: 9 start-page: 2119 issue: 6 year: 2015 end-page: 2134 article-title: A prognostic model of the sea‐ice floe size and thickness distribution publication-title: The Cryosphere – volume: 41 start-page: 5046 year: 2014 end-page: 5051 article-title: In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone publication-title: Geophysical Research Letters – volume: 123 start-page: 2851 issue: 4 year: 2018 end-page: 2866 article-title: Quantifying growth of pancake sea ice floes using images from drifting buoys publication-title: Journal of Geophysical Research: Oceans – volume: 115 start-page: 5861 issue: 23 year: 2018 end-page: 5865 article-title: Strong and highly variable push of ocean waves on Southern Ocean sea ice publication-title: Proceedings of the National Academy of Sciences – volume: 49 start-page: 110 issue: 2 year: 2007 end-page: 133 article-title: Of ocean waves and sea‐ice revisited publication-title: Cold Regions Science and Technology – volume: 42 start-page: 8057 year: 2015 end-page: 8063 article-title: Observations of the summer breakup of an Arctic sea ice cover publication-title: Geophysical Research Letters – volume: 119 start-page: 2327 year: 2014 end-page: 2343 article-title: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes publication-title: Journal of Geophysical Research: Oceans – volume: 34 start-page: 1565 issue: 7 year: 2017 end-page: 1584 article-title: On the definition of marginal ice zone width publication-title: Journal of Atmospheric and Oceanic Technology – year: 2016 – volume: 97 start-page: 17,729 issue: C11 year: 1992 end-page: 17,738 article-title: Sea ice melting and floe geometry in a simple ice‐ocean model publication-title: Journal of Geophysical Research: Oceans – volume: 6 start-page: 49 issue: 1 year: 2018 article-title: On reconciling disparate studies of the sea‐ice floe size distribution publication-title: Elementa: Science of the Anthropocene – volume: 363 start-page: 1677 issue: 1832 year: 2005 end-page: 1700 article-title: Granular flow in the marginal ice zone publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 122 start-page: 7630 year: 2017 end-page: 7650 article-title: The evolution of scaling laws in the sea ice floe size distribution publication-title: Journal of Geophysical Research: Oceans – volume: 52 start-page: 185 year: 2014 end-page: 217 article-title: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity publication-title: Reviews of Geophysics – volume: 99 start-page: 891 issue: C1 year: 1994 article-title: The response of ice floes to ocean waves publication-title: Journal of Geophysical Research – volume: 51 start-page: 661 issue: 4 year: 2009 end-page: 703 article-title: Power‐law distributions in empirical data publication-title: SIAM Review – volume: 790 start-page: 492 year: 2016 end-page: 522 article-title: Attenuation and directional spreading of ocean wave spectra in the marginal ice zone publication-title: Journal of Fluid Mechanics – volume: 71 start-page: 81 year: 2013a end-page: 91 article-title: Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations publication-title: Ocean Modelling – volume: 11 start-page: 1035 issue: 3 year: 2017 end-page: 1040 article-title: Brief communication: Impacts of ocean‐wave‐induced breakup of Antarctic sea ice via thermodynamics in a stand‐alone version of the CICE sea‐ice model publication-title: The Cryosphere – volume: 113 issue: C9 year: 2008 article-title: An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone publication-title: Journal of Geophysical Research – volume: 33 year: 2006 article-title: Characteristics of sea ice floe size distribution in the seasonal ice zone publication-title: Geophysical Research Letters – volume: 12 start-page: 365 issue: 1 year: 2018 end-page: 383 article-title: Consistent biases in Antarctic sea ice concentration simulated by climate models publication-title: The Cryosphere – volume: 92 start-page: 7085 issue: C7 year: 1987 article-title: The role of floe collisions in sea ice rheology publication-title: Journal of Geophysical Research – volume: 109 issue: C12 year: 2004 article-title: Limiting diameter of pancake ice publication-title: Journal of Geophysical Research – volume: 123 start-page: 4322 issue: 6 year: 2018 end-page: 4337 article-title: An emergent sea ice floe size distribution in a global coupled ocean–sea ice model publication-title: Journal of Geophysical Research: Oceans – year: 2013 – ident: e_1_2_8_38_1 doi: 10.3189/172756401781818239 – ident: e_1_2_8_25_1 doi: 10.1002/2014GL060809 – ident: e_1_2_8_7_1 doi: 10.1175/JCLI-D-11-00290.1 – ident: e_1_2_8_16_1 doi: 10.1002/2016GL069742 – volume: 36 start-page: 211 issue: 4 year: 1999 ident: e_1_2_8_28_1 article-title: Sea spectra revisited publication-title: Marine Technology – start-page: 1 year: 2019 ident: e_1_2_8_8_1 article-title: Toward a coupled model to investigate wave‐sea ice interactions in the Arctic marginal ice zone publication-title: The Cryosphere Discussions – ident: e_1_2_8_52_1 doi: 10.1016/j.ocemod.2013.05.010 – ident: e_1_2_8_29_1 doi: 10.1017/jfm.2016.21 – ident: e_1_2_8_22_1 doi: 10.1029/JC092iC07p07032 – ident: e_1_2_8_21_1 doi: 10.1017/S0022112089001096 – ident: e_1_2_8_12_1 doi: 10.5194/tc-13-2869-2019 – ident: e_1_2_8_44_1 doi: 10.1525/elementa.304 – ident: e_1_2_8_43_1 doi: 10.1525/elementa.305 – ident: e_1_2_8_5_1 doi: 10.5194/tc-11-1035-2017 – ident: e_1_2_8_19_1 doi: 10.1029/2007JC004434 – ident: e_1_2_8_3_1 doi: 10.1002/2013JC009557 – ident: e_1_2_8_9_1 doi: 10.1137/070710111 – ident: e_1_2_8_15_1 doi: 10.1029/2018GL079363 – ident: e_1_2_8_41_1 doi: 10.1029/92JC01755 – ident: e_1_2_8_39_1 doi: 10.1029/JC092iC07p07085 – ident: e_1_2_8_23_1 doi: 10.1002/2013RG000431 – ident: e_1_2_8_48_1 doi: 10.1175/JPO-D-13-0215.1 – ident: e_1_2_8_54_1 doi: 10.1002/2015JC010770 – ident: e_1_2_8_49_1 doi: 10.1002/2015JC011349 – ident: e_1_2_8_50_1 – ident: e_1_2_8_26_1 – ident: e_1_2_8_36_1 doi: 10.1029/JC089iC04p06477 – ident: e_1_2_8_37_1 doi: 10.1029/2003JC002123 – ident: e_1_2_8_30_1 doi: 10.1029/2000JC000449 – ident: e_1_2_8_18_1 doi: 10.5065/D6HH6H41 – ident: e_1_2_8_45_1 doi: 10.1073/pnas.1802011115 – ident: e_1_2_8_27_1 doi: 10.1029/93JC02695 – ident: e_1_2_8_14_1 doi: 10.1002/2016JC012573 – ident: e_1_2_8_35_1 doi: 10.1002/2017JC013693 – ident: e_1_2_8_17_1 – ident: e_1_2_8_32_1 doi: 10.5194/gmd-8-2221-2015 – ident: e_1_2_8_10_1 doi: 10.1098/rsta.2005.1601 – ident: e_1_2_8_53_1 doi: 10.1016/j.ocemod.2013.05.011 – ident: e_1_2_8_31_1 doi: 10.1002/2014JC010136 – ident: e_1_2_8_42_1 doi: 10.1016/j.dsr2.2007.12.016 – ident: e_1_2_8_2_1 doi: 10.1002/2015GL065224 – ident: e_1_2_8_4_1 doi: 10.5194/tc-2019-44 – ident: e_1_2_8_55_1 doi: 10.12952/journal.elementa.000126 – ident: e_1_2_8_47_1 doi: 10.1029/2005GL024556 – ident: e_1_2_8_20_1 doi: 10.1038/nature13262 – ident: e_1_2_8_40_1 doi: 10.1016/j.coldregions.2007.04.007 – ident: e_1_2_8_33_1 doi: 10.5194/tc-12-365-2018 – ident: e_1_2_8_51_1 doi: 10.1007/978-1-4899-5352-0_2 – ident: e_1_2_8_6_1 doi: 10.1034/j.1600-0870.2002.00243.x – ident: e_1_2_8_34_1 doi: 10.1029/2017JC013692 – ident: e_1_2_8_46_1 doi: 10.1175/JTECH-D-16-0171.1 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevE.81.066123 – ident: e_1_2_8_13_1 doi: 10.5194/tc-9-2119-2015 – ident: e_1_2_8_24_1 doi: 10.1007/978-1-4899-5352-0_3 |
SSID | ssj0066625 |
Score | 2.405486 |
Snippet | Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed... Abstract Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4167 |
SubjectTerms | Arctic observations Climate system Experiments Freezing Ice Ice formation Ocean waves Oceans Parameterization Polar environments Sea ice Sea ice models Size distribution Spatial variability Spatial variations Welding |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELba5cKlanmoaWnlQ-kFonr9inNCLFoElZZWPAS3yLHHFRLK0g309zN2vEAPcIzlRJHtmfnm4W8I-VZJ5SvHTGkr70rpAooUE1C2rALGPGjD4m3k2Yk-upA_r9RVDrj1uaxyqROTovZzF2PkP7iQaNk1Ity9279l7BoVs6u5hcZbsoIq2JgRWZlMT36fLnUxYnOucrk74zV6-uN6dhYb0SVK5idDlPj6_wOZz6FqsjWH78m7DBLp_rCrH8gb6NZIMUN8O1-kMDj9Tg9urhFspqd1crw_pPJ7et3R2N4sXjKnKdo3XFzo6WQoyKJnYOmxA2o7T385sDhyvwgWRy7tP-g3yMXh9PzgqMxNEkonq0qUWvu6Cl67yIQnWyYdV9a0AaTCZy6DRAWGKKz1ngeF0gwmMrqglyTABGXEJhl18w4-EtpWrOZ83HLFrQwmGHBCGW3GwaLbYUVBdpYr1rjMIB4bWdw0KZPN6-b5-hZk-3H27cCc8cK8SVz8xzmR7zoNzBd_miw-DfcAwGovQhtiqthobWxwEITVEUEVZGu5dU0Wwr55OjIF2U3b-eqPNGjmptEDFp9e_9pnshrfG4patsjobnEPXxCa3LVf8_l7AEJg3nc priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgXLigtoBIKZUPLReI8NqO4xzbqqttpQWkUrG3yB9jVKnKok3b38-Mk11tDyBxjDOWIjvjeTOeecPYca2rWAdhS1fHUOqQUKWEgtKLGoSIYKygauT5VzO70VeLajEG3KgWZuCH2ATcSDPyeU0K7nw_kg0QRyZarmZ-TU3llHnOXlB1LaX0Sf19fRIjMs9NV9FPl6XUxoyJ7zj_y_bsJyYpM_c_gZvboDVbnekuezXCRX467O8eewbdPivmiHSXqxwQ5x_5-d0tws789Jpdng6X-j2_7Tg1OqNyc57jfkMJQ8_PhtQsfg2OXwbgrov8WwCHIw-r5HDkp3uE_g27mV78OJ-VY7uEMui6VqUxsalTNIE48bQXOsjKWZ9AV_gsddJ4lCEe8zHKVKFegyVuF_SXFNhUWfWW7XTLDt4x7mvRSDnxspJOJ5ssBFVZYyfJoQPiVME-rVesDSOXOLW0uGvznbZs2u31LdjJRvr3wKHxF7kzWvyNDDFf54Hl6lc7KlIrIwCIJqrkE10aW2OsSwGScoawVMEO11vXjurYt1JphIUG3aOCfc7b-c8PadHgXZAvrA7-T_w9e0kvhnSXQ7Zzv3qADwha7v1R_jP_AOpU34A priority: 102 providerName: Wiley-Blackwell |
Title | Advances in Modeling Interactions Between Sea Ice and Ocean Surface Waves |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019MS001836 https://www.proquest.com/docview/2344356306 https://doaj.org/article/2deee09d3fbf45298668afcef3a68467 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxQxDLWgXLggKCCmLascgAuMyOZrMsdutVWLtKWiVPQ2yiSOVKmaVrstvx8nmS3LAXrhmCgaWfbEfk6cZ4B3jdKh8dzWrgm-Vj7SluIS6543yHlAY3l6jbw4MUfn6suFvtho9ZVqwgo9cFHcZxEQkbdBxj6mS0JrjHXRY5TOpNiZvC_FvHUyVXwwYXKhxzJ3LlrK8Kft4iw1oMtUzL8DUObp_wNcbkLUHGMOn8OzERyy_SLUC3iEwzZUC8K118t8_M0-sIOrSwKZefQSjvfLFf6KXQ4stTVLj8tZPuUrDxZWbFYKsdgZOnbskbkhsK8eHc3cLaOjmR_uJ65ewfnh_PvBUT02R6i9ahpZGxPaJgbjEwOe6rnyQjvbR1SaxkJFRY6L0FcfgoiadjHaxORC2ZFEG7WVr2FruB7wDbC-4a0Q015o4VS00aKX2ho7jY7SDScr-LjWWOdH5vDUwOKqyzfYou029VvB-_vVN4Ux4y_rZkn592sSz3WeIOt3o_W7h6xfwd7adN24-VadkIpAoKFkqIJP2Zz_FKSj8DZPma_c-R8i7cLT9PVS8rIHW7fLO3xLwOW2n8BjoU4n8GQ2Pzn9Nsl_7C9I5ekY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxUxEJ7g46AXoqhxFbUH8aIbStvtdg_G8OCR94T3NAKR29rtD0JC9uFb0PhP-Tc67e4CHuTGcZum2UxnOt-0M_MBvMlFZnNDVapza1JhPJoU5S6taO4otU4qGqqRpzM5PhKfjrPjJfjT18KEtMr-TIwHtZ2bcEe-wbhAzy4R4X48_5EG1qjwutpTaLRqsed-_8KQrfkw2cH9XWdsd3S4PU47VoHUiDznqZS2yL2VJrSOExUVhmVaVd6JDL-Z8AItHmFLZS3zGaq_U6EFCoYV3CmfKY7r3oNlwSVlA1gejmZfvvZnP8YCLOvS6ykrNtC7FtODQHwXW0BfO77ID_APqL0JjaNv230IKx0oJVutFj2CJVevQjJFPD1fxGt38pZsn50iuI1fj2Gy1aYONOS0JoFOLRS1k3i72BZKNGTYJoCRA6fJxDiia0s-G6dx5HLhNY580z9d8wSO7kR8T2FQz2v3DEiV04KxzYplTAuvvHKGZ0qqTa8xzNE8gXe9xErTdSwPxBlnZXw5Z0V5U74JrF_NPm87dfxn3jAI_2pO6K8dB-aLk7Iz15JZ5xwtLPeVD0_TSkqlvXGeaxkQWwJr_daVndE35bWKJvA-buetP1KiWx2FiJs_v32113B_fDjdL_cns70X8CCs0SbUrMHgYnHpXiIsuqhedbpI4Ptdq_9fKMUZtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IJ4itIAPlAtE69qO4xwQ6ra76lJ2qSgVvQXHD1SpyrabFsRf49cxdpK2HOitx1iWFY1nPN_YM_MBvM5FZnNDVapza1JhPJoU5S6taO4otU4qGqqRZ3O5eyg-HmVHK_Cnr4UJaZX9mRgParsw4Y58yLhAzy4R4Q59lxaxvzP5cHqWBgap8NLa02m0KrLnfv_C8K15P93Bvd5gbDL-ur2bdgwDqRF5zlMpbZF7K01oIycqKgzLtKq8Exl-M-EFWj9CmMpa5jM0BadCOxQMMbhTPlMc170Dq3mIigawOhrP97_0fgDjApZ1qfaUFUP0tMXsIJDgxXbQV04wcgX8A3Cvw-To5yYP4H4HUMlWq1EPYcXVjyCZIbZeLOMVPHlDtk-OEejGr8cw3WrTCBpyXJNArRYK3Em8aWyLJhoyapPByIHTZGoc0bUln43TOHKx9BpHvumfrnkCh7civqcwqBe1ewakymnB2GbFMqaFV145wzMl1abXGPJonsDbXmKl6bqXBxKNkzK-orOivC7fBDYuZ5-2XTv-M28UhH85J_TajgOL5Y-yM92SWeccLSz3lQ_P1EpKpb1xnmsZ0FsC6_3Wld0B0JRX6prAu7idN_5IiS52HKJv_vzm1V7BXVT78tN0vrcG98ISbW7NOgzOlxfuBSKk8-plp4oEvt-29v8FbfEd6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Modeling+Interactions+Between+Sea+Ice+and+Ocean+Surface+Waves&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Lettie+A.+Roach&rft.au=Cecilia+M.+Bitz&rft.au=Christopher+Horvat&rft.au=Samuel+M.+Dean&rft.date=2019-12-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=1942-2466&rft.volume=11&rft.issue=12&rft.spage=4167&rft.epage=4181&rft_id=info:doi/10.1029%2F2019MS001836&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2deee09d3fbf45298668afcef3a68467 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon |