Advances in Modeling Interactions Between Sea Ice and Ocean Surface Waves

Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to meltin...

Full description

Saved in:
Bibliographic Details
Published inJournal of advances in modeling earth systems Vol. 11; no. 12; pp. 4167 - 4181
Main Authors Roach, Lettie A., Bitz, Cecilia M., Horvat, Christopher, Dean, Samuel M.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.12.2019
American Geophysical Union (AGU)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. Plain Language Summary In the outer margins of polar sea ice cover, complex interactions occur between sea ice and ocean surface waves. Waves travel through sea ice with properties of in‐ice waves dependent on the size of sea ice floes, which are discrete pieces of sea ice. Sea ice may be fractured by waves, and waves determine the type of sea ice formation that occurs. This study presents advances in numerical modeling of these processes, including communication between a sea ice model and a wave model. We investigate how different physical processes determine the perimeter of sea ice floes exposed to the ocean. This in turn determines the amount of melt that occurs at the edge of sea ice floes. Key Points A new global prognostic coupled ocean surface wave‐sea ice model has important climate feedbacks Sea ice forms as either pancake or nilas depending on stress exerted by ocean surface waves Wave‐related processes drive variability in floe perimeter and therefore determine lateral melt
AbstractList Abstract Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity.
Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity.
Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. Plain Language Summary In the outer margins of polar sea ice cover, complex interactions occur between sea ice and ocean surface waves. Waves travel through sea ice with properties of in‐ice waves dependent on the size of sea ice floes, which are discrete pieces of sea ice. Sea ice may be fractured by waves, and waves determine the type of sea ice formation that occurs. This study presents advances in numerical modeling of these processes, including communication between a sea ice model and a wave model. We investigate how different physical processes determine the perimeter of sea ice floes exposed to the ocean. This in turn determines the amount of melt that occurs at the edge of sea ice floes. Key Points A new global prognostic coupled ocean surface wave‐sea ice model has important climate feedbacks Sea ice forms as either pancake or nilas depending on stress exerted by ocean surface waves Wave‐related processes drive variability in floe perimeter and therefore determine lateral melt
Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed a process‐based prognostic model that captures key characteristics of the sea ice floe size distribution and its evolution subject to melting, freezing, new ice formation, welding, and fracture by ocean surface waves. Here we build upon this earlier work, demonstrating a new coupling between the sea ice model and ocean surface waves and a new physically based parameterization for new ice formation in open water. The experiments presented here are the first to include two‐way interactions between prognostically evolving waves and sea ice on a global domain. The simulated area‐average floe perimeter has a similar magnitude to existing observations in the Arctic and exhibits plausible spatial variability. During the melt season, wave fracture is the dominant FSD process driving changes in floe perimeter per unit sea ice area—the quantity that determines the concentration change due to lateral melt—highlighting the importance of wave‐ice interactions for marginal ice zone thermodynamics. We additionally interpret the results to target spatial scales and processes for which floe size observations can most effectively improve model fidelity. In the outer margins of polar sea ice cover, complex interactions occur between sea ice and ocean surface waves. Waves travel through sea ice with properties of in‐ice waves dependent on the size of sea ice floes, which are discrete pieces of sea ice. Sea ice may be fractured by waves, and waves determine the type of sea ice formation that occurs. This study presents advances in numerical modeling of these processes, including communication between a sea ice model and a wave model. We investigate how different physical processes determine the perimeter of sea ice floes exposed to the ocean. This in turn determines the amount of melt that occurs at the edge of sea ice floes. A new global prognostic coupled ocean surface wave‐sea ice model has important climate feedbacks Sea ice forms as either pancake or nilas depending on stress exerted by ocean surface waves Wave‐related processes drive variability in floe perimeter and therefore determine lateral melt
Author Roach, Lettie A.
Horvat, Christopher
Dean, Samuel M.
Bitz, Cecilia M.
Author_xml – sequence: 1
  givenname: Lettie A.
  orcidid: 0000-0003-4189-3928
  surname: Roach
  fullname: Roach, Lettie A.
  email: lroach@uw.edu
  organization: Victoria University of Wellington
– sequence: 2
  givenname: Cecilia M.
  orcidid: 0000-0002-9477-7499
  surname: Bitz
  fullname: Bitz, Cecilia M.
  organization: University of Washington
– sequence: 3
  givenname: Christopher
  orcidid: 0000-0001-6512-0335
  surname: Horvat
  fullname: Horvat, Christopher
  organization: Brown University
– sequence: 4
  givenname: Samuel M.
  surname: Dean
  fullname: Dean, Samuel M.
  organization: National Institute of Water and Atmospheric Research
BookMark eNp9UE1PGzEQtapUKqG99QesxLUp_o73mEahXUTEAVCP1sQeI0dbG-wNEf--C6kqhASnmXl6H6M3JZOUExLyldHvjPL2lFPWrq8oZUboD-SItZLPuNR68mL_RKa1binVWnN1RLqFf4DksDYxNevssY_ptunSgAXcEHOqzQ8c9oipuUJoOocNJN9cOoQR2ZUAI_IbHrB-Jh8D9BW__JvH5OZsdb38Nbu4_NktFxczJ-dzMdPat_PgtVO0lXJDpeMKzCagVOPNZZDeo6Jm4z0PijKGRgnFmZYCTVBGHJPu4OszbO1diX-gPNoM0T4DudxaKEN0PVruEZG2XoRNkIq3RmsDwWEQoI3U89Hr5OB1V_L9Dutgt3lX0vi-5UJKobSgemR9O7BcybUWDP9TGbVPxduXxY90_oru4gBPXQ4FYv-WSBxE-9jj47sB9nyxXvERFuIvchqTsQ
CitedBy_id crossref_primary_10_5194_tc_16_419_2022
crossref_primary_10_1134_S0015462823602012
crossref_primary_10_3389_fmars_2024_1413116
crossref_primary_10_1098_rsta_2021_0258
crossref_primary_10_3390_rs16142545
crossref_primary_10_31857_S0032823523030116
crossref_primary_10_1016_j_polar_2021_100716
crossref_primary_10_5194_gmd_15_803_2022
crossref_primary_10_1016_j_ocemod_2023_102305
crossref_primary_10_5194_tc_14_1971_2020
crossref_primary_10_1016_j_ocemod_2021_101779
crossref_primary_10_1016_j_ocemod_2021_101878
crossref_primary_10_5194_tc_13_2869_2019
crossref_primary_10_1007_s40641_020_00162_y
crossref_primary_10_1098_rsta_2021_0263
crossref_primary_10_1029_2024JC021629
crossref_primary_10_1098_rsta_2021_0262
crossref_primary_10_1029_2020GL087629
crossref_primary_10_5194_tc_16_2565_2022
crossref_primary_10_1175_JPO_D_21_0238_1
crossref_primary_10_5194_tc_18_1215_2024
crossref_primary_10_5194_gmd_15_1155_2022
crossref_primary_10_5194_tc_17_407_2023
crossref_primary_10_1016_j_coldregions_2025_104449
crossref_primary_10_1017_aog_2020_36
crossref_primary_10_1088_1748_9326_adc01e
crossref_primary_10_5194_cp_18_1729_2022
crossref_primary_10_1029_2023GL105703
crossref_primary_10_5194_essd_16_2917_2024
crossref_primary_10_5194_tc_17_3575_2023
crossref_primary_10_1017_aog_2020_31
crossref_primary_10_1007_s10236_020_01415_y
crossref_primary_10_1029_2023JC020452
crossref_primary_10_3389_fmars_2021_713784
crossref_primary_10_5194_tc_14_2029_2020
crossref_primary_10_1029_2020GL092356
crossref_primary_10_5194_tc_16_1563_2022
crossref_primary_10_1175_JPO_D_21_0240_1
crossref_primary_10_5928_kaiyou_30_5_159
crossref_primary_10_1137_23M155904X
crossref_primary_10_1098_rsta_2021_0257
crossref_primary_10_1098_rsta_2021_0254
crossref_primary_10_5194_tc_16_2325_2022
crossref_primary_10_5194_tc_16_4447_2022
crossref_primary_10_1098_rsta_2021_0252
crossref_primary_10_3390_geosciences12030110
crossref_primary_10_5194_tc_15_431_2021
crossref_primary_10_1098_rsta_2021_0251
Cites_doi 10.3189/172756401781818239
10.1002/2014GL060809
10.1175/JCLI-D-11-00290.1
10.1002/2016GL069742
10.1016/j.ocemod.2013.05.010
10.1017/jfm.2016.21
10.1029/JC092iC07p07032
10.1017/S0022112089001096
10.5194/tc-13-2869-2019
10.1525/elementa.304
10.1525/elementa.305
10.5194/tc-11-1035-2017
10.1029/2007JC004434
10.1002/2013JC009557
10.1137/070710111
10.1029/2018GL079363
10.1029/92JC01755
10.1029/JC092iC07p07085
10.1002/2013RG000431
10.1175/JPO-D-13-0215.1
10.1002/2015JC010770
10.1002/2015JC011349
10.1029/JC089iC04p06477
10.1029/2003JC002123
10.1029/2000JC000449
10.5065/D6HH6H41
10.1073/pnas.1802011115
10.1029/93JC02695
10.1002/2016JC012573
10.1002/2017JC013693
10.5194/gmd-8-2221-2015
10.1098/rsta.2005.1601
10.1016/j.ocemod.2013.05.011
10.1002/2014JC010136
10.1016/j.dsr2.2007.12.016
10.1002/2015GL065224
10.5194/tc-2019-44
10.12952/journal.elementa.000126
10.1029/2005GL024556
10.1038/nature13262
10.1016/j.coldregions.2007.04.007
10.5194/tc-12-365-2018
10.1007/978-1-4899-5352-0_2
10.1034/j.1600-0870.2002.00243.x
10.1029/2017JC013692
10.1175/JTECH-D-16-0171.1
10.1103/PhysRevE.81.066123
10.5194/tc-9-2119-2015
10.1007/978-1-4899-5352-0_3
ContentType Journal Article
Copyright 2019. The Authors.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. The Authors.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2019MS001836
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ) (Open Access)
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage 4181
ExternalDocumentID oai_doaj_org_article_2deee09d3fbf45298668afcef3a68467
10_1029_2019MS001836
JAME21023
Genre article
GrantInformation_xml – fundername: DOC | National Oceanic and Atmospheric Administration (NOAA)
  funderid: NA16NWS4620043
– fundername: Marsden Fund (Royal Society of New Zealand Marsden Fund)
  funderid: VUW-1408
– fundername: Ministry for Business Innovation and Employment (MBIE)
  funderid: C01X1445
– fundername: National Science Foundation (NSF)
  funderid: PLR-1643431
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PIMPY
PROAC
RIG
RNS
TUS
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
HZ~
PUEGO
ID FETCH-LOGICAL-c4773-66d97fd6c50944b04c25a8bfe4594424f4dde508bdd2f5011e853521643e8f583
IEDL.DBID DOA
ISSN 1942-2466
IngestDate Wed Aug 27 01:31:21 EDT 2025
Fri Jul 25 08:29:26 EDT 2025
Tue Jul 01 00:58:21 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Wed Jan 22 16:35:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4773-66d97fd6c50944b04c25a8bfe4594424f4dde508bdd2f5011e853521643e8f583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6512-0335
0000-0003-4189-3928
0000-0002-9477-7499
OpenAccessLink https://doaj.org/article/2deee09d3fbf45298668afcef3a68467
PQID 2344356306
PQPubID 616667
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_2deee09d3fbf45298668afcef3a68467
proquest_journals_2344356306
crossref_primary_10_1029_2019MS001836
crossref_citationtrail_10_1029_2019MS001836
wiley_primary_10_1029_2019MS001836_JAME21023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2019
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2013a; 71
2014; 119
1987; 92
2006; 33
2019; 13
2018; 123
2002; 54
1984; 89
2015; 120
2013b; 71
2016; 121
2008; 55
2010; 81
2018; 45
2014; 41
2004; 109
1992; 97
2015; 9
2015; 8
2014; 44
2016; 4
2018; 6
2009; 51
2005; 363
2014; 509
1989; 202
2015; 42
2017; 11
2018; 115
1999; 36
2017; 34
2016; 43
2019
1986
1994; 99
2002; 107
2016
2015
2013
2008; 113
2012; 25
2017; 122
2014; 52
2018; 12
2001; 33
2016; 790
2007; 49
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
Boutin G. (e_1_2_8_8_1) 2019
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Michel W. H. (e_1_2_8_28_1) 1999; 36
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 43
  start-page: 8083
  year: 2016
  end-page: 8090
  article-title: Interaction of sea ice floe size, ocean eddies, and sea ice melting
  publication-title: Geophysical Research Letters
– start-page: 1
  year: 2019
  end-page: 35
  article-title: Impact of floe size distribution on seasonal fragmentation and melt of Arctic sea ice
  publication-title: The Cryosphere Discussions
– volume: 36
  start-page: 211
  issue: 4
  year: 1999
  end-page: 227
  article-title: Sea spectra revisited
  publication-title: Marine Technology
– start-page: 165
  year: 1986
  end-page: 281
– volume: 13
  start-page: 2869
  year: 2019
  end-page: 2885
  article-title: Estimating the sea ice floe size distribution using satellite altimetry: Theory, climatology, and model comparison
  publication-title: The Cryosphere
– volume: 45
  start-page: 9721
  issue: 18
  year: 2018
  end-page: 9730
  article-title: Understanding melting due to ocean eddy heat fluxes at the edge of sea‐ice floes
  publication-title: Geophysical Research Letters
– volume: 33
  start-page: 361
  issue: 2
  year: 2001
  end-page: 367
  article-title: A conceptual model for pancake‐ice formation in a wave field
  publication-title: Annals of Glaciology
– volume: 202
  start-page: 43
  year: 1989
  end-page: 81
  article-title: Spectral evolution of wind‐generated surface gravity waves in a dispersed ice field
  publication-title: Journal of Fluid Mechanics
– volume: 54
  start-page: 107
  issue: 1
  year: 2002
  end-page: 123
  article-title: A new parameterization of surface drag in the marginal sea ice zone
  publication-title: Tellus A
– volume: 6
  start-page: 48
  issue: 1
  year: 2018
  article-title: Seasonal evolution of the sea‐ice floe size distribution in the Beaufort and Chukchi seas
  publication-title: Elementa: Science of the Anthropocene
– volume: 120
  start-page: 3484
  year: 2015
  end-page: 3498
  article-title: Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments
  publication-title: Journal of Geophysical Research: Oceans
– volume: 55
  start-page: 933
  issue: 8‐9
  year: 2008
  end-page: 942
  article-title: Observed changes in sea‐ice floe size distribution during early summer in the western Weddell Sea
  publication-title: Deep Sea Research Part II: Topical Studies in Oceanography
– volume: 121
  start-page: 1502
  year: 2016
  end-page: 1525
  article-title: Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer‐fall transition 2014
  publication-title: Journal of Geophysical Research: Oceans
– volume: 119
  start-page: 8767
  year: 2014
  end-page: 8777
  article-title: The seasonal evolution of sea ice floe size distribution
  publication-title: Journal of Geophysical Research: Oceans
– start-page: 1
  year: 2019
  end-page: 39
  article-title: Toward a coupled model to investigate wave‐sea ice interactions in the Arctic marginal ice zone
  publication-title: The Cryosphere Discussions
– volume: 25
  start-page: 3053
  issue: 9
  year: 2012
  end-page: 3070
  article-title: Climate sensitivity of the community climate system model, version 4
  publication-title: Journal of Climate
– volume: 509
  start-page: 604
  issue: 7502
  year: 2014
  end-page: 607
  article-title: Storm‐induced sea‐ice breakup and the implications for ice extent
  publication-title: Nature
– volume: 44
  start-page: 1329
  issue: 5
  year: 2014
  end-page: 1353
  article-title: Impact of variable atmospheric and oceanic form drag on simulations of Arctic sea ice
  publication-title: Journal of Physical Oceanography
– year: 2019
– year: 2015
– volume: 107
  start-page: 8048
  issue: C10
  year: 2002
  article-title: Aerial observations of the evolution of ice surface conditions during summer
  publication-title: Journal of Geophysical Research
– volume: 89
  start-page: 6477
  issue: C4
  year: 1984
  article-title: Measuring the sea ice floe size distribution
  publication-title: Journal of Geophysical Research
– volume: 71
  start-page: 92
  year: 2013b
  end-page: 101
  article-title: Wave–ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface
  publication-title: Ocean Modelling
– volume: 92
  start-page: 7032
  issue: C7
  year: 1987
  article-title: The role of shortwave radiation in the summer decay of a sea ice cover
  publication-title: Journal of Geophysical Research
– volume: 8
  start-page: 2221
  issue: 7
  year: 2015
  end-page: 2230
  article-title: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model
  publication-title: Geoscientific Model Development
– volume: 81
  start-page: 066,123
  issue: 6
  year: 2010
  article-title: Sea‐ice floe‐size distribution in the context of spontaneous scaling emergence in stochastic systems
  publication-title: Physical Review E
– start-page: 9
  year: 1986
  end-page: 164
– volume: 4
  start-page: 126
  issue: 1
  year: 2016
  article-title: Modeling the seasonal evolution of the Arctic sea ice floe size distribution
  publication-title: Elementa: Science of the Anthropocene
– volume: 9
  start-page: 2119
  issue: 6
  year: 2015
  end-page: 2134
  article-title: A prognostic model of the sea‐ice floe size and thickness distribution
  publication-title: The Cryosphere
– volume: 41
  start-page: 5046
  year: 2014
  end-page: 5051
  article-title: In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone
  publication-title: Geophysical Research Letters
– volume: 123
  start-page: 2851
  issue: 4
  year: 2018
  end-page: 2866
  article-title: Quantifying growth of pancake sea ice floes using images from drifting buoys
  publication-title: Journal of Geophysical Research: Oceans
– volume: 115
  start-page: 5861
  issue: 23
  year: 2018
  end-page: 5865
  article-title: Strong and highly variable push of ocean waves on Southern Ocean sea ice
  publication-title: Proceedings of the National Academy of Sciences
– volume: 49
  start-page: 110
  issue: 2
  year: 2007
  end-page: 133
  article-title: Of ocean waves and sea‐ice revisited
  publication-title: Cold Regions Science and Technology
– volume: 42
  start-page: 8057
  year: 2015
  end-page: 8063
  article-title: Observations of the summer breakup of an Arctic sea ice cover
  publication-title: Geophysical Research Letters
– volume: 119
  start-page: 2327
  year: 2014
  end-page: 2343
  article-title: Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes
  publication-title: Journal of Geophysical Research: Oceans
– volume: 34
  start-page: 1565
  issue: 7
  year: 2017
  end-page: 1584
  article-title: On the definition of marginal ice zone width
  publication-title: Journal of Atmospheric and Oceanic Technology
– year: 2016
– volume: 97
  start-page: 17,729
  issue: C11
  year: 1992
  end-page: 17,738
  article-title: Sea ice melting and floe geometry in a simple ice‐ocean model
  publication-title: Journal of Geophysical Research: Oceans
– volume: 6
  start-page: 49
  issue: 1
  year: 2018
  article-title: On reconciling disparate studies of the sea‐ice floe size distribution
  publication-title: Elementa: Science of the Anthropocene
– volume: 363
  start-page: 1677
  issue: 1832
  year: 2005
  end-page: 1700
  article-title: Granular flow in the marginal ice zone
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 122
  start-page: 7630
  year: 2017
  end-page: 7650
  article-title: The evolution of scaling laws in the sea ice floe size distribution
  publication-title: Journal of Geophysical Research: Oceans
– volume: 52
  start-page: 185
  year: 2014
  end-page: 217
  article-title: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity
  publication-title: Reviews of Geophysics
– volume: 99
  start-page: 891
  issue: C1
  year: 1994
  article-title: The response of ice floes to ocean waves
  publication-title: Journal of Geophysical Research
– volume: 51
  start-page: 661
  issue: 4
  year: 2009
  end-page: 703
  article-title: Power‐law distributions in empirical data
  publication-title: SIAM Review
– volume: 790
  start-page: 492
  year: 2016
  end-page: 522
  article-title: Attenuation and directional spreading of ocean wave spectra in the marginal ice zone
  publication-title: Journal of Fluid Mechanics
– volume: 71
  start-page: 81
  year: 2013a
  end-page: 91
  article-title: Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations
  publication-title: Ocean Modelling
– volume: 11
  start-page: 1035
  issue: 3
  year: 2017
  end-page: 1040
  article-title: Brief communication: Impacts of ocean‐wave‐induced breakup of Antarctic sea ice via thermodynamics in a stand‐alone version of the CICE sea‐ice model
  publication-title: The Cryosphere
– volume: 113
  issue: C9
  year: 2008
  article-title: An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone
  publication-title: Journal of Geophysical Research
– volume: 33
  year: 2006
  article-title: Characteristics of sea ice floe size distribution in the seasonal ice zone
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 365
  issue: 1
  year: 2018
  end-page: 383
  article-title: Consistent biases in Antarctic sea ice concentration simulated by climate models
  publication-title: The Cryosphere
– volume: 92
  start-page: 7085
  issue: C7
  year: 1987
  article-title: The role of floe collisions in sea ice rheology
  publication-title: Journal of Geophysical Research
– volume: 109
  issue: C12
  year: 2004
  article-title: Limiting diameter of pancake ice
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 4322
  issue: 6
  year: 2018
  end-page: 4337
  article-title: An emergent sea ice floe size distribution in a global coupled ocean–sea ice model
  publication-title: Journal of Geophysical Research: Oceans
– year: 2013
– ident: e_1_2_8_38_1
  doi: 10.3189/172756401781818239
– ident: e_1_2_8_25_1
  doi: 10.1002/2014GL060809
– ident: e_1_2_8_7_1
  doi: 10.1175/JCLI-D-11-00290.1
– ident: e_1_2_8_16_1
  doi: 10.1002/2016GL069742
– volume: 36
  start-page: 211
  issue: 4
  year: 1999
  ident: e_1_2_8_28_1
  article-title: Sea spectra revisited
  publication-title: Marine Technology
– start-page: 1
  year: 2019
  ident: e_1_2_8_8_1
  article-title: Toward a coupled model to investigate wave‐sea ice interactions in the Arctic marginal ice zone
  publication-title: The Cryosphere Discussions
– ident: e_1_2_8_52_1
  doi: 10.1016/j.ocemod.2013.05.010
– ident: e_1_2_8_29_1
  doi: 10.1017/jfm.2016.21
– ident: e_1_2_8_22_1
  doi: 10.1029/JC092iC07p07032
– ident: e_1_2_8_21_1
  doi: 10.1017/S0022112089001096
– ident: e_1_2_8_12_1
  doi: 10.5194/tc-13-2869-2019
– ident: e_1_2_8_44_1
  doi: 10.1525/elementa.304
– ident: e_1_2_8_43_1
  doi: 10.1525/elementa.305
– ident: e_1_2_8_5_1
  doi: 10.5194/tc-11-1035-2017
– ident: e_1_2_8_19_1
  doi: 10.1029/2007JC004434
– ident: e_1_2_8_3_1
  doi: 10.1002/2013JC009557
– ident: e_1_2_8_9_1
  doi: 10.1137/070710111
– ident: e_1_2_8_15_1
  doi: 10.1029/2018GL079363
– ident: e_1_2_8_41_1
  doi: 10.1029/92JC01755
– ident: e_1_2_8_39_1
  doi: 10.1029/JC092iC07p07085
– ident: e_1_2_8_23_1
  doi: 10.1002/2013RG000431
– ident: e_1_2_8_48_1
  doi: 10.1175/JPO-D-13-0215.1
– ident: e_1_2_8_54_1
  doi: 10.1002/2015JC010770
– ident: e_1_2_8_49_1
  doi: 10.1002/2015JC011349
– ident: e_1_2_8_50_1
– ident: e_1_2_8_26_1
– ident: e_1_2_8_36_1
  doi: 10.1029/JC089iC04p06477
– ident: e_1_2_8_37_1
  doi: 10.1029/2003JC002123
– ident: e_1_2_8_30_1
  doi: 10.1029/2000JC000449
– ident: e_1_2_8_18_1
  doi: 10.5065/D6HH6H41
– ident: e_1_2_8_45_1
  doi: 10.1073/pnas.1802011115
– ident: e_1_2_8_27_1
  doi: 10.1029/93JC02695
– ident: e_1_2_8_14_1
  doi: 10.1002/2016JC012573
– ident: e_1_2_8_35_1
  doi: 10.1002/2017JC013693
– ident: e_1_2_8_17_1
– ident: e_1_2_8_32_1
  doi: 10.5194/gmd-8-2221-2015
– ident: e_1_2_8_10_1
  doi: 10.1098/rsta.2005.1601
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ocemod.2013.05.011
– ident: e_1_2_8_31_1
  doi: 10.1002/2014JC010136
– ident: e_1_2_8_42_1
  doi: 10.1016/j.dsr2.2007.12.016
– ident: e_1_2_8_2_1
  doi: 10.1002/2015GL065224
– ident: e_1_2_8_4_1
  doi: 10.5194/tc-2019-44
– ident: e_1_2_8_55_1
  doi: 10.12952/journal.elementa.000126
– ident: e_1_2_8_47_1
  doi: 10.1029/2005GL024556
– ident: e_1_2_8_20_1
  doi: 10.1038/nature13262
– ident: e_1_2_8_40_1
  doi: 10.1016/j.coldregions.2007.04.007
– ident: e_1_2_8_33_1
  doi: 10.5194/tc-12-365-2018
– ident: e_1_2_8_51_1
  doi: 10.1007/978-1-4899-5352-0_2
– ident: e_1_2_8_6_1
  doi: 10.1034/j.1600-0870.2002.00243.x
– ident: e_1_2_8_34_1
  doi: 10.1029/2017JC013692
– ident: e_1_2_8_46_1
  doi: 10.1175/JTECH-D-16-0171.1
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevE.81.066123
– ident: e_1_2_8_13_1
  doi: 10.5194/tc-9-2119-2015
– ident: e_1_2_8_24_1
  doi: 10.1007/978-1-4899-5352-0_3
SSID ssj0066625
Score 2.405486
Snippet Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously developed...
Abstract Recent field programs have highlighted the importance of the composite nature of the sea ice mosaic to the climate system. Accordingly, we previously...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4167
SubjectTerms Arctic observations
Climate system
Experiments
Freezing
Ice
Ice formation
Ocean waves
Oceans
Parameterization
Polar environments
Sea ice
Sea ice models
Size distribution
Spatial variability
Spatial variations
Welding
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELba5cKlanmoaWnlQ-kFonr9inNCLFoElZZWPAS3yLHHFRLK0g309zN2vEAPcIzlRJHtmfnm4W8I-VZJ5SvHTGkr70rpAooUE1C2rALGPGjD4m3k2Yk-upA_r9RVDrj1uaxyqROTovZzF2PkP7iQaNk1Ity9279l7BoVs6u5hcZbsoIq2JgRWZlMT36fLnUxYnOucrk74zV6-uN6dhYb0SVK5idDlPj6_wOZz6FqsjWH78m7DBLp_rCrH8gb6NZIMUN8O1-kMDj9Tg9urhFspqd1crw_pPJ7et3R2N4sXjKnKdo3XFzo6WQoyKJnYOmxA2o7T385sDhyvwgWRy7tP-g3yMXh9PzgqMxNEkonq0qUWvu6Cl67yIQnWyYdV9a0AaTCZy6DRAWGKKz1ngeF0gwmMrqglyTABGXEJhl18w4-EtpWrOZ83HLFrQwmGHBCGW3GwaLbYUVBdpYr1rjMIB4bWdw0KZPN6-b5-hZk-3H27cCc8cK8SVz8xzmR7zoNzBd_miw-DfcAwGovQhtiqthobWxwEITVEUEVZGu5dU0Wwr55OjIF2U3b-eqPNGjmptEDFp9e_9pnshrfG4patsjobnEPXxCa3LVf8_l7AEJg3nc
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgXLigtoBIKZUPLReI8NqO4xzbqqttpQWkUrG3yB9jVKnKok3b38-Mk11tDyBxjDOWIjvjeTOeecPYca2rWAdhS1fHUOqQUKWEgtKLGoSIYKygauT5VzO70VeLajEG3KgWZuCH2ATcSDPyeU0K7nw_kg0QRyZarmZ-TU3llHnOXlB1LaX0Sf19fRIjMs9NV9FPl6XUxoyJ7zj_y_bsJyYpM_c_gZvboDVbnekuezXCRX467O8eewbdPivmiHSXqxwQ5x_5-d0tws789Jpdng6X-j2_7Tg1OqNyc57jfkMJQ8_PhtQsfg2OXwbgrov8WwCHIw-r5HDkp3uE_g27mV78OJ-VY7uEMui6VqUxsalTNIE48bQXOsjKWZ9AV_gsddJ4lCEe8zHKVKFegyVuF_SXFNhUWfWW7XTLDt4x7mvRSDnxspJOJ5ssBFVZYyfJoQPiVME-rVesDSOXOLW0uGvznbZs2u31LdjJRvr3wKHxF7kzWvyNDDFf54Hl6lc7KlIrIwCIJqrkE10aW2OsSwGScoawVMEO11vXjurYt1JphIUG3aOCfc7b-c8PadHgXZAvrA7-T_w9e0kvhnSXQ7Zzv3qADwha7v1R_jP_AOpU34A
  priority: 102
  providerName: Wiley-Blackwell
Title Advances in Modeling Interactions Between Sea Ice and Ocean Surface Waves
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019MS001836
https://www.proquest.com/docview/2344356306
https://doaj.org/article/2deee09d3fbf45298668afcef3a68467
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxQxDLWgXLggKCCmLascgAuMyOZrMsdutVWLtKWiVPQ2yiSOVKmaVrstvx8nmS3LAXrhmCgaWfbEfk6cZ4B3jdKh8dzWrgm-Vj7SluIS6543yHlAY3l6jbw4MUfn6suFvtho9ZVqwgo9cFHcZxEQkbdBxj6mS0JrjHXRY5TOpNiZvC_FvHUyVXwwYXKhxzJ3LlrK8Kft4iw1oMtUzL8DUObp_wNcbkLUHGMOn8OzERyy_SLUC3iEwzZUC8K118t8_M0-sIOrSwKZefQSjvfLFf6KXQ4stTVLj8tZPuUrDxZWbFYKsdgZOnbskbkhsK8eHc3cLaOjmR_uJ65ewfnh_PvBUT02R6i9ahpZGxPaJgbjEwOe6rnyQjvbR1SaxkJFRY6L0FcfgoiadjHaxORC2ZFEG7WVr2FruB7wDbC-4a0Q015o4VS00aKX2ho7jY7SDScr-LjWWOdH5vDUwOKqyzfYou029VvB-_vVN4Ux4y_rZkn592sSz3WeIOt3o_W7h6xfwd7adN24-VadkIpAoKFkqIJP2Zz_FKSj8DZPma_c-R8i7cLT9PVS8rIHW7fLO3xLwOW2n8BjoU4n8GQ2Pzn9Nsl_7C9I5ekY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxUxEJ7g46AXoqhxFbUH8aIbStvtdg_G8OCR94T3NAKR29rtD0JC9uFb0PhP-Tc67e4CHuTGcZum2UxnOt-0M_MBvMlFZnNDVapza1JhPJoU5S6taO4otU4qGqqRpzM5PhKfjrPjJfjT18KEtMr-TIwHtZ2bcEe-wbhAzy4R4X48_5EG1qjwutpTaLRqsed-_8KQrfkw2cH9XWdsd3S4PU47VoHUiDznqZS2yL2VJrSOExUVhmVaVd6JDL-Z8AItHmFLZS3zGaq_U6EFCoYV3CmfKY7r3oNlwSVlA1gejmZfvvZnP8YCLOvS6ykrNtC7FtODQHwXW0BfO77ID_APqL0JjaNv230IKx0oJVutFj2CJVevQjJFPD1fxGt38pZsn50iuI1fj2Gy1aYONOS0JoFOLRS1k3i72BZKNGTYJoCRA6fJxDiia0s-G6dx5HLhNY580z9d8wSO7kR8T2FQz2v3DEiV04KxzYplTAuvvHKGZ0qqTa8xzNE8gXe9xErTdSwPxBlnZXw5Z0V5U74JrF_NPm87dfxn3jAI_2pO6K8dB-aLk7Iz15JZ5xwtLPeVD0_TSkqlvXGeaxkQWwJr_daVndE35bWKJvA-buetP1KiWx2FiJs_v32113B_fDjdL_cns70X8CCs0SbUrMHgYnHpXiIsuqhedbpI4Ptdq_9fKMUZtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IJ4itIAPlAtE69qO4xwQ6ra76lJ2qSgVvQXHD1SpyrabFsRf49cxdpK2HOitx1iWFY1nPN_YM_MBvM5FZnNDVapza1JhPJoU5S6taO4otU4qGqqRZ3O5eyg-HmVHK_Cnr4UJaZX9mRgParsw4Y58yLhAzy4R4Q59lxaxvzP5cHqWBgap8NLa02m0KrLnfv_C8K15P93Bvd5gbDL-ur2bdgwDqRF5zlMpbZF7K01oIycqKgzLtKq8Exl-M-EFWj9CmMpa5jM0BadCOxQMMbhTPlMc170Dq3mIigawOhrP97_0fgDjApZ1qfaUFUP0tMXsIJDgxXbQV04wcgX8A3Cvw-To5yYP4H4HUMlWq1EPYcXVjyCZIbZeLOMVPHlDtk-OEejGr8cw3WrTCBpyXJNArRYK3Em8aWyLJhoyapPByIHTZGoc0bUln43TOHKx9BpHvumfrnkCh7civqcwqBe1ewakymnB2GbFMqaFV145wzMl1abXGPJonsDbXmKl6bqXBxKNkzK-orOivC7fBDYuZ5-2XTv-M28UhH85J_TajgOL5Y-yM92SWeccLSz3lQ_P1EpKpb1xnmsZ0FsC6_3Wld0B0JRX6prAu7idN_5IiS52HKJv_vzm1V7BXVT78tN0vrcG98ISbW7NOgzOlxfuBSKk8-plp4oEvt-29v8FbfEd6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Modeling+Interactions+Between+Sea+Ice+and+Ocean+Surface+Waves&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Lettie+A.+Roach&rft.au=Cecilia+M.+Bitz&rft.au=Christopher+Horvat&rft.au=Samuel+M.+Dean&rft.date=2019-12-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=1942-2466&rft.volume=11&rft.issue=12&rft.spage=4167&rft.epage=4181&rft_id=info:doi/10.1029%2F2019MS001836&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2deee09d3fbf45298668afcef3a68467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon