Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration

Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to co...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 8; no. 24; pp. e1901321 - n/a
Main Authors Keene, Scott T., Fogarty, Daragh, Cooke, Ross, Casadevall, Carlos D., Salleo, Alberto, Parlak, Onur
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+) and calcium (Ca2+) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10−3 and 100 × 10−3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly. Health monitoring technologies are of great and continuous interest in clinical healthcare due to their ability to monitor physiological signals by maintaining optimal health status and assessing physical performance. This study shows that multiplexed solid‐state ion‐selective organic electrochemical transistors are capable of simultaneously monitoring ammonium and calcium ions with high sensitivity and selectivity during physical exercise in three healthy subjects.
AbstractList Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+) and calcium (Ca2+) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10−3 and 100 × 10−3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly.
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+) and calcium (Ca2+) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10−3 and 100 × 10−3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly. Health monitoring technologies are of great and continuous interest in clinical healthcare due to their ability to monitor physiological signals by maintaining optimal health status and assessing physical performance. This study shows that multiplexed solid‐state ion‐selective organic electrochemical transistors are capable of simultaneously monitoring ammonium and calcium ions with high sensitivity and selectivity during physical exercise in three healthy subjects.
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH 4 + ) and calcium (Ca 2+ ) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH 4 + and Ca 2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10 −3 and 100 × 10 −3 m , well within the physiological levels of NH 4 + and Ca 2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly.
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+ ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+ ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH ) and calcium (Ca ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH and Ca in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10 and 100 × 10 m, well within the physiological levels of NH and Ca in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.
Author Keene, Scott T.
Casadevall, Carlos D.
Parlak, Onur
Fogarty, Daragh
Salleo, Alberto
Cooke, Ross
Author_xml – sequence: 1
  givenname: Scott T.
  surname: Keene
  fullname: Keene, Scott T.
  organization: Stanford University
– sequence: 2
  givenname: Daragh
  surname: Fogarty
  fullname: Fogarty, Daragh
  organization: Stanford University
– sequence: 3
  givenname: Ross
  surname: Cooke
  fullname: Cooke, Ross
  organization: Stanford University
– sequence: 4
  givenname: Carlos D.
  surname: Casadevall
  fullname: Casadevall, Carlos D.
  organization: Stanford University
– sequence: 5
  givenname: Alberto
  surname: Salleo
  fullname: Salleo, Alberto
  email: asalleo@stanford.edu
  organization: Stanford University
– sequence: 6
  givenname: Onur
  orcidid: 0000-0002-6858-9638
  surname: Parlak
  fullname: Parlak, Onur
  email: onur.parlak@ki.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31714014$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:142218857$$DView record from Swedish Publication Index
BookMark eNqFkUtvEzEUhS1URB90yxJZYsNmgl8zHi-jtDSVWrUSRSwtj8fTuPgR7BmVbvjtOCQNUiWENz7X_s6Vfc8xOAgxGADeYTTDCJFPql_5GUFYIEwJfgWOCBakIk0tDvaaoUNwmvMDKqupcdPiN-CQYo4ZwuwI_PpmVFKdM_Am3atgNTx3Ro8p6pXxVisH75IK2eYxJnirRr2CQ1HXkxvt2pmfpodfTLkP9zAOcKGctpOHKvRw7n0Mm-IyhgyHFD1cTl4FeGtSXtukRhvDW_B6UC6b091-Ar5-Pr9bLKurm4vLxfyq0oxzXNHecMwFVy2jLW80Y6RtySBI17cdaRrUUopoh8WAW6VrzHuB1cCoqGtmBNP0BFTbvvnRrKdOrpP1Kj3JqKzcHX0vykjGa05I4T9u-XWKPyaTR-lt1sY5FUycsiS0zI8ghllBP7xAH-KUQvlNoUhbSNzwQr3fUVPnTb9_wHMSBWBbQKeYczKD1Hb8M6MxKeskRnKTudxkLveZF9vshe258z8NYmt4tM48_YeW87Pl9V_vb4RAvc8
CitedBy_id crossref_primary_10_1002_adfm_202403710
crossref_primary_10_1002_admi_202201736
crossref_primary_10_1039_D0TC03118F
crossref_primary_10_1016_j_orgel_2023_106889
crossref_primary_10_20517_ss_2024_01
crossref_primary_10_1038_s41570_022_00443_0
crossref_primary_10_1002_admt_202301786
crossref_primary_10_2139_ssrn_4157202
crossref_primary_10_1016_j_compositesa_2022_107177
crossref_primary_10_12688_f1000research_156207_1
crossref_primary_10_1109_OJNANO_2022_3215135
crossref_primary_10_1002_adma_202310973
crossref_primary_10_1021_acs_analchem_2c00497
crossref_primary_10_1021_acs_analchem_1c05210
crossref_primary_10_1038_s41467_022_32182_7
crossref_primary_10_1016_j_aca_2022_339461
crossref_primary_10_1021_acs_chemrev_3c00392
crossref_primary_10_1002_admt_202401440
crossref_primary_10_1007_s00604_023_06162_7
crossref_primary_10_1002_smll_202403629
crossref_primary_10_1016_j_orgel_2023_106777
crossref_primary_10_1021_acsapm_1c01421
crossref_primary_10_1002_adfm_202407503
crossref_primary_10_1038_s41528_022_00165_9
crossref_primary_10_1002_admt_202000384
crossref_primary_10_1002_admi_202102039
crossref_primary_10_1016_j_talanta_2024_126180
crossref_primary_10_1002_smll_202107413
crossref_primary_10_1007_s44211_022_00164_w
crossref_primary_10_1109_JFLEX_2022_3179674
crossref_primary_10_3390_chemosensors11090470
crossref_primary_10_3390_ijms23147799
crossref_primary_10_1039_D2CP02595G
crossref_primary_10_3390_s22197670
crossref_primary_10_1016_j_bios_2023_115412
crossref_primary_10_1002_anie_202410626
crossref_primary_10_1002_mabi_202000129
crossref_primary_10_1002_anie_202423013
crossref_primary_10_1016_j_bios_2021_113904
crossref_primary_10_3390_chemosensors12110236
crossref_primary_10_1002_admi_202400127
crossref_primary_10_1016_j_nanoen_2021_106116
crossref_primary_10_1038_s41528_022_00211_6
crossref_primary_10_1002_adsr_202300097
crossref_primary_10_1016_j_electacta_2021_138341
crossref_primary_10_1021_acsami_4c05499
crossref_primary_10_1002_adfm_202307729
crossref_primary_10_1002_pssa_202400086
crossref_primary_10_1016_j_bios_2024_116430
crossref_primary_10_3390_chemosensors9040079
crossref_primary_10_1007_s00604_021_04947_2
crossref_primary_10_1007_s12274_021_3856_3
crossref_primary_10_1016_j_snb_2023_133763
crossref_primary_10_1016_j_snb_2023_135027
crossref_primary_10_1002_admt_202000523
crossref_primary_10_1039_D0TC01112F
crossref_primary_10_1002_adma_202300034
crossref_primary_10_1002_admt_202100293
crossref_primary_10_1002_advs_202400595
crossref_primary_10_1016_j_electacta_2024_145111
crossref_primary_10_1109_LSENS_2022_3166345
crossref_primary_10_1088_2058_8585_ac84ec
crossref_primary_10_1002_VIW_20200077
crossref_primary_10_1021_acs_nanolett_4c04328
crossref_primary_10_1021_acsapm_0c00448
crossref_primary_10_1016_j_talanta_2021_122815
crossref_primary_10_1002_smtd_202301184
crossref_primary_10_1111_nbu_12581
crossref_primary_10_1002_adfm_202409153
crossref_primary_10_1021_acsaelm_3c01592
crossref_primary_10_1002_aisy_202000156
crossref_primary_10_1016_j_jciso_2021_100007
crossref_primary_10_1021_acsaelm_0c00735
crossref_primary_10_1002_adma_202000270
crossref_primary_10_1002_adma_202306252
crossref_primary_10_1016_j_cej_2025_160253
crossref_primary_10_1002_adma_202403758
crossref_primary_10_1002_rpm_20230022
crossref_primary_10_1007_s40242_024_4176_4
crossref_primary_10_1021_acsaelm_3c00638
crossref_primary_10_1126_sciadv_adi3536
crossref_primary_10_1039_D0TA11260G
crossref_primary_10_1002_admi_202100961
crossref_primary_10_1021_acssensors_2c01827
crossref_primary_10_1002_ange_202410626
crossref_primary_10_1002_aelm_202100853
crossref_primary_10_1021_acs_chemmater_1c03797
crossref_primary_10_3390_molecules26030748
crossref_primary_10_1016_j_jelechem_2024_118722
crossref_primary_10_1021_acs_analchem_1c04960
crossref_primary_10_1002_admt_202100591
crossref_primary_10_1021_acssensors_2c01250
crossref_primary_10_1038_s41467_023_42840_z
crossref_primary_10_3390_bios10120205
crossref_primary_10_1002_aelm_202200573
crossref_primary_10_1002_ange_202423013
crossref_primary_10_1016_j_ab_2022_114985
crossref_primary_10_1016_j_snr_2024_100265
crossref_primary_10_1002_adsr_202200052
crossref_primary_10_1002_app_51314
crossref_primary_10_1039_D2CS00920J
crossref_primary_10_1016_j_wees_2024_03_002
crossref_primary_10_3390_polym14051022
crossref_primary_10_1002_smll_202206064
crossref_primary_10_1088_2058_8585_ac8aa6
crossref_primary_10_1109_JSEN_2021_3099209
crossref_primary_10_1016_j_bios_2023_115890
crossref_primary_10_1039_D1NR06244A
crossref_primary_10_1557_mrs_2020_194
crossref_primary_10_1002_mds3_10160
crossref_primary_10_1016_j_mne_2024_100272
crossref_primary_10_1016_j_device_2024_100651
crossref_primary_10_1039_D4TA05288A
crossref_primary_10_1038_s41928_022_00859_y
crossref_primary_10_1073_pnas_2405933121
crossref_primary_10_1088_1402_4896_adab3f
crossref_primary_10_1088_1674_4926_44_2_021601
crossref_primary_10_1002_adfm_202102149
crossref_primary_10_1002_adhm_202302173
crossref_primary_10_1021_acsapm_2c01030
crossref_primary_10_1002_adfm_202200922
crossref_primary_10_1021_acsaelm_4c01806
crossref_primary_10_3390_bios12111057
crossref_primary_10_3390_bios13030409
crossref_primary_10_1038_s44222_024_00180_7
crossref_primary_10_1088_1742_6596_2705_1_012002
crossref_primary_10_1002_admt_202000328
crossref_primary_10_1134_S1070428022100177
crossref_primary_10_1002_admt_202300605
crossref_primary_10_1021_acs_analchem_0c04378
crossref_primary_10_1002_adma_202207282
crossref_primary_10_1088_2631_7990_acfd69
crossref_primary_10_1002_adma_202110406
crossref_primary_10_3390_electronics14051023
crossref_primary_10_1002_smll_202311802
crossref_primary_10_3390_biom13060929
crossref_primary_10_1109_JSEN_2024_3350969
crossref_primary_10_1021_acsami_3c09286
crossref_primary_10_1002_adma_202209906
crossref_primary_10_1002_smtd_202301654
crossref_primary_10_1002_adma_202004790
crossref_primary_10_1016_j_snb_2024_135898
crossref_primary_10_1016_j_nanoen_2024_109411
Cites_doi 10.1126/scitranslmed.aao3612
10.1016/j.bios.2014.09.042
10.1021/acsami.7b07668
10.1002/adhm.201601355
10.1016/j.tibtech.2017.10.022
10.1039/B713122D
10.1126/scitranslmed.aaf2593
10.1016/j.snb.2012.06.048
10.1002/app.41735
10.1126/sciadv.1601314
10.1038/nature16521
10.1073/pnas.1608780113
10.1016/j.aca.2010.01.009
10.1002/adma.201504366
10.1038/srep27582
10.1002/admi.201500353
10.1126/science.290.5495.1315
10.1038/nrc1041
10.1002/cphc.201300172
10.1152/japplphysiol.00745.2016
10.1038/s41598-017-02133-0
10.1038/nmat3554
10.1126/sciadv.aar2904
10.1002/aelm.201800381
10.1002/(SICI)1521-4109(199907)11:10/11<695::AID-ELAN695>3.0.CO;2-G
10.1063/1.4901332
10.1002/adhm.201601371
10.1039/C6NR02355J
10.1155/2015/164974
10.1002/adfm.201605271
10.1039/c3an01672b
10.1021/jacs.6b05280
10.1021/acs.accounts.8b00451
10.1021/ac202878q
10.1126/sciadv.1501101
10.1021/ac00269a003
10.1016/j.trac.2018.11.024
10.1038/nbt.3222
10.1021/acs.chemmater.7b00181
10.1002/elan.200503384
10.1021/ac50019a027
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ADTPV
AOWAS
DOI 10.1002/adhm.201901321
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
PubMed
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID oai_swepub_ki_se_475722
31714014
10_1002_adhm_201901321
ADHM201901321
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CBET #1804915
– fundername: National Science Foundation
  funderid: ECCS‐1542152
– fundername: Beijing Institute for Collaborative Innovation
– fundername: Knut and Alice Wallenberg Foundation
  funderid: KAW 2014.0387
– fundername: Stanford Office of Technology Licensing
– fundername: National Science Foundation
  grantid: CBET #1804915
– fundername: Knut and Alice Wallenberg Foundation
  grantid: KAW 2014.0387
– fundername: National Science Foundation
  grantid: ECCS-1542152
GroupedDBID 05W
0R~
1OC
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
P2W
PQQKQ
ROL
SUPJJ
SV3
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
C45
CITATION
EJD
GODZA
OVD
TEORI
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ADTPV
AOWAS
LH4
ID FETCH-LOGICAL-c4771-3de71797a843876c442882f92bd8b266083303b19f18ac517d91af439554e94c3
ISSN 2192-2640
2192-2659
IngestDate Mon Aug 25 03:39:06 EDT 2025
Fri Jul 11 03:02:38 EDT 2025
Fri Jul 25 12:04:58 EDT 2025
Wed Feb 19 02:29:49 EST 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 03:06:36 EDT 2025
Wed Jan 22 16:40:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords sweat monitoring
multiplexed devices
organic electrochemical transistors
wearable bioelectronics
ion sensing
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4771-3de71797a843876c442882f92bd8b266083303b19f18ac517d91af439554e94c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6858-9638
PMID 31714014
PQID 2328231167
PQPubID 2032434
PageCount 8
ParticipantIDs swepub_primary_oai_swepub_ki_se_475722
proquest_miscellaneous_2314020414
proquest_journals_2328231167
pubmed_primary_31714014
crossref_citationtrail_10_1002_adhm_201901321
crossref_primary_10_1002_adhm_201901321
wiley_primary_10_1002_adhm_201901321_ADHM201901321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2017; 7
2014; 116
2013; 4
2017; 3
2019; 5
2017; 27
1977; 49
2008; 18
2015; 33
2010; 662
2016; 529
2006; 18
2017; 29
2015; 67
2016; 6
2012; 171–172
2013; 14
2016; 2
2016; 3
2018; 4
2000
2013; 12
2013; 138
2012; 290
1984; 56
2015; 132
2015; 2015
2016; 113
2003; 3
1999; 11
2016
2018; 51
2016; 138
2017; 122
2016; 28
2018; 10
2016; 8
2018; 36
2019; 110
2012; 84
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Parlak O. (e_1_2_8_29_1) 2016
e_1_2_8_8_1
e_1_2_8_20_1
Bard A. J. (e_1_2_8_43_1) 2000
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
Khodagholy D. (e_1_2_8_34_1) 2013; 4
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 7031
  year: 2013
  publication-title: Analyst
– volume: 110
  start-page: 303
  year: 2019
  publication-title: TrAC, Trends Anal. Chem.
– volume: 132
  year: 2015
  publication-title: J. Appl. Polym. Sci.
– volume: 18
  start-page: 116
  year: 2008
  publication-title: J. Mater. Chem.
– volume: 33
  start-page: 456
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 171–172
  start-page: 1327
  year: 2012
  publication-title: Sens. Actuators, B.
– volume: 29
  start-page: 3126
  year: 2017
  publication-title: Chem. Mater.
– volume: 36
  start-page: 45
  year: 2018
  publication-title: Trends Biotechnol.
– volume: 290
  start-page: 1315
  year: 2012
  publication-title: Science
– volume: 662
  start-page: 105
  year: 2010
  publication-title: Anal. Chim. Acta
– volume: 8
  start-page: 9976
  year: 2016
  publication-title: Nanoscale
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 122
  start-page: 945
  year: 2017
  publication-title: J. Appl. Physiol.
– volume: 116
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 1950
  year: 2017
  publication-title: Sci. Rep.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 14
  start-page: 2032
  year: 2013
  publication-title: ChemPhysChem
– volume: 18
  start-page: 7
  year: 2006
  publication-title: Electroanalysis
– volume: 51
  start-page: 2820
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 3
  start-page: 243
  year: 2003
  publication-title: Nat. Rev. Cancer
– volume: 10
  year: 2018
  publication-title: Sci. Transl. Med.
– volume: 2015
  year: 2015
  publication-title: Int. J. Anal. Chem.
– start-page: 105
  year: 2016
  end-page: 122
– volume: 8
  year: 2016
  publication-title: Sci. Transl. Med.
– volume: 84
  start-page: 685
  year: 2012
  publication-title: Anal. Chem.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– year: 2000
  publication-title: Electrochemical Methods: Principles and Applications
– volume: 56
  start-page: 20
  year: 1984
  publication-title: Anal. Chem.
– volume: 6
  start-page: 2
  year: 2016
  publication-title: Sci. Rep.
– volume: 49
  start-page: 1567
  year: 1977
  publication-title: Anal. Chem.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 11
  start-page: 695
  year: 1999
  publication-title: Electroanalysis
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 67
  start-page: 763
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 1
  year: 2013
  publication-title: Nat. Commun.
– volume: 28
  start-page: 4373
  year: 2016
  publication-title: Adv. Mater.
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 101
  year: 2013
  publication-title: Nat. Mater.
– ident: e_1_2_8_2_1
  doi: 10.1126/scitranslmed.aao3612
– ident: e_1_2_8_24_1
  doi: 10.1016/j.bios.2014.09.042
– ident: e_1_2_8_36_1
  doi: 10.1021/acsami.7b07668
– year: 2000
  ident: e_1_2_8_43_1
  publication-title: Electrochemical Methods: Principles and Applications
– ident: e_1_2_8_5_1
  doi: 10.1002/adhm.201601355
– ident: e_1_2_8_33_1
  doi: 10.1016/j.tibtech.2017.10.022
– ident: e_1_2_8_28_1
  doi: 10.1039/B713122D
– ident: e_1_2_8_14_1
  doi: 10.1126/scitranslmed.aaf2593
– ident: e_1_2_8_19_1
  doi: 10.1016/j.snb.2012.06.048
– ident: e_1_2_8_32_1
  doi: 10.1002/app.41735
– ident: e_1_2_8_12_1
  doi: 10.1126/sciadv.1601314
– ident: e_1_2_8_20_1
  doi: 10.1038/nature16521
– ident: e_1_2_8_42_1
  doi: 10.1073/pnas.1608780113
– ident: e_1_2_8_26_1
  doi: 10.1016/j.aca.2010.01.009
– start-page: 105
  volume-title: Materials for Chemical Sensing
  year: 2016
  ident: e_1_2_8_29_1
– ident: e_1_2_8_39_1
  doi: 10.1038/nature16521
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201504366
– ident: e_1_2_8_23_1
  doi: 10.1038/srep27582
– ident: e_1_2_8_31_1
  doi: 10.1002/admi.201500353
– ident: e_1_2_8_6_1
  doi: 10.1126/science.290.5495.1315
– ident: e_1_2_8_3_1
  doi: 10.1038/nrc1041
– ident: e_1_2_8_25_1
  doi: 10.1002/cphc.201300172
– ident: e_1_2_8_17_1
  doi: 10.1152/japplphysiol.00745.2016
– ident: e_1_2_8_13_1
  doi: 10.1038/s41598-017-02133-0
– ident: e_1_2_8_22_1
  doi: 10.1038/nmat3554
– ident: e_1_2_8_45_1
  doi: 10.1126/sciadv.aar2904
– ident: e_1_2_8_27_1
  doi: 10.1002/aelm.201800381
– ident: e_1_2_8_41_1
  doi: 10.1002/(SICI)1521-4109(199907)11:10/11<695::AID-ELAN695>3.0.CO;2-G
– ident: e_1_2_8_18_1
  doi: 10.1063/1.4901332
– ident: e_1_2_8_8_1
  doi: 10.1002/adhm.201601371
– ident: e_1_2_8_30_1
  doi: 10.1039/C6NR02355J
– ident: e_1_2_8_11_1
  doi: 10.1155/2015/164974
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.201605271
– ident: e_1_2_8_16_1
  doi: 10.1039/c3an01672b
– ident: e_1_2_8_44_1
  doi: 10.1021/jacs.6b05280
– ident: e_1_2_8_4_1
  doi: 10.1021/acs.accounts.8b00451
– ident: e_1_2_8_21_1
  doi: 10.1021/ac202878q
– ident: e_1_2_8_7_1
  doi: 10.1126/sciadv.1501101
– volume: 4
  start-page: 1
  year: 2013
  ident: e_1_2_8_34_1
  publication-title: Nat. Commun.
– ident: e_1_2_8_37_1
  doi: 10.1021/ac00269a003
– ident: e_1_2_8_15_1
  doi: 10.1016/j.trac.2018.11.024
– ident: e_1_2_8_1_1
  doi: 10.1038/nbt.3222
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.chemmater.7b00181
– ident: e_1_2_8_38_1
  doi: 10.1002/elan.200503384
– ident: e_1_2_8_40_1
  doi: 10.1021/ac50019a027
SSID ssj0000651681
Score 2.5565755
Snippet Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901321
SubjectTerms Ammonium
Biomarkers
Biosensors
Calcium
Calcium ions
Diagnosis
ion sensing
Laser arrays
multiplexed devices
Multiplexing
organic electrochemical transistors
Perspiration
Physiology
Selectivity
Semiconductor devices
Sensors
Styrene
Styrenes
Substrates
Sweat
sweat monitoring
Transistors
wearable bioelectronics
Wearable technology
Title Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201901321
https://www.ncbi.nlm.nih.gov/pubmed/31714014
https://www.proquest.com/docview/2328231167
https://www.proquest.com/docview/2314020414
http://kipublications.ki.se/Default.aspx?queryparsed=id:142218857
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxJvCgoyE4IACtevmcay6XRXULhLbit4i23G2iKpdbVsJceDOv2bGdtyUXcTCJUocK6_5Mp4Zz3wm5CWWN3ZUoqOyVDISUpQRuEFZlJWyLVlXSm4wDjk-iYdT8WHWnTUaP2tZS9uNequ_X1lX8j9ShTaQK1bJ_oNkw0WhAfZBvrAFCcP2WjL-DDC1pU-uolK_GbhFbXTFAmBHIksEglz8em6TCsc-h_Ab2pqYv-7ynvtyob9s3YoZPXwHPHiPmTS2BMVF-zFh3k7NV-KsCGyrVIL5Lp8MbGH3EXZK3bj46aklhJjsRsAzeDk3nQ8vdBYi1P2KD_TTah2u0pdrWSBJ-cInrCxWa5-37KMXLKtlglglBwqTRzz2rODmijavpdMaGLmoqVyDJk3HlVlfGg8cv6ws5kg6UOu4T7x98jE_no5G-WQwm9wgBxw8Dt4kB72j8eg0BOzAVmOxXfQ2PF9FAtrm7_ZvsW_kXPJcAi3tvkdkTZrJHXLb-yK054B1lzTM8h65VWOovE9-VBCjHmL0N4jRHcSohRgFiNEaxKiHGF2V1EOMAsRoBTGKEKMIMWohRusQe0Cmx4NJfxj5JTsiLZKERZ3CJKDiE5mKDoyzWoB3m_Iy46pIFdiCYPCDzaRYVrJU6i5LiozJEoxisGpNJnTnIWkuV0vzmNBUJUqZQhodQ4d2JkstJCszlbDMqHbaIlH1jXPt-exxWZVF7pi4eY4yyYNMWuR16H_umFz-2POwElnu__Z1Dp4HzpizOGmRF-E06GKcYJNLs9piH4bhGMFEizxyog63AjsdYxlw5pWTfTiDBO--6SvsmVwkXQBgi3CLjb88bN47Go7D0ZNrPNtTcnP3Jx6S5uZia56BZb1Rzz3mfwEq5dAi
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Organic+Electrochemical+Transistor+Patch+for+Multiplexed+Sensing+of+Calcium+and+Ammonium+Ions+from+Human+Perspiration&rft.jtitle=Advanced+healthcare+materials&rft.au=Keene%2C+Scott+T&rft.au=Fogarty%2C+Daragh&rft.au=Cooke%2C+Ross&rft.au=Casadevall%2C+Carlos+D&rft.date=2019-12-01&rft.issn=2192-2659&rft.eissn=2192-2659&rft.volume=8&rft.issue=24&rft.spage=e1901321&rft_id=info:doi/10.1002%2Fadhm.201901321&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon