Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration
Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to co...
Saved in:
Published in | Advanced healthcare materials Vol. 8; no. 24; pp. e1901321 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+) and calcium (Ca2+) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10−3 and 100 × 10−3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly.
Health monitoring technologies are of great and continuous interest in clinical healthcare due to their ability to monitor physiological signals by maintaining optimal health status and assessing physical performance. This study shows that multiplexed solid‐state ion‐selective organic electrochemical transistors are capable of simultaneously monitoring ammonium and calcium ions with high sensitivity and selectivity during physical exercise in three healthy subjects. |
---|---|
AbstractList | Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+) and calcium (Ca2+) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10−3 and 100 × 10−3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly. Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+) and calcium (Ca2+) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10−3 and 100 × 10−3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly. Health monitoring technologies are of great and continuous interest in clinical healthcare due to their ability to monitor physiological signals by maintaining optimal health status and assessing physical performance. This study shows that multiplexed solid‐state ion‐selective organic electrochemical transistors are capable of simultaneously monitoring ammonium and calcium ions with high sensitivity and selectivity during physical exercise in three healthy subjects. Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off‐site diagnosis and patient‐monitoring. In particular, sweat‐based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH 4 + ) and calcium (Ca 2+ ) ion‐selective membranes with a poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)‐based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH 4 + and Ca 2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene‐ethylene‐butene‐styrene substrate with a laser‐patterned microcapillary channel array for direct sweat acquisition and delivery to the ion‐selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10 −3 and 100 × 10 −3 m , well within the physiological levels of NH 4 + and Ca 2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real‐time analysis using a wearable sensor assembly. Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+ ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly.Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH4+ ) and calcium (Ca2+ ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH4+ and Ca2+ in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10-3 and 100 × 10-3 m, well within the physiological levels of NH4+ and Ca2+ in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly. Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the ability to provide rapid, off-site diagnosis and patient-monitoring. In particular, sweat-based wearable biosensors offer a noninvasive route to continuously monitor a variety of biomarkers for a range of physiological conditions. Both the accessibility and wealth of information of sweat make it an ideal target for noninvasive devices that can aid in early diagnosis of disease or to monitor athletic performance. Here, the integration of ammonium (NH ) and calcium (Ca ) ion-selective membranes with a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based (PEDOT:PSS) organic electrochemical transistor (OECT) for multiplexed sensing of NH and Ca in sweat with high sensitivity and selectivity is reported for the first time. The presented wearable sweat sensor is designed by combining a flexible and stretchable styrene-ethylene-butene-styrene substrate with a laser-patterned microcapillary channel array for direct sweat acquisition and delivery to the ion-selective OECT. The resulting dermal sensor exhibits a wide working range between 0.01 × 10 and 100 × 10 m, well within the physiological levels of NH and Ca in sweat. The integrated devices are successfully implemented with both ex situ measurements and on human subjects with real-time analysis using a wearable sensor assembly. |
Author | Keene, Scott T. Casadevall, Carlos D. Parlak, Onur Fogarty, Daragh Salleo, Alberto Cooke, Ross |
Author_xml | – sequence: 1 givenname: Scott T. surname: Keene fullname: Keene, Scott T. organization: Stanford University – sequence: 2 givenname: Daragh surname: Fogarty fullname: Fogarty, Daragh organization: Stanford University – sequence: 3 givenname: Ross surname: Cooke fullname: Cooke, Ross organization: Stanford University – sequence: 4 givenname: Carlos D. surname: Casadevall fullname: Casadevall, Carlos D. organization: Stanford University – sequence: 5 givenname: Alberto surname: Salleo fullname: Salleo, Alberto email: asalleo@stanford.edu organization: Stanford University – sequence: 6 givenname: Onur orcidid: 0000-0002-6858-9638 surname: Parlak fullname: Parlak, Onur email: onur.parlak@ki.edu organization: Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31714014$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:142218857$$DView record from Swedish Publication Index |
BookMark | eNqFkUtvEzEUhS1URB90yxJZYsNmgl8zHi-jtDSVWrUSRSwtj8fTuPgR7BmVbvjtOCQNUiWENz7X_s6Vfc8xOAgxGADeYTTDCJFPql_5GUFYIEwJfgWOCBakIk0tDvaaoUNwmvMDKqupcdPiN-CQYo4ZwuwI_PpmVFKdM_Am3atgNTx3Ro8p6pXxVisH75IK2eYxJnirRr2CQ1HXkxvt2pmfpodfTLkP9zAOcKGctpOHKvRw7n0Mm-IyhgyHFD1cTl4FeGtSXtukRhvDW_B6UC6b091-Ar5-Pr9bLKurm4vLxfyq0oxzXNHecMwFVy2jLW80Y6RtySBI17cdaRrUUopoh8WAW6VrzHuB1cCoqGtmBNP0BFTbvvnRrKdOrpP1Kj3JqKzcHX0vykjGa05I4T9u-XWKPyaTR-lt1sY5FUycsiS0zI8ghllBP7xAH-KUQvlNoUhbSNzwQr3fUVPnTb9_wHMSBWBbQKeYczKD1Hb8M6MxKeskRnKTudxkLveZF9vshe258z8NYmt4tM48_YeW87Pl9V_vb4RAvc8 |
CitedBy_id | crossref_primary_10_1002_adfm_202403710 crossref_primary_10_1002_admi_202201736 crossref_primary_10_1039_D0TC03118F crossref_primary_10_1016_j_orgel_2023_106889 crossref_primary_10_20517_ss_2024_01 crossref_primary_10_1038_s41570_022_00443_0 crossref_primary_10_1002_admt_202301786 crossref_primary_10_2139_ssrn_4157202 crossref_primary_10_1016_j_compositesa_2022_107177 crossref_primary_10_12688_f1000research_156207_1 crossref_primary_10_1109_OJNANO_2022_3215135 crossref_primary_10_1002_adma_202310973 crossref_primary_10_1021_acs_analchem_2c00497 crossref_primary_10_1021_acs_analchem_1c05210 crossref_primary_10_1038_s41467_022_32182_7 crossref_primary_10_1016_j_aca_2022_339461 crossref_primary_10_1021_acs_chemrev_3c00392 crossref_primary_10_1002_admt_202401440 crossref_primary_10_1007_s00604_023_06162_7 crossref_primary_10_1002_smll_202403629 crossref_primary_10_1016_j_orgel_2023_106777 crossref_primary_10_1021_acsapm_1c01421 crossref_primary_10_1002_adfm_202407503 crossref_primary_10_1038_s41528_022_00165_9 crossref_primary_10_1002_admt_202000384 crossref_primary_10_1002_admi_202102039 crossref_primary_10_1016_j_talanta_2024_126180 crossref_primary_10_1002_smll_202107413 crossref_primary_10_1007_s44211_022_00164_w crossref_primary_10_1109_JFLEX_2022_3179674 crossref_primary_10_3390_chemosensors11090470 crossref_primary_10_3390_ijms23147799 crossref_primary_10_1039_D2CP02595G crossref_primary_10_3390_s22197670 crossref_primary_10_1016_j_bios_2023_115412 crossref_primary_10_1002_anie_202410626 crossref_primary_10_1002_mabi_202000129 crossref_primary_10_1002_anie_202423013 crossref_primary_10_1016_j_bios_2021_113904 crossref_primary_10_3390_chemosensors12110236 crossref_primary_10_1002_admi_202400127 crossref_primary_10_1016_j_nanoen_2021_106116 crossref_primary_10_1038_s41528_022_00211_6 crossref_primary_10_1002_adsr_202300097 crossref_primary_10_1016_j_electacta_2021_138341 crossref_primary_10_1021_acsami_4c05499 crossref_primary_10_1002_adfm_202307729 crossref_primary_10_1002_pssa_202400086 crossref_primary_10_1016_j_bios_2024_116430 crossref_primary_10_3390_chemosensors9040079 crossref_primary_10_1007_s00604_021_04947_2 crossref_primary_10_1007_s12274_021_3856_3 crossref_primary_10_1016_j_snb_2023_133763 crossref_primary_10_1016_j_snb_2023_135027 crossref_primary_10_1002_admt_202000523 crossref_primary_10_1039_D0TC01112F crossref_primary_10_1002_adma_202300034 crossref_primary_10_1002_admt_202100293 crossref_primary_10_1002_advs_202400595 crossref_primary_10_1016_j_electacta_2024_145111 crossref_primary_10_1109_LSENS_2022_3166345 crossref_primary_10_1088_2058_8585_ac84ec crossref_primary_10_1002_VIW_20200077 crossref_primary_10_1021_acs_nanolett_4c04328 crossref_primary_10_1021_acsapm_0c00448 crossref_primary_10_1016_j_talanta_2021_122815 crossref_primary_10_1002_smtd_202301184 crossref_primary_10_1111_nbu_12581 crossref_primary_10_1002_adfm_202409153 crossref_primary_10_1021_acsaelm_3c01592 crossref_primary_10_1002_aisy_202000156 crossref_primary_10_1016_j_jciso_2021_100007 crossref_primary_10_1021_acsaelm_0c00735 crossref_primary_10_1002_adma_202000270 crossref_primary_10_1002_adma_202306252 crossref_primary_10_1016_j_cej_2025_160253 crossref_primary_10_1002_adma_202403758 crossref_primary_10_1002_rpm_20230022 crossref_primary_10_1007_s40242_024_4176_4 crossref_primary_10_1021_acsaelm_3c00638 crossref_primary_10_1126_sciadv_adi3536 crossref_primary_10_1039_D0TA11260G crossref_primary_10_1002_admi_202100961 crossref_primary_10_1021_acssensors_2c01827 crossref_primary_10_1002_ange_202410626 crossref_primary_10_1002_aelm_202100853 crossref_primary_10_1021_acs_chemmater_1c03797 crossref_primary_10_3390_molecules26030748 crossref_primary_10_1016_j_jelechem_2024_118722 crossref_primary_10_1021_acs_analchem_1c04960 crossref_primary_10_1002_admt_202100591 crossref_primary_10_1021_acssensors_2c01250 crossref_primary_10_1038_s41467_023_42840_z crossref_primary_10_3390_bios10120205 crossref_primary_10_1002_aelm_202200573 crossref_primary_10_1002_ange_202423013 crossref_primary_10_1016_j_ab_2022_114985 crossref_primary_10_1016_j_snr_2024_100265 crossref_primary_10_1002_adsr_202200052 crossref_primary_10_1002_app_51314 crossref_primary_10_1039_D2CS00920J crossref_primary_10_1016_j_wees_2024_03_002 crossref_primary_10_3390_polym14051022 crossref_primary_10_1002_smll_202206064 crossref_primary_10_1088_2058_8585_ac8aa6 crossref_primary_10_1109_JSEN_2021_3099209 crossref_primary_10_1016_j_bios_2023_115890 crossref_primary_10_1039_D1NR06244A crossref_primary_10_1557_mrs_2020_194 crossref_primary_10_1002_mds3_10160 crossref_primary_10_1016_j_mne_2024_100272 crossref_primary_10_1016_j_device_2024_100651 crossref_primary_10_1039_D4TA05288A crossref_primary_10_1038_s41928_022_00859_y crossref_primary_10_1073_pnas_2405933121 crossref_primary_10_1088_1402_4896_adab3f crossref_primary_10_1088_1674_4926_44_2_021601 crossref_primary_10_1002_adfm_202102149 crossref_primary_10_1002_adhm_202302173 crossref_primary_10_1021_acsapm_2c01030 crossref_primary_10_1002_adfm_202200922 crossref_primary_10_1021_acsaelm_4c01806 crossref_primary_10_3390_bios12111057 crossref_primary_10_3390_bios13030409 crossref_primary_10_1038_s44222_024_00180_7 crossref_primary_10_1088_1742_6596_2705_1_012002 crossref_primary_10_1002_admt_202000328 crossref_primary_10_1134_S1070428022100177 crossref_primary_10_1002_admt_202300605 crossref_primary_10_1021_acs_analchem_0c04378 crossref_primary_10_1002_adma_202207282 crossref_primary_10_1088_2631_7990_acfd69 crossref_primary_10_1002_adma_202110406 crossref_primary_10_3390_electronics14051023 crossref_primary_10_1002_smll_202311802 crossref_primary_10_3390_biom13060929 crossref_primary_10_1109_JSEN_2024_3350969 crossref_primary_10_1021_acsami_3c09286 crossref_primary_10_1002_adma_202209906 crossref_primary_10_1002_smtd_202301654 crossref_primary_10_1002_adma_202004790 crossref_primary_10_1016_j_snb_2024_135898 crossref_primary_10_1016_j_nanoen_2024_109411 |
Cites_doi | 10.1126/scitranslmed.aao3612 10.1016/j.bios.2014.09.042 10.1021/acsami.7b07668 10.1002/adhm.201601355 10.1016/j.tibtech.2017.10.022 10.1039/B713122D 10.1126/scitranslmed.aaf2593 10.1016/j.snb.2012.06.048 10.1002/app.41735 10.1126/sciadv.1601314 10.1038/nature16521 10.1073/pnas.1608780113 10.1016/j.aca.2010.01.009 10.1002/adma.201504366 10.1038/srep27582 10.1002/admi.201500353 10.1126/science.290.5495.1315 10.1038/nrc1041 10.1002/cphc.201300172 10.1152/japplphysiol.00745.2016 10.1038/s41598-017-02133-0 10.1038/nmat3554 10.1126/sciadv.aar2904 10.1002/aelm.201800381 10.1002/(SICI)1521-4109(199907)11:10/11<695::AID-ELAN695>3.0.CO;2-G 10.1063/1.4901332 10.1002/adhm.201601371 10.1039/C6NR02355J 10.1155/2015/164974 10.1002/adfm.201605271 10.1039/c3an01672b 10.1021/jacs.6b05280 10.1021/acs.accounts.8b00451 10.1021/ac202878q 10.1126/sciadv.1501101 10.1021/ac00269a003 10.1016/j.trac.2018.11.024 10.1038/nbt.3222 10.1021/acs.chemmater.7b00181 10.1002/elan.200503384 10.1021/ac50019a027 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 ADTPV AOWAS |
DOI | 10.1002/adhm.201901321 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef PubMed Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | oai_swepub_ki_se_475722 31714014 10_1002_adhm_201901321 ADHM201901321 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CBET #1804915 – fundername: National Science Foundation funderid: ECCS‐1542152 – fundername: Beijing Institute for Collaborative Innovation – fundername: Knut and Alice Wallenberg Foundation funderid: KAW 2014.0387 – fundername: Stanford Office of Technology Licensing – fundername: National Science Foundation grantid: CBET #1804915 – fundername: Knut and Alice Wallenberg Foundation grantid: KAW 2014.0387 – fundername: National Science Foundation grantid: ECCS-1542152 |
GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- P2W PQQKQ ROL SUPJJ SV3 WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN C45 CITATION EJD GODZA OVD TEORI NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 ADTPV AOWAS LH4 |
ID | FETCH-LOGICAL-c4771-3de71797a843876c442882f92bd8b266083303b19f18ac517d91af439554e94c3 |
ISSN | 2192-2640 2192-2659 |
IngestDate | Mon Aug 25 03:39:06 EDT 2025 Fri Jul 11 03:02:38 EDT 2025 Fri Jul 25 12:04:58 EDT 2025 Wed Feb 19 02:29:49 EST 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 03:06:36 EDT 2025 Wed Jan 22 16:40:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | sweat monitoring multiplexed devices organic electrochemical transistors wearable bioelectronics ion sensing |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4771-3de71797a843876c442882f92bd8b266083303b19f18ac517d91af439554e94c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6858-9638 |
PMID | 31714014 |
PQID | 2328231167 |
PQPubID | 2032434 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_475722 proquest_miscellaneous_2314020414 proquest_journals_2328231167 pubmed_primary_31714014 crossref_citationtrail_10_1002_adhm_201901321 crossref_primary_10_1002_adhm_201901321 wiley_primary_10_1002_adhm_201901321_ADHM201901321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2017; 7 2014; 116 2013; 4 2017; 3 2019; 5 2017; 27 1977; 49 2008; 18 2015; 33 2010; 662 2016; 529 2006; 18 2017; 29 2015; 67 2016; 6 2012; 171–172 2013; 14 2016; 2 2016; 3 2018; 4 2000 2013; 12 2013; 138 2012; 290 1984; 56 2015; 132 2015; 2015 2016; 113 2003; 3 1999; 11 2016 2018; 51 2016; 138 2017; 122 2016; 28 2018; 10 2016; 8 2018; 36 2019; 110 2012; 84 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Parlak O. (e_1_2_8_29_1) 2016 e_1_2_8_8_1 e_1_2_8_20_1 Bard A. J. (e_1_2_8_43_1) 2000 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 Khodagholy D. (e_1_2_8_34_1) 2013; 4 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 7031 year: 2013 publication-title: Analyst – volume: 110 start-page: 303 year: 2019 publication-title: TrAC, Trends Anal. Chem. – volume: 132 year: 2015 publication-title: J. Appl. Polym. Sci. – volume: 18 start-page: 116 year: 2008 publication-title: J. Mater. Chem. – volume: 33 start-page: 456 year: 2015 publication-title: Nat. Biotechnol. – volume: 171–172 start-page: 1327 year: 2012 publication-title: Sens. Actuators, B. – volume: 29 start-page: 3126 year: 2017 publication-title: Chem. Mater. – volume: 36 start-page: 45 year: 2018 publication-title: Trends Biotechnol. – volume: 290 start-page: 1315 year: 2012 publication-title: Science – volume: 662 start-page: 105 year: 2010 publication-title: Anal. Chim. Acta – volume: 8 start-page: 9976 year: 2016 publication-title: Nanoscale – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 122 start-page: 945 year: 2017 publication-title: J. Appl. Physiol. – volume: 116 year: 2014 publication-title: J. Appl. Phys. – volume: 7 start-page: 1950 year: 2017 publication-title: Sci. Rep. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 14 start-page: 2032 year: 2013 publication-title: ChemPhysChem – volume: 18 start-page: 7 year: 2006 publication-title: Electroanalysis – volume: 51 start-page: 2820 year: 2018 publication-title: Acc. Chem. Res. – volume: 3 start-page: 243 year: 2003 publication-title: Nat. Rev. Cancer – volume: 10 year: 2018 publication-title: Sci. Transl. Med. – volume: 2015 year: 2015 publication-title: Int. J. Anal. Chem. – start-page: 105 year: 2016 end-page: 122 – volume: 8 year: 2016 publication-title: Sci. Transl. Med. – volume: 84 start-page: 685 year: 2012 publication-title: Anal. Chem. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – year: 2000 publication-title: Electrochemical Methods: Principles and Applications – volume: 56 start-page: 20 year: 1984 publication-title: Anal. Chem. – volume: 6 start-page: 2 year: 2016 publication-title: Sci. Rep. – volume: 49 start-page: 1567 year: 1977 publication-title: Anal. Chem. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 11 start-page: 695 year: 1999 publication-title: Electroanalysis – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 67 start-page: 763 year: 2015 publication-title: Biosens. Bioelectron. – volume: 4 start-page: 1 year: 2013 publication-title: Nat. Commun. – volume: 28 start-page: 4373 year: 2016 publication-title: Adv. Mater. – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 101 year: 2013 publication-title: Nat. Mater. – ident: e_1_2_8_2_1 doi: 10.1126/scitranslmed.aao3612 – ident: e_1_2_8_24_1 doi: 10.1016/j.bios.2014.09.042 – ident: e_1_2_8_36_1 doi: 10.1021/acsami.7b07668 – year: 2000 ident: e_1_2_8_43_1 publication-title: Electrochemical Methods: Principles and Applications – ident: e_1_2_8_5_1 doi: 10.1002/adhm.201601355 – ident: e_1_2_8_33_1 doi: 10.1016/j.tibtech.2017.10.022 – ident: e_1_2_8_28_1 doi: 10.1039/B713122D – ident: e_1_2_8_14_1 doi: 10.1126/scitranslmed.aaf2593 – ident: e_1_2_8_19_1 doi: 10.1016/j.snb.2012.06.048 – ident: e_1_2_8_32_1 doi: 10.1002/app.41735 – ident: e_1_2_8_12_1 doi: 10.1126/sciadv.1601314 – ident: e_1_2_8_20_1 doi: 10.1038/nature16521 – ident: e_1_2_8_42_1 doi: 10.1073/pnas.1608780113 – ident: e_1_2_8_26_1 doi: 10.1016/j.aca.2010.01.009 – start-page: 105 volume-title: Materials for Chemical Sensing year: 2016 ident: e_1_2_8_29_1 – ident: e_1_2_8_39_1 doi: 10.1038/nature16521 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201504366 – ident: e_1_2_8_23_1 doi: 10.1038/srep27582 – ident: e_1_2_8_31_1 doi: 10.1002/admi.201500353 – ident: e_1_2_8_6_1 doi: 10.1126/science.290.5495.1315 – ident: e_1_2_8_3_1 doi: 10.1038/nrc1041 – ident: e_1_2_8_25_1 doi: 10.1002/cphc.201300172 – ident: e_1_2_8_17_1 doi: 10.1152/japplphysiol.00745.2016 – ident: e_1_2_8_13_1 doi: 10.1038/s41598-017-02133-0 – ident: e_1_2_8_22_1 doi: 10.1038/nmat3554 – ident: e_1_2_8_45_1 doi: 10.1126/sciadv.aar2904 – ident: e_1_2_8_27_1 doi: 10.1002/aelm.201800381 – ident: e_1_2_8_41_1 doi: 10.1002/(SICI)1521-4109(199907)11:10/11<695::AID-ELAN695>3.0.CO;2-G – ident: e_1_2_8_18_1 doi: 10.1063/1.4901332 – ident: e_1_2_8_8_1 doi: 10.1002/adhm.201601371 – ident: e_1_2_8_30_1 doi: 10.1039/C6NR02355J – ident: e_1_2_8_11_1 doi: 10.1155/2015/164974 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.201605271 – ident: e_1_2_8_16_1 doi: 10.1039/c3an01672b – ident: e_1_2_8_44_1 doi: 10.1021/jacs.6b05280 – ident: e_1_2_8_4_1 doi: 10.1021/acs.accounts.8b00451 – ident: e_1_2_8_21_1 doi: 10.1021/ac202878q – ident: e_1_2_8_7_1 doi: 10.1126/sciadv.1501101 – volume: 4 start-page: 1 year: 2013 ident: e_1_2_8_34_1 publication-title: Nat. Commun. – ident: e_1_2_8_37_1 doi: 10.1021/ac00269a003 – ident: e_1_2_8_15_1 doi: 10.1016/j.trac.2018.11.024 – ident: e_1_2_8_1_1 doi: 10.1038/nbt.3222 – ident: e_1_2_8_35_1 doi: 10.1021/acs.chemmater.7b00181 – ident: e_1_2_8_38_1 doi: 10.1002/elan.200503384 – ident: e_1_2_8_40_1 doi: 10.1021/ac50019a027 |
SSID | ssj0000651681 |
Score | 2.5565755 |
Snippet | Wearable health monitoring has garnered considerable interest from the healthcare industry as an evolutionary alternative to standard practices with the... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1901321 |
SubjectTerms | Ammonium Biomarkers Biosensors Calcium Calcium ions Diagnosis ion sensing Laser arrays multiplexed devices Multiplexing organic electrochemical transistors Perspiration Physiology Selectivity Semiconductor devices Sensors Styrene Styrenes Substrates Sweat sweat monitoring Transistors wearable bioelectronics Wearable technology |
Title | Wearable Organic Electrochemical Transistor Patch for Multiplexed Sensing of Calcium and Ammonium Ions from Human Perspiration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201901321 https://www.ncbi.nlm.nih.gov/pubmed/31714014 https://www.proquest.com/docview/2328231167 https://www.proquest.com/docview/2314020414 http://kipublications.ki.se/Default.aspx?queryparsed=id:142218857 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxJvCgoyE4IACtevmcay6XRXULhLbit4i23G2iKpdbVsJceDOv2bGdtyUXcTCJUocK6_5Mp4Zz3wm5CWWN3ZUoqOyVDISUpQRuEFZlJWyLVlXSm4wDjk-iYdT8WHWnTUaP2tZS9uNequ_X1lX8j9ShTaQK1bJ_oNkw0WhAfZBvrAFCcP2WjL-DDC1pU-uolK_GbhFbXTFAmBHIksEglz8em6TCsc-h_Ab2pqYv-7ynvtyob9s3YoZPXwHPHiPmTS2BMVF-zFh3k7NV-KsCGyrVIL5Lp8MbGH3EXZK3bj46aklhJjsRsAzeDk3nQ8vdBYi1P2KD_TTah2u0pdrWSBJ-cInrCxWa5-37KMXLKtlglglBwqTRzz2rODmijavpdMaGLmoqVyDJk3HlVlfGg8cv6ws5kg6UOu4T7x98jE_no5G-WQwm9wgBxw8Dt4kB72j8eg0BOzAVmOxXfQ2PF9FAtrm7_ZvsW_kXPJcAi3tvkdkTZrJHXLb-yK054B1lzTM8h65VWOovE9-VBCjHmL0N4jRHcSohRgFiNEaxKiHGF2V1EOMAsRoBTGKEKMIMWohRusQe0Cmx4NJfxj5JTsiLZKERZ3CJKDiE5mKDoyzWoB3m_Iy46pIFdiCYPCDzaRYVrJU6i5LiozJEoxisGpNJnTnIWkuV0vzmNBUJUqZQhodQ4d2JkstJCszlbDMqHbaIlH1jXPt-exxWZVF7pi4eY4yyYNMWuR16H_umFz-2POwElnu__Z1Dp4HzpizOGmRF-E06GKcYJNLs9piH4bhGMFEizxyog63AjsdYxlw5pWTfTiDBO--6SvsmVwkXQBgi3CLjb88bN47Go7D0ZNrPNtTcnP3Jx6S5uZia56BZb1Rzz3mfwEq5dAi |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+Organic+Electrochemical+Transistor+Patch+for+Multiplexed+Sensing+of+Calcium+and+Ammonium+Ions+from+Human+Perspiration&rft.jtitle=Advanced+healthcare+materials&rft.au=Keene%2C+Scott+T&rft.au=Fogarty%2C+Daragh&rft.au=Cooke%2C+Ross&rft.au=Casadevall%2C+Carlos+D&rft.date=2019-12-01&rft.issn=2192-2659&rft.eissn=2192-2659&rft.volume=8&rft.issue=24&rft.spage=e1901321&rft_id=info:doi/10.1002%2Fadhm.201901321&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |