Mechanisms of plant competition for nutrients, water and light

1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. 2. The complexity of resource competition is derived not only from the varia...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 27; no. 4; pp. 833 - 840
Main Authors Craine, Joseph M., Dybzinski, Ray
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing 01.08.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. 2. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. 3. Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. 4. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. 5. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants.
AbstractList Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing.The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources.Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance.Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition.In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants.Original Abstract: Lay Summary
Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. Here, we discuss the roles of supply pre‐emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre‐empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. Lay Summary
Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. Here, we discuss the roles of supply pre‐emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre‐empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. Lay Summary
Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. Lay Summary [PUBLICATION ABSTRACT]
1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. 2. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. 3. Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. 4. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. 5. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants.
Author Dybzinski, Ray
Craine, Joseph M.
Author_xml – sequence: 1
  givenname: Joseph M.
  surname: Craine
  fullname: Craine, Joseph M.
– sequence: 2
  givenname: Ray
  surname: Dybzinski
  fullname: Dybzinski, Ray
BookMark eNqFkE1LwzAYgIMoOD_OnoSCFw92e5M0bXMRZMwPmHjRc0jTVDO6pCYpw39v63QHL8vlhfA8yctzgg6tsxqhCwxTPJwZpjlLSUbZFBMo8QGa7G4O0QRIztMyy-kxOglhBQCcETJBt89afUhrwjokrkm6VtqYKLfudDTROJs0zie2j95oG8NNspFR-0TaOmnN-0c8Q0eNbIM-_52n6O1-8Tp_TJcvD0_zu2WqsqLAKS1xXVNZMV5yohjVFRBaVBJAZoqwSrOaqELXhDalhlxxqLisK-AZqJzKnJ6i6-27nXefvQ5RrE1Quh3W1a4PAmeY0wKAFQN69Q9dud7bYbuRwiXO84IP1GxLKe9C8LoRnTdr6b8EBjH2FGM9MdYTPz0Hg_0zlIlybBS9NO1-b2Na_bXvG3G_mP95l1tvFaLzO4_QrATOCf0GeEqRzw
CODEN FECOE5
CitedBy_id crossref_primary_10_1007_s11258_014_0411_2
crossref_primary_10_1007_s42729_024_01670_8
crossref_primary_10_1016_j_chaos_2022_112881
crossref_primary_10_1590_0102_33062019abb0152
crossref_primary_10_1016_j_geoderma_2018_12_009
crossref_primary_10_1590_01047760202430013270
crossref_primary_10_3389_ffgc_2020_00062
crossref_primary_10_1007_s11104_018_3616_7
crossref_primary_10_3390_f7080163
crossref_primary_10_1016_j_ecolind_2022_109805
crossref_primary_10_1186_s13750_021_00249_5
crossref_primary_10_1590_2447_536x_v29i1_2527
crossref_primary_10_1007_s10530_021_02674_6
crossref_primary_10_3375_043_037_0311
crossref_primary_10_1016_j_fcr_2024_109368
crossref_primary_10_1007_s10457_014_9783_5
crossref_primary_10_2139_ssrn_3986063
crossref_primary_10_3389_fpls_2016_00779
crossref_primary_10_3389_fpls_2016_00538
crossref_primary_10_1016_j_foreco_2019_05_020
crossref_primary_10_1038_s41598_017_00429_9
crossref_primary_10_1007_s11284_014_1173_y
crossref_primary_10_5194_hess_29_159_2025
crossref_primary_10_3390_agronomy14030583
crossref_primary_10_1016_j_agrformet_2022_108953
crossref_primary_10_1371_journal_pone_0316676
crossref_primary_10_1002_ece3_3439
crossref_primary_10_1016_j_foreco_2021_119605
crossref_primary_10_1111_gcb_13660
crossref_primary_10_1007_s11104_020_04473_9
crossref_primary_10_1038_s41598_020_60166_4
crossref_primary_10_1111_oik_08356
crossref_primary_10_1093_jpe_rtac072
crossref_primary_10_1007_s13162_020_00167_8
crossref_primary_10_1080_03650340_2019_1681588
crossref_primary_10_1007_s11258_024_01422_9
crossref_primary_10_3390_ijerph15050946
crossref_primary_10_3389_fpls_2022_961692
crossref_primary_10_1111_1365_2745_13248
crossref_primary_10_3389_fpls_2014_00260
crossref_primary_10_1016_j_fcr_2020_108054
crossref_primary_10_1111_1365_2745_12276
crossref_primary_10_2134_agronj2017_09_0554
crossref_primary_10_1111_jbi_13447
crossref_primary_10_3389_fpls_2022_813417
crossref_primary_10_1016_j_catena_2022_106426
crossref_primary_10_1007_s11104_018_3812_5
crossref_primary_10_1093_aob_mcad100
crossref_primary_10_1016_j_foreco_2023_121572
crossref_primary_10_1093_jpe_rty037
crossref_primary_10_1007_s12224_024_09446_9
crossref_primary_10_1371_journal_pone_0316565
crossref_primary_10_2989_20702620_2016_1207133
crossref_primary_10_3390_agronomy11040679
crossref_primary_10_1111_1365_2745_14204
crossref_primary_10_3390_f12101376
crossref_primary_10_1038_s44264_024_00039_9
crossref_primary_10_1016_j_scitotenv_2017_10_010
crossref_primary_10_1111_pce_14543
crossref_primary_10_1016_j_foreco_2023_121103
crossref_primary_10_3389_fmicb_2020_01260
crossref_primary_10_1016_j_cropro_2022_105981
crossref_primary_10_1093_aob_mcab057
crossref_primary_10_1016_j_baae_2022_03_001
crossref_primary_10_1146_annurev_ecolsys_102722_011653
crossref_primary_10_3390_plants6040046
crossref_primary_10_1093_aob_mcw228
crossref_primary_10_1016_j_foreco_2021_119883
crossref_primary_10_1111_1365_2745_13384
crossref_primary_10_1111_pce_12330
crossref_primary_10_3389_fpls_2020_01212
crossref_primary_10_1093_aob_mcab064
crossref_primary_10_3390_plants11182421
crossref_primary_10_1007_s11104_019_04406_1
crossref_primary_10_1016_j_agee_2016_06_035
crossref_primary_10_1002_ecs2_4156
crossref_primary_10_1007_s10530_018_1664_9
crossref_primary_10_1088_1755_1315_465_1_012018
crossref_primary_10_1007_s10530_019_01933_x
crossref_primary_10_1016_j_catena_2018_01_019
crossref_primary_10_1016_j_actao_2023_103974
crossref_primary_10_1016_j_isci_2020_100819
crossref_primary_10_1016_j_ecolmodel_2023_110529
crossref_primary_10_1002_ece3_5532
crossref_primary_10_1007_s10668_023_03489_2
crossref_primary_10_3390_f12070851
crossref_primary_10_1111_pce_14884
crossref_primary_10_1002_ldr_4335
crossref_primary_10_1016_j_envexpbot_2023_105492
crossref_primary_10_1016_j_foreco_2021_119647
crossref_primary_10_1016_j_ecolmodel_2023_110410
crossref_primary_10_3389_fpls_2021_699085
crossref_primary_10_1038_s41598_023_48152_y
crossref_primary_10_1016_j_envexpbot_2020_104042
crossref_primary_10_1016_j_foreco_2014_09_020
crossref_primary_10_1016_j_scitotenv_2021_149213
crossref_primary_10_1111_jvs_12282
crossref_primary_10_1016_j_gecco_2020_e01262
crossref_primary_10_3390_f16030381
crossref_primary_10_1007_s11056_022_09941_x
crossref_primary_10_1088_1755_1315_465_1_012026
crossref_primary_10_1146_annurev_arplant_071720_015522
crossref_primary_10_3390_plants14010073
crossref_primary_10_3390_agronomy12020240
crossref_primary_10_1016_j_scitotenv_2020_138042
crossref_primary_10_3390_horticulturae8060485
crossref_primary_10_1016_j_scitotenv_2022_160411
crossref_primary_10_3389_ffgc_2023_1298968
crossref_primary_10_1111_1365_2745_13040
crossref_primary_10_1002_ecy_4395
crossref_primary_10_1007_s11104_025_07283_z
crossref_primary_10_1080_03650340_2021_1925652
crossref_primary_10_1080_17550874_2016_1265018
crossref_primary_10_3390_f13111768
crossref_primary_10_3390_plants9111474
crossref_primary_10_1016_j_ecolind_2021_107673
crossref_primary_10_56093_ijas_v87i9_74211
crossref_primary_10_1007_s11104_022_05681_1
crossref_primary_10_1371_journal_pone_0280100
crossref_primary_10_1007_s11104_020_04626_w
crossref_primary_10_1016_j_foreco_2022_120154
crossref_primary_10_1002_agj2_20351
crossref_primary_10_1007_s42729_024_01652_w
crossref_primary_10_1007_s10886_022_01377_z
crossref_primary_10_1137_21M144623X
crossref_primary_10_3390_f10100924
crossref_primary_10_3390_plants10091763
crossref_primary_10_1111_nph_18031
crossref_primary_10_3390_su151410748
crossref_primary_10_1016_j_semcdb_2017_08_051
crossref_primary_10_3389_fpls_2022_1047670
crossref_primary_10_3390_plants10102196
crossref_primary_10_1186_s40168_024_01763_7
crossref_primary_10_1080_15592324_2019_1692459
crossref_primary_10_3390_antiox13101268
crossref_primary_10_1093_aob_mcab089
crossref_primary_10_3390_ijerph192215230
crossref_primary_10_1016_j_foreco_2017_11_017
crossref_primary_10_1007_s12080_024_00579_3
crossref_primary_10_1071_FP15162
crossref_primary_10_1111_oik_10149
crossref_primary_10_1590_1983_40632024v5477864
crossref_primary_10_1080_21580103_2022_2063952
crossref_primary_10_2139_ssrn_4011550
crossref_primary_10_1021_acs_jafc_1c06306
crossref_primary_10_1111_gcb_15681
crossref_primary_10_1007_s11056_020_09775_5
crossref_primary_10_1111_1365_2435_13025
crossref_primary_10_1111_geb_12603
crossref_primary_10_1002_glr2_12022
crossref_primary_10_1007_s00442_018_4318_9
crossref_primary_10_3390_biology13060392
crossref_primary_10_3389_fmicb_2021_680267
crossref_primary_10_1002_ecm_1252
crossref_primary_10_1002_ece3_4818
crossref_primary_10_1016_j_nexres_2025_100174
crossref_primary_10_1016_j_scitotenv_2024_176826
crossref_primary_10_1002_ece3_9157
crossref_primary_10_1016_j_plaphy_2025_109530
crossref_primary_10_1111_ppl_12490
crossref_primary_10_5937_actaherb2102105N
crossref_primary_10_1007_s11104_021_05262_8
crossref_primary_10_1016_j_ecolmodel_2021_109531
crossref_primary_10_1111_geb_13928
crossref_primary_10_3390_plants10010091
crossref_primary_10_2478_boku_2020_0008
crossref_primary_10_1111_aec_12501
crossref_primary_10_1002_eco_2129
crossref_primary_10_1007_s42974_020_00027_2
crossref_primary_10_1111_aec_12869
crossref_primary_10_1016_j_fcr_2017_12_010
crossref_primary_10_1371_journal_pone_0230012
crossref_primary_10_1007_s00442_018_4120_8
crossref_primary_10_1098_rsos_201361
crossref_primary_10_1111_gcbb_12521
crossref_primary_10_1016_j_jhydrol_2022_128714
crossref_primary_10_1016_j_rhisph_2024_100921
crossref_primary_10_1007_s11258_021_01210_9
crossref_primary_10_1088_1748_9326_ab7b97
crossref_primary_10_1002_pld3_504
crossref_primary_10_1007_s00442_023_05454_2
crossref_primary_10_1016_j_catena_2024_108478
crossref_primary_10_1007_s11676_015_0190_1
crossref_primary_10_1080_17550874_2019_1572246
crossref_primary_10_3390_plants13070988
crossref_primary_10_3389_fpls_2016_00193
crossref_primary_10_3390_app11114995
crossref_primary_10_3390_f16010105
crossref_primary_10_3389_ffgc_2023_1236933
crossref_primary_10_1371_journal_pone_0148280
crossref_primary_10_1007_s11273_023_09920_9
crossref_primary_10_1016_j_agee_2016_04_021
crossref_primary_10_1016_j_envexpbot_2021_104412
crossref_primary_10_3390_f15091651
crossref_primary_10_5424_sjar_2016142_7562
crossref_primary_10_1016_j_foreco_2018_12_035
crossref_primary_10_1007_s00442_021_05096_2
crossref_primary_10_1016_j_baae_2021_03_012
crossref_primary_10_1111_nph_13970
crossref_primary_10_1007_s00468_024_02532_7
crossref_primary_10_1016_j_ecolind_2022_109610
crossref_primary_10_1007_s11104_024_06738_z
crossref_primary_10_1111_pce_13944
crossref_primary_10_1016_j_jtbi_2023_111670
crossref_primary_10_1016_j_cj_2020_12_004
crossref_primary_10_1016_j_foreco_2021_119249
crossref_primary_10_1111_plb_13448
crossref_primary_10_1007_s11104_022_05502_5
crossref_primary_10_1007_s44372_025_00095_6
crossref_primary_10_2139_ssrn_4138228
crossref_primary_10_1016_j_geoderma_2019_07_029
crossref_primary_10_1007_s10750_019_3909_8
crossref_primary_10_1080_17550874_2023_2286229
crossref_primary_10_3390_plants12081645
crossref_primary_10_1016_j_tree_2024_10_002
crossref_primary_10_1111_ele_14503
crossref_primary_10_1007_s11356_020_11734_8
crossref_primary_10_1111_1365_2435_13340
crossref_primary_10_3389_fpls_2024_1395393
crossref_primary_10_3390_f15010043
crossref_primary_10_1002_ajb2_1734
crossref_primary_10_1029_2019JG005306
crossref_primary_10_1016_j_catena_2021_105691
crossref_primary_10_1016_j_jhydrol_2020_125038
crossref_primary_10_3390_atmos12091135
crossref_primary_10_1111_1365_2435_12138
crossref_primary_10_1016_j_ecolind_2022_109510
crossref_primary_10_1007_s10342_024_01697_7
crossref_primary_10_1007_s00442_020_04739_0
crossref_primary_10_2135_cropsci2018_03_0155
crossref_primary_10_1080_02827581_2021_1992002
crossref_primary_10_1016_j_foreco_2021_119158
crossref_primary_10_1890_ES14_00017_1
crossref_primary_10_1007_s11258_024_01446_1
crossref_primary_10_1002_ecy_4446
crossref_primary_10_3390_plants9040523
crossref_primary_10_1007_s10265_018_1009_x
crossref_primary_10_1111_1365_2745_14087
crossref_primary_10_1111_plb_13103
crossref_primary_10_1016_j_foreco_2016_01_007
crossref_primary_10_3390_rs14194929
crossref_primary_10_1016_j_indcrop_2023_116254
crossref_primary_10_1016_j_foreco_2019_117481
crossref_primary_10_1007_s00468_020_02040_4
crossref_primary_10_3390_f16010158
crossref_primary_10_1111_oik_07706
crossref_primary_10_3389_fpls_2018_01261
crossref_primary_10_1071_CP22122
crossref_primary_10_1111_ele_13990
crossref_primary_10_1093_treephys_tpz024
crossref_primary_10_1016_j_foreco_2022_120544
crossref_primary_10_1086_729222
crossref_primary_10_1007_s11104_018_3896_y
crossref_primary_10_1080_0267257X_2017_1398769
crossref_primary_10_1002_hyp_70017
crossref_primary_10_1007_s10750_019_04053_8
crossref_primary_10_4236_as_2018_98070
crossref_primary_10_1093_jxb_erac048
crossref_primary_10_1016_j_actao_2020_103673
crossref_primary_10_1111_rec_13889
crossref_primary_10_1007_s00442_020_04694_w
crossref_primary_10_3389_fevo_2022_1000075
crossref_primary_10_1016_j_agwat_2019_105803
crossref_primary_10_1111_jvs_12633
crossref_primary_10_1016_j_ecoleng_2014_09_121
crossref_primary_10_3390_agronomy11112346
crossref_primary_10_1007_s11356_021_16037_0
crossref_primary_10_1177_194008291600900206
crossref_primary_10_1007_s13353_021_00609_4
crossref_primary_10_1016_j_pld_2023_04_003
crossref_primary_10_3389_fcosc_2022_874304
crossref_primary_10_1590_s2179_975x6821
crossref_primary_10_1371_journal_pone_0280922
crossref_primary_10_1111_1365_2435_13669
crossref_primary_10_1186_s12870_023_04375_9
crossref_primary_10_1111_1365_2435_14518
crossref_primary_10_3390_agronomy14123072
crossref_primary_10_1007_s10530_022_02983_4
crossref_primary_10_1016_j_apm_2021_11_032
crossref_primary_10_1007_s11104_024_06876_4
crossref_primary_10_1016_j_scitotenv_2021_147758
crossref_primary_10_1360_TB_2022_1250
crossref_primary_10_1002_ecy_3665
crossref_primary_10_17221_57_2024_CJGPB
crossref_primary_10_1016_j_ppees_2019_03_003
crossref_primary_10_1016_j_foreco_2022_120642
crossref_primary_10_1016_j_gecco_2024_e02958
crossref_primary_10_1111_ppl_14268
crossref_primary_10_2478_foecol_2021_0020
crossref_primary_10_1371_journal_pone_0182188
crossref_primary_10_31910_rudca_v27_n2_2024_2603
crossref_primary_10_1016_j_actao_2020_103530
crossref_primary_10_1021_acs_est_0c01051
crossref_primary_10_1038_s41586_022_05383_9
crossref_primary_10_1038_s41598_019_39947_z
crossref_primary_10_17660_ActaHortic_2020_1291_24
crossref_primary_10_3390_app12146963
crossref_primary_10_1016_j_foreco_2015_08_034
crossref_primary_10_1111_jse_12846
crossref_primary_10_1002_ece3_7137
crossref_primary_10_1016_j_agrformet_2022_109101
crossref_primary_10_1016_j_foreco_2021_119195
crossref_primary_10_1016_j_jaridenv_2024_105245
crossref_primary_10_1098_rsfs_2017_0052
crossref_primary_10_1002_ecy_3675
crossref_primary_10_1007_s00709_021_01729_8
crossref_primary_10_1038_s41598_024_69710_y
crossref_primary_10_1016_j_foreco_2018_07_055
crossref_primary_10_1111_aje_12585
crossref_primary_10_1111_plb_13149
crossref_primary_10_1016_j_fecs_2024_100208
crossref_primary_10_1002_ps_7604
crossref_primary_10_1016_j_foreco_2016_11_015
crossref_primary_10_1007_s11258_021_01155_z
crossref_primary_10_1016_j_agwat_2023_108353
crossref_primary_10_1002_ecs2_4945
crossref_primary_10_1016_j_scitotenv_2023_168910
crossref_primary_10_1093_treephys_tpac075
crossref_primary_10_3390_horticulturae9040504
crossref_primary_10_1080_21580103_2022_2039305
crossref_primary_10_1007_s00442_024_05657_1
crossref_primary_10_1016_j_gecco_2023_e02372
crossref_primary_10_1002_ecm_1592
crossref_primary_10_1093_aobpla_plw016
crossref_primary_10_1038_s41598_020_62046_3
crossref_primary_10_24072_pcjournal_433
crossref_primary_10_1007_s10452_017_9640_5
crossref_primary_10_1016_j_jaridenv_2018_02_008
crossref_primary_10_1111_grs_12435
crossref_primary_10_1111_jvs_12705
crossref_primary_10_1038_s41598_024_56898_2
crossref_primary_10_1111_mec_15548
crossref_primary_10_4236_ajps_2018_99143
crossref_primary_10_1016_j_envexpbot_2021_104372
crossref_primary_10_1016_j_foreco_2019_117450
crossref_primary_10_3390_rs14194870
crossref_primary_10_1007_s13205_017_0689_6
crossref_primary_10_1111_nph_18909
crossref_primary_10_1002_ecy_3531
crossref_primary_10_5965_223811712132022216
crossref_primary_10_1016_j_ppees_2019_125481
crossref_primary_10_1111_1365_2435_13610
crossref_primary_10_1002_ajb2_1219
crossref_primary_10_1016_j_geoderma_2023_116414
crossref_primary_10_1007_s00271_019_00625_7
crossref_primary_10_3389_fpls_2021_650616
crossref_primary_10_1186_s13750_021_00230_2
crossref_primary_10_1111_1365_2745_12993
crossref_primary_10_1093_treephys_tpae151
crossref_primary_10_1016_j_agee_2020_106931
crossref_primary_10_1111_oik_10931
crossref_primary_10_1098_rstb_2018_0182
crossref_primary_10_1007_s00442_017_4033_y
crossref_primary_10_1016_j_ecolmodel_2021_109857
crossref_primary_10_1016_j_scienta_2021_110393
crossref_primary_10_1007_s11829_020_09774_5
crossref_primary_10_1111_avsc_12502
crossref_primary_10_1155_aia_8847195
crossref_primary_10_1016_j_jhazmat_2020_124325
crossref_primary_10_1016_j_foreco_2016_10_025
crossref_primary_10_1080_15226514_2021_1926910
crossref_primary_10_1016_j_flora_2024_152556
crossref_primary_10_1111_wre_12554
crossref_primary_10_1007_s11258_024_01439_0
crossref_primary_10_1002_ajb2_1321
crossref_primary_10_1016_j_foreco_2020_117991
crossref_primary_10_1007_s13157_018_1099_1
crossref_primary_10_1002_ece3_2723
crossref_primary_10_1016_j_envexpbot_2025_106128
crossref_primary_10_1016_j_gloplacha_2018_12_001
crossref_primary_10_15446_agron_colomb_v42n2_115942
crossref_primary_10_1093_jpe_rtab009
crossref_primary_10_1111_nph_16892
crossref_primary_10_1016_j_envexpbot_2024_105834
crossref_primary_10_1007_s11676_020_01246_z
crossref_primary_10_1007_s11676_021_01395_9
crossref_primary_10_3390_f15061012
crossref_primary_10_1038_s41598_023_48421_w
crossref_primary_10_1080_15427528_2022_2044950
crossref_primary_10_1016_j_ecofro_2025_01_015
crossref_primary_10_1007_s11104_024_06796_3
crossref_primary_10_1093_aobpla_plu035
crossref_primary_10_3161_15052249PJE2019_67_1_001
crossref_primary_10_1016_j_foreco_2016_05_032
crossref_primary_10_1016_j_foreco_2024_122341
crossref_primary_10_1111_1365_2435_12841
crossref_primary_10_1007_s11104_024_06653_3
crossref_primary_10_1016_j_nbsj_2025_100212
crossref_primary_10_1007_s40502_024_00810_7
crossref_primary_10_1002_aps3_1239
crossref_primary_10_1093_jpe_rtac104
crossref_primary_10_1002_fes3_226
crossref_primary_10_1038_s41598_019_45702_1
crossref_primary_10_3390_app14125153
crossref_primary_10_1111_rec_14108
crossref_primary_10_1016_j_heliyon_2024_e30932
crossref_primary_10_1007_s11104_019_04148_0
crossref_primary_10_1142_S1793524518500249
crossref_primary_10_1051_bioconf_20249301020
crossref_primary_10_1016_j_pmpp_2024_102372
crossref_primary_10_1111_geb_13139
crossref_primary_10_1007_s11368_020_02583_6
crossref_primary_10_1093_jpe_rtv043
crossref_primary_10_1007_s40333_022_0105_x
crossref_primary_10_1007_s11104_024_07026_6
crossref_primary_10_3389_ffgc_2023_1225778
crossref_primary_10_1016_j_heliyon_2024_e28614
crossref_primary_10_1086_720269
crossref_primary_10_1111_1365_2745_12557
crossref_primary_10_3390_horticulturae8050430
crossref_primary_10_1002_ecy_2859
crossref_primary_10_1093_treephys_tpw012
crossref_primary_10_3389_fpls_2022_990541
crossref_primary_10_1007_s11258_024_01465_y
crossref_primary_10_1007_s42729_023_01294_4
crossref_primary_10_1016_j_biocon_2023_110242
crossref_primary_10_1111_oik_09990
crossref_primary_10_1186_s12870_024_05684_3
crossref_primary_10_1007_s10211_021_00385_8
crossref_primary_10_1016_j_ecoleng_2022_106592
crossref_primary_10_3390_f10121156
crossref_primary_10_1007_s11104_024_06906_1
crossref_primary_10_1016_j_foreco_2024_122444
crossref_primary_10_1111_wre_12635
crossref_primary_10_1016_j_eja_2021_126288
crossref_primary_10_1007_s10531_024_02804_1
crossref_primary_10_1111_ele_70059
crossref_primary_10_1146_annurev_ecolsys_121415_032123
crossref_primary_10_1093_treephys_tpad151
crossref_primary_10_1111_oik_10724
crossref_primary_10_5194_we_23_51_2023
crossref_primary_10_1016_j_baae_2021_09_003
crossref_primary_10_1111_rec_14322
crossref_primary_10_3390_f7030067
crossref_primary_10_1071_BT23107
crossref_primary_10_3390_plants11081051
crossref_primary_10_1016_j_ecolmodel_2023_110434
crossref_primary_10_3390_plants10112470
crossref_primary_10_1016_j_foreco_2017_08_049
crossref_primary_10_3390_agronomy13051422
crossref_primary_10_1002_ece3_5125
crossref_primary_10_1007_s00374_022_01679_0
crossref_primary_10_1007_s41348_024_00985_z
crossref_primary_10_3390_w16111482
crossref_primary_10_1080_00049158_2016_1160354
crossref_primary_10_1093_jpe_rtx001
crossref_primary_10_1002_ecm_1633
crossref_primary_10_1007_s12237_023_01266_y
crossref_primary_10_1016_j_flora_2024_152618
crossref_primary_10_1016_j_ese_2023_100257
crossref_primary_10_1016_j_jplph_2020_153284
crossref_primary_10_3390_agriculture10070256
crossref_primary_10_17221_208_2020_JFS
crossref_primary_10_1080_00049158_2018_1514578
crossref_primary_10_1007_s11248_024_00425_6
crossref_primary_10_1016_j_agee_2024_109419
crossref_primary_10_3390_land12061209
crossref_primary_10_3390_f11111163
crossref_primary_10_1016_j_fcr_2019_107632
crossref_primary_10_1016_j_agrformet_2020_108269
crossref_primary_10_1016_j_agee_2022_108086
crossref_primary_10_1111_afe_12431
crossref_primary_10_1016_j_ecolind_2022_109068
crossref_primary_10_1016_j_fcr_2020_107955
crossref_primary_10_1515_opag_2022_0329
crossref_primary_10_1007_s00468_018_1710_3
crossref_primary_10_1155_2024_9978908
crossref_primary_10_1038_s41396_019_0510_0
crossref_primary_10_1016_j_crope_2023_07_003
crossref_primary_10_1111_1365_2745_14411
crossref_primary_10_1111_pce_14334
crossref_primary_10_1016_j_scitotenv_2019_135874
crossref_primary_10_1111_nph_17888
crossref_primary_10_1007_s00442_019_04490_1
crossref_primary_10_1007_s10980_022_01553_2
crossref_primary_10_1016_j_foreco_2024_121693
crossref_primary_10_3389_fpls_2021_773676
crossref_primary_10_17221_10_2019_HORTSCI
crossref_primary_10_1016_j_gecco_2020_e01311
crossref_primary_10_3390_su12155951
crossref_primary_10_1002_ece3_6367
crossref_primary_10_1007_s11104_022_05379_4
crossref_primary_10_3389_fevo_2021_756344
crossref_primary_10_1111_rec_14004
crossref_primary_10_3389_fpls_2023_1243849
crossref_primary_10_1007_s11104_021_05083_9
crossref_primary_10_1093_jpe_rty006
Cites_doi 10.1086/519857
10.1126/science.1169640
10.5194/hess-5-629-2001
10.2136/sssaj1993.03615995005700050033x
10.2307/2937208
10.1046/j.1365-3040.1999.00454.x
10.1007/s004420050111
10.1016/S0169-5347(03)00061-2
10.2307/1313077
10.1007/978-3-662-22627-8
10.1111/j.1469-8137.2005.01386.x
10.1086/512045
10.2307/1940604
10.2307/2963479
10.1890/ES11-00023.1
10.1111/j.1365-3040.2007.01652.x
10.1111/j.1469-8137.2005.01349.x
10.1111/j.1365-2745.2008.01428.x
10.1073/pnas.0807754105
10.1371/journal.pone.0000499
10.1515/9781400830640
10.1038/nclimate1634
10.1111/j.1365-2486.2011.02451.x
10.2307/1935608
10.1086/374368
10.1016/0169-5347(90)90095-U
10.2307/1940605
10.1038/242344a0
10.1093/oso/9780195124927.001.0001
10.1890/03-0817
10.1111/1365-2435.12115
10.1093/aob/mci048
10.2307/1934659
10.1098/rspb.2007.0891
10.1007/BF00317729
10.1098/rspb.1999.0656
10.1890/08-0082.1
10.1111/j.1365-3040.2009.02070.x
10.1086/657992
10.1111/j.1365-2435.2006.01116.x
10.1007/s11104-006-9002-x
ContentType Journal Article
Copyright 2013 British Ecological Society
2013 The Authors. Functional Ecology © 2013 British Ecological Society
Functional Ecology © 2013 British Ecological Society
Copyright_xml – notice: 2013 British Ecological Society
– notice: 2013 The Authors. Functional Ecology © 2013 British Ecological Society
– notice: Functional Ecology © 2013 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
DOI 10.1111/1365-2435.12081
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Ecology Abstracts
CrossRef

Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 840
ExternalDocumentID 3027102811
10_1111_1365_2435_12081
FEC12081
23480992
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
AGHNM
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c4771-381dd3ab59892c53eb0237ba00a4c25be5d2c7ed23f8e06c90b9adb0940c63a63
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 14:06:27 EDT 2025
Mon Jul 14 10:28:48 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Tue Jul 01 01:15:41 EDT 2025
Wed Jan 22 17:01:24 EST 2025
Sun Aug 24 12:10:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4771-381dd3ab59892c53eb0237ba00a4c25be5d2c7ed23f8e06c90b9adb0940c63a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12081
PQID 1411816679
PQPubID 1066355
PageCount 8
ParticipantIDs proquest_miscellaneous_1419370057
proquest_journals_1411816679
crossref_primary_10_1111_1365_2435_12081
crossref_citationtrail_10_1111_1365_2435_12081
wiley_primary_10_1111_1365_2435_12081_FEC12081
jstor_primary_23480992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2013
Publisher Blackwell Publishing
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing
– name: Wiley Subscription Services, Inc
References 2007; 169
2010; 33
2004; 85
2013; 3
2011; 2
2013; 27
1969; 50
1997; 47
1991a; 72
1991; 72
1973; 242
2009
1998
1875
1999; 22
2008; 78
2008; 105
2003; 18
2008; 96
1999; 266
2007; 30
2011; 17
2004; 428
1938
2011; 177
1991b; 73
1977
1993; 57
2006; 20
1909
1997; 109
1990
2005; 166
1977; 58
2000
2007; 170
2001; 5
2007; 274
1993; 96
2005; 95
2006; 285
1983
2007; 2
2009; 324
2003; 164
1990; 5
1996; 66
1988
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_21_1
e_1_2_13_20_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_7_1
e_1_2_13_6_1
Tinker P.B. (e_1_2_13_38_1) 1977
Darwin C. (e_1_2_13_10_1) 1875
Hillel D. (e_1_2_13_19_1) 1998
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_39_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_14_1
e_1_2_13_15_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_32_1
e_1_2_13_31_1
e_1_2_13_11_1
e_1_2_13_34_1
Tilman D. (e_1_2_13_35_1) 1990
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_30_1
Weaver J.E. (e_1_2_13_45_1) 1938
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_28_1
Warming E. (e_1_2_13_44_1) 1909
References_xml – volume: 274
  start-page: 3039
  year: 2007
  end-page: 3047
  article-title: Understanding height‐structured competition in forests: is there an R* for light?
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 30
  start-page: 559
  year: 2007
  end-page: 569
  article-title: Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas‐fir
  publication-title: Plant Cell and Environment
– volume: 18
  start-page: 337
  year: 2003
  end-page: 343
  article-title: Plant height and evolutionary games
  publication-title: Trends in Ecology & Evolution
– year: 2009
– year: 1983
– volume: 2
  start-page: 48
  year: 2011
  article-title: Physiological drought tolerance and the structuring of tallgrass assemblages
  publication-title: Ecosphere
– volume: 50
  start-page: 27
  year: 1969
  end-page: 38
  article-title: Competition in the semidesert grass‐shrub type as influneced by root systems, growth habits, and soil moisture extraction
  publication-title: Ecology
– volume: 166
  start-page: 933
  year: 2005
  end-page: 940
  article-title: Supply pre‐emption, not concentration reduction, is the mechanism of competition for nutrients
  publication-title: New Phytologist
– volume: 5
  start-page: 360
  year: 1990
  end-page: 364
  article-title: Asymmetric competition in plant populations
  publication-title: Trends in Ecology & Evolution
– volume: 5
  start-page: 629
  year: 2001
  end-page: 644
  article-title: Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution
  publication-title: Hydrology and Earth System Sciences
– volume: 169
  start-page: 433
  year: 2007
  end-page: 442
  article-title: Are species adapted to their regeneration niche, adult niche, or both?
  publication-title: American Naturalist
– volume: 78
  start-page: 523
  year: 2008
  end-page: 545
  article-title: Scaling from trees to forests: tractable macroscopic equations for forest dynamics
  publication-title: Ecological Monographs
– volume: 27
  start-page: 886
  year: 2013
  end-page: 897
  article-title: Plant competition, temporal niches and implications for productivity and adaptability to climate change in water-limited environments
  publication-title: Functional Ecology
– year: 2000
– volume: 58
  start-page: 338
  year: 1977
  end-page: 348
  article-title: Resource competition between planktonic algae ‐ experimental and theoretical approach
  publication-title: Ecology
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY ‐ a global database of plant traits
  publication-title: Global Change Biology
– volume: 170
  start-page: 305
  year: 2007
  end-page: 318
  article-title: Resource use patterns predict long‐term outcomes of plant competition for nutrients and light
  publication-title: American Naturalist
– year: 1977
– volume: 242
  start-page: 344
  year: 1973
  end-page: 347
  article-title: Competitive exclusion in herbaceous vegetation
  publication-title: Nature
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– year: 1998
– volume: 66
  start-page: 1
  year: 1996
  end-page: 43
  article-title: Forest models defined by field measurements: estimation, error analysis and dynamics
  publication-title: Ecological Monographs
– start-page: 484
  year: 1990
– volume: 164
  start-page: S143
  year: 2003
  end-page: S164
  article-title: The evolution of plant functional variation: traits, spectra, and strategies
  publication-title: International Journal of Plant Sciences
– volume: 96
  start-page: 1252
  year: 2008
  end-page: 1265
  article-title: Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae)
  publication-title: Journal of Ecology
– volume: 20
  start-page: 533
  year: 2006
  end-page: 540
  article-title: Plant species traits and capacity for resource reduction predict yield and abundance under competition in nitrogen‐limited grassland
  publication-title: Functional Ecology
– year: 1938
– volume: 33
  start-page: 199
  year: 2010
  end-page: 210
  article-title: Micro‐scale water potential gradients visualized in soil around plant root tips using microbiosensors
  publication-title: Plant Cell and Environment
– year: 1988
  article-title: Plant Strategies and the Dynamics and Structure of Plant Communities
– year: 1909
– volume: 72
  start-page: 1050
  year: 1991
  end-page: 1065
  article-title: Components of plant competition along an experimental gradient of nitrogen availability
  publication-title: Ecology
– volume: 105
  start-page: 17018
  year: 2008
  end-page: 17022
  article-title: Predicting and understanding forest dynamics using a simple tractable model
  publication-title: Proceedings of the National Academy of Sciences
– volume: 72
  start-page: 1038
  year: 1991a
  end-page: 1049
  article-title: Dynamics of nitrogen competition between successional grasses
  publication-title: Ecology
– volume: 2
  start-page: e499
  year: 2007
  article-title: Differences in light interception in grass monocultures predict short‐term competitive outcomes under productive conditions
  publication-title: PLoS ONE
– year: 1875
– volume: 47
  start-page: 235
  year: 1997
  end-page: 242
  article-title: Hydraulic limits to tree height and tree growth
  publication-title: BioScience
– volume: 57
  start-page: 1361
  year: 1993
  end-page: 1367
  article-title: Simulating nutrient uptake by single or competing and contrasting root systems
  publication-title: Soil Science Society of America Journal
– volume: 96
  start-page: 169
  year: 1993
  end-page: 178
  article-title: Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest
  publication-title: Oecologia
– volume: 324
  start-page: 636
  year: 2009
  end-page: 638
  article-title: Competition for light causes plant biodiversity loss after eutrophication
  publication-title: Science
– volume: 109
  start-page: 507
  year: 1997
  end-page: 515
  article-title: Intra‐ and inter‐specific variation in canopy photosynthesis in a mixed deciduous forest
  publication-title: Oecologia
– volume: 177
  start-page: 153
  year: 2011
  end-page: 166
  article-title: Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual‐based model and quantitative comparisons to data
  publication-title: American Naturalist
– volume: 95
  start-page: 495
  year: 2005
  end-page: 506
  article-title: Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence
  publication-title: Annals of Botany
– volume: 85
  start-page: 2200
  year: 2004
  end-page: 2214
  article-title: Soil characteristics play a key role in modeling nutrient competition in plant communities
  publication-title: Ecology
– volume: 73
  start-page: 685
  year: 1991b
  end-page: 700
  article-title: Plant traits and resource reduction for five grasses growing on a nitrogen gradient
  publication-title: Ecology
– volume: 266
  start-page: 431
  year: 1999
  end-page: 435
  article-title: Plant root proliferation in nitrogen‐rich patches confers competitive advantage
  publication-title: Proceedings of the Royal Society of London ‐ Series B: Biological Sciences
– volume: 285
  start-page: 171
  year: 2006
  end-page: 185
  article-title: Competition for nutrients and optimal root allocation
  publication-title: Plant and Soil
– volume: 3
  start-page: 63
  year: 2013
  end-page: 67
  article-title: Global diversity of drought tolerance and grassland climate‐change resilience
  publication-title: Nature Climate Change
– volume: 22
  start-page: 811
  year: 1999
  end-page: 820
  article-title: Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete
  publication-title: Plant, Cell and Environment
– ident: e_1_2_13_11_1
  doi: 10.1086/519857
– volume-title: Origin of the Species
  year: 1875
  ident: e_1_2_13_10_1
– ident: e_1_2_13_17_1
  doi: 10.1126/science.1169640
– ident: e_1_2_13_43_1
  doi: 10.5194/hess-5-629-2001
– ident: e_1_2_13_31_1
  doi: 10.2136/sssaj1993.03615995005700050033x
– ident: e_1_2_13_37_1
  doi: 10.2307/2937208
– ident: e_1_2_13_20_1
  doi: 10.1046/j.1365-3040.1999.00454.x
– ident: e_1_2_13_4_1
  doi: 10.1007/s004420050111
– ident: e_1_2_13_14_1
  doi: 10.1016/S0169-5347(03)00061-2
– ident: e_1_2_13_29_1
  doi: 10.2307/1313077
– ident: e_1_2_13_49_1
  doi: 10.1007/978-3-662-22627-8
– volume-title: Solute Movement in the Soil‐root System
  year: 1977
  ident: e_1_2_13_38_1
– ident: e_1_2_13_8_1
  doi: 10.1111/j.1469-8137.2005.01386.x
– ident: e_1_2_13_23_1
  doi: 10.1086/512045
– ident: e_1_2_13_36_1
  doi: 10.2307/1940604
– ident: e_1_2_13_22_1
  doi: 10.2307/2963479
– ident: e_1_2_13_40_1
  doi: 10.1890/ES11-00023.1
– volume-title: Plant Ecology
  year: 1938
  ident: e_1_2_13_45_1
– ident: e_1_2_13_47_1
  doi: 10.1111/j.1365-3040.2007.01652.x
– ident: e_1_2_13_48_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_13_24_1
  doi: 10.1111/j.1365-2745.2008.01428.x
– ident: e_1_2_13_25_1
  doi: 10.1073/pnas.0807754105
– ident: e_1_2_13_41_1
  doi: 10.1371/journal.pone.0000499
– ident: e_1_2_13_7_1
  doi: 10.1515/9781400830640
– ident: e_1_2_13_9_1
  doi: 10.1038/nclimate1634
– ident: e_1_2_13_21_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_13_33_1
  doi: 10.2307/1935608
– ident: e_1_2_13_27_1
  doi: 10.1086/374368
– ident: e_1_2_13_42_1
  doi: 10.1016/0169-5347(90)90095-U
– ident: e_1_2_13_46_1
  doi: 10.2307/1940605
– ident: e_1_2_13_16_1
  doi: 10.1038/242344a0
– ident: e_1_2_13_39_1
  doi: 10.1093/oso/9780195124927.001.0001
– volume-title: The Oecology of Plants
  year: 1909
  ident: e_1_2_13_44_1
– ident: e_1_2_13_26_1
  doi: 10.1890/03-0817
– ident: e_1_2_13_34_1
– ident: e_1_2_13_30_1
  doi: 10.1111/1365-2435.12115
– ident: e_1_2_13_3_1
  doi: 10.1093/aob/mci048
– ident: e_1_2_13_5_1
  doi: 10.2307/1934659
– ident: e_1_2_13_2_1
  doi: 10.1098/rspb.2007.0891
– ident: e_1_2_13_13_1
  doi: 10.1007/BF00317729
– start-page: 484
  volume-title: Perspectives on Plant Competition
  year: 1990
  ident: e_1_2_13_35_1
– ident: e_1_2_13_28_1
  doi: 10.1098/rspb.1999.0656
– ident: e_1_2_13_32_1
  doi: 10.1890/08-0082.1
– ident: e_1_2_13_18_1
  doi: 10.1111/j.1365-3040.2009.02070.x
– ident: e_1_2_13_12_1
  doi: 10.1086/657992
– ident: e_1_2_13_15_1
  doi: 10.1111/j.1365-2435.2006.01116.x
– volume-title: Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations
  year: 1998
  ident: e_1_2_13_19_1
– ident: e_1_2_13_6_1
  doi: 10.1007/s11104-006-9002-x
SSID ssj0009522
Score 2.5925834
Snippet 1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the...
Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of...
Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the...
Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 833
SubjectTerms Competition
Ecological competition
light
Natural resources
nutrients
Plant competition
Plant ecology
Plant nutrition
Plant roots
Plants
resource competition
Soil nutrients
Soil water
SPECIAL FEATURE: MECHANISMS OF PLANT COMPETITION
Species
supply pre‐emption
water
Title Mechanisms of plant competition for nutrients, water and light
URI https://www.jstor.org/stable/23480992
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12081
https://www.proquest.com/docview/1411816679
https://www.proquest.com/docview/1419370057
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kIHjxXaxWWcGDBxPSzfsiSEkpQj2IBW9hXwGxpqVpEf31zmwetgUR8bYkOzDZyex8u_vNLCFXYU95PAy15egYFigZcy0e-dxyuVA-1xDkMswdHj0Ew7F3_-zXbELMhSnrQzQbbugZZr5GB-eiWHHykp8F0d7uMcckX-MThEWPbKXsbnmOwILYgkjrVsV9kMuzIb8Wl0pq4hroXIWuJvYM9oiotS4pJ6_2ciFs-blR0PFfn7VPditkSu_KX-mAbOn8kGyXd1V-QCuRVaudfCfHgUA1OxRH5HakMY_4pXgr6DSjswlYjUoDzA0xjAJApjmW_0f2xg19B5w7pzxXdIJbBMdkPEie-kOrup_Bkl4Y9iwI9kqBUf04ipn0XS0AAISCOw73JPOF9hWToVbMzSKwuowdEXMlsGKfDFweuG3Syqe5PiFUMCeG_wTQoRYe04rDtBI4WmVMepH0nQ6xa-uksipejndoTNJ6EYPjluK4pWbcOuS6EZiVdTt-7to25m76gR4RAGfWId3a_mnl2QUslTBVNwjCuEMum9fgk3jQwnM9XZo-gPowzxf0Nsb-TYd0kPRN4_SvAmdkh5kbOpCT2CWtxXypzwEnLcSFcYUvNzkDSQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kInrxXazPCB48uGWbfV8EkZb6qAdpobclrwWxbsW2iP56Z7LbWgUR8RbYJMxmMplvknkAnEQN7YsoMo5rEjRQMu45Ig6E4wmpA2FQyWUUO9y5C9s9_7of9OdiYYr8ELMLN5IMe16TgNOF9JyUFw5aqO7rDe5S9PUi1fW2ZtU9n0u8W7wk8DBxUNd6ZXof8ub5NsEXzVQ4J36BnfPg1Wqf1hqoKd2F08ljfTKWdfX-LaXj_35sHVZLcMouit20AQsm34SlolzlG7aaqmxVm5_xcTigPCBGW3DeMRRK_DB6GrFhxp4HyDimLDa3vmEMMTLLqQIAOXCcsVeEui9M5JoN6JZgG3qtZvey7ZQlGhzlR1HDQX2vNfI1SOKEq8AzEjFAJIXrCl_xQJpAcxUZzb0sRsarxJWJ0JKS9qnQE6FXhUo-zM0OMMndBLcKAkQjfW60wJMldI3OuPJjFbg1qE_Zk6oyfzmV0RikUzuG1i2ldUvtutXgdDbguUjd8XPXquX3rB_SESN25jXYn26AtBTuEVpLFK0bhlFSg-PZZxRLemsRuRlObB8EfhTqi3Rbbv9GQ9pqXtrG7l8HHMFyu9u5TW-v7m72YIXbgh3korgPlfHLxBwgbBrLQysXH4GvB2Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB9EqfSlWttg2li34EMfemGz9_0iSD7QtpFSKvh27NdBabwEL0HsX-_M3l1MAlLEt4XbPeZ2dnZ-u_ebGYCTuGcCGcfW4zbFA0oufE8mofR8qUwoLTq5nGKHx5fR-VXw7Tps2IQUC1Plh1heuJFluP2aDHxm8hUjr_hZ6O27PcEp-HoniHhCC3vwS6zk3a1-JIgo9dDV-nV2HyLzbLxgzTFV3MQ11LmKXZ3zGe2BasSuOCd_u4u56up_GxkdX_Rd-_CmhqbsrFpLb2HLFgfwqipWeY-toa5breFjdBwOqLeH8h2cji0FEv8pb0o2zdlsgmpj2iFzxwxjiJBZQfn_ib7xld0h0L1lsjBsQncE7-FqNPzdP_fqAg2eDuK456G3Nwa1GqZJKnToW4UIIFaScxloESobGqFja4SfJ6h2nXKVSqMoZZ-OfBn5LdgupoU9BKYET3GhIDy0KhDWSNxXIm5NLnSQ6JC3odtoJ9N19nIqojHJmlMMzVtG85a5eWvDl-WAWZW44-muLafuZT-UI0HkLNrQafSf1aZd4lmJYnWjKE7b8Hn5GI2S_rTIwk4Xrg_CPgr0Rbmdsv8nQzYa9l3jw3MHHMPuz8Eo-3Fx-f0jvBauWgfxEzuwPb9d2CPETHP1yVnFA2tlBhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+plant+competition+for+nutrients%2C+water+and+light&rft.jtitle=Functional+ecology&rft.au=Craine%2C+Joseph+M.&rft.au=Dybzinski%2C+Ray&rft.date=2013-08-01&rft.pub=Blackwell+Publishing&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=27&rft.issue=4&rft.spage=833&rft.epage=840&rft_id=info:doi/10.1111%2F1365-2435.12081&rft.externalDocID=23480992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon