Mechanisms of plant competition for nutrients, water and light
1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. 2. The complexity of resource competition is derived not only from the varia...
Saved in:
Published in | Functional ecology Vol. 27; no. 4; pp. 833 - 840 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing
01.08.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. 2. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. 3. Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. 4. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. 5. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. |
---|---|
AbstractList | Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing.The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources.Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance.Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition.In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants.Original Abstract: Lay Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. Here, we discuss the roles of supply pre‐emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre‐empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. Lay Summary Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. Here, we discuss the roles of supply pre‐emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre‐empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. Lay Summary Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. Lay Summary [PUBLICATION ABSTRACT] 1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the mechanisms that underlie resource competition is still developing. 2. The complexity of resource competition is derived not only from the variability of resource limitation in space and time and among species, but also from the complexity of the resources themselves. Nutrients, water and light each differ in their properties, which generates unique ways that plants compete for these resources. 3. Here, we discuss the roles of supply pre-emption and availability reduction in competition for the three resources when supplied evenly in space and time. Plants compete for nutrients by pre-empting nutrient supplies from coming into contact with neighbours, which requires maximizing root length. Although water is also a soil resource, competition for water is generally considered to occur by availability reduction, favouring plants that can withstand the lowest water potential. Because light is supplied from above plants, individuals that situate their leaves above those of neighbours benefit directly from increased photosynthetic rates and indirectly by reducing the growth of those neighbours via shade. In communities where juveniles recruit in the shade of adults, traits of the most competitive species are biased towards those that confer greater survivorship and growth at the juvenile stage, even if those traits come at the expense of adult performance. 4. Understanding the mechanisms of competition also reveals how competition has influenced the evolution of plant species. For example, nutrient competition has selected for plants to maintain higher root length and light competition plants that are taller, with deeper, flatter canopies than would be optimal in the absence of competition. 5. In all, while more research is needed on competition for heterogeneous resource supplies as well as for water, understanding the mechanisms of competition increases the predictability of interspecific interactions and reveals how competition has altered the evolution of plants. |
Author | Dybzinski, Ray Craine, Joseph M. |
Author_xml | – sequence: 1 givenname: Joseph M. surname: Craine fullname: Craine, Joseph M. – sequence: 2 givenname: Ray surname: Dybzinski fullname: Dybzinski, Ray |
BookMark | eNqFkE1LwzAYgIMoOD_OnoSCFw92e5M0bXMRZMwPmHjRc0jTVDO6pCYpw39v63QHL8vlhfA8yctzgg6tsxqhCwxTPJwZpjlLSUbZFBMo8QGa7G4O0QRIztMyy-kxOglhBQCcETJBt89afUhrwjokrkm6VtqYKLfudDTROJs0zie2j95oG8NNspFR-0TaOmnN-0c8Q0eNbIM-_52n6O1-8Tp_TJcvD0_zu2WqsqLAKS1xXVNZMV5yohjVFRBaVBJAZoqwSrOaqELXhDalhlxxqLisK-AZqJzKnJ6i6-27nXefvQ5RrE1Quh3W1a4PAmeY0wKAFQN69Q9dud7bYbuRwiXO84IP1GxLKe9C8LoRnTdr6b8EBjH2FGM9MdYTPz0Hg_0zlIlybBS9NO1-b2Na_bXvG3G_mP95l1tvFaLzO4_QrATOCf0GeEqRzw |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1007_s11258_014_0411_2 crossref_primary_10_1007_s42729_024_01670_8 crossref_primary_10_1016_j_chaos_2022_112881 crossref_primary_10_1590_0102_33062019abb0152 crossref_primary_10_1016_j_geoderma_2018_12_009 crossref_primary_10_1590_01047760202430013270 crossref_primary_10_3389_ffgc_2020_00062 crossref_primary_10_1007_s11104_018_3616_7 crossref_primary_10_3390_f7080163 crossref_primary_10_1016_j_ecolind_2022_109805 crossref_primary_10_1186_s13750_021_00249_5 crossref_primary_10_1590_2447_536x_v29i1_2527 crossref_primary_10_1007_s10530_021_02674_6 crossref_primary_10_3375_043_037_0311 crossref_primary_10_1016_j_fcr_2024_109368 crossref_primary_10_1007_s10457_014_9783_5 crossref_primary_10_2139_ssrn_3986063 crossref_primary_10_3389_fpls_2016_00779 crossref_primary_10_3389_fpls_2016_00538 crossref_primary_10_1016_j_foreco_2019_05_020 crossref_primary_10_1038_s41598_017_00429_9 crossref_primary_10_1007_s11284_014_1173_y crossref_primary_10_5194_hess_29_159_2025 crossref_primary_10_3390_agronomy14030583 crossref_primary_10_1016_j_agrformet_2022_108953 crossref_primary_10_1371_journal_pone_0316676 crossref_primary_10_1002_ece3_3439 crossref_primary_10_1016_j_foreco_2021_119605 crossref_primary_10_1111_gcb_13660 crossref_primary_10_1007_s11104_020_04473_9 crossref_primary_10_1038_s41598_020_60166_4 crossref_primary_10_1111_oik_08356 crossref_primary_10_1093_jpe_rtac072 crossref_primary_10_1007_s13162_020_00167_8 crossref_primary_10_1080_03650340_2019_1681588 crossref_primary_10_1007_s11258_024_01422_9 crossref_primary_10_3390_ijerph15050946 crossref_primary_10_3389_fpls_2022_961692 crossref_primary_10_1111_1365_2745_13248 crossref_primary_10_3389_fpls_2014_00260 crossref_primary_10_1016_j_fcr_2020_108054 crossref_primary_10_1111_1365_2745_12276 crossref_primary_10_2134_agronj2017_09_0554 crossref_primary_10_1111_jbi_13447 crossref_primary_10_3389_fpls_2022_813417 crossref_primary_10_1016_j_catena_2022_106426 crossref_primary_10_1007_s11104_018_3812_5 crossref_primary_10_1093_aob_mcad100 crossref_primary_10_1016_j_foreco_2023_121572 crossref_primary_10_1093_jpe_rty037 crossref_primary_10_1007_s12224_024_09446_9 crossref_primary_10_1371_journal_pone_0316565 crossref_primary_10_2989_20702620_2016_1207133 crossref_primary_10_3390_agronomy11040679 crossref_primary_10_1111_1365_2745_14204 crossref_primary_10_3390_f12101376 crossref_primary_10_1038_s44264_024_00039_9 crossref_primary_10_1016_j_scitotenv_2017_10_010 crossref_primary_10_1111_pce_14543 crossref_primary_10_1016_j_foreco_2023_121103 crossref_primary_10_3389_fmicb_2020_01260 crossref_primary_10_1016_j_cropro_2022_105981 crossref_primary_10_1093_aob_mcab057 crossref_primary_10_1016_j_baae_2022_03_001 crossref_primary_10_1146_annurev_ecolsys_102722_011653 crossref_primary_10_3390_plants6040046 crossref_primary_10_1093_aob_mcw228 crossref_primary_10_1016_j_foreco_2021_119883 crossref_primary_10_1111_1365_2745_13384 crossref_primary_10_1111_pce_12330 crossref_primary_10_3389_fpls_2020_01212 crossref_primary_10_1093_aob_mcab064 crossref_primary_10_3390_plants11182421 crossref_primary_10_1007_s11104_019_04406_1 crossref_primary_10_1016_j_agee_2016_06_035 crossref_primary_10_1002_ecs2_4156 crossref_primary_10_1007_s10530_018_1664_9 crossref_primary_10_1088_1755_1315_465_1_012018 crossref_primary_10_1007_s10530_019_01933_x crossref_primary_10_1016_j_catena_2018_01_019 crossref_primary_10_1016_j_actao_2023_103974 crossref_primary_10_1016_j_isci_2020_100819 crossref_primary_10_1016_j_ecolmodel_2023_110529 crossref_primary_10_1002_ece3_5532 crossref_primary_10_1007_s10668_023_03489_2 crossref_primary_10_3390_f12070851 crossref_primary_10_1111_pce_14884 crossref_primary_10_1002_ldr_4335 crossref_primary_10_1016_j_envexpbot_2023_105492 crossref_primary_10_1016_j_foreco_2021_119647 crossref_primary_10_1016_j_ecolmodel_2023_110410 crossref_primary_10_3389_fpls_2021_699085 crossref_primary_10_1038_s41598_023_48152_y crossref_primary_10_1016_j_envexpbot_2020_104042 crossref_primary_10_1016_j_foreco_2014_09_020 crossref_primary_10_1016_j_scitotenv_2021_149213 crossref_primary_10_1111_jvs_12282 crossref_primary_10_1016_j_gecco_2020_e01262 crossref_primary_10_3390_f16030381 crossref_primary_10_1007_s11056_022_09941_x crossref_primary_10_1088_1755_1315_465_1_012026 crossref_primary_10_1146_annurev_arplant_071720_015522 crossref_primary_10_3390_plants14010073 crossref_primary_10_3390_agronomy12020240 crossref_primary_10_1016_j_scitotenv_2020_138042 crossref_primary_10_3390_horticulturae8060485 crossref_primary_10_1016_j_scitotenv_2022_160411 crossref_primary_10_3389_ffgc_2023_1298968 crossref_primary_10_1111_1365_2745_13040 crossref_primary_10_1002_ecy_4395 crossref_primary_10_1007_s11104_025_07283_z crossref_primary_10_1080_03650340_2021_1925652 crossref_primary_10_1080_17550874_2016_1265018 crossref_primary_10_3390_f13111768 crossref_primary_10_3390_plants9111474 crossref_primary_10_1016_j_ecolind_2021_107673 crossref_primary_10_56093_ijas_v87i9_74211 crossref_primary_10_1007_s11104_022_05681_1 crossref_primary_10_1371_journal_pone_0280100 crossref_primary_10_1007_s11104_020_04626_w crossref_primary_10_1016_j_foreco_2022_120154 crossref_primary_10_1002_agj2_20351 crossref_primary_10_1007_s42729_024_01652_w crossref_primary_10_1007_s10886_022_01377_z crossref_primary_10_1137_21M144623X crossref_primary_10_3390_f10100924 crossref_primary_10_3390_plants10091763 crossref_primary_10_1111_nph_18031 crossref_primary_10_3390_su151410748 crossref_primary_10_1016_j_semcdb_2017_08_051 crossref_primary_10_3389_fpls_2022_1047670 crossref_primary_10_3390_plants10102196 crossref_primary_10_1186_s40168_024_01763_7 crossref_primary_10_1080_15592324_2019_1692459 crossref_primary_10_3390_antiox13101268 crossref_primary_10_1093_aob_mcab089 crossref_primary_10_3390_ijerph192215230 crossref_primary_10_1016_j_foreco_2017_11_017 crossref_primary_10_1007_s12080_024_00579_3 crossref_primary_10_1071_FP15162 crossref_primary_10_1111_oik_10149 crossref_primary_10_1590_1983_40632024v5477864 crossref_primary_10_1080_21580103_2022_2063952 crossref_primary_10_2139_ssrn_4011550 crossref_primary_10_1021_acs_jafc_1c06306 crossref_primary_10_1111_gcb_15681 crossref_primary_10_1007_s11056_020_09775_5 crossref_primary_10_1111_1365_2435_13025 crossref_primary_10_1111_geb_12603 crossref_primary_10_1002_glr2_12022 crossref_primary_10_1007_s00442_018_4318_9 crossref_primary_10_3390_biology13060392 crossref_primary_10_3389_fmicb_2021_680267 crossref_primary_10_1002_ecm_1252 crossref_primary_10_1002_ece3_4818 crossref_primary_10_1016_j_nexres_2025_100174 crossref_primary_10_1016_j_scitotenv_2024_176826 crossref_primary_10_1002_ece3_9157 crossref_primary_10_1016_j_plaphy_2025_109530 crossref_primary_10_1111_ppl_12490 crossref_primary_10_5937_actaherb2102105N crossref_primary_10_1007_s11104_021_05262_8 crossref_primary_10_1016_j_ecolmodel_2021_109531 crossref_primary_10_1111_geb_13928 crossref_primary_10_3390_plants10010091 crossref_primary_10_2478_boku_2020_0008 crossref_primary_10_1111_aec_12501 crossref_primary_10_1002_eco_2129 crossref_primary_10_1007_s42974_020_00027_2 crossref_primary_10_1111_aec_12869 crossref_primary_10_1016_j_fcr_2017_12_010 crossref_primary_10_1371_journal_pone_0230012 crossref_primary_10_1007_s00442_018_4120_8 crossref_primary_10_1098_rsos_201361 crossref_primary_10_1111_gcbb_12521 crossref_primary_10_1016_j_jhydrol_2022_128714 crossref_primary_10_1016_j_rhisph_2024_100921 crossref_primary_10_1007_s11258_021_01210_9 crossref_primary_10_1088_1748_9326_ab7b97 crossref_primary_10_1002_pld3_504 crossref_primary_10_1007_s00442_023_05454_2 crossref_primary_10_1016_j_catena_2024_108478 crossref_primary_10_1007_s11676_015_0190_1 crossref_primary_10_1080_17550874_2019_1572246 crossref_primary_10_3390_plants13070988 crossref_primary_10_3389_fpls_2016_00193 crossref_primary_10_3390_app11114995 crossref_primary_10_3390_f16010105 crossref_primary_10_3389_ffgc_2023_1236933 crossref_primary_10_1371_journal_pone_0148280 crossref_primary_10_1007_s11273_023_09920_9 crossref_primary_10_1016_j_agee_2016_04_021 crossref_primary_10_1016_j_envexpbot_2021_104412 crossref_primary_10_3390_f15091651 crossref_primary_10_5424_sjar_2016142_7562 crossref_primary_10_1016_j_foreco_2018_12_035 crossref_primary_10_1007_s00442_021_05096_2 crossref_primary_10_1016_j_baae_2021_03_012 crossref_primary_10_1111_nph_13970 crossref_primary_10_1007_s00468_024_02532_7 crossref_primary_10_1016_j_ecolind_2022_109610 crossref_primary_10_1007_s11104_024_06738_z crossref_primary_10_1111_pce_13944 crossref_primary_10_1016_j_jtbi_2023_111670 crossref_primary_10_1016_j_cj_2020_12_004 crossref_primary_10_1016_j_foreco_2021_119249 crossref_primary_10_1111_plb_13448 crossref_primary_10_1007_s11104_022_05502_5 crossref_primary_10_1007_s44372_025_00095_6 crossref_primary_10_2139_ssrn_4138228 crossref_primary_10_1016_j_geoderma_2019_07_029 crossref_primary_10_1007_s10750_019_3909_8 crossref_primary_10_1080_17550874_2023_2286229 crossref_primary_10_3390_plants12081645 crossref_primary_10_1016_j_tree_2024_10_002 crossref_primary_10_1111_ele_14503 crossref_primary_10_1007_s11356_020_11734_8 crossref_primary_10_1111_1365_2435_13340 crossref_primary_10_3389_fpls_2024_1395393 crossref_primary_10_3390_f15010043 crossref_primary_10_1002_ajb2_1734 crossref_primary_10_1029_2019JG005306 crossref_primary_10_1016_j_catena_2021_105691 crossref_primary_10_1016_j_jhydrol_2020_125038 crossref_primary_10_3390_atmos12091135 crossref_primary_10_1111_1365_2435_12138 crossref_primary_10_1016_j_ecolind_2022_109510 crossref_primary_10_1007_s10342_024_01697_7 crossref_primary_10_1007_s00442_020_04739_0 crossref_primary_10_2135_cropsci2018_03_0155 crossref_primary_10_1080_02827581_2021_1992002 crossref_primary_10_1016_j_foreco_2021_119158 crossref_primary_10_1890_ES14_00017_1 crossref_primary_10_1007_s11258_024_01446_1 crossref_primary_10_1002_ecy_4446 crossref_primary_10_3390_plants9040523 crossref_primary_10_1007_s10265_018_1009_x crossref_primary_10_1111_1365_2745_14087 crossref_primary_10_1111_plb_13103 crossref_primary_10_1016_j_foreco_2016_01_007 crossref_primary_10_3390_rs14194929 crossref_primary_10_1016_j_indcrop_2023_116254 crossref_primary_10_1016_j_foreco_2019_117481 crossref_primary_10_1007_s00468_020_02040_4 crossref_primary_10_3390_f16010158 crossref_primary_10_1111_oik_07706 crossref_primary_10_3389_fpls_2018_01261 crossref_primary_10_1071_CP22122 crossref_primary_10_1111_ele_13990 crossref_primary_10_1093_treephys_tpz024 crossref_primary_10_1016_j_foreco_2022_120544 crossref_primary_10_1086_729222 crossref_primary_10_1007_s11104_018_3896_y crossref_primary_10_1080_0267257X_2017_1398769 crossref_primary_10_1002_hyp_70017 crossref_primary_10_1007_s10750_019_04053_8 crossref_primary_10_4236_as_2018_98070 crossref_primary_10_1093_jxb_erac048 crossref_primary_10_1016_j_actao_2020_103673 crossref_primary_10_1111_rec_13889 crossref_primary_10_1007_s00442_020_04694_w crossref_primary_10_3389_fevo_2022_1000075 crossref_primary_10_1016_j_agwat_2019_105803 crossref_primary_10_1111_jvs_12633 crossref_primary_10_1016_j_ecoleng_2014_09_121 crossref_primary_10_3390_agronomy11112346 crossref_primary_10_1007_s11356_021_16037_0 crossref_primary_10_1177_194008291600900206 crossref_primary_10_1007_s13353_021_00609_4 crossref_primary_10_1016_j_pld_2023_04_003 crossref_primary_10_3389_fcosc_2022_874304 crossref_primary_10_1590_s2179_975x6821 crossref_primary_10_1371_journal_pone_0280922 crossref_primary_10_1111_1365_2435_13669 crossref_primary_10_1186_s12870_023_04375_9 crossref_primary_10_1111_1365_2435_14518 crossref_primary_10_3390_agronomy14123072 crossref_primary_10_1007_s10530_022_02983_4 crossref_primary_10_1016_j_apm_2021_11_032 crossref_primary_10_1007_s11104_024_06876_4 crossref_primary_10_1016_j_scitotenv_2021_147758 crossref_primary_10_1360_TB_2022_1250 crossref_primary_10_1002_ecy_3665 crossref_primary_10_17221_57_2024_CJGPB crossref_primary_10_1016_j_ppees_2019_03_003 crossref_primary_10_1016_j_foreco_2022_120642 crossref_primary_10_1016_j_gecco_2024_e02958 crossref_primary_10_1111_ppl_14268 crossref_primary_10_2478_foecol_2021_0020 crossref_primary_10_1371_journal_pone_0182188 crossref_primary_10_31910_rudca_v27_n2_2024_2603 crossref_primary_10_1016_j_actao_2020_103530 crossref_primary_10_1021_acs_est_0c01051 crossref_primary_10_1038_s41586_022_05383_9 crossref_primary_10_1038_s41598_019_39947_z crossref_primary_10_17660_ActaHortic_2020_1291_24 crossref_primary_10_3390_app12146963 crossref_primary_10_1016_j_foreco_2015_08_034 crossref_primary_10_1111_jse_12846 crossref_primary_10_1002_ece3_7137 crossref_primary_10_1016_j_agrformet_2022_109101 crossref_primary_10_1016_j_foreco_2021_119195 crossref_primary_10_1016_j_jaridenv_2024_105245 crossref_primary_10_1098_rsfs_2017_0052 crossref_primary_10_1002_ecy_3675 crossref_primary_10_1007_s00709_021_01729_8 crossref_primary_10_1038_s41598_024_69710_y crossref_primary_10_1016_j_foreco_2018_07_055 crossref_primary_10_1111_aje_12585 crossref_primary_10_1111_plb_13149 crossref_primary_10_1016_j_fecs_2024_100208 crossref_primary_10_1002_ps_7604 crossref_primary_10_1016_j_foreco_2016_11_015 crossref_primary_10_1007_s11258_021_01155_z crossref_primary_10_1016_j_agwat_2023_108353 crossref_primary_10_1002_ecs2_4945 crossref_primary_10_1016_j_scitotenv_2023_168910 crossref_primary_10_1093_treephys_tpac075 crossref_primary_10_3390_horticulturae9040504 crossref_primary_10_1080_21580103_2022_2039305 crossref_primary_10_1007_s00442_024_05657_1 crossref_primary_10_1016_j_gecco_2023_e02372 crossref_primary_10_1002_ecm_1592 crossref_primary_10_1093_aobpla_plw016 crossref_primary_10_1038_s41598_020_62046_3 crossref_primary_10_24072_pcjournal_433 crossref_primary_10_1007_s10452_017_9640_5 crossref_primary_10_1016_j_jaridenv_2018_02_008 crossref_primary_10_1111_grs_12435 crossref_primary_10_1111_jvs_12705 crossref_primary_10_1038_s41598_024_56898_2 crossref_primary_10_1111_mec_15548 crossref_primary_10_4236_ajps_2018_99143 crossref_primary_10_1016_j_envexpbot_2021_104372 crossref_primary_10_1016_j_foreco_2019_117450 crossref_primary_10_3390_rs14194870 crossref_primary_10_1007_s13205_017_0689_6 crossref_primary_10_1111_nph_18909 crossref_primary_10_1002_ecy_3531 crossref_primary_10_5965_223811712132022216 crossref_primary_10_1016_j_ppees_2019_125481 crossref_primary_10_1111_1365_2435_13610 crossref_primary_10_1002_ajb2_1219 crossref_primary_10_1016_j_geoderma_2023_116414 crossref_primary_10_1007_s00271_019_00625_7 crossref_primary_10_3389_fpls_2021_650616 crossref_primary_10_1186_s13750_021_00230_2 crossref_primary_10_1111_1365_2745_12993 crossref_primary_10_1093_treephys_tpae151 crossref_primary_10_1016_j_agee_2020_106931 crossref_primary_10_1111_oik_10931 crossref_primary_10_1098_rstb_2018_0182 crossref_primary_10_1007_s00442_017_4033_y crossref_primary_10_1016_j_ecolmodel_2021_109857 crossref_primary_10_1016_j_scienta_2021_110393 crossref_primary_10_1007_s11829_020_09774_5 crossref_primary_10_1111_avsc_12502 crossref_primary_10_1155_aia_8847195 crossref_primary_10_1016_j_jhazmat_2020_124325 crossref_primary_10_1016_j_foreco_2016_10_025 crossref_primary_10_1080_15226514_2021_1926910 crossref_primary_10_1016_j_flora_2024_152556 crossref_primary_10_1111_wre_12554 crossref_primary_10_1007_s11258_024_01439_0 crossref_primary_10_1002_ajb2_1321 crossref_primary_10_1016_j_foreco_2020_117991 crossref_primary_10_1007_s13157_018_1099_1 crossref_primary_10_1002_ece3_2723 crossref_primary_10_1016_j_envexpbot_2025_106128 crossref_primary_10_1016_j_gloplacha_2018_12_001 crossref_primary_10_15446_agron_colomb_v42n2_115942 crossref_primary_10_1093_jpe_rtab009 crossref_primary_10_1111_nph_16892 crossref_primary_10_1016_j_envexpbot_2024_105834 crossref_primary_10_1007_s11676_020_01246_z crossref_primary_10_1007_s11676_021_01395_9 crossref_primary_10_3390_f15061012 crossref_primary_10_1038_s41598_023_48421_w crossref_primary_10_1080_15427528_2022_2044950 crossref_primary_10_1016_j_ecofro_2025_01_015 crossref_primary_10_1007_s11104_024_06796_3 crossref_primary_10_1093_aobpla_plu035 crossref_primary_10_3161_15052249PJE2019_67_1_001 crossref_primary_10_1016_j_foreco_2016_05_032 crossref_primary_10_1016_j_foreco_2024_122341 crossref_primary_10_1111_1365_2435_12841 crossref_primary_10_1007_s11104_024_06653_3 crossref_primary_10_1016_j_nbsj_2025_100212 crossref_primary_10_1007_s40502_024_00810_7 crossref_primary_10_1002_aps3_1239 crossref_primary_10_1093_jpe_rtac104 crossref_primary_10_1002_fes3_226 crossref_primary_10_1038_s41598_019_45702_1 crossref_primary_10_3390_app14125153 crossref_primary_10_1111_rec_14108 crossref_primary_10_1016_j_heliyon_2024_e30932 crossref_primary_10_1007_s11104_019_04148_0 crossref_primary_10_1142_S1793524518500249 crossref_primary_10_1051_bioconf_20249301020 crossref_primary_10_1016_j_pmpp_2024_102372 crossref_primary_10_1111_geb_13139 crossref_primary_10_1007_s11368_020_02583_6 crossref_primary_10_1093_jpe_rtv043 crossref_primary_10_1007_s40333_022_0105_x crossref_primary_10_1007_s11104_024_07026_6 crossref_primary_10_3389_ffgc_2023_1225778 crossref_primary_10_1016_j_heliyon_2024_e28614 crossref_primary_10_1086_720269 crossref_primary_10_1111_1365_2745_12557 crossref_primary_10_3390_horticulturae8050430 crossref_primary_10_1002_ecy_2859 crossref_primary_10_1093_treephys_tpw012 crossref_primary_10_3389_fpls_2022_990541 crossref_primary_10_1007_s11258_024_01465_y crossref_primary_10_1007_s42729_023_01294_4 crossref_primary_10_1016_j_biocon_2023_110242 crossref_primary_10_1111_oik_09990 crossref_primary_10_1186_s12870_024_05684_3 crossref_primary_10_1007_s10211_021_00385_8 crossref_primary_10_1016_j_ecoleng_2022_106592 crossref_primary_10_3390_f10121156 crossref_primary_10_1007_s11104_024_06906_1 crossref_primary_10_1016_j_foreco_2024_122444 crossref_primary_10_1111_wre_12635 crossref_primary_10_1016_j_eja_2021_126288 crossref_primary_10_1007_s10531_024_02804_1 crossref_primary_10_1111_ele_70059 crossref_primary_10_1146_annurev_ecolsys_121415_032123 crossref_primary_10_1093_treephys_tpad151 crossref_primary_10_1111_oik_10724 crossref_primary_10_5194_we_23_51_2023 crossref_primary_10_1016_j_baae_2021_09_003 crossref_primary_10_1111_rec_14322 crossref_primary_10_3390_f7030067 crossref_primary_10_1071_BT23107 crossref_primary_10_3390_plants11081051 crossref_primary_10_1016_j_ecolmodel_2023_110434 crossref_primary_10_3390_plants10112470 crossref_primary_10_1016_j_foreco_2017_08_049 crossref_primary_10_3390_agronomy13051422 crossref_primary_10_1002_ece3_5125 crossref_primary_10_1007_s00374_022_01679_0 crossref_primary_10_1007_s41348_024_00985_z crossref_primary_10_3390_w16111482 crossref_primary_10_1080_00049158_2016_1160354 crossref_primary_10_1093_jpe_rtx001 crossref_primary_10_1002_ecm_1633 crossref_primary_10_1007_s12237_023_01266_y crossref_primary_10_1016_j_flora_2024_152618 crossref_primary_10_1016_j_ese_2023_100257 crossref_primary_10_1016_j_jplph_2020_153284 crossref_primary_10_3390_agriculture10070256 crossref_primary_10_17221_208_2020_JFS crossref_primary_10_1080_00049158_2018_1514578 crossref_primary_10_1007_s11248_024_00425_6 crossref_primary_10_1016_j_agee_2024_109419 crossref_primary_10_3390_land12061209 crossref_primary_10_3390_f11111163 crossref_primary_10_1016_j_fcr_2019_107632 crossref_primary_10_1016_j_agrformet_2020_108269 crossref_primary_10_1016_j_agee_2022_108086 crossref_primary_10_1111_afe_12431 crossref_primary_10_1016_j_ecolind_2022_109068 crossref_primary_10_1016_j_fcr_2020_107955 crossref_primary_10_1515_opag_2022_0329 crossref_primary_10_1007_s00468_018_1710_3 crossref_primary_10_1155_2024_9978908 crossref_primary_10_1038_s41396_019_0510_0 crossref_primary_10_1016_j_crope_2023_07_003 crossref_primary_10_1111_1365_2745_14411 crossref_primary_10_1111_pce_14334 crossref_primary_10_1016_j_scitotenv_2019_135874 crossref_primary_10_1111_nph_17888 crossref_primary_10_1007_s00442_019_04490_1 crossref_primary_10_1007_s10980_022_01553_2 crossref_primary_10_1016_j_foreco_2024_121693 crossref_primary_10_3389_fpls_2021_773676 crossref_primary_10_17221_10_2019_HORTSCI crossref_primary_10_1016_j_gecco_2020_e01311 crossref_primary_10_3390_su12155951 crossref_primary_10_1002_ece3_6367 crossref_primary_10_1007_s11104_022_05379_4 crossref_primary_10_3389_fevo_2021_756344 crossref_primary_10_1111_rec_14004 crossref_primary_10_3389_fpls_2023_1243849 crossref_primary_10_1007_s11104_021_05083_9 crossref_primary_10_1093_jpe_rty006 |
Cites_doi | 10.1086/519857 10.1126/science.1169640 10.5194/hess-5-629-2001 10.2136/sssaj1993.03615995005700050033x 10.2307/2937208 10.1046/j.1365-3040.1999.00454.x 10.1007/s004420050111 10.1016/S0169-5347(03)00061-2 10.2307/1313077 10.1007/978-3-662-22627-8 10.1111/j.1469-8137.2005.01386.x 10.1086/512045 10.2307/1940604 10.2307/2963479 10.1890/ES11-00023.1 10.1111/j.1365-3040.2007.01652.x 10.1111/j.1469-8137.2005.01349.x 10.1111/j.1365-2745.2008.01428.x 10.1073/pnas.0807754105 10.1371/journal.pone.0000499 10.1515/9781400830640 10.1038/nclimate1634 10.1111/j.1365-2486.2011.02451.x 10.2307/1935608 10.1086/374368 10.1016/0169-5347(90)90095-U 10.2307/1940605 10.1038/242344a0 10.1093/oso/9780195124927.001.0001 10.1890/03-0817 10.1111/1365-2435.12115 10.1093/aob/mci048 10.2307/1934659 10.1098/rspb.2007.0891 10.1007/BF00317729 10.1098/rspb.1999.0656 10.1890/08-0082.1 10.1111/j.1365-3040.2009.02070.x 10.1086/657992 10.1111/j.1365-2435.2006.01116.x 10.1007/s11104-006-9002-x |
ContentType | Journal Article |
Copyright | 2013 British Ecological Society 2013 The Authors. Functional Ecology © 2013 British Ecological Society Functional Ecology © 2013 British Ecological Society |
Copyright_xml | – notice: 2013 British Ecological Society – notice: 2013 The Authors. Functional Ecology © 2013 British Ecological Society – notice: Functional Ecology © 2013 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/1365-2435.12081 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Ecology Abstracts CrossRef Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 840 |
ExternalDocumentID | 3027102811 10_1111_1365_2435_12081 FEC12081 23480992 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX AGHNM CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
ID | FETCH-LOGICAL-c4771-381dd3ab59892c53eb0237ba00a4c25be5d2c7ed23f8e06c90b9adb0940c63a63 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 14:06:27 EDT 2025 Mon Jul 14 10:28:48 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Tue Jul 01 01:15:41 EDT 2025 Wed Jan 22 17:01:24 EST 2025 Sun Aug 24 12:10:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4771-381dd3ab59892c53eb0237ba00a4c25be5d2c7ed23f8e06c90b9adb0940c63a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12081 |
PQID | 1411816679 |
PQPubID | 1066355 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1419370057 proquest_journals_1411816679 crossref_primary_10_1111_1365_2435_12081 crossref_citationtrail_10_1111_1365_2435_12081 wiley_primary_10_1111_1365_2435_12081_FEC12081 jstor_primary_23480992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2013 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing – name: Wiley Subscription Services, Inc |
References | 2007; 169 2010; 33 2004; 85 2013; 3 2011; 2 2013; 27 1969; 50 1997; 47 1991a; 72 1991; 72 1973; 242 2009 1998 1875 1999; 22 2008; 78 2008; 105 2003; 18 2008; 96 1999; 266 2007; 30 2011; 17 2004; 428 1938 2011; 177 1991b; 73 1977 1993; 57 2006; 20 1909 1997; 109 1990 2005; 166 1977; 58 2000 2007; 170 2001; 5 2007; 274 1993; 96 2005; 95 2006; 285 1983 2007; 2 2009; 324 2003; 164 1990; 5 1996; 66 1988 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_21_1 e_1_2_13_20_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_7_1 e_1_2_13_6_1 Tinker P.B. (e_1_2_13_38_1) 1977 Darwin C. (e_1_2_13_10_1) 1875 Hillel D. (e_1_2_13_19_1) 1998 e_1_2_13_17_1 e_1_2_13_18_1 e_1_2_13_39_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_14_1 e_1_2_13_15_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_32_1 e_1_2_13_31_1 e_1_2_13_11_1 e_1_2_13_34_1 Tilman D. (e_1_2_13_35_1) 1990 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_30_1 Weaver J.E. (e_1_2_13_45_1) 1938 e_1_2_13_5_1 e_1_2_13_4_1 e_1_2_13_3_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_28_1 Warming E. (e_1_2_13_44_1) 1909 |
References_xml | – volume: 274 start-page: 3039 year: 2007 end-page: 3047 article-title: Understanding height‐structured competition in forests: is there an R* for light? publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 30 start-page: 559 year: 2007 end-page: 569 article-title: Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas‐fir publication-title: Plant Cell and Environment – volume: 18 start-page: 337 year: 2003 end-page: 343 article-title: Plant height and evolutionary games publication-title: Trends in Ecology & Evolution – year: 2009 – year: 1983 – volume: 2 start-page: 48 year: 2011 article-title: Physiological drought tolerance and the structuring of tallgrass assemblages publication-title: Ecosphere – volume: 50 start-page: 27 year: 1969 end-page: 38 article-title: Competition in the semidesert grass‐shrub type as influneced by root systems, growth habits, and soil moisture extraction publication-title: Ecology – volume: 166 start-page: 933 year: 2005 end-page: 940 article-title: Supply pre‐emption, not concentration reduction, is the mechanism of competition for nutrients publication-title: New Phytologist – volume: 5 start-page: 360 year: 1990 end-page: 364 article-title: Asymmetric competition in plant populations publication-title: Trends in Ecology & Evolution – volume: 5 start-page: 629 year: 2001 end-page: 644 article-title: Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution publication-title: Hydrology and Earth System Sciences – volume: 169 start-page: 433 year: 2007 end-page: 442 article-title: Are species adapted to their regeneration niche, adult niche, or both? publication-title: American Naturalist – volume: 78 start-page: 523 year: 2008 end-page: 545 article-title: Scaling from trees to forests: tractable macroscopic equations for forest dynamics publication-title: Ecological Monographs – volume: 27 start-page: 886 year: 2013 end-page: 897 article-title: Plant competition, temporal niches and implications for productivity and adaptability to climate change in water-limited environments publication-title: Functional Ecology – year: 2000 – volume: 58 start-page: 338 year: 1977 end-page: 348 article-title: Resource competition between planktonic algae ‐ experimental and theoretical approach publication-title: Ecology – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY ‐ a global database of plant traits publication-title: Global Change Biology – volume: 170 start-page: 305 year: 2007 end-page: 318 article-title: Resource use patterns predict long‐term outcomes of plant competition for nutrients and light publication-title: American Naturalist – year: 1977 – volume: 242 start-page: 344 year: 1973 end-page: 347 article-title: Competitive exclusion in herbaceous vegetation publication-title: Nature – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – year: 1998 – volume: 66 start-page: 1 year: 1996 end-page: 43 article-title: Forest models defined by field measurements: estimation, error analysis and dynamics publication-title: Ecological Monographs – start-page: 484 year: 1990 – volume: 164 start-page: S143 year: 2003 end-page: S164 article-title: The evolution of plant functional variation: traits, spectra, and strategies publication-title: International Journal of Plant Sciences – volume: 96 start-page: 1252 year: 2008 end-page: 1265 article-title: Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae) publication-title: Journal of Ecology – volume: 20 start-page: 533 year: 2006 end-page: 540 article-title: Plant species traits and capacity for resource reduction predict yield and abundance under competition in nitrogen‐limited grassland publication-title: Functional Ecology – year: 1938 – volume: 33 start-page: 199 year: 2010 end-page: 210 article-title: Micro‐scale water potential gradients visualized in soil around plant root tips using microbiosensors publication-title: Plant Cell and Environment – year: 1988 article-title: Plant Strategies and the Dynamics and Structure of Plant Communities – year: 1909 – volume: 72 start-page: 1050 year: 1991 end-page: 1065 article-title: Components of plant competition along an experimental gradient of nitrogen availability publication-title: Ecology – volume: 105 start-page: 17018 year: 2008 end-page: 17022 article-title: Predicting and understanding forest dynamics using a simple tractable model publication-title: Proceedings of the National Academy of Sciences – volume: 72 start-page: 1038 year: 1991a end-page: 1049 article-title: Dynamics of nitrogen competition between successional grasses publication-title: Ecology – volume: 2 start-page: e499 year: 2007 article-title: Differences in light interception in grass monocultures predict short‐term competitive outcomes under productive conditions publication-title: PLoS ONE – year: 1875 – volume: 47 start-page: 235 year: 1997 end-page: 242 article-title: Hydraulic limits to tree height and tree growth publication-title: BioScience – volume: 57 start-page: 1361 year: 1993 end-page: 1367 article-title: Simulating nutrient uptake by single or competing and contrasting root systems publication-title: Soil Science Society of America Journal – volume: 96 start-page: 169 year: 1993 end-page: 178 article-title: Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest publication-title: Oecologia – volume: 324 start-page: 636 year: 2009 end-page: 638 article-title: Competition for light causes plant biodiversity loss after eutrophication publication-title: Science – volume: 109 start-page: 507 year: 1997 end-page: 515 article-title: Intra‐ and inter‐specific variation in canopy photosynthesis in a mixed deciduous forest publication-title: Oecologia – volume: 177 start-page: 153 year: 2011 end-page: 166 article-title: Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual‐based model and quantitative comparisons to data publication-title: American Naturalist – volume: 95 start-page: 495 year: 2005 end-page: 506 article-title: Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence publication-title: Annals of Botany – volume: 85 start-page: 2200 year: 2004 end-page: 2214 article-title: Soil characteristics play a key role in modeling nutrient competition in plant communities publication-title: Ecology – volume: 73 start-page: 685 year: 1991b end-page: 700 article-title: Plant traits and resource reduction for five grasses growing on a nitrogen gradient publication-title: Ecology – volume: 266 start-page: 431 year: 1999 end-page: 435 article-title: Plant root proliferation in nitrogen‐rich patches confers competitive advantage publication-title: Proceedings of the Royal Society of London ‐ Series B: Biological Sciences – volume: 285 start-page: 171 year: 2006 end-page: 185 article-title: Competition for nutrients and optimal root allocation publication-title: Plant and Soil – volume: 3 start-page: 63 year: 2013 end-page: 67 article-title: Global diversity of drought tolerance and grassland climate‐change resilience publication-title: Nature Climate Change – volume: 22 start-page: 811 year: 1999 end-page: 820 article-title: Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete publication-title: Plant, Cell and Environment – ident: e_1_2_13_11_1 doi: 10.1086/519857 – volume-title: Origin of the Species year: 1875 ident: e_1_2_13_10_1 – ident: e_1_2_13_17_1 doi: 10.1126/science.1169640 – ident: e_1_2_13_43_1 doi: 10.5194/hess-5-629-2001 – ident: e_1_2_13_31_1 doi: 10.2136/sssaj1993.03615995005700050033x – ident: e_1_2_13_37_1 doi: 10.2307/2937208 – ident: e_1_2_13_20_1 doi: 10.1046/j.1365-3040.1999.00454.x – ident: e_1_2_13_4_1 doi: 10.1007/s004420050111 – ident: e_1_2_13_14_1 doi: 10.1016/S0169-5347(03)00061-2 – ident: e_1_2_13_29_1 doi: 10.2307/1313077 – ident: e_1_2_13_49_1 doi: 10.1007/978-3-662-22627-8 – volume-title: Solute Movement in the Soil‐root System year: 1977 ident: e_1_2_13_38_1 – ident: e_1_2_13_8_1 doi: 10.1111/j.1469-8137.2005.01386.x – ident: e_1_2_13_23_1 doi: 10.1086/512045 – ident: e_1_2_13_36_1 doi: 10.2307/1940604 – ident: e_1_2_13_22_1 doi: 10.2307/2963479 – ident: e_1_2_13_40_1 doi: 10.1890/ES11-00023.1 – volume-title: Plant Ecology year: 1938 ident: e_1_2_13_45_1 – ident: e_1_2_13_47_1 doi: 10.1111/j.1365-3040.2007.01652.x – ident: e_1_2_13_48_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_13_24_1 doi: 10.1111/j.1365-2745.2008.01428.x – ident: e_1_2_13_25_1 doi: 10.1073/pnas.0807754105 – ident: e_1_2_13_41_1 doi: 10.1371/journal.pone.0000499 – ident: e_1_2_13_7_1 doi: 10.1515/9781400830640 – ident: e_1_2_13_9_1 doi: 10.1038/nclimate1634 – ident: e_1_2_13_21_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_13_33_1 doi: 10.2307/1935608 – ident: e_1_2_13_27_1 doi: 10.1086/374368 – ident: e_1_2_13_42_1 doi: 10.1016/0169-5347(90)90095-U – ident: e_1_2_13_46_1 doi: 10.2307/1940605 – ident: e_1_2_13_16_1 doi: 10.1038/242344a0 – ident: e_1_2_13_39_1 doi: 10.1093/oso/9780195124927.001.0001 – volume-title: The Oecology of Plants year: 1909 ident: e_1_2_13_44_1 – ident: e_1_2_13_26_1 doi: 10.1890/03-0817 – ident: e_1_2_13_34_1 – ident: e_1_2_13_30_1 doi: 10.1111/1365-2435.12115 – ident: e_1_2_13_3_1 doi: 10.1093/aob/mci048 – ident: e_1_2_13_5_1 doi: 10.2307/1934659 – ident: e_1_2_13_2_1 doi: 10.1098/rspb.2007.0891 – ident: e_1_2_13_13_1 doi: 10.1007/BF00317729 – start-page: 484 volume-title: Perspectives on Plant Competition year: 1990 ident: e_1_2_13_35_1 – ident: e_1_2_13_28_1 doi: 10.1098/rspb.1999.0656 – ident: e_1_2_13_32_1 doi: 10.1890/08-0082.1 – ident: e_1_2_13_18_1 doi: 10.1111/j.1365-3040.2009.02070.x – ident: e_1_2_13_12_1 doi: 10.1086/657992 – ident: e_1_2_13_15_1 doi: 10.1111/j.1365-2435.2006.01116.x – volume-title: Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations year: 1998 ident: e_1_2_13_19_1 – ident: e_1_2_13_6_1 doi: 10.1007/s11104-006-9002-x |
SSID | ssj0009522 |
Score | 2.5925834 |
Snippet | 1. Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the... Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of... Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of the... Summary Competition for resources has long been considered a prevalent force in structuring plant communities and natural selection, yet our understanding of... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 833 |
SubjectTerms | Competition Ecological competition light Natural resources nutrients Plant competition Plant ecology Plant nutrition Plant roots Plants resource competition Soil nutrients Soil water SPECIAL FEATURE: MECHANISMS OF PLANT COMPETITION Species supply pre‐emption water |
Title | Mechanisms of plant competition for nutrients, water and light |
URI | https://www.jstor.org/stable/23480992 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12081 https://www.proquest.com/docview/1411816679 https://www.proquest.com/docview/1419370057 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kIHjxXaxWWcGDBxPSzfsiSEkpQj2IBW9hXwGxpqVpEf31zmwetgUR8bYkOzDZyex8u_vNLCFXYU95PAy15egYFigZcy0e-dxyuVA-1xDkMswdHj0Ew7F3_-zXbELMhSnrQzQbbugZZr5GB-eiWHHykp8F0d7uMcckX-MThEWPbKXsbnmOwILYgkjrVsV9kMuzIb8Wl0pq4hroXIWuJvYM9oiotS4pJ6_2ciFs-blR0PFfn7VPditkSu_KX-mAbOn8kGyXd1V-QCuRVaudfCfHgUA1OxRH5HakMY_4pXgr6DSjswlYjUoDzA0xjAJApjmW_0f2xg19B5w7pzxXdIJbBMdkPEie-kOrup_Bkl4Y9iwI9kqBUf04ipn0XS0AAISCOw73JPOF9hWToVbMzSKwuowdEXMlsGKfDFweuG3Syqe5PiFUMCeG_wTQoRYe04rDtBI4WmVMepH0nQ6xa-uksipejndoTNJ6EYPjluK4pWbcOuS6EZiVdTt-7to25m76gR4RAGfWId3a_mnl2QUslTBVNwjCuEMum9fgk3jQwnM9XZo-gPowzxf0Nsb-TYd0kPRN4_SvAmdkh5kbOpCT2CWtxXypzwEnLcSFcYUvNzkDSQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kInrxXazPCB48uGWbfV8EkZb6qAdpobclrwWxbsW2iP56Z7LbWgUR8RbYJMxmMplvknkAnEQN7YsoMo5rEjRQMu45Ig6E4wmpA2FQyWUUO9y5C9s9_7of9OdiYYr8ELMLN5IMe16TgNOF9JyUFw5aqO7rDe5S9PUi1fW2ZtU9n0u8W7wk8DBxUNd6ZXof8ub5NsEXzVQ4J36BnfPg1Wqf1hqoKd2F08ljfTKWdfX-LaXj_35sHVZLcMouit20AQsm34SlolzlG7aaqmxVm5_xcTigPCBGW3DeMRRK_DB6GrFhxp4HyDimLDa3vmEMMTLLqQIAOXCcsVeEui9M5JoN6JZgG3qtZvey7ZQlGhzlR1HDQX2vNfI1SOKEq8AzEjFAJIXrCl_xQJpAcxUZzb0sRsarxJWJ0JKS9qnQE6FXhUo-zM0OMMndBLcKAkQjfW60wJMldI3OuPJjFbg1qE_Zk6oyfzmV0RikUzuG1i2ldUvtutXgdDbguUjd8XPXquX3rB_SESN25jXYn26AtBTuEVpLFK0bhlFSg-PZZxRLemsRuRlObB8EfhTqi3Rbbv9GQ9pqXtrG7l8HHMFyu9u5TW-v7m72YIXbgh3korgPlfHLxBwgbBrLQysXH4GvB2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxtBEB9EqfSlWttg2li34EMfemGz9_0iSD7QtpFSKvh27NdBabwEL0HsX-_M3l1MAlLEt4XbPeZ2dnZ-u_ebGYCTuGcCGcfW4zbFA0oufE8mofR8qUwoLTq5nGKHx5fR-VXw7Tps2IQUC1Plh1heuJFluP2aDHxm8hUjr_hZ6O27PcEp-HoniHhCC3vwS6zk3a1-JIgo9dDV-nV2HyLzbLxgzTFV3MQ11LmKXZ3zGe2BasSuOCd_u4u56up_GxkdX_Rd-_CmhqbsrFpLb2HLFgfwqipWeY-toa5breFjdBwOqLeH8h2cji0FEv8pb0o2zdlsgmpj2iFzxwxjiJBZQfn_ib7xld0h0L1lsjBsQncE7-FqNPzdP_fqAg2eDuK456G3Nwa1GqZJKnToW4UIIFaScxloESobGqFja4SfJ6h2nXKVSqMoZZ-OfBn5LdgupoU9BKYET3GhIDy0KhDWSNxXIm5NLnSQ6JC3odtoJ9N19nIqojHJmlMMzVtG85a5eWvDl-WAWZW44-muLafuZT-UI0HkLNrQafSf1aZd4lmJYnWjKE7b8Hn5GI2S_rTIwk4Xrg_CPgr0Rbmdsv8nQzYa9l3jw3MHHMPuz8Eo-3Fx-f0jvBauWgfxEzuwPb9d2CPETHP1yVnFA2tlBhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+plant+competition+for+nutrients%2C+water+and+light&rft.jtitle=Functional+ecology&rft.au=Craine%2C+Joseph+M.&rft.au=Dybzinski%2C+Ray&rft.date=2013-08-01&rft.pub=Blackwell+Publishing&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=27&rft.issue=4&rft.spage=833&rft.epage=840&rft_id=info:doi/10.1111%2F1365-2435.12081&rft.externalDocID=23480992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |