Temperature‐Dependent Nucleation and Growth of Dendrite‐Free Lithium Metal Anodes

It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li me...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie (International ed.) Vol. 58; no. 33; pp. 11364 - 11368
Main Authors Yan, Kang, Wang, Jiangyan, Zhao, Shuoqing, Zhou, Dong, Sun, Bing, Cui, Yi, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.08.2019
Wiley
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li‐ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite‐free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C. Electrode plating: Strong lithiophilicity and fast lithium‐ion migration at elevated temperature facilitate the formation of large and sparse Li nuclei, thus contributing to a compact and smooth Li deposition layer on anodes. Thus dendrite‐free Li metal anodes with excellent electrochemical performances were achieved for metal‐based batteries.
AbstractList It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high–energy–density Li–metal based batteries. Herein, we explored the temperature–dependent Li nucleation and growth behavior and constructed a dendrite–free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li–ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite–free Li growth behavior. In conclusion, as anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density Li-metal based batteries. Herein, we explored the temperature-dependent Li nucleation and growth behavior and constructed a dendrite-free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li-ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite-free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density Li-metal based batteries. Herein, we explored the temperature-dependent Li nucleation and growth behavior and constructed a dendrite-free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li-ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite-free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li‐ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite‐free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C. Electrode plating: Strong lithiophilicity and fast lithium‐ion migration at elevated temperature facilitate the formation of large and sparse Li nuclei, thus contributing to a compact and smooth Li deposition layer on anodes. Thus dendrite‐free Li metal anodes with excellent electrochemical performances were achieved for metal‐based batteries.
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density Li-metal based batteries. Herein, we explored the temperature-dependent Li nucleation and growth behavior and constructed a dendrite-free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li-ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite-free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.
Author Wang, Jiangyan
Zhao, Shuoqing
Yan, Kang
Wang, Guoxiu
Sun, Bing
Zhou, Dong
Cui, Yi
Author_xml – sequence: 1
  givenname: Kang
  surname: Yan
  fullname: Yan, Kang
  organization: University of Technology Sydney
– sequence: 2
  givenname: Jiangyan
  surname: Wang
  fullname: Wang, Jiangyan
  organization: Stanford University
– sequence: 3
  givenname: Shuoqing
  surname: Zhao
  fullname: Zhao, Shuoqing
  organization: University of Technology Sydney
– sequence: 4
  givenname: Dong
  surname: Zhou
  fullname: Zhou, Dong
  organization: University of Technology Sydney
– sequence: 5
  givenname: Bing
  surname: Sun
  fullname: Sun, Bing
  email: bing.sun@uts.edu.au
  organization: University of Technology Sydney
– sequence: 6
  givenname: Yi
  surname: Cui
  fullname: Cui, Yi
  email: yicui@stanford.edu
  organization: SLAC National Accelerator Laboratory
– sequence: 7
  givenname: Guoxiu
  orcidid: 0000-0003-4295-8578
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.au
  organization: University of Technology Sydney
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31148342$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1560798$$D View this record in Osti.gov
BookMark eNqF0blu3DAQBmDCcOC7dWkIceNGGx6SSJULXzGwcRq7JihyhKUhkRuSguHOj5BnzJOYm_UBGAhScYrvHwxn9tG28w4QOiZ4RjCm35SzMKOYtLimNdlCe6SmpGScs-1cV4yVXNRkF-3H-JC9ELjZQbuMkEqwiu6h-zsYVxBUmgL8ef59AStwBlwqbic9gErWu0I5U1wH_5iWhe-LiwyCTWt9FQCKhU1LO43FD0hqKObOG4iH6EuvhghHr-8Bur-6vDv_Xi5-Xt-czxelrjgnJamh6Q3TXYdpY7qu74BwgBaDqohgrKNKt3liaDquBFPY9KLnhtStVkbTnh2gr5u-PiYro85j6aX2zoFOktQN5q3I6GyDVsH_miAmOdqoYRiUAz9FSSljeUeE40xPP9EHPwWXv5BVI6jAlaizOnlVUzeCkatgRxWe5NtWM6g2QAcfY4Be5sn-7jIFZQdJsFwfT66PJ9-Pl2OzT7G3zv8MtJvAox3g6T9azm9vLj-yL2y4rbc
CitedBy_id crossref_primary_10_1016_j_jechem_2023_01_030
crossref_primary_10_1016_j_ensm_2022_05_005
crossref_primary_10_1021_acs_nanolett_9b03330
crossref_primary_10_1016_j_apsusc_2023_159145
crossref_primary_10_1039_D1QM00352F
crossref_primary_10_1021_acs_accounts_1c00120
crossref_primary_10_1093_oxfmat_itac005
crossref_primary_10_1021_acsaem_1c03078
crossref_primary_10_1038_s41467_021_23155_3
crossref_primary_10_1021_acs_nanolett_3c02777
crossref_primary_10_1039_D0TA06141G
crossref_primary_10_1021_acs_nanolett_1c03207
crossref_primary_10_1002_aenm_202002891
crossref_primary_10_1002_aenm_202400808
crossref_primary_10_1021_acsami_1c06131
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1016_j_ensm_2020_05_018
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123450
crossref_primary_10_1021_acsami_9b21993
crossref_primary_10_1016_j_ensm_2021_03_008
crossref_primary_10_1016_j_ensm_2020_05_019
crossref_primary_10_1016_j_ensm_2021_03_006
crossref_primary_10_1007_s12274_022_5066_z
crossref_primary_10_1021_acsami_2c00900
crossref_primary_10_1039_D2EE02411J
crossref_primary_10_1021_acs_chemmater_0c02981
crossref_primary_10_1021_acs_nanolett_3c03639
crossref_primary_10_1021_acsaem_1c02547
crossref_primary_10_34133_energymatadv_0053
crossref_primary_10_1002_anie_202002711
crossref_primary_10_1039_D2CS00606E
crossref_primary_10_1039_D2NH00354F
crossref_primary_10_1002_anie_202300016
crossref_primary_10_1016_j_mtener_2024_101557
crossref_primary_10_1002_aenm_202003039
crossref_primary_10_1002_adma_202004128
crossref_primary_10_1002_adfm_201907717
crossref_primary_10_1002_smll_202404722
crossref_primary_10_1021_acsenergylett_4c01098
crossref_primary_10_1002_adma_202311687
crossref_primary_10_1002_smll_202306829
crossref_primary_10_1073_pnas_2200392119
crossref_primary_10_1016_j_cej_2021_132897
crossref_primary_10_1007_s41918_021_00106_6
crossref_primary_10_1126_sciadv_adf1550
crossref_primary_10_1016_j_joule_2020_06_016
crossref_primary_10_1002_smll_202205233
crossref_primary_10_1002_cjce_25272
crossref_primary_10_1002_anie_202115884
crossref_primary_10_1002_adma_201908293
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1016_j_jallcom_2023_172988
crossref_primary_10_1007_s12598_024_02645_5
crossref_primary_10_1021_acsnano_9b08141
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1021_acs_chemrev_1c00838
crossref_primary_10_1002_advs_202003178
crossref_primary_10_1016_j_gee_2022_05_002
crossref_primary_10_1002_aenm_202203791
crossref_primary_10_1002_chem_202402032
crossref_primary_10_1002_aenm_202002297
crossref_primary_10_1039_D4TA01043D
crossref_primary_10_1002_adfm_202212349
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1016_j_esci_2023_100135
crossref_primary_10_1016_j_ensm_2022_11_049
crossref_primary_10_1016_j_ensm_2023_03_030
crossref_primary_10_1093_nsr_nwaa075
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1002_smll_202207742
crossref_primary_10_1002_adfm_202213648
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1016_j_carbon_2021_09_001
crossref_primary_10_1557_s43578_022_00558_6
crossref_primary_10_12677_NAT_2023_131002
crossref_primary_10_1002_aenm_202100046
crossref_primary_10_7498_aps_74_20241727
crossref_primary_10_1002_adma_202309726
crossref_primary_10_1016_j_ensm_2021_10_042
crossref_primary_10_1016_j_scib_2023_04_020
crossref_primary_10_2139_ssrn_4105035
crossref_primary_10_1002_aenm_202202568
crossref_primary_10_1002_aenm_202102242
crossref_primary_10_1021_acsenergylett_0c01545
crossref_primary_10_1039_D0TA09753E
crossref_primary_10_1039_D1SE01739J
crossref_primary_10_1021_acsnano_0c08691
crossref_primary_10_1016_j_mattod_2022_06_022
crossref_primary_10_1002_smll_202106427
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1002_adma_202311912
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_cej_2021_129739
crossref_primary_10_1002_aenm_201902254
crossref_primary_10_1016_j_ensm_2022_12_043
crossref_primary_10_1002_aenm_201902932
crossref_primary_10_1016_j_jpowsour_2021_230299
crossref_primary_10_1016_j_mtener_2021_100692
crossref_primary_10_1016_j_scib_2021_10_007
crossref_primary_10_1002_anie_202101627
crossref_primary_10_1002_adfm_202111314
crossref_primary_10_1002_adma_202401625
crossref_primary_10_1007_s40820_023_01234_y
crossref_primary_10_1002_admt_202400116
crossref_primary_10_1016_j_electacta_2021_139807
crossref_primary_10_1002_smsc_202100055
crossref_primary_10_1039_D1TA00842K
crossref_primary_10_1016_j_electacta_2022_140520
crossref_primary_10_1039_D2SE00910B
crossref_primary_10_1002_adfm_202004189
crossref_primary_10_1002_eem2_12444
crossref_primary_10_1016_j_nanoen_2021_106142
crossref_primary_10_1016_j_ensm_2021_10_028
crossref_primary_10_1021_acsaem_2c01245
crossref_primary_10_1016_j_ensm_2023_02_040
crossref_primary_10_1039_D4TA02704C
crossref_primary_10_1002_eem2_12243
crossref_primary_10_1002_ange_202115884
crossref_primary_10_1016_j_cej_2022_138074
crossref_primary_10_1002_ange_202002711
crossref_primary_10_1016_j_esci_2024_100281
crossref_primary_10_1021_acs_nanolett_1c04353
crossref_primary_10_1038_s41467_020_19246_2
crossref_primary_10_1016_j_mattod_2020_06_011
crossref_primary_10_1021_acsenergylett_3c02132
crossref_primary_10_1007_s12598_023_02565_w
crossref_primary_10_1016_j_ensm_2023_102897
crossref_primary_10_4271_14_13_03_0019
crossref_primary_10_1021_acsami_1c09492
crossref_primary_10_1016_j_ensm_2024_103306
crossref_primary_10_1016_j_mtener_2023_101328
crossref_primary_10_1088_2752_5724_acb3e8
crossref_primary_10_1016_j_ensm_2020_11_026
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1002_adfm_202106315
crossref_primary_10_1021_acs_nanolett_4c06505
crossref_primary_10_1002_aesr_202300001
crossref_primary_10_1016_j_isci_2021_103402
crossref_primary_10_1007_s11426_022_1486_1
crossref_primary_10_1016_j_nanoen_2021_106489
crossref_primary_10_1002_eem2_12109
crossref_primary_10_1039_D3TA08019F
crossref_primary_10_1016_j_electacta_2024_145220
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1002_adfm_202107136
crossref_primary_10_1002_ange_202300016
crossref_primary_10_1002_inf2_12411
crossref_primary_10_1002_adfm_202304433
crossref_primary_10_1016_j_joule_2023_12_012
crossref_primary_10_1149_1945_7111_ab6cf4
crossref_primary_10_1002_ange_202101976
crossref_primary_10_1016_j_jmst_2023_04_009
crossref_primary_10_1126_sciadv_adf9951
crossref_primary_10_1002_anie_202006783
crossref_primary_10_1016_j_mtener_2020_100538
crossref_primary_10_1002_adma_202002550
crossref_primary_10_1021_acs_iecr_4c03843
crossref_primary_10_1002_batt_202100292
crossref_primary_10_1002_adfm_202109568
crossref_primary_10_1002_aenm_202204007
crossref_primary_10_1016_j_mattod_2024_06_001
crossref_primary_10_1002_adfm_202002522
crossref_primary_10_1002_adma_202210111
crossref_primary_10_1016_j_jpowsour_2022_231338
crossref_primary_10_1016_j_pmatsci_2021_100821
crossref_primary_10_1016_j_ceramint_2023_07_254
crossref_primary_10_1021_acs_energyfuels_1c01904
crossref_primary_10_1021_acsnano_3c09120
crossref_primary_10_1016_j_jechem_2024_12_069
crossref_primary_10_1149_1945_7111_ac2d11
crossref_primary_10_1002_aenm_202000802
crossref_primary_10_1002_adfm_202106740
crossref_primary_10_1039_D1EE00110H
crossref_primary_10_1039_D2TA04974K
crossref_primary_10_1016_j_jpowsour_2024_234559
crossref_primary_10_1007_s10008_022_05189_9
crossref_primary_10_1002_cnl2_109
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1002_adfm_202401361
crossref_primary_10_1016_j_cej_2021_131889
crossref_primary_10_1039_D0MH00050G
crossref_primary_10_1039_D4CC02324B
crossref_primary_10_1002_batt_202200231
crossref_primary_10_1016_j_commatsci_2020_109919
crossref_primary_10_1002_aenm_202201190
crossref_primary_10_1002_ange_202101627
crossref_primary_10_1002_adfm_202102158
crossref_primary_10_1016_j_ensm_2024_103584
crossref_primary_10_2139_ssrn_4021812
crossref_primary_10_1002_adma_202300998
crossref_primary_10_1016_j_jmat_2021_10_006
crossref_primary_10_1016_j_ensm_2025_104176
crossref_primary_10_1002_aenm_202104021
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1149_1945_7111_ac0bf3
crossref_primary_10_1016_j_apenergy_2025_125720
crossref_primary_10_1002_anie_202101976
crossref_primary_10_1016_j_comptc_2021_113443
crossref_primary_10_1021_acs_nanolett_0c00819
crossref_primary_10_1039_D3TA05203F
crossref_primary_10_1016_j_esci_2024_100252
crossref_primary_10_1002_ange_202006783
crossref_primary_10_1016_j_ensm_2020_04_032
Cites_doi 10.1002/adma.201302877
10.1002/adfm.201902630
10.1038/s41467-018-06126-z
10.1126/sciadv.aau7728
10.1016/0013-4686(95)00204-R
10.1038/nature16502
10.1016/j.joule.2017.11.004
10.1038/s41560-019-0338-x
10.1002/adma.201703729
10.1016/S0022-0728(99)00221-1
10.1002/ange.201712702
10.1002/adma.201504117
10.1002/adma.201504526
10.1038/nnano.2017.16
10.1038/ncomms10992
10.1002/adfm.201500863
10.1038/nenergy.2016.10
10.1016/0013-4686(92)85056-Q
10.1002/adma.201808392
10.1007/BF00242094
10.1039/C3EE40795K
10.1021/acs.nanolett.6b04755
10.1002/anie.201712702
10.1002/aenm.201802964
10.1149/MA2007-02/10/732
10.1038/nmat2460
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
OIOZB
OTOTI
DOI 10.1002/anie.201905251
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 11368
ExternalDocumentID 1560798
31148342
10_1002_anie_201905251
ANIE201905251
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP160104340; DP170100436; DE180100036
– fundername: Australian Research Council
  grantid: DE180100036
– fundername: Australian Research Council
  grantid: DP160104340
– fundername: Australian Research Council
  grantid: DP170100436
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
AAPBV
ABHUG
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
B-7
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c4771-15e6fd3cbb026dbbfbe17ee90ea41833b2ac9806e6b7a83a0df8f7d159cadc2f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu May 18 22:38:44 EDT 2023
Fri Jul 11 04:31:19 EDT 2025
Fri Jul 25 10:35:25 EDT 2025
Wed Feb 19 02:35:39 EST 2025
Tue Jul 01 02:26:50 EDT 2025
Thu Apr 24 22:49:22 EDT 2025
Wed Jan 22 16:39:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords Li metal anodes
ion migration
temperature-dependent behavior
nucleation and growth
dendrite-free
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4771-15e6fd3cbb026dbbfbe17ee90ea41833b2ac9806e6b7a83a0df8f7d159cadc2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-76SF00515; DP160104340; DP170100436; DE180100036
ORCID 0000-0003-4295-8578
0000000342958578
OpenAccessLink https://www.osti.gov/servlets/purl/1560798
PMID 31148342
PQID 2268280485
PQPubID 946352
PageCount 5
ParticipantIDs osti_scitechconnect_1560798
proquest_miscellaneous_2233851170
proquest_journals_2268280485
pubmed_primary_31148342
crossref_citationtrail_10_1002_anie_201905251
crossref_primary_10_1002_anie_201905251
wiley_primary_10_1002_anie_201905251_ANIE201905251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 12, 2019
PublicationDateYYYYMMDD 2019-08-12
PublicationDate_xml – month: 08
  year: 2019
  text: August 12, 2019
  day: 12
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: United States
PublicationTitle Angewandte Chemie (International ed.)
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2018; 9
1995; 40
2019; 9
2015; 25
2016; 7
2019; 4
2016; 1
2018; 2
2019; 5
2019; 31
2017; 17
2018 2018; 57 130
2017; 12
2016; 529
2014; 26
2019
1999; 470
2009; 8
2017; 29
1992; 37
2016; 28
2014; 7
1996; 26
e_1_2_2_3_2
e_1_2_2_4_1
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_7_1
e_1_2_2_20_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_8_2
e_1_2_2_29_1
e_1_2_2_26_3
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_27_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_32_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_34_1
e_1_2_2_15_1
References_xml – volume: 26
  start-page: 255
  year: 1996
  end-page: 267
  publication-title: J. Appl. Electrochem.
– volume: 7
  start-page: 10992
  year: 2016
  publication-title: Nat. Commun.
– volume: 37
  start-page: 1199
  year: 1992
  end-page: 1205
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 7728
  year: 2019
  publication-title: Sci. Adv.
– start-page: 1902630
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 1808392
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  start-page: 513
  year: 2014
  end-page: 537
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 184
  year: 2018
  end-page: 193
  publication-title: Joule
– volume: 470
  start-page: 70
  year: 1999
  end-page: 76
  publication-title: J. Electroanal. Chem.
– volume: 40
  start-page: 2405
  year: 1995
  end-page: 2411
  publication-title: Electrochim. Acta
– volume: 529
  start-page: 515
  year: 2016
  end-page: 518
  publication-title: Nature
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 57 130
  start-page: 15002 15220
  year: 2018 2018
  end-page: 15027 15246
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 1132
  year: 2017
  end-page: 1139
  publication-title: Nano Lett.
– volume: 4
  start-page: 180
  year: 2019
  end-page: 186
  publication-title: Nat. Energy
– volume: 29
  start-page: 1703729
  year: 2017
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4436
  year: 2015
  end-page: 4444
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 625
  year: 2014
  end-page: 631
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16010
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 500
  year: 2009
  end-page: 506
  publication-title: Nat. Mater.
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 1802964
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 1853
  year: 2016
  end-page: 1858
  publication-title: Adv. Mater.
– volume: 28
  start-page: 2155
  year: 2016
  end-page: 2162
  publication-title: Adv. Mater.
– ident: e_1_2_2_6_2
  doi: 10.1002/adma.201302877
– ident: e_1_2_2_7_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_12_2
  doi: 10.1002/adfm.201902630
– ident: e_1_2_2_16_2
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_2_29_1
  doi: 10.1126/sciadv.aau7728
– ident: e_1_2_2_32_2
  doi: 10.1016/0013-4686(95)00204-R
– ident: e_1_2_2_34_1
  doi: 10.1038/nature16502
– ident: e_1_2_2_20_2
  doi: 10.1016/j.joule.2017.11.004
– ident: e_1_2_2_2_2
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_2_23_2
  doi: 10.1002/adma.201703729
– ident: e_1_2_2_27_1
  doi: 10.1016/S0022-0728(99)00221-1
– ident: e_1_2_2_15_1
– ident: e_1_2_2_26_3
  doi: 10.1002/ange.201712702
– ident: e_1_2_2_4_1
– ident: e_1_2_2_14_1
  doi: 10.1002/adma.201504117
– ident: e_1_2_2_18_1
– ident: e_1_2_2_17_2
  doi: 10.1002/adma.201504526
– ident: e_1_2_2_3_2
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_2_19_2
  doi: 10.1038/ncomms10992
– ident: e_1_2_2_9_2
  doi: 10.1002/adfm.201500863
– ident: e_1_2_2_13_2
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_2_28_1
  doi: 10.1016/0013-4686(92)85056-Q
– ident: e_1_2_2_22_2
  doi: 10.1002/adma.201808392
– ident: e_1_2_2_30_1
– ident: e_1_2_2_31_2
  doi: 10.1007/BF00242094
– ident: e_1_2_2_11_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_2_25_2
  doi: 10.1021/acs.nanolett.6b04755
– ident: e_1_2_2_24_1
– ident: e_1_2_2_21_1
– ident: e_1_2_2_26_2
  doi: 10.1002/anie.201712702
– ident: e_1_2_2_10_1
– ident: e_1_2_2_8_2
  doi: 10.1002/aenm.201802964
– ident: e_1_2_2_33_1
  doi: 10.1149/MA2007-02/10/732
– ident: e_1_2_2_5_2
  doi: 10.1038/nmat2460
SSID ssj0028806
Score 2.6680894
Snippet It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density...
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density...
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high–energy–density...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11364
SubjectTerms Anode effect
Anodes
Batteries
dendrite-free
Dendrites
Dendritic structure
Density
Diffusion coefficient
Electrochemical analysis
Electrochemistry
Electrolytes
Electrolytic cells
High temperature
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ion diffusion
ion migration
Li metal anodes
Lithium
Metals
Nucleation
nucleation and growth
Temperature dependence
Temperature effects
temperature-dependent behavior
Title Temperature‐Dependent Nucleation and Growth of Dendrite‐Free Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905251
https://www.ncbi.nlm.nih.gov/pubmed/31148342
https://www.proquest.com/docview/2268280485
https://www.proquest.com/docview/2233851170
https://www.osti.gov/servlets/purl/1560798
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hvcCF9yO0ICMhcXK7sfM8Vm2XgmAPqCv1ZvkxUSsgQbvZCyd-Ar-RX8JMXrAIhAS3RJkkjscz_sYZfwPwPOhAE51zktmpZJIFK12cFTLHwtKUkJFD7LItltnZKnl9kV78tIu_54eYFtzYMjp_zQZu3ebwB2ko78Dm1KySK7Fx_MMJW4yK3k38UYoGZ7-9SGvJVehH1sa5Oty9fWdWmjVkXb9DnLsAtpuBFrfAjm3vE0_eH2xbd-A__0Lr-D8fdxtuDvBUHPXj6Q5cw_ouXD8eq8Ldg9U5EtDuiZi_ffl6MtTQbcWSiZE7NQtbB_GSwvv2UjSVOCGBNQFbkl6sEcWbq_byavtRvMWW31Q3ATf3YbU4PT8-k0NpBumTPI9lnGJWBe2doxguOFc5jHPEco42ISehnbK-pM7HzOW20HYeqqLKA2Enb4NXlX4As7qp8RGIxJVZmRYqKF0lBaIt4op8Lj0l9xS-hgjkqBrjB95yLp_xwfSMy8pwZ5mpsyJ4Mcl_6hk7_ii5x5o2hDWYMNdzZpFvDe8tz8sigv1xAJjBrjeGwCqFqOT10gieTZdJBfybxdbYbFmGwv6UK_pE8LAfOFNDNIefOlERqE79f2mhOVq-Op3OHv_LTXtwg495GTxW-zBr11t8QjiqdU87W_kOZQ4U_w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7aFcKG9CSzESEie3GzvPY9V22cJ2D2hX4mb5FbUqTdA2e-HET-A39pcwkxfaCoQExySTxPF4xt84428A3jrpcKIzhhM7FY8Sp7kJk4ynPtM4JSToEJtsi3kyXUYfPsd9NiHthWn5IYYFN7KMxl-TgdOC9OEv1lDagk25WTmVYsMAaIvKejdR1aeBQUrg8Gw3GEnJqQ59z9s4Foeb92_MS6MK7et3mHMTwjZz0GQHTN_6NvXk6mBdmwP77Q6x43993kN40CFUdtQOqUdwz5ePYfu4Lwz3BJYLj1i75WK-_f7jpCujW7M5cSM3mma6dOw9Rvj1BasKdoICK8S2KD1Zec9ml_XF5fqanfua3lRWzt88heXkdHE85V11Bm6jNA15GPukcNIag2GcM6YwPky9z8deR-gnpBHa5tj7PjGpzqQeuyIrUofwyWpnRSGfwaisSv8CWGTyJI8z4YQsosx7nYUFul18SmoxgnUB8F43ynbU5VRB44tqSZeFos5SQ2cF8G6Q_9qSdvxRcpdUrRBuEGeupeQiWyvaXp7mWQB7_QhQnWnfKMSrGKWi44sDeDNcRhXQnxZd-mpNMhj5x1TUJ4Dn7cgZGiIpApWRCEA0-v9LC9XR_Ox0OHr5Lze9hu3p4nymZmfzj7twn87Tqngo9mBUr9b-FcKq2uw3hvMTqDgZGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hRQIuvB-hBYyExMntxs7zWHW7tFBWCHWl3iw_1QpIqm32womfwG_klzCTFywCIcExySRxPA9_49jfALxw0uFAZwwndiqeZE5zE2cFz32hcUjIMCC2qy0W2eEyeX2anv60i7_jhxgn3Mgz2nhNDn7hwu4P0lDagU1Ls0qqxIb5z9UkmxZk17P3I4GUQOvs9hdJyakM_UDbOBW7m_dvDEuTGt3rd5BzE8G2Q9D8Fuih8d3Kkw8768bs2M-_8Dr-z9fdhps9PmV7nUHdgSu-ugvX94eycPdgeeIRaXdMzN--fJ31RXQbtiBm5FbPTFeOvcL8vjljdWAzFFghskXp-cp7dnzenJ2vP7G3vqE3VbXzl_dhOT842T_kfW0GbpM8j3mc-iw4aY3BJM4ZE4yPc-_LqdcJRglphLYldr7PTK4LqacuFCF3CJ6sdlYE-QAmVV35R8ASU2ZlWggnZEgK73URBwy6-JTcYv7qIuCDapTticupfsZH1VEuC0WdpcbOiuDlKH_RUXb8UXKLNK0QbBBjrqWlRbZRtLk8L4sItgcDUL1jXypEq5ijYthLI3g-XkYV0H8WXfl6TTKY96dU0ieCh53hjA2RlH_KREQgWvX_pYVqb3F0MB49_pebnsG1d7O5Oj5avNmCG3SapsRjsQ2TZrX2TxBTNeZp6zbfAWQ0F9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-Dependent+Nucleation+and+Growth+of+Dendrite-Free+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yan%2C+Kang&rft.au=Wang%2C+Jiangyan&rft.au=Zhao%2C+Shuoqing&rft.au=Zhou%2C+Dong&rft.date=2019-08-12&rft.eissn=1521-3773&rft.volume=58&rft.issue=33&rft.spage=11364&rft_id=info:doi/10.1002%2Fanie.201905251&rft_id=info%3Apmid%2F31148342&rft.externalDocID=31148342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon