Temperature‐Dependent Nucleation and Growth of Dendrite‐Free Lithium Metal Anodes
It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li me...
Saved in:
Published in | Angewandte Chemie (International ed.) Vol. 58; no. 33; pp. 11364 - 11368 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.08.2019
Wiley |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li‐ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite‐free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.
Electrode plating: Strong lithiophilicity and fast lithium‐ion migration at elevated temperature facilitate the formation of large and sparse Li nuclei, thus contributing to a compact and smooth Li deposition layer on anodes. Thus dendrite‐free Li metal anodes with excellent electrochemical performances were achieved for metal‐based batteries. |
---|---|
AbstractList | It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high–energy–density Li–metal based batteries. Herein, we explored the temperature–dependent Li nucleation and growth behavior and constructed a dendrite–free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li–ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite–free Li growth behavior. In conclusion, as anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C. It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density Li-metal based batteries. Herein, we explored the temperature-dependent Li nucleation and growth behavior and constructed a dendrite-free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li-ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite-free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C.It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density Li-metal based batteries. Herein, we explored the temperature-dependent Li nucleation and growth behavior and constructed a dendrite-free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li-ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite-free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C. It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density Li‐metal based batteries. Herein, we explored the temperature‐dependent Li nucleation and growth behavior and constructed a dendrite‐free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li‐ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite‐free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C. Electrode plating: Strong lithiophilicity and fast lithium‐ion migration at elevated temperature facilitate the formation of large and sparse Li nuclei, thus contributing to a compact and smooth Li deposition layer on anodes. Thus dendrite‐free Li metal anodes with excellent electrochemical performances were achieved for metal‐based batteries. It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density Li-metal based batteries. Herein, we explored the temperature-dependent Li nucleation and growth behavior and constructed a dendrite-free Li metal anode by elevating temperature from room temperature (20 °C) to 60 °C. A series of ex situ and in situ microscopy investigations demonstrate that increasing Li deposition temperature results in large nuclei size, low nucleation density, and compact growth of Li metal. We reveal that the enhanced lithiophilicity and the increased Li-ion diffusion coefficient in aprotic electrolytes at high temperature are essential factors contributing to the dendrite-free Li growth behavior. As anodes in both half cells and full cells, the compact deposited Li with minimized specific surface area delivered high Coulombic efficiencies and long cycling stability at 60 °C. |
Author | Wang, Jiangyan Zhao, Shuoqing Yan, Kang Wang, Guoxiu Sun, Bing Zhou, Dong Cui, Yi |
Author_xml | – sequence: 1 givenname: Kang surname: Yan fullname: Yan, Kang organization: University of Technology Sydney – sequence: 2 givenname: Jiangyan surname: Wang fullname: Wang, Jiangyan organization: Stanford University – sequence: 3 givenname: Shuoqing surname: Zhao fullname: Zhao, Shuoqing organization: University of Technology Sydney – sequence: 4 givenname: Dong surname: Zhou fullname: Zhou, Dong organization: University of Technology Sydney – sequence: 5 givenname: Bing surname: Sun fullname: Sun, Bing email: bing.sun@uts.edu.au organization: University of Technology Sydney – sequence: 6 givenname: Yi surname: Cui fullname: Cui, Yi email: yicui@stanford.edu organization: SLAC National Accelerator Laboratory – sequence: 7 givenname: Guoxiu orcidid: 0000-0003-4295-8578 surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.au organization: University of Technology Sydney |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31148342$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1560798$$D View this record in Osti.gov |
BookMark | eNqF0blu3DAQBmDCcOC7dWkIceNGGx6SSJULXzGwcRq7JihyhKUhkRuSguHOj5BnzJOYm_UBGAhScYrvHwxn9tG28w4QOiZ4RjCm35SzMKOYtLimNdlCe6SmpGScs-1cV4yVXNRkF-3H-JC9ELjZQbuMkEqwiu6h-zsYVxBUmgL8ef59AStwBlwqbic9gErWu0I5U1wH_5iWhe-LiwyCTWt9FQCKhU1LO43FD0hqKObOG4iH6EuvhghHr-8Bur-6vDv_Xi5-Xt-czxelrjgnJamh6Q3TXYdpY7qu74BwgBaDqohgrKNKt3liaDquBFPY9KLnhtStVkbTnh2gr5u-PiYro85j6aX2zoFOktQN5q3I6GyDVsH_miAmOdqoYRiUAz9FSSljeUeE40xPP9EHPwWXv5BVI6jAlaizOnlVUzeCkatgRxWe5NtWM6g2QAcfY4Be5sn-7jIFZQdJsFwfT66PJ9-Pl2OzT7G3zv8MtJvAox3g6T9azm9vLj-yL2y4rbc |
CitedBy_id | crossref_primary_10_1016_j_jechem_2023_01_030 crossref_primary_10_1016_j_ensm_2022_05_005 crossref_primary_10_1021_acs_nanolett_9b03330 crossref_primary_10_1016_j_apsusc_2023_159145 crossref_primary_10_1039_D1QM00352F crossref_primary_10_1021_acs_accounts_1c00120 crossref_primary_10_1093_oxfmat_itac005 crossref_primary_10_1021_acsaem_1c03078 crossref_primary_10_1038_s41467_021_23155_3 crossref_primary_10_1021_acs_nanolett_3c02777 crossref_primary_10_1039_D0TA06141G crossref_primary_10_1021_acs_nanolett_1c03207 crossref_primary_10_1002_aenm_202002891 crossref_primary_10_1002_aenm_202400808 crossref_primary_10_1021_acsami_1c06131 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1016_j_ensm_2020_05_018 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123450 crossref_primary_10_1021_acsami_9b21993 crossref_primary_10_1016_j_ensm_2021_03_008 crossref_primary_10_1016_j_ensm_2020_05_019 crossref_primary_10_1016_j_ensm_2021_03_006 crossref_primary_10_1007_s12274_022_5066_z crossref_primary_10_1021_acsami_2c00900 crossref_primary_10_1039_D2EE02411J crossref_primary_10_1021_acs_chemmater_0c02981 crossref_primary_10_1021_acs_nanolett_3c03639 crossref_primary_10_1021_acsaem_1c02547 crossref_primary_10_34133_energymatadv_0053 crossref_primary_10_1002_anie_202002711 crossref_primary_10_1039_D2CS00606E crossref_primary_10_1039_D2NH00354F crossref_primary_10_1002_anie_202300016 crossref_primary_10_1016_j_mtener_2024_101557 crossref_primary_10_1002_aenm_202003039 crossref_primary_10_1002_adma_202004128 crossref_primary_10_1002_adfm_201907717 crossref_primary_10_1002_smll_202404722 crossref_primary_10_1021_acsenergylett_4c01098 crossref_primary_10_1002_adma_202311687 crossref_primary_10_1002_smll_202306829 crossref_primary_10_1073_pnas_2200392119 crossref_primary_10_1016_j_cej_2021_132897 crossref_primary_10_1007_s41918_021_00106_6 crossref_primary_10_1126_sciadv_adf1550 crossref_primary_10_1016_j_joule_2020_06_016 crossref_primary_10_1002_smll_202205233 crossref_primary_10_1002_cjce_25272 crossref_primary_10_1002_anie_202115884 crossref_primary_10_1002_adma_201908293 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1016_j_jallcom_2023_172988 crossref_primary_10_1007_s12598_024_02645_5 crossref_primary_10_1021_acsnano_9b08141 crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1021_acs_chemrev_1c00838 crossref_primary_10_1002_advs_202003178 crossref_primary_10_1016_j_gee_2022_05_002 crossref_primary_10_1002_aenm_202203791 crossref_primary_10_1002_chem_202402032 crossref_primary_10_1002_aenm_202002297 crossref_primary_10_1039_D4TA01043D crossref_primary_10_1002_adfm_202212349 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1002_aenm_202303726 crossref_primary_10_1016_j_esci_2023_100135 crossref_primary_10_1016_j_ensm_2022_11_049 crossref_primary_10_1016_j_ensm_2023_03_030 crossref_primary_10_1093_nsr_nwaa075 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1002_smll_202207742 crossref_primary_10_1002_adfm_202213648 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1016_j_carbon_2021_09_001 crossref_primary_10_1557_s43578_022_00558_6 crossref_primary_10_12677_NAT_2023_131002 crossref_primary_10_1002_aenm_202100046 crossref_primary_10_7498_aps_74_20241727 crossref_primary_10_1002_adma_202309726 crossref_primary_10_1016_j_ensm_2021_10_042 crossref_primary_10_1016_j_scib_2023_04_020 crossref_primary_10_2139_ssrn_4105035 crossref_primary_10_1002_aenm_202202568 crossref_primary_10_1002_aenm_202102242 crossref_primary_10_1021_acsenergylett_0c01545 crossref_primary_10_1039_D0TA09753E crossref_primary_10_1039_D1SE01739J crossref_primary_10_1021_acsnano_0c08691 crossref_primary_10_1016_j_mattod_2022_06_022 crossref_primary_10_1002_smll_202106427 crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1002_adma_202311912 crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_cej_2021_129739 crossref_primary_10_1002_aenm_201902254 crossref_primary_10_1016_j_ensm_2022_12_043 crossref_primary_10_1002_aenm_201902932 crossref_primary_10_1016_j_jpowsour_2021_230299 crossref_primary_10_1016_j_mtener_2021_100692 crossref_primary_10_1016_j_scib_2021_10_007 crossref_primary_10_1002_anie_202101627 crossref_primary_10_1002_adfm_202111314 crossref_primary_10_1002_adma_202401625 crossref_primary_10_1007_s40820_023_01234_y crossref_primary_10_1002_admt_202400116 crossref_primary_10_1016_j_electacta_2021_139807 crossref_primary_10_1002_smsc_202100055 crossref_primary_10_1039_D1TA00842K crossref_primary_10_1016_j_electacta_2022_140520 crossref_primary_10_1039_D2SE00910B crossref_primary_10_1002_adfm_202004189 crossref_primary_10_1002_eem2_12444 crossref_primary_10_1016_j_nanoen_2021_106142 crossref_primary_10_1016_j_ensm_2021_10_028 crossref_primary_10_1021_acsaem_2c01245 crossref_primary_10_1016_j_ensm_2023_02_040 crossref_primary_10_1039_D4TA02704C crossref_primary_10_1002_eem2_12243 crossref_primary_10_1002_ange_202115884 crossref_primary_10_1016_j_cej_2022_138074 crossref_primary_10_1002_ange_202002711 crossref_primary_10_1016_j_esci_2024_100281 crossref_primary_10_1021_acs_nanolett_1c04353 crossref_primary_10_1038_s41467_020_19246_2 crossref_primary_10_1016_j_mattod_2020_06_011 crossref_primary_10_1021_acsenergylett_3c02132 crossref_primary_10_1007_s12598_023_02565_w crossref_primary_10_1016_j_ensm_2023_102897 crossref_primary_10_4271_14_13_03_0019 crossref_primary_10_1021_acsami_1c09492 crossref_primary_10_1016_j_ensm_2024_103306 crossref_primary_10_1016_j_mtener_2023_101328 crossref_primary_10_1088_2752_5724_acb3e8 crossref_primary_10_1016_j_ensm_2020_11_026 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1002_adfm_202106315 crossref_primary_10_1021_acs_nanolett_4c06505 crossref_primary_10_1002_aesr_202300001 crossref_primary_10_1016_j_isci_2021_103402 crossref_primary_10_1007_s11426_022_1486_1 crossref_primary_10_1016_j_nanoen_2021_106489 crossref_primary_10_1002_eem2_12109 crossref_primary_10_1039_D3TA08019F crossref_primary_10_1016_j_electacta_2024_145220 crossref_primary_10_1002_admt_201900806 crossref_primary_10_1002_adfm_202107136 crossref_primary_10_1002_ange_202300016 crossref_primary_10_1002_inf2_12411 crossref_primary_10_1002_adfm_202304433 crossref_primary_10_1016_j_joule_2023_12_012 crossref_primary_10_1149_1945_7111_ab6cf4 crossref_primary_10_1002_ange_202101976 crossref_primary_10_1016_j_jmst_2023_04_009 crossref_primary_10_1126_sciadv_adf9951 crossref_primary_10_1002_anie_202006783 crossref_primary_10_1016_j_mtener_2020_100538 crossref_primary_10_1002_adma_202002550 crossref_primary_10_1021_acs_iecr_4c03843 crossref_primary_10_1002_batt_202100292 crossref_primary_10_1002_adfm_202109568 crossref_primary_10_1002_aenm_202204007 crossref_primary_10_1016_j_mattod_2024_06_001 crossref_primary_10_1002_adfm_202002522 crossref_primary_10_1002_adma_202210111 crossref_primary_10_1016_j_jpowsour_2022_231338 crossref_primary_10_1016_j_pmatsci_2021_100821 crossref_primary_10_1016_j_ceramint_2023_07_254 crossref_primary_10_1021_acs_energyfuels_1c01904 crossref_primary_10_1021_acsnano_3c09120 crossref_primary_10_1016_j_jechem_2024_12_069 crossref_primary_10_1149_1945_7111_ac2d11 crossref_primary_10_1002_aenm_202000802 crossref_primary_10_1002_adfm_202106740 crossref_primary_10_1039_D1EE00110H crossref_primary_10_1039_D2TA04974K crossref_primary_10_1016_j_jpowsour_2024_234559 crossref_primary_10_1007_s10008_022_05189_9 crossref_primary_10_1002_cnl2_109 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1002_adfm_202401361 crossref_primary_10_1016_j_cej_2021_131889 crossref_primary_10_1039_D0MH00050G crossref_primary_10_1039_D4CC02324B crossref_primary_10_1002_batt_202200231 crossref_primary_10_1016_j_commatsci_2020_109919 crossref_primary_10_1002_aenm_202201190 crossref_primary_10_1002_ange_202101627 crossref_primary_10_1002_adfm_202102158 crossref_primary_10_1016_j_ensm_2024_103584 crossref_primary_10_2139_ssrn_4021812 crossref_primary_10_1002_adma_202300998 crossref_primary_10_1016_j_jmat_2021_10_006 crossref_primary_10_1016_j_ensm_2025_104176 crossref_primary_10_1002_aenm_202104021 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1149_1945_7111_ac0bf3 crossref_primary_10_1016_j_apenergy_2025_125720 crossref_primary_10_1002_anie_202101976 crossref_primary_10_1016_j_comptc_2021_113443 crossref_primary_10_1021_acs_nanolett_0c00819 crossref_primary_10_1039_D3TA05203F crossref_primary_10_1016_j_esci_2024_100252 crossref_primary_10_1002_ange_202006783 crossref_primary_10_1016_j_ensm_2020_04_032 |
Cites_doi | 10.1002/adma.201302877 10.1002/adfm.201902630 10.1038/s41467-018-06126-z 10.1126/sciadv.aau7728 10.1016/0013-4686(95)00204-R 10.1038/nature16502 10.1016/j.joule.2017.11.004 10.1038/s41560-019-0338-x 10.1002/adma.201703729 10.1016/S0022-0728(99)00221-1 10.1002/ange.201712702 10.1002/adma.201504117 10.1002/adma.201504526 10.1038/nnano.2017.16 10.1038/ncomms10992 10.1002/adfm.201500863 10.1038/nenergy.2016.10 10.1016/0013-4686(92)85056-Q 10.1002/adma.201808392 10.1007/BF00242094 10.1039/C3EE40795K 10.1021/acs.nanolett.6b04755 10.1002/anie.201712702 10.1002/aenm.201802964 10.1149/MA2007-02/10/732 10.1038/nmat2460 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 OIOZB OTOTI |
DOI | 10.1002/anie.201905251 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 11368 |
ExternalDocumentID | 1560798 31148342 10_1002_anie_201905251 ANIE201905251 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP160104340; DP170100436; DE180100036 – fundername: Australian Research Council grantid: DE180100036 – fundername: Australian Research Council grantid: DP160104340 – fundername: Australian Research Council grantid: DP170100436 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 AAPBV ABHUG ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS B-7 OIOZB OTOTI PQEST |
ID | FETCH-LOGICAL-c4771-15e6fd3cbb026dbbfbe17ee90ea41833b2ac9806e6b7a83a0df8f7d159cadc2f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu May 18 22:38:44 EDT 2023 Fri Jul 11 04:31:19 EDT 2025 Fri Jul 25 10:35:25 EDT 2025 Wed Feb 19 02:35:39 EST 2025 Tue Jul 01 02:26:50 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Wed Jan 22 16:39:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | Li metal anodes ion migration temperature-dependent behavior nucleation and growth dendrite-free |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4771-15e6fd3cbb026dbbfbe17ee90ea41833b2ac9806e6b7a83a0df8f7d159cadc2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-76SF00515; DP160104340; DP170100436; DE180100036 |
ORCID | 0000-0003-4295-8578 0000000342958578 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1560798 |
PMID | 31148342 |
PQID | 2268280485 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1560798 proquest_miscellaneous_2233851170 proquest_journals_2268280485 pubmed_primary_31148342 crossref_citationtrail_10_1002_anie_201905251 crossref_primary_10_1002_anie_201905251 wiley_primary_10_1002_anie_201905251_ANIE201905251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 12, 2019 |
PublicationDateYYYYMMDD | 2019-08-12 |
PublicationDate_xml | – month: 08 year: 2019 text: August 12, 2019 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: United States |
PublicationTitle | Angewandte Chemie (International ed.) |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2018; 9 1995; 40 2019; 9 2015; 25 2016; 7 2019; 4 2016; 1 2018; 2 2019; 5 2019; 31 2017; 17 2018 2018; 57 130 2017; 12 2016; 529 2014; 26 2019 1999; 470 2009; 8 2017; 29 1992; 37 2016; 28 2014; 7 1996; 26 e_1_2_2_3_2 e_1_2_2_4_1 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_7_1 e_1_2_2_20_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_8_2 e_1_2_2_29_1 e_1_2_2_26_3 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_27_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_32_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_34_1 e_1_2_2_15_1 |
References_xml | – volume: 26 start-page: 255 year: 1996 end-page: 267 publication-title: J. Appl. Electrochem. – volume: 7 start-page: 10992 year: 2016 publication-title: Nat. Commun. – volume: 37 start-page: 1199 year: 1992 end-page: 1205 publication-title: Electrochim. Acta – volume: 5 start-page: 7728 year: 2019 publication-title: Sci. Adv. – start-page: 1902630 year: 2019 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 1808392 year: 2019 publication-title: Adv. Mater. – volume: 7 start-page: 513 year: 2014 end-page: 537 publication-title: Energy Environ. Sci. – volume: 2 start-page: 184 year: 2018 end-page: 193 publication-title: Joule – volume: 470 start-page: 70 year: 1999 end-page: 76 publication-title: J. Electroanal. Chem. – volume: 40 start-page: 2405 year: 1995 end-page: 2411 publication-title: Electrochim. Acta – volume: 529 start-page: 515 year: 2016 end-page: 518 publication-title: Nature – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 57 130 start-page: 15002 15220 year: 2018 2018 end-page: 15027 15246 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 1132 year: 2017 end-page: 1139 publication-title: Nano Lett. – volume: 4 start-page: 180 year: 2019 end-page: 186 publication-title: Nat. Energy – volume: 29 start-page: 1703729 year: 2017 publication-title: Adv. Mater. – volume: 25 start-page: 4436 year: 2015 end-page: 4444 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 625 year: 2014 end-page: 631 publication-title: Adv. Mater. – volume: 1 start-page: 16010 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 500 year: 2009 end-page: 506 publication-title: Nat. Mater. – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 1802964 year: 2019 publication-title: Adv. Energy Mater. – volume: 28 start-page: 1853 year: 2016 end-page: 1858 publication-title: Adv. Mater. – volume: 28 start-page: 2155 year: 2016 end-page: 2162 publication-title: Adv. Mater. – ident: e_1_2_2_6_2 doi: 10.1002/adma.201302877 – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_12_2 doi: 10.1002/adfm.201902630 – ident: e_1_2_2_16_2 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_2_29_1 doi: 10.1126/sciadv.aau7728 – ident: e_1_2_2_32_2 doi: 10.1016/0013-4686(95)00204-R – ident: e_1_2_2_34_1 doi: 10.1038/nature16502 – ident: e_1_2_2_20_2 doi: 10.1016/j.joule.2017.11.004 – ident: e_1_2_2_2_2 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_2_23_2 doi: 10.1002/adma.201703729 – ident: e_1_2_2_27_1 doi: 10.1016/S0022-0728(99)00221-1 – ident: e_1_2_2_15_1 – ident: e_1_2_2_26_3 doi: 10.1002/ange.201712702 – ident: e_1_2_2_4_1 – ident: e_1_2_2_14_1 doi: 10.1002/adma.201504117 – ident: e_1_2_2_18_1 – ident: e_1_2_2_17_2 doi: 10.1002/adma.201504526 – ident: e_1_2_2_3_2 doi: 10.1038/nnano.2017.16 – ident: e_1_2_2_19_2 doi: 10.1038/ncomms10992 – ident: e_1_2_2_9_2 doi: 10.1002/adfm.201500863 – ident: e_1_2_2_13_2 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_2_28_1 doi: 10.1016/0013-4686(92)85056-Q – ident: e_1_2_2_22_2 doi: 10.1002/adma.201808392 – ident: e_1_2_2_30_1 – ident: e_1_2_2_31_2 doi: 10.1007/BF00242094 – ident: e_1_2_2_11_2 doi: 10.1039/C3EE40795K – ident: e_1_2_2_25_2 doi: 10.1021/acs.nanolett.6b04755 – ident: e_1_2_2_24_1 – ident: e_1_2_2_21_1 – ident: e_1_2_2_26_2 doi: 10.1002/anie.201712702 – ident: e_1_2_2_10_1 – ident: e_1_2_2_8_2 doi: 10.1002/aenm.201802964 – ident: e_1_2_2_33_1 doi: 10.1149/MA2007-02/10/732 – ident: e_1_2_2_5_2 doi: 10.1038/nmat2460 |
SSID | ssj0028806 |
Score | 2.6680894 |
Snippet | It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high‐energy‐density... It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high-energy-density... It is essential to develop a facile and effective method to enhance the electrochemical performance of lithium metal anodes for building high–energy–density... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11364 |
SubjectTerms | Anode effect Anodes Batteries dendrite-free Dendrites Dendritic structure Density Diffusion coefficient Electrochemical analysis Electrochemistry Electrolytes Electrolytic cells High temperature INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ion diffusion ion migration Li metal anodes Lithium Metals Nucleation nucleation and growth Temperature dependence Temperature effects temperature-dependent behavior |
Title | Temperature‐Dependent Nucleation and Growth of Dendrite‐Free Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201905251 https://www.ncbi.nlm.nih.gov/pubmed/31148342 https://www.proquest.com/docview/2268280485 https://www.proquest.com/docview/2233851170 https://www.osti.gov/servlets/purl/1560798 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hvcCF9yO0ICMhcXK7sfM8Vm2XgmAPqCv1ZvkxUSsgQbvZCyd-Ar-RX8JMXrAIhAS3RJkkjscz_sYZfwPwPOhAE51zktmpZJIFK12cFTLHwtKUkJFD7LItltnZKnl9kV78tIu_54eYFtzYMjp_zQZu3ebwB2ko78Dm1KySK7Fx_MMJW4yK3k38UYoGZ7-9SGvJVehH1sa5Oty9fWdWmjVkXb9DnLsAtpuBFrfAjm3vE0_eH2xbd-A__0Lr-D8fdxtuDvBUHPXj6Q5cw_ouXD8eq8Ldg9U5EtDuiZi_ffl6MtTQbcWSiZE7NQtbB_GSwvv2UjSVOCGBNQFbkl6sEcWbq_byavtRvMWW31Q3ATf3YbU4PT8-k0NpBumTPI9lnGJWBe2doxguOFc5jHPEco42ISehnbK-pM7HzOW20HYeqqLKA2Enb4NXlX4As7qp8RGIxJVZmRYqKF0lBaIt4op8Lj0l9xS-hgjkqBrjB95yLp_xwfSMy8pwZ5mpsyJ4Mcl_6hk7_ii5x5o2hDWYMNdzZpFvDe8tz8sigv1xAJjBrjeGwCqFqOT10gieTZdJBfybxdbYbFmGwv6UK_pE8LAfOFNDNIefOlERqE79f2mhOVq-Op3OHv_LTXtwg495GTxW-zBr11t8QjiqdU87W_kOZQ4U_w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h7aFcKG9CSzESEie3GzvPY9V22cJ2D2hX4mb5FbUqTdA2e-HET-A39pcwkxfaCoQExySTxPF4xt84428A3jrpcKIzhhM7FY8Sp7kJk4ynPtM4JSToEJtsi3kyXUYfPsd9NiHthWn5IYYFN7KMxl-TgdOC9OEv1lDagk25WTmVYsMAaIvKejdR1aeBQUrg8Gw3GEnJqQ59z9s4Foeb92_MS6MK7et3mHMTwjZz0GQHTN_6NvXk6mBdmwP77Q6x43993kN40CFUdtQOqUdwz5ePYfu4Lwz3BJYLj1i75WK-_f7jpCujW7M5cSM3mma6dOw9Rvj1BasKdoICK8S2KD1Zec9ml_XF5fqanfua3lRWzt88heXkdHE85V11Bm6jNA15GPukcNIag2GcM6YwPky9z8deR-gnpBHa5tj7PjGpzqQeuyIrUofwyWpnRSGfwaisSv8CWGTyJI8z4YQsosx7nYUFul18SmoxgnUB8F43ynbU5VRB44tqSZeFos5SQ2cF8G6Q_9qSdvxRcpdUrRBuEGeupeQiWyvaXp7mWQB7_QhQnWnfKMSrGKWi44sDeDNcRhXQnxZd-mpNMhj5x1TUJ4Dn7cgZGiIpApWRCEA0-v9LC9XR_Ox0OHr5Lze9hu3p4nymZmfzj7twn87Tqngo9mBUr9b-FcKq2uw3hvMTqDgZGg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hRQIuvB-hBYyExMntxs7zWHW7tFBWCHWl3iw_1QpIqm32womfwG_klzCTFywCIcExySRxPA9_49jfALxw0uFAZwwndiqeZE5zE2cFz32hcUjIMCC2qy0W2eEyeX2anv60i7_jhxgn3Mgz2nhNDn7hwu4P0lDagU1Ls0qqxIb5z9UkmxZk17P3I4GUQOvs9hdJyakM_UDbOBW7m_dvDEuTGt3rd5BzE8G2Q9D8Fuih8d3Kkw8768bs2M-_8Dr-z9fdhps9PmV7nUHdgSu-ugvX94eycPdgeeIRaXdMzN--fJ31RXQbtiBm5FbPTFeOvcL8vjljdWAzFFghskXp-cp7dnzenJ2vP7G3vqE3VbXzl_dhOT842T_kfW0GbpM8j3mc-iw4aY3BJM4ZE4yPc-_LqdcJRglphLYldr7PTK4LqacuFCF3CJ6sdlYE-QAmVV35R8ASU2ZlWggnZEgK73URBwy6-JTcYv7qIuCDapTticupfsZH1VEuC0WdpcbOiuDlKH_RUXb8UXKLNK0QbBBjrqWlRbZRtLk8L4sItgcDUL1jXypEq5ijYthLI3g-XkYV0H8WXfl6TTKY96dU0ieCh53hjA2RlH_KREQgWvX_pYVqb3F0MB49_pebnsG1d7O5Oj5avNmCG3SapsRjsQ2TZrX2TxBTNeZp6zbfAWQ0F9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-Dependent+Nucleation+and+Growth+of+Dendrite-Free+Lithium+Metal+Anodes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yan%2C+Kang&rft.au=Wang%2C+Jiangyan&rft.au=Zhao%2C+Shuoqing&rft.au=Zhou%2C+Dong&rft.date=2019-08-12&rft.eissn=1521-3773&rft.volume=58&rft.issue=33&rft.spage=11364&rft_id=info:doi/10.1002%2Fanie.201905251&rft_id=info%3Apmid%2F31148342&rft.externalDocID=31148342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |