Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil
The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical ro...
Saved in:
Published in | Computational and structural biotechnology journal Vol. 20; pp. 6543 - 6551 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed. |
---|---|
AbstractList | The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed. The world's population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed.The world's population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed. |
Author | Liu, Yunpeng Chen, Lin Zhang, Nan Feng, Haichao Zhang, Qiang Xun, Weibing Xu, Zhihui Zhang, Ruifu |
Author_xml | – sequence: 1 givenname: Yunpeng surname: Liu fullname: Liu, Yunpeng organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China – sequence: 2 givenname: Weibing orcidid: 0000-0003-0068-8514 surname: Xun fullname: Xun, Weibing organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 3 givenname: Lin orcidid: 0000-0003-3036-4449 surname: Chen fullname: Chen, Lin organization: Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, PR China – sequence: 4 givenname: Zhihui surname: Xu fullname: Xu, Zhihui organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 5 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 6 givenname: Haichao surname: Feng fullname: Feng, Haichao organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China – sequence: 7 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Heze Kingenta Ecological Engineering Co., Ltd, Heze, Shandong 274000, PR China – sequence: 8 givenname: Ruifu orcidid: 0000-0002-3334-4286 surname: Zhang fullname: Zhang, Ruifu email: rfzhang@njau.edu.cn organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China |
BookMark | eNqFkc2L1TAUxYuM4DjOP-AqSzev3nw0acWNDH4MDAgygruQ3t76UvqamuQp419v6nNAXIzZJLn8zoF7ztPqbAkLVdVzDjUHrl9ONaZ-qgUIUXNeg9KPqnMBwHcgDZz99X5SXaY0QTkt152E8-rLp73_GdK6p0js4DGGnhKjZe8WJLbObsksuTmzHGaK2_AVuw0_XBxYYVe2xjAcMfuwML9spF-IpeDnZ9Xj0c2JLv_cF9Xnd29vrz7sbj6-v756c7NDZXTejYMe0QktTScG3gE2kkMzKNQAjSxfjloJzhFNx2F0vREGaeS97hupWpQX1fXJdwhusmv0BxfvbHDe_h6E-NW6mD3OZLeNm97B2MtRDQ20QmBvug4MdEoPbfF6cfIqW307Usr24BPSXFKgcExW8kaKQiv5X1QYZQCk4Lqg7QktgaUUabTos9siy9H52XKwW412sluNdqvRcm5LjUUq_pHeL_ig6PVJRCX2756iTeipNDf4SJhLLv4h-S-srLbj |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e41114 crossref_primary_10_3390_microorganisms11122941 crossref_primary_10_1007_s11104_025_07359_w crossref_primary_10_1016_j_envres_2023_117424 crossref_primary_10_1021_acs_jafc_3c05430 crossref_primary_10_17221_244_2024_PSE crossref_primary_10_3389_fpls_2025_1527952 crossref_primary_10_1016_j_rhisph_2025_101043 crossref_primary_10_1007_s11274_025_04284_z crossref_primary_10_3390_agriculture13030734 crossref_primary_10_1016_j_scitotenv_2024_173838 crossref_primary_10_1016_j_scienta_2024_113904 crossref_primary_10_1016_j_plantsci_2024_112261 crossref_primary_10_3389_fpls_2024_1406913 crossref_primary_10_1016_j_tim_2024_04_008 crossref_primary_10_1002_npp2_20 crossref_primary_10_3390_ijpb15040076 crossref_primary_10_1016_j_apsoil_2024_105511 crossref_primary_10_1016_j_tplants_2025_01_009 crossref_primary_10_3390_ijms252413702 crossref_primary_10_1016_j_jbiotec_2024_02_004 crossref_primary_10_1016_j_jclepro_2024_144176 crossref_primary_10_1016_j_scitotenv_2023_168847 crossref_primary_10_3390_life14010006 crossref_primary_10_3389_fpls_2024_1396754 crossref_primary_10_1007_s11274_025_04308_8 crossref_primary_10_3897_oneeco_9_e133645 crossref_primary_10_1007_s12033_024_01346_9 crossref_primary_10_1007_s42729_024_01721_0 crossref_primary_10_1016_j_scitotenv_2023_165612 crossref_primary_10_1038_s41598_024_71792_7 crossref_primary_10_1016_j_agwat_2024_108736 crossref_primary_10_1016_j_isci_2024_110804 crossref_primary_10_3390_soilsystems8010011 crossref_primary_10_1371_journal_pone_0317463 crossref_primary_10_1016_j_bcab_2023_102601 crossref_primary_10_3389_fagro_2023_1287108 crossref_primary_10_1007_s42976_023_00456_5 crossref_primary_10_1016_j_rhisph_2024_100848 |
Cites_doi | 10.1038/nrmicro797 10.1016/j.bbrc.2017.11.043 10.1016/j.plantsci.2012.11.009 10.1016/j.tplants.2006.06.001 10.1038/s41598-018-37987-5 10.1007/s00572-020-00957-9 10.3390/microorganisms8101565 10.3390/ijms20194923 10.1071/FP15265 10.1016/j.plaphy.2020.11.025 10.1111/1462-2920.15839 10.1104/pp.15.00284 10.1002/jobm.201600188 10.1155/2016/6284547 10.1080/15226514.2013.821447 10.1016/j.jplph.2021.153462 10.1094/MPMI-09-13-0265-R 10.1016/j.cell.2016.08.029 10.1016/j.ejsobi.2009.11.002 10.1016/j.jplph.2012.08.020 10.1111/pce.12157 10.1139/cjm-2019-0323 10.3389/fpls.2017.01739 10.1007/s005720000055 10.1146/annurev.arplant.55.031903.141701 10.1111/lam.12847 10.4161/psb.26891 10.4014/jmb.1904.04026 10.1007/s00572-002-0170-0 10.1139/cjb-2014-0038 10.1104/pp.19.01464 10.1038/s41598-020-62725-1 10.1105/tpc.108.064568 10.1094/MPMI-02-17-0027-R 10.1146/annurev.arplant.53.091401.143329 10.1007/s00253-012-4506-1 10.1007/s11738-017-2421-x 10.1371/journal.ppat.1003221 10.1021/acs.jafc.0c05628 10.1111/j.1365-3040.2009.02041.x 10.3390/plants11030345 10.3389/fmicb.2017.01887 10.1104/pp.104.042234 10.3389/fmicb.2021.752288 10.1007/s00572-008-0177-2 10.4014/jmb.2009.09032 10.1016/j.micres.2020.126671 10.1111/plb.13123 10.1016/j.pbi.2018.07.015 10.1111/nph.14920 10.1016/j.sjbs.2021.05.056 10.1111/tpj.13299 10.3389/fmicb.2018.01297 10.1093/jxb/erab335 10.1016/S0168-1605(96)01172-5 10.1139/cjm-2014-0668 10.3389/fmicb.2016.01600 10.3389/fmicb.2017.01945 10.1007/s00572-020-00954-y 10.1139/W07-081 10.1007/s00253-009-2196-0 10.1016/j.tplants.2014.02.001 10.1016/j.tplants.2015.02.001 10.3389/fmicb.2016.00332 10.1016/j.ecoenv.2018.11.084 10.1016/j.micres.2020.126439 10.1111/ppl.12614 10.1111/plb.12717 10.1146/annurev.micro.62.081307.162918 10.1371/journal.pgen.1007273 10.14348/molcells.2014.2239 10.1111/plb.13124 10.3389/fpls.2018.00813 10.1007/s00572-017-0778-8 10.1007/s11104-015-2767-z 10.1016/S1360-1385(01)01923-9 10.1139/m95-015 10.3389/fpls.2016.01314 10.3390/plants11060717 10.1016/j.micres.2018.06.007 10.1126/science.285.5431.1256 10.1016/S1360-1385(00)01838-0 10.1371/journal.pone.0160660 10.3389/fpls.2019.01646 10.1111/ppl.12441 10.1094/MPMI-07-21-0185-FI 10.1139/W09-092 10.1186/s12866-018-1374-6 10.1111/jam.12866 10.1186/s12870-021-02937-3 10.1111/pce.14021 10.1146/annurev.arplant.59.032607.092911 10.1186/s12870-018-1618-5 10.1016/j.plaphy.2014.04.003 10.1073/pnas.2107417118 10.1007/s11274-020-2804-9 10.1016/j.plantsci.2017.07.006 10.1007/s00248-007-9239-9 10.1073/pnas.0504423102 10.1080/15226514.2016.1183583 10.1094/MPMI-21-6-0737 10.3389/fpls.2020.575314 10.1111/pce.12082 10.1016/j.plaphy.2017.07.015 10.1080/21501203.2019.1600063 10.1016/j.pbi.2010.08.014 10.3390/microorganisms8111844 10.1371/journal.pone.0254076 10.1111/1462-2920.14619 10.3389/fpls.2017.01143 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 DOA |
DOI | 10.1016/j.csbj.2022.11.046 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2001-0370 |
EndPage | 6551 |
ExternalDocumentID | oai_doaj_org_article_69305ba0fb3f4d50822cb799070946d8 10_1016_j_csbj_2022_11_046 S2001037022005396 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c476t-fd6fca263792d190c53105d4c600530c51c64211cc7910fab727cef1b6b5348c3 |
IEDL.DBID | M48 |
ISSN | 2001-0370 |
IngestDate | Wed Aug 27 01:28:02 EDT 2025 Thu Jul 10 18:35:20 EDT 2025 Fri Jul 11 09:47:26 EDT 2025 Tue Jul 01 03:43:00 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Sat Feb 17 16:08:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plant salt tolerance Rhizosphere microbe Saline soil Microbe-enhanced salt tolerance mechanisms |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-fd6fca263792d190c53105d4c600530c51c64211cc7910fab727cef1b6b5348c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3334-4286 0000-0003-3036-4449 0000-0003-0068-8514 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2022.11.046 |
PQID | 2747003216 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69305ba0fb3f4d50822cb799070946d8 proquest_miscellaneous_3153207043 proquest_miscellaneous_2747003216 crossref_citationtrail_10_1016_j_csbj_2022_11_046 crossref_primary_10_1016_j_csbj_2022_11_046 elsevier_sciencedirect_doi_10_1016_j_csbj_2022_11_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationTitle | Computational and structural biotechnology journal |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | seedlings under salt stress through enhanced root development, osmolite production, and Na Del Carmen, Duan, DiBernardo, Zetter, Campos-García, Glick (b0450) 2019; 10 Zhang, Kim, Sun, Dowd, Shi, Paré (b0405) 2008; 21 elimination through root exudates. Molecular Plant-Microbe Interactions 2014;27:503–14. 10.1094/MPMI-09-13-0265-R. Estrada, Aroca, Maathuis, Barea, Ruiz-Lozano (b0535) 2013; 36 Zhou, Zhu, Xie, Li, Xiao, Ma (b0465) 2017; 8 Zhu (b0090) 2016; 167 Gad M, Nobuhiro S, Sultan C, Ron M. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment 2010;33:453-467 10.1111/j.1365-3040.2009.02041.x. Vaishnav, Kumari, Jain, Varma, Tuteja, Choudhary (b0365) 2016; 56 Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J. Liang, Ma, Wan, Liu (b0070) 2018; 495 Parvin, Van Geel, Yeasmin, Verbruggen, Honnay (b0115) 2020; 30 Saleem, Iqbal, Ahmed, Ahmad (b0325) 2021; 28 Adesemoye, Kloepper (b0025) 2009; 85 Yang, Akhtar, Iqbal, Amjad, Naveed, Zahir (b0260) 2016; 43 de Zélicourt, Synek, Saad, Alzubaidy, Jalal, Xie (b0270) 2018; 14 Apse, Aharon, Snedden, Blumwald (b0425) 1999; 285 Egamberdieva, Wirth, Shurigin, Hashem, Abd Allah (b0320) 2017; 8 Glick (b0595) 1995; 41 sp. SA187-induced plant salt stress tolerance. Proceedings of the National Academy of Sciences of the United States of America 2021;118:1–12. 10.1073/pnas.2107417118. Jisha, Sabu (b0200) 2019; 10 Sharma, Kulkarni, Jha (b0360) 2016; 7 Sukweenadhi, Balusamy, Kim, Lee, Kim, Koh (b0470) 2018; 9 strain-specifically improves growth of Lamers, Der Meer, Testerink (b0065) 2020; 182 Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Al-Karaki (b0125) 2000; 10 Platten, Cotsaftis, Berthomieu, Bohnert, Davenport, Fairbairn (b0395) 2006; 11 Gupta, Smith, Boughton, Rupasinghe, Natera, Roessner (b0175) 2021; 72 Yang, Guo (b0010) 2018; 217 Loo, Tajima, Yamada, Kido, Hirase, Ariga (b0610) 2022; 35 Hedrich, Shabala (b0460) 2018; 46 Niu, Li, Paré, Aziz, Wang, Shi (b0410) 2016; 407 Giri, Kapoor, Mukerji (b0140) 2007; 54 Zhang, Wang, Liu, Chen, Ge, Tian (b0170) 2019; 170 Yoo, Weon, Song, Sang (b0475) 2019; 29 Nadeem, Zahir, Naveed, Arshad (b0265) 2007; 53 Oljira, Hussain, Waghmode, Zhao, Sun, Liu (b0030) 2020; 8 Estrada, Aroca, Barea, Ruiz-Lozano (b0530) 2013; 201–202 Gamalero, Glick (b0580) 2015; 169 Munns, Tester (b0005) 2008; 59 Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al. reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 2005;102:13386–91. 10.1073/pnas.0504423102. Aroca R, Ruiz-Lozano JM, Zamarreño ángel M, Paz JA, García-Mina JM, Pozo MJ, et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology 2013;170:47–55. 10.1016/j.jplph.2012.08.020. plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmot. Journal of Plant Physiology 2021;263:153462–153462. 10.1016/j.jplph.2021.153462. Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells 2014;37:109–17. 10.14348/molcells.2014.2239. Ondrasek, Rathod, Manohara, Gireesh, Anantha, Sakhare (b0075) 2022; 11 Desai, Mistry, Shah, Chandwani, Amaresan, Supriya (b0250) 2022 Ghorbani, Razavi, Ghasemi Omran, Pirdashti (b0220) 2018; 20 Bishopp, Benková, Helariutta (b0555) 2011; 14 Nadeem, Zahir, Naveed, Arshad (b0245) 2009; 55 Nazarowec-White, Farber (b0280) 1997; 34 Xu, Lei, Pang, Li, Feng, Xu (b0500) 2017; 118 T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology 2019;19:22–22. 10.1186/s12870-018-1618-5. Chen, Liu, Wu, Zhang, Shen, Zhang (b0440) 2017; 30 Moller, Gilliham, Jha, Mayo, Roy, Coates (b0400) 2009; 21 Zhang S, Gan Y, Xu B. Mechanisms of the IAA and ACC-deaminase producing strain of Wang, Wang, Li, Wu, Huang (b0150) 2017; 35 Wang, Wang, Feng, Liou, Lin (b0310) 2021; 31 Nascimento, Urón, Glick, Giachini, Rossi (b0355) 2021; 12 Subramanian, Souleimanov, Smith (b0290) 2016; 7 Singh, Singh, Trivedi, Sahu, Paul, Paul (b0340) 2020; 17 Gul Jan, Hamayun, Hussain, Jan, Iqbal, Khan (b0485) 2019; 19 Egamberdieva, Wirth, Bellingrath-Kimura, Mishra, Arora (b0055) 2019 Zhu (b0085) 2002; 53 PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiological Research 2021;244:126671–126671. 10.1016/j.micres.2020.126671. Andres-Barrao C, Alzubaidy H, Jalal R, Mariappan KG, De Zelicourt A, Bokhari A, et al. Coordinated bacterial and plant sulfur metabolism in Li, Shao, Xie, Jia, Fu, Xu (b0565) 2021; 44 Etesami, Beattie (b0040) 2018 Singh RP, Jha PN. The PGPR Rolli, de Zélicourt, Alzubaidy, Karampelias, Parween, Rayapuram (b0615) 2022; 24 Fan, Chen, He, Zhou, Tian, Gao (b0315) 2016; 18 Eroğlu, Cabral, Ravnskov, Bak Topbjerg, Wollenweber (b0110) 2020; 22 Ullah, Bano (b0295) 2015; 61 Subramanian, Ricci, Souleimanov, Smith (b0285) 2016; 11 Choudhury, Rivero, Blumwald, Mittler (b0520) 2017; 90 Barnawal, Bharti, Pandey, Pandey, Chanotiya, Kalra (b0560) 2017; 161 Franken (b0190) 2012; 96 Tchakounté, Berger, Patz, Becker, Fankem, Taffouo (b0020) 2020; 8 Drozdowicz, Rea (b0430) 2001; 6 Deinlein, Stephan, Horie, Luo, Xu, Schroeder (b0060) 2014; 19 Chatterjee, Samaddar, Niinemets, Sa (b0545) 2018; 215 Feng, Zhang, Li, Tian, Tang, Rengel (b0105) 2002; 12 Lugtenberg, Kamilova (b0015) 2009; 63 Sultana, Paul, Parveen, Alam, Rahman, Jannat (b0305) 2020; 66 SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology 2017;8:1945–1945. 10.3389/fmicb.2017.01945. Wang, Zhai, Ma, Zhang, Wang, Liu (b0145) 2020; 30 Lei, Pang, Feng, Li, Chi, Wang (b0505) 2017; 7 Vaishnav, Kumari, Jain, Varma, Choudhary (b0370) 2015; 119 Ali, Charles, Glick (b0375) 2014; 80 Fatima T, Arora NK. Chen, Zhang, Zhang, Tang (b0550) 2017; 8 Khan, Asaf, Khan, Adhikari, Jan, Ali (b0235) 2020; 22 Tavares, Nascimento, Glick, Rossi (b0585) 2018; 66 spp. improve growth of Mahmoud, Slimene, Zribi, Abdelly, Djébali (b0300) 2017; 39 Abdelaziz, Kim, Ali, Fedoroff, Al-Babili (b0415) 2017; 263 Apel, Hirt (b0525) 2004; 55 Rus, Lee, Muñoz-Mayor, Sharkhuu, Miura, Zhu (b0390) 2004; 136 Ali B, Wang X, Saleem MH, Sumaira, Hafeez A, Afridi MS, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 2022;11:345–345. 10.3390/plants11030345. Singh, Pandey, Jha, Ma (b0240) 2022; 17 Habib, Kausar, Saud (b0255) 2016 Yuan, Pan, Boak, Pierson, Pierson (b0345) 2020; 11 Yoolong, Kruasuwan, Thanh Phạm, Jaemsaeng, Jantasuriyarat, Thamchaipenet (b0605) 2019; 9 Yan, Smith, Glick, Liang (b0455) 2014; 92 potential and significance in plant stress tolerance. Frontiers in Microbiology 2016;7:332–332. 10.3389/fmicb.2016.00332. Khan, Sahile, Jan, Asaf, Hamayun, Imran (b0330) 2021; 21 Zhu (b0080) 2001; 6 Liu, Siew, Hung, Jiang, Huang (b0490) 2021; 69 Yao, Wu, Zheng, Kaleem, Li (b0350) 2010; 46 Orozco-Mosqueda M del C, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research 2020;235:126439. 10.1016/j.micres.2020.126439. Yamato, Ikeda, Iwase (b0120) 2008; 18 Baek, Rokibuzzaman, Khan, Kim, Park, Yun (b0445) 2020; 10 Lastochkina O, Aliniaeifard S, Garshina D, Garipova S, Pusenkova L, Allagulova C, et al. Seed priming with endophytic Jaroszuk-Ściseł, Tyśkiewicz, Nowak, Ozimek, Majewska, Hanaka (b0570) 2019; 20 Kushwaha, Kashyap, Bhardwaj, Kuppusamy, Srivastava, Tiwari (b0035) 2020; 36 Jogawat, Saha, Bakshi, Dayaman, Kumar, Dua (b0210) 2013; 8 Romero-Munar, Baraza, Gulías, Cabot (b0130) 2019; 10 Lanza, Haro, Conchillo, Benito (b0225) 2019; 21 Heydarian, Gruber, Glick, Hegedus (b0600) 2018; 9 Pandey, Garg (b0155) 2017; 27 Harman, Howell, Viterbo, Chet, Lorito (b0160) 2004; 2 Duc, Vo, Haddidi, Daood, Posta (b0135) 2021; 11 Brotman, Landau, Cuadros-Inostroza, Takayuki, Fernie, Chet (b0165) 2013; 9 Das, Roychoudhury (b0515) 2014 Khalvandi, Amerian, Pirdashti, Keramati (b0050) 2021; 16 Chang, Gerhardt, Huang, Yu, Glick, Gerwing (b0385) 2014; 16 Kavi Kishor, Sreenivasulu (b0495) 2014; 37 Evelin, Devi, Gupta, Kapoor (b0095) 2019 Santander, Aroca, Cartes, Vidal, Cornejo (b0420) 2021; 158 Srivastava, Srivastava (b0335) 2020; 10 Chen, Liu, Wu, Veronican Njeri, Shen, Zhang (b0435) 2016; 158 Kazan (b0575) 2015; 20 Vahabi, Dorcheh, Monajembashi, Westermann, Reichelt, Falkenberg (b0205) 2016 Romero-Munar (10.1016/j.csbj.2022.11.046_b0130) 2019; 10 Ali (10.1016/j.csbj.2022.11.046_b0375) 2014; 80 Li (10.1016/j.csbj.2022.11.046_b0565) 2021; 44 Chen (10.1016/j.csbj.2022.11.046_b0435) 2016; 158 Glick (10.1016/j.csbj.2022.11.046_b0595) 1995; 41 Evelin (10.1016/j.csbj.2022.11.046_b0095) 2019 Baek (10.1016/j.csbj.2022.11.046_b0445) 2020; 10 Liu (10.1016/j.csbj.2022.11.046_b0490) 2021; 69 Wang (10.1016/j.csbj.2022.11.046_b0310) 2021; 31 Yang (10.1016/j.csbj.2022.11.046_b0260) 2016; 43 Zhang (10.1016/j.csbj.2022.11.046_b0405) 2008; 21 Munns (10.1016/j.csbj.2022.11.046_b0005) 2008; 59 Apse (10.1016/j.csbj.2022.11.046_b0425) 1999; 285 Sukweenadhi (10.1016/j.csbj.2022.11.046_b0470) 2018; 9 Harman (10.1016/j.csbj.2022.11.046_b0160) 2004; 2 Choudhury (10.1016/j.csbj.2022.11.046_b0520) 2017; 90 Sultana (10.1016/j.csbj.2022.11.046_b0305) 2020; 66 10.1016/j.csbj.2022.11.046_b0380 10.1016/j.csbj.2022.11.046_b0540 Bishopp (10.1016/j.csbj.2022.11.046_b0555) 2011; 14 Estrada (10.1016/j.csbj.2022.11.046_b0530) 2013; 201–202 Tavares (10.1016/j.csbj.2022.11.046_b0585) 2018; 66 Yan (10.1016/j.csbj.2022.11.046_b0455) 2014; 92 Zhu (10.1016/j.csbj.2022.11.046_b0085) 2002; 53 Liang (10.1016/j.csbj.2022.11.046_b0070) 2018; 495 Vaishnav (10.1016/j.csbj.2022.11.046_b0365) 2016; 56 Yoo (10.1016/j.csbj.2022.11.046_b0475) 2019; 29 Wang (10.1016/j.csbj.2022.11.046_b0145) 2020; 30 Nazarowec-White (10.1016/j.csbj.2022.11.046_b0280) 1997; 34 Ondrasek (10.1016/j.csbj.2022.11.046_b0075) 2022; 11 Srivastava (10.1016/j.csbj.2022.11.046_b0335) 2020; 10 Chang (10.1016/j.csbj.2022.11.046_b0385) 2014; 16 Deinlein (10.1016/j.csbj.2022.11.046_b0060) 2014; 19 Singh (10.1016/j.csbj.2022.11.046_b0240) 2022; 17 10.1016/j.csbj.2022.11.046_b0230 de Zélicourt (10.1016/j.csbj.2022.11.046_b0270) 2018; 14 Lugtenberg (10.1016/j.csbj.2022.11.046_b0015) 2009; 63 Saleem (10.1016/j.csbj.2022.11.046_b0325) 2021; 28 Brotman (10.1016/j.csbj.2022.11.046_b0165) 2013; 9 Das (10.1016/j.csbj.2022.11.046_b0515) 2014 Nadeem (10.1016/j.csbj.2022.11.046_b0265) 2007; 53 10.1016/j.csbj.2022.11.046_b0510 Feng (10.1016/j.csbj.2022.11.046_b0105) 2002; 12 Khalvandi (10.1016/j.csbj.2022.11.046_b0050) 2021; 16 Gul Jan (10.1016/j.csbj.2022.11.046_b0485) 2019; 19 Platten (10.1016/j.csbj.2022.11.046_b0395) 2006; 11 Abdelaziz (10.1016/j.csbj.2022.11.046_b0415) 2017; 263 Franken (10.1016/j.csbj.2022.11.046_b0190) 2012; 96 Desai (10.1016/j.csbj.2022.11.046_b0250) 2022 Loo (10.1016/j.csbj.2022.11.046_b0610) 2022; 35 Vaishnav (10.1016/j.csbj.2022.11.046_b0370) 2015; 119 Tchakounté (10.1016/j.csbj.2022.11.046_b0020) 2020; 8 Yoolong (10.1016/j.csbj.2022.11.046_b0605) 2019; 9 10.1016/j.csbj.2022.11.046_b0480 Lamers (10.1016/j.csbj.2022.11.046_b0065) 2020; 182 Kazan (10.1016/j.csbj.2022.11.046_b0575) 2015; 20 Eroğlu (10.1016/j.csbj.2022.11.046_b0110) 2020; 22 Pandey (10.1016/j.csbj.2022.11.046_b0155) 2017; 27 Khan (10.1016/j.csbj.2022.11.046_b0235) 2020; 22 Del Carmen (10.1016/j.csbj.2022.11.046_b0450) 2019; 10 Moller (10.1016/j.csbj.2022.11.046_b0400) 2009; 21 Nadeem (10.1016/j.csbj.2022.11.046_b0245) 2009; 55 Xu (10.1016/j.csbj.2022.11.046_b0500) 2017; 118 Jogawat (10.1016/j.csbj.2022.11.046_b0210) 2013; 8 Etesami (10.1016/j.csbj.2022.11.046_b0040) 2018 Hedrich (10.1016/j.csbj.2022.11.046_b0460) 2018; 46 Yang (10.1016/j.csbj.2022.11.046_b0010) 2018; 217 Jisha (10.1016/j.csbj.2022.11.046_b0200) 2019; 10 Duc (10.1016/j.csbj.2022.11.046_b0135) 2021; 11 Sharma (10.1016/j.csbj.2022.11.046_b0360) 2016; 7 10.1016/j.csbj.2022.11.046_b0215 Al-Karaki (10.1016/j.csbj.2022.11.046_b0125) 2000; 10 Subramanian (10.1016/j.csbj.2022.11.046_b0285) 2016; 11 Oljira (10.1016/j.csbj.2022.11.046_b0030) 2020; 8 Parvin (10.1016/j.csbj.2022.11.046_b0115) 2020; 30 Gamalero (10.1016/j.csbj.2022.11.046_b0580) 2015; 169 Egamberdieva (10.1016/j.csbj.2022.11.046_b0055) 2019 10.1016/j.csbj.2022.11.046_b0180 Yamato (10.1016/j.csbj.2022.11.046_b0120) 2008; 18 10.1016/j.csbj.2022.11.046_b0185 Wang (10.1016/j.csbj.2022.11.046_b0150) 2017; 35 10.1016/j.csbj.2022.11.046_b0100 Rus (10.1016/j.csbj.2022.11.046_b0390) 2004; 136 Subramanian (10.1016/j.csbj.2022.11.046_b0290) 2016; 7 Ullah (10.1016/j.csbj.2022.11.046_b0295) 2015; 61 Giri (10.1016/j.csbj.2022.11.046_b0140) 2007; 54 Lanza (10.1016/j.csbj.2022.11.046_b0225) 2019; 21 Yuan (10.1016/j.csbj.2022.11.046_b0345) 2020; 11 Lei (10.1016/j.csbj.2022.11.046_b0505) 2017; 7 Adesemoye (10.1016/j.csbj.2022.11.046_b0025) 2009; 85 Vahabi (10.1016/j.csbj.2022.11.046_b0205) 2016 Yao (10.1016/j.csbj.2022.11.046_b0350) 2010; 46 Apel (10.1016/j.csbj.2022.11.046_b0525) 2004; 55 Fan (10.1016/j.csbj.2022.11.046_b0315) 2016; 18 Estrada (10.1016/j.csbj.2022.11.046_b0535) 2013; 36 10.1016/j.csbj.2022.11.046_b0195 Zhou (10.1016/j.csbj.2022.11.046_b0465) 2017; 8 10.1016/j.csbj.2022.11.046_b0590 Habib (10.1016/j.csbj.2022.11.046_b0255) 2016 Nascimento (10.1016/j.csbj.2022.11.046_b0355) 2021; 12 Jaroszuk-Ściseł (10.1016/j.csbj.2022.11.046_b0570) 2019; 20 Zhu (10.1016/j.csbj.2022.11.046_b0090) 2016; 167 10.1016/j.csbj.2022.11.046_b0275 Kushwaha (10.1016/j.csbj.2022.11.046_b0035) 2020; 36 Drozdowicz (10.1016/j.csbj.2022.11.046_b0430) 2001; 6 Khan (10.1016/j.csbj.2022.11.046_b0330) 2021; 21 Santander (10.1016/j.csbj.2022.11.046_b0420) 2021; 158 Mahmoud (10.1016/j.csbj.2022.11.046_b0300) 2017; 39 Singh (10.1016/j.csbj.2022.11.046_b0340) 2020; 17 Egamberdieva (10.1016/j.csbj.2022.11.046_b0320) 2017; 8 Chatterjee (10.1016/j.csbj.2022.11.046_b0545) 2018; 215 Barnawal (10.1016/j.csbj.2022.11.046_b0560) 2017; 161 Heydarian (10.1016/j.csbj.2022.11.046_b0600) 2018; 9 10.1016/j.csbj.2022.11.046_b0045 Gupta (10.1016/j.csbj.2022.11.046_b0175) 2021; 72 Kavi Kishor (10.1016/j.csbj.2022.11.046_b0495) 2014; 37 Chen (10.1016/j.csbj.2022.11.046_b0440) 2017; 30 Chen (10.1016/j.csbj.2022.11.046_b0550) 2017; 8 Zhu (10.1016/j.csbj.2022.11.046_b0080) 2001; 6 Zhang (10.1016/j.csbj.2022.11.046_b0170) 2019; 170 Ghorbani (10.1016/j.csbj.2022.11.046_b0220) 2018; 20 Rolli (10.1016/j.csbj.2022.11.046_b0615) 2022; 24 Niu (10.1016/j.csbj.2022.11.046_b0410) 2016; 407 |
References_xml | – volume: 11 start-page: 372 year: 2006 end-page: 374 ident: b0395 article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance publication-title: Trends Plant Sci – reference: Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al. – volume: 14 start-page: 1 year: 2018 end-page: 28 ident: b0270 article-title: Ethylene induced plant stress tolerance by publication-title: PLoS Genet – volume: 37 start-page: 300 year: 2014 end-page: 311 ident: b0495 article-title: Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? publication-title: Plant Cell Environ – start-page: 1 year: 2022 end-page: 8 ident: b0250 article-title: Salt-tolerant bacteria enhance the growth of publication-title: Int J Phytorem – volume: 20 start-page: E4923 year: 2019 ident: b0570 article-title: Phytohormones (Auxin, Gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic publication-title: Int J Mol Sci – volume: 85 start-page: 1 year: 2009 end-page: 12 ident: b0025 article-title: Plant-microbes interactions in enhanced fertilizer-use efficiency publication-title: Appl Microbiol Biotechnol – volume: 6 start-page: 206 year: 2001 end-page: 211 ident: b0430 article-title: Vacuolar H publication-title: Trends Plant Sci – reference: Andres-Barrao C, Alzubaidy H, Jalal R, Mariappan KG, De Zelicourt A, Bokhari A, et al. Coordinated bacterial and plant sulfur metabolism in – volume: 11 start-page: 1 year: 2022 end-page: 21 ident: b0075 article-title: Salt stress in plants and mitigation approaches publication-title: Plants – reference: reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 2005;102:13386–91. 10.1073/pnas.0504423102. – volume: 10 start-page: 182 year: 2019 end-page: 190 ident: b0200 article-title: Multifunctional aspects of publication-title: Mycology – start-page: 1 year: 2016 end-page: 10 ident: b0255 article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in publication-title: Biomed Res Int – volume: 7 start-page: 1 year: 2016 end-page: 11 ident: b0360 article-title: Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut publication-title: Front Microbiol – volume: 66 start-page: 144 year: 2020 end-page: 160 ident: b0305 article-title: Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress publication-title: Can J Microbiol – volume: 35 start-page: 554 year: 2022 end-page: 566 ident: b0610 article-title: Recognition of microbe- and damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants publication-title: Molecular Plant-Microbe Interactions® – volume: 136 start-page: 2500 year: 2004 end-page: 2511 ident: b0390 article-title: AtHKT1 facilitates Na publication-title: Plant Physiol – volume: 20 start-page: 729 year: 2018 end-page: 736 ident: b0220 article-title: inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato ( publication-title: Plant Biol – start-page: 9 year: 2018 ident: b0040 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front Microbiol – volume: 39 year: 2017 ident: b0300 article-title: Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars publication-title: Acta Physiol Plant – reference: Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus – volume: 10 start-page: 1 year: 2020 end-page: 15 ident: b0335 article-title: Prescience of endogenous regulation in publication-title: Sci Rep – start-page: 2 year: 2014 ident: b0515 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental publication-title: Science – reference: Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells 2014;37:109–17. 10.14348/molcells.2014.2239. – volume: 24 start-page: 223 year: 2022 end-page: 239 ident: b0615 article-title: The Lys-motif receptor LYK4 mediates publication-title: Environ Microbiol – volume: 19 start-page: 1 year: 2019 end-page: 10 ident: b0485 article-title: An endophytic isolate of the fungus publication-title: BMC Microbiol – volume: 8 start-page: 1 year: 2017 end-page: 14 ident: b0550 article-title: Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K publication-title: Front Plant Sci – volume: 43 start-page: 632 year: 2016 end-page: 642 ident: b0260 article-title: Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation publication-title: Funct Plant Biol – volume: 7 start-page: 1 year: 2016 end-page: 13 ident: b0290 article-title: Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in publication-title: Front Plant Sci – volume: 7 start-page: 1 year: 2017 end-page: 15 ident: b0505 article-title: The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in publication-title: Sci Rep – volume: 27 start-page: 669 year: 2017 end-page: 682 ident: b0155 article-title: High effectiveness of publication-title: Mycorrhiza – reference: PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiological Research 2021;244:126671–126671. 10.1016/j.micres.2020.126671. – volume: 285 start-page: 1256 year: 1999 end-page: 1258 ident: b0425 article-title: Salt tolerance conferred by overexpression of a vacuolar Na publication-title: Science – reference: SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology 2017;8:1945–1945. 10.3389/fmicb.2017.01945. – volume: 36 start-page: 1 year: 2020 end-page: 16 ident: b0035 article-title: Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action publication-title: World J Microbiol Biotechnol – reference: elimination through root exudates. Molecular Plant-Microbe Interactions 2014;27:503–14. 10.1094/MPMI-09-13-0265-R. – reference: T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology 2019;19:22–22. 10.1186/s12870-018-1618-5. – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: b0605 article-title: Modulation of salt tolerance in Thai jasmine rice ( publication-title: Sci Rep – volume: 30 start-page: 341 year: 2020 end-page: 355 ident: b0145 article-title: Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of publication-title: Mycorrhiza – volume: 10 start-page: 1 year: 2020 end-page: 13 ident: b0445 article-title: Plant-growth promoting publication-title: Front Plant Sci – volume: 96 start-page: 1455 year: 2012 end-page: 1464 ident: b0190 article-title: The plant strengthening root endophyte publication-title: Appl Microbiol Biotechnol – volume: 21 start-page: 3364 year: 2019 end-page: 3378 ident: b0225 article-title: The endophyte publication-title: Environ Microbiol – volume: 69 start-page: 913 year: 2021 end-page: 921 ident: b0490 article-title: 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene in publication-title: J Agric Food Chem – volume: 16 start-page: 1133 year: 2014 end-page: 1147 ident: b0385 article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils publication-title: Int J Phytorem – volume: 2 start-page: 43 year: 2004 end-page: 56 ident: b0160 article-title: Trichoderma species–opportunistic, avirulent plant symbionts publication-title: Nat Rev Microbiol – volume: 161 start-page: 502 year: 2017 end-page: 514 ident: b0560 article-title: Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression publication-title: Physiol Plant – reference: Aroca R, Ruiz-Lozano JM, Zamarreño ángel M, Paz JA, García-Mina JM, Pozo MJ, et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology 2013;170:47–55. 10.1016/j.jplph.2012.08.020. – reference: strain-specifically improves growth of – volume: 407 start-page: 217 year: 2016 end-page: 230 ident: b0410 article-title: Induced growth promotion and higher salt tolerance in the halophyte grass publication-title: Plant and Soil – volume: 201–202 start-page: 42 year: 2013 end-page: 51 ident: b0530 article-title: Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity publication-title: Plant Sci – volume: 17 start-page: 1 year: 2022 end-page: 23 ident: b0240 article-title: ACC deaminase producing rhizobacterium publication-title: PLoS One – volume: 63 start-page: 541 year: 2009 end-page: 556 ident: b0015 article-title: Plant-growth-promoting rhizobacteria publication-title: Annu Rev Microbiol – volume: 66 start-page: 252 year: 2018 end-page: 259 ident: b0585 article-title: The expression of an exogenous ACC deaminase by the endophyte publication-title: Lett Appl Microbiol – volume: 30 start-page: 431 year: 2020 end-page: 444 ident: b0115 article-title: Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a publication-title: Mycorrhiza – volume: 215 start-page: 89 year: 2018 end-page: 101 ident: b0545 article-title: RS16 confers salt tolerance to publication-title: Microbiol Res – reference: Singh RP, Jha PN. The PGPR – volume: 28 start-page: 5317 year: 2021 end-page: 5324 ident: b0325 article-title: Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in publication-title: Saudi Journal of Biological Sciences – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: b0090 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 495 start-page: 286 year: 2018 end-page: 291 ident: b0070 article-title: Plant salt-tolerance mechanism: A review publication-title: Biochem Biophys Res Commun – volume: 10 start-page: 1 year: 2019 end-page: 10 ident: b0450 article-title: The production of ACC deaminase and trehalose by the plant growth promoting bacterium publication-title: Front Microbiol – volume: 61 start-page: 307 year: 2015 end-page: 313 ident: b0295 article-title: Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize ( publication-title: Can J Microbiol – volume: 22 start-page: 863 year: 2020 end-page: 871 ident: b0110 article-title: Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress publication-title: Plant Biol – volume: 8 start-page: 1 year: 2020 end-page: 19 ident: b0030 article-title: enhances net photosynthesis, water use efficiency, and growth of wheat ( publication-title: Microorganisms – volume: 55 start-page: 373 year: 2004 end-page: 399 ident: b0525 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annu Rev Plant Biol – volume: 119 start-page: 539 year: 2015 end-page: 551 ident: b0370 article-title: Putative bacterial volatile-mediated growth in soybean ( publication-title: J Appl Microbiol – volume: 9 start-page: 1 year: 2018 end-page: 17 ident: b0470 article-title: A growth-promoting bacteria, publication-title: Front Plant Sci – reference: seedlings under salt stress through enhanced root development, osmolite production, and Na – start-page: 10 year: 2019 ident: b0055 article-title: Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils publication-title: Front Microbiol – volume: 8 start-page: 1 year: 2017 end-page: 13 ident: b0320 article-title: Endophytic bacteria improve plant growth, symbiotic performance of publication-title: Front Microbiol – volume: 11 start-page: 1 year: 2016 end-page: 19 ident: b0285 article-title: A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress publication-title: PLoS One – volume: 21 start-page: 2163 year: 2009 end-page: 2178 ident: b0400 article-title: Shoot Na publication-title: Plant Cell – reference: sp. SA187-induced plant salt stress tolerance. Proceedings of the National Academy of Sciences of the United States of America 2021;118:1–12. 10.1073/pnas.2107417118. – reference: Lastochkina O, Aliniaeifard S, Garshina D, Garipova S, Pusenkova L, Allagulova C, et al. Seed priming with endophytic – volume: 263 start-page: 107 year: 2017 end-page: 115 ident: b0415 article-title: The endophytic fungus publication-title: Plant Sci – volume: 31 start-page: 398 year: 2021 end-page: 407 ident: b0310 article-title: Biological inoculant of salt-tolerant bacteria for plant growth stimulation under different saline soil conditions publication-title: J Microbiol Biotechnol – volume: 12 year: 2021 ident: b0355 article-title: Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing publication-title: Front Microbiol – volume: 18 start-page: 241 year: 2008 end-page: 249 ident: b0120 article-title: Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions publication-title: Mycorrhiza – volume: 18 start-page: 1113 year: 2016 end-page: 1121 ident: b0315 article-title: Alleviating salt stress in tomato seedlings using publication-title: Int J Phytorem – volume: 169 start-page: 13 year: 2015 end-page: 22 ident: b0580 article-title: Bacterial modulation of plant ethylene levels publication-title: Plant Physiol – volume: 11 start-page: 1 year: 2021 end-page: 18 ident: b0135 article-title: Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant publication-title: Plant Sci – reference: Zhang S, Gan Y, Xu B. Mechanisms of the IAA and ACC-deaminase producing strain of – volume: 46 start-page: 87 year: 2018 end-page: 95 ident: b0460 article-title: Stomata in a saline world publication-title: Curr Opin Plant Biol – volume: 41 start-page: 109 year: 1995 end-page: 117 ident: b0595 article-title: The enhancement of plant growth by free-living bacteria publication-title: Can J Microbiol – volume: 9 start-page: 1 year: 2018 end-page: 15 ident: b0600 article-title: Gene expression patterns in roots of publication-title: Front Microbiol – volume: 56 start-page: 1274 year: 2016 end-page: 1288 ident: b0365 article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside publication-title: J Basic Microbiol – start-page: 10 year: 2019 ident: b0095 article-title: Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers publication-title: Plant Sci – volume: 35 start-page: 36 year: 2017 ident: b0150 article-title: Enhancements of arbuscular mycorrhizal fungi on growth and nitrogen acquisition of publication-title: PLoS One – reference: Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J. – reference: Fatima T, Arora NK. – volume: 72 start-page: 7229 year: 2021 end-page: 7246 ident: b0175 article-title: Inoculation of barley with publication-title: J Exp Bot – volume: 158 start-page: 34 year: 2016 end-page: 44 ident: b0435 article-title: Induced maize salt tolerance by rhizosphere inoculation of publication-title: Physiol Plant – volume: 118 start-page: 460 year: 2017 end-page: 470 ident: b0500 article-title: Exogenous application of poly-γ-glutamic acid enhances stress defense in publication-title: Plant Physiol Biochem – volume: 53 start-page: 247 year: 2002 end-page: 273 ident: b0085 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev Plant Biol – volume: 21 start-page: 1 year: 2021 end-page: 15 ident: b0330 article-title: Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses publication-title: BMC Plant Biol – volume: 16 start-page: 1 year: 2021 end-page: 21 ident: b0050 article-title: Does co-inoculation of mycorrhiza and publication-title: PLoS One – volume: 9 start-page: e1003221 year: 2013 end-page: e ident: b0165 article-title: -plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance publication-title: PLoS Pathog – volume: 10 start-page: 1 year: 2019 end-page: 14 ident: b0130 article-title: Arbuscular mycorrhizal fungi confer salt tolerance in publication-title: Plant Sci – volume: 30 start-page: 423 year: 2017 end-page: 432 ident: b0440 article-title: Beneficial rhizobacterium publication-title: Mol Plant Microbe Interact – reference: Orozco-Mosqueda M del C, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research 2020;235:126439. 10.1016/j.micres.2020.126439. – volume: 217 start-page: 523 year: 2018 end-page: 539 ident: b0010 article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses publication-title: New Phytol – reference: : potential and significance in plant stress tolerance. Frontiers in Microbiology 2016;7:332–332. 10.3389/fmicb.2016.00332. – volume: 8 start-page: e26891 year: 2013 end-page: e ident: b0210 article-title: rescues growth diminution of rice seedlings during high salt stress publication-title: Plant Signal Behav – start-page: 11 year: 2016 ident: b0205 article-title: Stress promotes publication-title: Plant Signal Behav – volume: 20 start-page: 219 year: 2015 end-page: 229 ident: b0575 article-title: Diverse roles of jasmonates and ethylene in abiotic stress tolerance publication-title: Trends Plant Sci – volume: 53 start-page: 1141 year: 2007 end-page: 1149 ident: b0265 article-title: Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity publication-title: Can J Microbiol – volume: 44 start-page: 1663 year: 2021 end-page: 1678 ident: b0565 article-title: Volatile compounds from beneficial rhizobacteria publication-title: Plant Cell Environ – volume: 170 start-page: 436 year: 2019 end-page: 445 ident: b0170 article-title: mitigates salt stress in cucumber via multiple responses publication-title: Ecotoxicol Environ Saf – volume: 182 start-page: 1624 year: 2020 end-page: 1635 ident: b0065 article-title: How plants sense and respond to stressful environments publication-title: Plant Physiol – volume: 46 start-page: 49 year: 2010 end-page: 54 ident: b0350 article-title: Growth promotion and protection against salt stress by publication-title: Eur J Soil Biol – volume: 34 start-page: 103 year: 1997 end-page: 113 ident: b0280 article-title: : A review publication-title: Int J Food Microbiol – volume: 21 start-page: 737 year: 2008 end-page: 744 ident: b0405 article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 publication-title: Mol Plant Microbe Interact – reference: plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmot. Journal of Plant Physiology 2021;263:153462–153462. 10.1016/j.jplph.2021.153462. – volume: 55 start-page: 1302 year: 2009 end-page: 1309 ident: b0245 article-title: Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields publication-title: Can J Microbiol – volume: 158 start-page: 396 year: 2021 end-page: 409 ident: b0420 article-title: Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions publication-title: Plant Physiol Biochem – volume: 14 start-page: 10 year: 2011 end-page: 16 ident: b0555 article-title: Sending mixed messages: Auxin-cytokinin crosstalk in roots publication-title: Curr Opin Plant Biol – volume: 92 start-page: 775 year: 2014 end-page: 781 ident: b0455 article-title: Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato ( publication-title: Botany – volume: 8 start-page: 1 year: 2020 end-page: 16 ident: b0020 article-title: Selected rhizosphere bacteria help tomato plants cope with combined phosphorus and salt stresses publication-title: Microorganisms – volume: 19 start-page: 371 year: 2014 end-page: 379 ident: b0060 article-title: Plant salt-tolerance mechanisms publication-title: Trends Plant Sci – volume: 11 start-page: 1 year: 2020 end-page: 12 ident: b0345 article-title: Phenazine-producing rhizobacteria promote plant growth and reduce redox and osmotic stress in wheat seedlings under saline conditions publication-title: Front Plant Sci – reference: Ali B, Wang X, Saleem MH, Sumaira, Hafeez A, Afridi MS, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 2022;11:345–345. 10.3390/plants11030345. – volume: 10 start-page: 51 year: 2000 end-page: 54 ident: b0125 article-title: Growth of mycorrhizal tomato and mineral acquisition under salt stress publication-title: Mycorrhiza – volume: 6 start-page: 66 year: 2001 end-page: 71 ident: b0080 article-title: Plant salt tolerance publication-title: Trends Plant Sci – reference: spp. improve growth of – volume: 22 start-page: 850 year: 2020 end-page: 862 ident: b0235 article-title: Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants publication-title: Plant Biol – volume: 29 start-page: 1124 year: 2019 end-page: 1136 ident: b0475 article-title: Induced tolerance to salinity stress by halotolerant bacteria publication-title: J Microbiol Biotechnol – volume: 17 year: 2020 ident: b0340 article-title: Seed biopriming with salt-tolerant endophytic pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize ( publication-title: Int J Environ Res Public Health – volume: 59 start-page: 651 year: 2008 end-page: 681 ident: b0005 article-title: Mechanisms of salinity tolerance publication-title: Annu Rev Plant Biol – volume: 90 start-page: 856 year: 2017 end-page: 867 ident: b0520 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J – volume: 54 start-page: 753 year: 2007 end-page: 760 ident: b0140 article-title: Improved tolerance of publication-title: Microb Ecol – volume: 80 start-page: 160 year: 2014 end-page: 167 ident: b0375 article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase publication-title: Plant Physiol Biochem – volume: 8 start-page: 1 year: 2017 end-page: 17 ident: b0465 article-title: SA03 confers increased saline–alkaline tolerance in publication-title: Front Plant Sci – volume: 12 start-page: 185 year: 2002 end-page: 190 ident: b0105 article-title: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots publication-title: Mycorrhiza – reference: Gad M, Nobuhiro S, Sultan C, Ron M. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment 2010;33:453-467 10.1111/j.1365-3040.2009.02041.x. – volume: 36 start-page: 1771 year: 2013 end-page: 1782 ident: b0535 article-title: Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis publication-title: Plant Cell Environ – volume: 2 start-page: 43 year: 2004 ident: 10.1016/j.csbj.2022.11.046_b0160 article-title: Trichoderma species–opportunistic, avirulent plant symbionts publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro797 – volume: 495 start-page: 286 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0070 article-title: Plant salt-tolerance mechanism: A review publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.11.043 – volume: 201–202 start-page: 42 year: 2013 ident: 10.1016/j.csbj.2022.11.046_b0530 article-title: Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity publication-title: Plant Sci doi: 10.1016/j.plantsci.2012.11.009 – start-page: 10 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0095 article-title: Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers publication-title: Plant Sci – volume: 11 start-page: 372 year: 2006 ident: 10.1016/j.csbj.2022.11.046_b0395 article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2006.06.001 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0605 article-title: Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase publication-title: Sci Rep doi: 10.1038/s41598-018-37987-5 – volume: 30 start-page: 431 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0115 article-title: Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar publication-title: Mycorrhiza doi: 10.1007/s00572-020-00957-9 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0030 article-title: Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress publication-title: Microorganisms doi: 10.3390/microorganisms8101565 – volume: 20 start-page: E4923 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0570 article-title: Phytohormones (Auxin, Gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia publication-title: Int J Mol Sci doi: 10.3390/ijms20194923 – volume: 43 start-page: 632 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0260 article-title: Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation publication-title: Funct Plant Biol doi: 10.1071/FP15265 – volume: 158 start-page: 396 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0420 article-title: Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2020.11.025 – volume: 24 start-page: 223 year: 2022 ident: 10.1016/j.csbj.2022.11.046_b0615 article-title: The Lys-motif receptor LYK4 mediates Enterobacter sp. SA187 triggered salt tolerance in Arabidopsis thaliana publication-title: Environ Microbiol doi: 10.1111/1462-2920.15839 – volume: 169 start-page: 13 year: 2015 ident: 10.1016/j.csbj.2022.11.046_b0580 article-title: Bacterial modulation of plant ethylene levels publication-title: Plant Physiol doi: 10.1104/pp.15.00284 – volume: 56 start-page: 1274 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0365 article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside publication-title: J Basic Microbiol doi: 10.1002/jobm.201600188 – start-page: 1 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0255 article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes publication-title: Biomed Res Int doi: 10.1155/2016/6284547 – volume: 16 start-page: 1133 year: 2014 ident: 10.1016/j.csbj.2022.11.046_b0385 article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils publication-title: Int J Phytorem doi: 10.1080/15226514.2013.821447 – ident: 10.1016/j.csbj.2022.11.046_b0480 doi: 10.1016/j.jplph.2021.153462 – ident: 10.1016/j.csbj.2022.11.046_b0180 doi: 10.1094/MPMI-09-13-0265-R – volume: 167 start-page: 313 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0090 article-title: Abiotic stress signaling and responses in plants publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 46 start-page: 49 year: 2010 ident: 10.1016/j.csbj.2022.11.046_b0350 article-title: Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2009.11.002 – ident: 10.1016/j.csbj.2022.11.046_b0100 doi: 10.1016/j.jplph.2012.08.020 – volume: 37 start-page: 300 year: 2014 ident: 10.1016/j.csbj.2022.11.046_b0495 article-title: Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? publication-title: Plant Cell Environ doi: 10.1111/pce.12157 – volume: 66 start-page: 144 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0305 article-title: Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress publication-title: Can J Microbiol doi: 10.1139/cjm-2019-0323 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0550 article-title: Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01739 – volume: 10 start-page: 51 year: 2000 ident: 10.1016/j.csbj.2022.11.046_b0125 article-title: Growth of mycorrhizal tomato and mineral acquisition under salt stress publication-title: Mycorrhiza doi: 10.1007/s005720000055 – volume: 55 start-page: 373 year: 2004 ident: 10.1016/j.csbj.2022.11.046_b0525 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 66 start-page: 252 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0585 article-title: The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean publication-title: Lett Appl Microbiol doi: 10.1111/lam.12847 – volume: 8 start-page: e26891 year: 2013 ident: 10.1016/j.csbj.2022.11.046_b0210 article-title: Piriformospora indica rescues growth diminution of rice seedlings during high salt stress publication-title: Plant Signal Behav doi: 10.4161/psb.26891 – volume: 29 start-page: 1124 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0475 article-title: Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19–1 and B. mesonae H20–5 in tomato plants publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1904.04026 – volume: 12 start-page: 185 year: 2002 ident: 10.1016/j.csbj.2022.11.046_b0105 article-title: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots publication-title: Mycorrhiza doi: 10.1007/s00572-002-0170-0 – volume: 92 start-page: 775 year: 2014 ident: 10.1016/j.csbj.2022.11.046_b0455 article-title: Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress publication-title: Botany doi: 10.1139/cjb-2014-0038 – volume: 182 start-page: 1624 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0065 article-title: How plants sense and respond to stressful environments publication-title: Plant Physiol doi: 10.1104/pp.19.01464 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0335 article-title: Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition publication-title: Sci Rep doi: 10.1038/s41598-020-62725-1 – volume: 21 start-page: 2163 year: 2009 ident: 10.1016/j.csbj.2022.11.046_b0400 article-title: Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.064568 – volume: 30 start-page: 423 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0440 article-title: Beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-02-17-0027-R – volume: 53 start-page: 247 year: 2002 ident: 10.1016/j.csbj.2022.11.046_b0085 article-title: Salt and drought stress signal transduction in plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 17 start-page: 1 year: 2022 ident: 10.1016/j.csbj.2022.11.046_b0240 article-title: ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant publication-title: PLoS One – volume: 96 start-page: 1455 year: 2012 ident: 10.1016/j.csbj.2022.11.046_b0190 article-title: The plant strengthening root endophyte Piriformospora indica: Potential application and the biology behind publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4506-1 – volume: 39 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0300 article-title: Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars publication-title: Acta Physiol Plant doi: 10.1007/s11738-017-2421-x – volume: 9 start-page: e1003221 year: 2013 ident: 10.1016/j.csbj.2022.11.046_b0165 article-title: Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003221 – volume: 69 start-page: 913 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0490 article-title: 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene in Pseudomonas azotoformans is associated with the amelioration of salinity stress in tomato publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.0c05628 – ident: 10.1016/j.csbj.2022.11.046_b0510 doi: 10.1111/j.1365-3040.2009.02041.x – ident: 10.1016/j.csbj.2022.11.046_b0275 doi: 10.3390/plants11030345 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0320 article-title: Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01887 – volume: 136 start-page: 2500 year: 2004 ident: 10.1016/j.csbj.2022.11.046_b0390 article-title: AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta publication-title: Plant Physiol doi: 10.1104/pp.104.042234 – volume: 12 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0355 article-title: Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas thivervalensis sc5 reveals its multifaceted roles in soil and in beneficial interactions with plants publication-title: Front Microbiol doi: 10.3389/fmicb.2021.752288 – volume: 18 start-page: 241 year: 2008 ident: 10.1016/j.csbj.2022.11.046_b0120 article-title: Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions publication-title: Mycorrhiza doi: 10.1007/s00572-008-0177-2 – volume: 31 start-page: 398 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0310 article-title: Biological inoculant of salt-tolerant bacteria for plant growth stimulation under different saline soil conditions publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.2009.09032 – ident: 10.1016/j.csbj.2022.11.046_b0380 doi: 10.1016/j.micres.2020.126671 – volume: 22 start-page: 863 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0110 article-title: Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress publication-title: Plant Biol doi: 10.1111/plb.13123 – volume: 46 start-page: 87 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0460 article-title: Stomata in a saline world publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2018.07.015 – volume: 217 start-page: 523 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0010 article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses publication-title: New Phytol doi: 10.1111/nph.14920 – volume: 28 start-page: 5317 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0325 article-title: Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum publication-title: Saudi Journal of Biological Sciences doi: 10.1016/j.sjbs.2021.05.056 – volume: 90 start-page: 856 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0520 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant J doi: 10.1111/tpj.13299 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0600 article-title: Gene expression patterns in roots of Camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01297 – volume: 72 start-page: 7229 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0175 article-title: Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance publication-title: J Exp Bot doi: 10.1093/jxb/erab335 – volume: 34 start-page: 103 year: 1997 ident: 10.1016/j.csbj.2022.11.046_b0280 article-title: Enterobacter sakazakii: A review publication-title: Int J Food Microbiol doi: 10.1016/S0168-1605(96)01172-5 – volume: 61 start-page: 307 year: 2015 ident: 10.1016/j.csbj.2022.11.046_b0295 article-title: Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity publication-title: Can J Microbiol doi: 10.1139/cjm-2014-0668 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0360 article-title: Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01600 – ident: 10.1016/j.csbj.2022.11.046_b0590 doi: 10.3389/fmicb.2017.01945 – volume: 35 start-page: 36 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0150 article-title: Enhancements of arbuscular mycorrhizal fungi on growth and nitrogen acquisition of Chrysanthemum morifolium under salt stress publication-title: PLoS One – volume: 30 start-page: 341 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0145 article-title: Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata publication-title: Mycorrhiza doi: 10.1007/s00572-020-00954-y – volume: 53 start-page: 1141 year: 2007 ident: 10.1016/j.csbj.2022.11.046_b0265 article-title: Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity publication-title: Can J Microbiol doi: 10.1139/W07-081 – volume: 85 start-page: 1 year: 2009 ident: 10.1016/j.csbj.2022.11.046_b0025 article-title: Plant-microbes interactions in enhanced fertilizer-use efficiency publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2196-0 – volume: 19 start-page: 371 year: 2014 ident: 10.1016/j.csbj.2022.11.046_b0060 article-title: Plant salt-tolerance mechanisms publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2014.02.001 – volume: 20 start-page: 219 year: 2015 ident: 10.1016/j.csbj.2022.11.046_b0575 article-title: Diverse roles of jasmonates and ethylene in abiotic stress tolerance publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2015.02.001 – ident: 10.1016/j.csbj.2022.11.046_b0195 doi: 10.3389/fmicb.2016.00332 – volume: 170 start-page: 436 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0170 article-title: Trichoderma harzianum mitigates salt stress in cucumber via multiple responses publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2018.11.084 – start-page: 11 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0205 article-title: Stress promotes Arabidopsis-Piriformospora indica interaction publication-title: Plant Signal Behav – ident: 10.1016/j.csbj.2022.11.046_b0045 doi: 10.1016/j.micres.2020.126439 – volume: 161 start-page: 502 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0560 article-title: Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression publication-title: Physiol Plant doi: 10.1111/ppl.12614 – volume: 20 start-page: 729 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0220 article-title: Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.) publication-title: Plant Biol doi: 10.1111/plb.12717 – volume: 63 start-page: 541 year: 2009 ident: 10.1016/j.csbj.2022.11.046_b0015 article-title: Plant-growth-promoting rhizobacteria publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.62.081307.162918 – start-page: 1 year: 2022 ident: 10.1016/j.csbj.2022.11.046_b0250 article-title: Salt-tolerant bacteria enhance the growth of mung bean (Vigna radiata L.) and uptake of nutrients, and mobilize sodium ions under salt stress condition publication-title: Int J Phytorem – volume: 14 start-page: 1 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0270 article-title: Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007273 – ident: 10.1016/j.csbj.2022.11.046_b0230 doi: 10.14348/molcells.2014.2239 – volume: 22 start-page: 850 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0235 article-title: Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants publication-title: Plant Biol doi: 10.1111/plb.13124 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0470 article-title: A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in panax ginseng publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00813 – volume: 27 start-page: 669 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0155 article-title: High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress publication-title: Mycorrhiza doi: 10.1007/s00572-017-0778-8 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0135 article-title: Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Frontiers publication-title: Plant Sci – volume: 407 start-page: 217 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0410 article-title: Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria publication-title: Plant and Soil doi: 10.1007/s11104-015-2767-z – volume: 6 start-page: 206 year: 2001 ident: 10.1016/j.csbj.2022.11.046_b0430 article-title: Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(01)01923-9 – volume: 41 start-page: 109 year: 1995 ident: 10.1016/j.csbj.2022.11.046_b0595 article-title: The enhancement of plant growth by free-living bacteria publication-title: Can J Microbiol doi: 10.1139/m95-015 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0290 article-title: Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01314 – volume: 11 start-page: 1 year: 2022 ident: 10.1016/j.csbj.2022.11.046_b0075 article-title: Salt stress in plants and mitigation approaches publication-title: Plants doi: 10.3390/plants11060717 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0130 article-title: Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax L.) plants grown under low phosphorus by reducing leaf Na+ concentration and improving phosphorus use efficiency. Frontiers publication-title: Plant Sci – volume: 215 start-page: 89 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0545 article-title: Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity publication-title: Microbiol Res doi: 10.1016/j.micres.2018.06.007 – start-page: 9 year: 2018 ident: 10.1016/j.csbj.2022.11.046_b0040 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front Microbiol – volume: 285 start-page: 1256 year: 1999 ident: 10.1016/j.csbj.2022.11.046_b0425 article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis publication-title: Science doi: 10.1126/science.285.5431.1256 – volume: 17 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0340 article-title: Seed biopriming with salt-tolerant endophytic pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil publication-title: Int J Environ Res Public Health – volume: 6 start-page: 66 year: 2001 ident: 10.1016/j.csbj.2022.11.046_b0080 article-title: Plant salt tolerance publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(00)01838-0 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0285 article-title: A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress publication-title: PLoS One doi: 10.1371/journal.pone.0160660 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0445 article-title: Plant-growth promoting Bacillus oryzicola yc7007 modulates stress-response gene expression and provides protection from salt stress publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01646 – volume: 158 start-page: 34 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0435 article-title: Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9 publication-title: Physiol Plant doi: 10.1111/ppl.12441 – start-page: 2 year: 2014 ident: 10.1016/j.csbj.2022.11.046_b0515 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental publication-title: Science – volume: 35 start-page: 554 issue: 7 year: 2022 ident: 10.1016/j.csbj.2022.11.046_b0610 article-title: Recognition of microbe- and damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants publication-title: Molecular Plant-Microbe Interactions® doi: 10.1094/MPMI-07-21-0185-FI – volume: 55 start-page: 1302 year: 2009 ident: 10.1016/j.csbj.2022.11.046_b0245 article-title: Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields publication-title: Can J Microbiol doi: 10.1139/W09-092 – start-page: 10 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0055 article-title: Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils publication-title: Front Microbiol – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0485 article-title: An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize publication-title: BMC Microbiol doi: 10.1186/s12866-018-1374-6 – volume: 119 start-page: 539 year: 2015 ident: 10.1016/j.csbj.2022.11.046_b0370 article-title: Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress publication-title: J Appl Microbiol doi: 10.1111/jam.12866 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0330 article-title: Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses publication-title: BMC Plant Biol doi: 10.1186/s12870-021-02937-3 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0505 article-title: The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+ publication-title: Sci Rep – volume: 44 start-page: 1663 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0565 article-title: Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis publication-title: Plant Cell Environ doi: 10.1111/pce.14021 – volume: 59 start-page: 651 year: 2008 ident: 10.1016/j.csbj.2022.11.046_b0005 article-title: Mechanisms of salinity tolerance publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092911 – ident: 10.1016/j.csbj.2022.11.046_b0185 doi: 10.1186/s12870-018-1618-5 – volume: 80 start-page: 160 year: 2014 ident: 10.1016/j.csbj.2022.11.046_b0375 article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2014.04.003 – ident: 10.1016/j.csbj.2022.11.046_b0540 doi: 10.1073/pnas.2107417118 – volume: 36 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0035 article-title: Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-020-2804-9 – volume: 263 start-page: 107 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0415 article-title: The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions publication-title: Plant Sci doi: 10.1016/j.plantsci.2017.07.006 – volume: 54 start-page: 753 year: 2007 ident: 10.1016/j.csbj.2022.11.046_b0140 article-title: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues publication-title: Microb Ecol doi: 10.1007/s00248-007-9239-9 – ident: 10.1016/j.csbj.2022.11.046_b0215 doi: 10.1073/pnas.0504423102 – volume: 18 start-page: 1113 year: 2016 ident: 10.1016/j.csbj.2022.11.046_b0315 article-title: Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands publication-title: Int J Phytorem doi: 10.1080/15226514.2016.1183583 – volume: 21 start-page: 737 year: 2008 ident: 10.1016/j.csbj.2022.11.046_b0405 article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-21-6-0737 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0345 article-title: Phenazine-producing rhizobacteria promote plant growth and reduce redox and osmotic stress in wheat seedlings under saline conditions publication-title: Front Plant Sci doi: 10.3389/fpls.2020.575314 – volume: 36 start-page: 1771 year: 2013 ident: 10.1016/j.csbj.2022.11.046_b0535 article-title: Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis publication-title: Plant Cell Environ doi: 10.1111/pce.12082 – volume: 118 start-page: 460 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0500 article-title: Exogenous application of poly-γ-glutamic acid enhances stress defense in Brassica napus L. seedlings by inducing cross-talks between Ca2+, H2O2, brassinolide, and jasmonic acid in leaves publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.07.015 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0450 article-title: The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress publication-title: Front Microbiol – volume: 10 start-page: 182 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0200 article-title: Multifunctional aspects of Piriformospora indica in plant endosymbiosis publication-title: Mycology doi: 10.1080/21501203.2019.1600063 – volume: 14 start-page: 10 year: 2011 ident: 10.1016/j.csbj.2022.11.046_b0555 article-title: Sending mixed messages: Auxin-cytokinin crosstalk in roots publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2010.08.014 – volume: 8 start-page: 1 year: 2020 ident: 10.1016/j.csbj.2022.11.046_b0020 article-title: Selected rhizosphere bacteria help tomato plants cope with combined phosphorus and salt stresses publication-title: Microorganisms doi: 10.3390/microorganisms8111844 – volume: 16 start-page: 1 year: 2021 ident: 10.1016/j.csbj.2022.11.046_b0050 article-title: Does co-inoculation of mycorrhiza and Piriformospora indica fungi enhance the efficiency of chlorophyll fluorescence and essential oil composition in peppermint under irrigation with saline water from the Caspian Sea? publication-title: PLoS One doi: 10.1371/journal.pone.0254076 – volume: 21 start-page: 3364 year: 2019 ident: 10.1016/j.csbj.2022.11.046_b0225 article-title: The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity publication-title: Environ Microbiol doi: 10.1111/1462-2920.14619 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.csbj.2022.11.046_b0465 article-title: Bacillus licheniformis SA03 confers increased saline–alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation publication-title: Front Plant Sci doi: 10.3389/fpls.2017.01143 |
SSID | ssj0000816930 |
Score | 2.452399 |
SecondaryResourceType | review_article |
Snippet | The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is... The world's population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6543 |
SubjectTerms | biotechnology crop production food production fungi genome homeostasis Microbe-enhanced salt tolerance mechanisms microbiome plant growth Plant salt tolerance rhizosphere Rhizosphere microbe Saline soil saline soils salt stress salt tolerance species stress tolerance sustainable agriculture |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VOdFDVWgr0gJaJG6Vix_7cLgBIkKV4IBAym3lHc-qiVwnqp3_z4ztoMAhvXC0NV6vZ2bnsZ79RoizDCZK50kRFdpApABVNElzjDTkaIMtgkfeGri7N7dP6vdMz7ZafXFNWA8P3DPunFv1aV_EwWdBlZoBysFbsqGWEhNTdsd8yedtJVOdDc4ZZIQ3WIaaIRsPJ2b64i5o_IKSwzT9xRCeHP1ueaUOvP-Vc3pjpjvfM_0sPg1Bo7zsJ7svPmB9ID5uQQl-EbMHLp5rGCQA5V-usvPYSKz_sFTlqiIGyqaoWtkuK-RmGnghH7uSWclNvOSqR34lKcl5zZQ0tGyW8-qreJrePF7fRkPXhAiUNW0UShOgSE1mJ2lJ7h5olcW6VGB4wdFlAny4NQGwFCqEwlMEAxgSb7zOVA7ZNzGqlzUeCpmZBJDigVR7rcpAUjDKmxxTbluFcTkWyYZrDgZIce5sUblN7djCMacdc5pyDUecHoufL8-sekCNndRXLIwXSgbD7m6QirhBRdz_VGQs9EaUbogr-niBhprvfPnpRu6OFh3_SSlqXK4bx6k8mcM02UGTJdxzw8Yq-_4eH_FD7PHU-t2fIzFq_63xmOKh1p90qv8M7IoEfg priority: 102 providerName: Directory of Open Access Journals |
Title | Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil |
URI | https://dx.doi.org/10.1016/j.csbj.2022.11.046 https://www.proquest.com/docview/2747003216 https://www.proquest.com/docview/3153207043 https://doaj.org/article/69305ba0fb3f4d50822cb799070946d8 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5q-6IPYrXiWT224JukXJL9kRNEamkpLfWh9Oi9LdnJrl6JyfWSgv73ziSb1kq5Bx8TNpswk9n5ZjP5PsY-pDAVMovzKJcKIgFORNMkc5GEzGmvc28dbQ2cf1MnM3E6l_MNNsgdBQM2j5Z2pCc1W5X7v25-f8GA_3zfqwWNvcZaL0n2iZFTqCdsCzOTJkWD8wD3u5U5I-oR2nYJnUR6Ev6jeXyaB7mqo_R_kLL-Wby7jHT8gj0PUJIf9L7fZhuuesme_UUw-IrNL6ilriHqAMd_Uu-ddQ131Q_yNV-WaFbe5GXL27p0JLHhPvHLrpGWk7QXX_Z8sOg7vqhoJE7Nm3pR7rDZ8dHl4UkUtBQiEFq1kS-UhzxRqZ4mBYIAwNibyEKAojDEwxjol9cYQCOA8LlFXAPOx1ZZmYoM0tdss6or94bxVMXgECUk0kpReJsjqrEqcwmJWblJMWLxYDUDgWic9C5KM3SUXRuytCFLYwVi0NIj9vHummVPs7F29Fdyxt1IosjuTtSr7yZEnCFPS3w4b1MvCknM9mA1Jl-NFa0qshGTgytNQBs9isCpFmtvvjf43WAo0veVvHL1bWOowMdFMonXjEljUuLQE5G-_c_777KndNRvA71jm-3q1r1HYNTaMds6OLu4Oht3Gwvj7t3_A342DBI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhizosphere+microbes+enhance+plant+salt+tolerance%3A+Toward+crop+production+in+saline+soil&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Liu%2C+Yunpeng&rft.au=Xun%2C+Weibing&rft.au=Chen%2C+Lin&rft.au=Xu%2C+Zhihui&rft.date=2022&rft.pub=Elsevier+B.V&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=20&rft.spage=6543&rft.epage=6551&rft_id=info:doi/10.1016%2Fj.csbj.2022.11.046&rft.externalDocID=S2001037022005396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon |