Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil

The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical ro...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 20; pp. 6543 - 6551
Main Authors Liu, Yunpeng, Xun, Weibing, Chen, Lin, Xu, Zhihui, Zhang, Nan, Feng, Haichao, Zhang, Qiang, Zhang, Ruifu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed.
AbstractList The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed.
The world's population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed.The world's population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is urgent to find solutions to enhance the salinity tolerance of crops. As the second genome of plants, the rhizosphere microbiome plays critical roles in plant fitness under stress conditions. Many beneficial microbes that help plants cope with salinity stress have been identified, highlighting their roles in mitigating salt stress-induced negative effects on plants. However, a comprehensive review of the microbial species that are able to confer plant salt tolerance and the underlying mechanisms is still lacking. In this review, we compared the representative fungal and bacterial taxa that demonstrate the ability to enhance plant growth in saline soil. We also reviewed the mechanisms by which rhizosphere microbes enhance plant salt stress tolerance, i.e., by re-establishing ion and osmotic homeostasis, preventing damage to plant cells, and resuming plant growth under salt stress. Finally, future research efforts to explore the rhizosphere microbiome for agricultural sustainability are proposed.
Author Liu, Yunpeng
Chen, Lin
Zhang, Nan
Feng, Haichao
Zhang, Qiang
Xun, Weibing
Xu, Zhihui
Zhang, Ruifu
Author_xml – sequence: 1
  givenname: Yunpeng
  surname: Liu
  fullname: Liu, Yunpeng
  organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
– sequence: 2
  givenname: Weibing
  orcidid: 0000-0003-0068-8514
  surname: Xun
  fullname: Xun, Weibing
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China
– sequence: 3
  givenname: Lin
  orcidid: 0000-0003-3036-4449
  surname: Chen
  fullname: Chen, Lin
  organization: Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, PR China
– sequence: 4
  givenname: Zhihui
  surname: Xu
  fullname: Xu, Zhihui
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China
– sequence: 5
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China
– sequence: 6
  givenname: Haichao
  surname: Feng
  fullname: Feng, Haichao
  organization: Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, PR China
– sequence: 7
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Heze Kingenta Ecological Engineering Co., Ltd, Heze, Shandong 274000, PR China
– sequence: 8
  givenname: Ruifu
  orcidid: 0000-0002-3334-4286
  surname: Zhang
  fullname: Zhang, Ruifu
  email: rfzhang@njau.edu.cn
  organization: Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
BookMark eNqFkc2L1TAUxYuM4DjOP-AqSzev3nw0acWNDH4MDAgygruQ3t76UvqamuQp419v6nNAXIzZJLn8zoF7ztPqbAkLVdVzDjUHrl9ONaZ-qgUIUXNeg9KPqnMBwHcgDZz99X5SXaY0QTkt152E8-rLp73_GdK6p0js4DGGnhKjZe8WJLbObsksuTmzHGaK2_AVuw0_XBxYYVe2xjAcMfuwML9spF-IpeDnZ9Xj0c2JLv_cF9Xnd29vrz7sbj6-v756c7NDZXTejYMe0QktTScG3gE2kkMzKNQAjSxfjloJzhFNx2F0vREGaeS97hupWpQX1fXJdwhusmv0BxfvbHDe_h6E-NW6mD3OZLeNm97B2MtRDQ20QmBvug4MdEoPbfF6cfIqW307Usr24BPSXFKgcExW8kaKQiv5X1QYZQCk4Lqg7QktgaUUabTos9siy9H52XKwW412sluNdqvRcm5LjUUq_pHeL_ig6PVJRCX2756iTeipNDf4SJhLLv4h-S-srLbj
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e41114
crossref_primary_10_3390_microorganisms11122941
crossref_primary_10_1007_s11104_025_07359_w
crossref_primary_10_1016_j_envres_2023_117424
crossref_primary_10_1021_acs_jafc_3c05430
crossref_primary_10_17221_244_2024_PSE
crossref_primary_10_3389_fpls_2025_1527952
crossref_primary_10_1016_j_rhisph_2025_101043
crossref_primary_10_1007_s11274_025_04284_z
crossref_primary_10_3390_agriculture13030734
crossref_primary_10_1016_j_scitotenv_2024_173838
crossref_primary_10_1016_j_scienta_2024_113904
crossref_primary_10_1016_j_plantsci_2024_112261
crossref_primary_10_3389_fpls_2024_1406913
crossref_primary_10_1016_j_tim_2024_04_008
crossref_primary_10_1002_npp2_20
crossref_primary_10_3390_ijpb15040076
crossref_primary_10_1016_j_apsoil_2024_105511
crossref_primary_10_1016_j_tplants_2025_01_009
crossref_primary_10_3390_ijms252413702
crossref_primary_10_1016_j_jbiotec_2024_02_004
crossref_primary_10_1016_j_jclepro_2024_144176
crossref_primary_10_1016_j_scitotenv_2023_168847
crossref_primary_10_3390_life14010006
crossref_primary_10_3389_fpls_2024_1396754
crossref_primary_10_1007_s11274_025_04308_8
crossref_primary_10_3897_oneeco_9_e133645
crossref_primary_10_1007_s12033_024_01346_9
crossref_primary_10_1007_s42729_024_01721_0
crossref_primary_10_1016_j_scitotenv_2023_165612
crossref_primary_10_1038_s41598_024_71792_7
crossref_primary_10_1016_j_agwat_2024_108736
crossref_primary_10_1016_j_isci_2024_110804
crossref_primary_10_3390_soilsystems8010011
crossref_primary_10_1371_journal_pone_0317463
crossref_primary_10_1016_j_bcab_2023_102601
crossref_primary_10_3389_fagro_2023_1287108
crossref_primary_10_1007_s42976_023_00456_5
crossref_primary_10_1016_j_rhisph_2024_100848
Cites_doi 10.1038/nrmicro797
10.1016/j.bbrc.2017.11.043
10.1016/j.plantsci.2012.11.009
10.1016/j.tplants.2006.06.001
10.1038/s41598-018-37987-5
10.1007/s00572-020-00957-9
10.3390/microorganisms8101565
10.3390/ijms20194923
10.1071/FP15265
10.1016/j.plaphy.2020.11.025
10.1111/1462-2920.15839
10.1104/pp.15.00284
10.1002/jobm.201600188
10.1155/2016/6284547
10.1080/15226514.2013.821447
10.1016/j.jplph.2021.153462
10.1094/MPMI-09-13-0265-R
10.1016/j.cell.2016.08.029
10.1016/j.ejsobi.2009.11.002
10.1016/j.jplph.2012.08.020
10.1111/pce.12157
10.1139/cjm-2019-0323
10.3389/fpls.2017.01739
10.1007/s005720000055
10.1146/annurev.arplant.55.031903.141701
10.1111/lam.12847
10.4161/psb.26891
10.4014/jmb.1904.04026
10.1007/s00572-002-0170-0
10.1139/cjb-2014-0038
10.1104/pp.19.01464
10.1038/s41598-020-62725-1
10.1105/tpc.108.064568
10.1094/MPMI-02-17-0027-R
10.1146/annurev.arplant.53.091401.143329
10.1007/s00253-012-4506-1
10.1007/s11738-017-2421-x
10.1371/journal.ppat.1003221
10.1021/acs.jafc.0c05628
10.1111/j.1365-3040.2009.02041.x
10.3390/plants11030345
10.3389/fmicb.2017.01887
10.1104/pp.104.042234
10.3389/fmicb.2021.752288
10.1007/s00572-008-0177-2
10.4014/jmb.2009.09032
10.1016/j.micres.2020.126671
10.1111/plb.13123
10.1016/j.pbi.2018.07.015
10.1111/nph.14920
10.1016/j.sjbs.2021.05.056
10.1111/tpj.13299
10.3389/fmicb.2018.01297
10.1093/jxb/erab335
10.1016/S0168-1605(96)01172-5
10.1139/cjm-2014-0668
10.3389/fmicb.2016.01600
10.3389/fmicb.2017.01945
10.1007/s00572-020-00954-y
10.1139/W07-081
10.1007/s00253-009-2196-0
10.1016/j.tplants.2014.02.001
10.1016/j.tplants.2015.02.001
10.3389/fmicb.2016.00332
10.1016/j.ecoenv.2018.11.084
10.1016/j.micres.2020.126439
10.1111/ppl.12614
10.1111/plb.12717
10.1146/annurev.micro.62.081307.162918
10.1371/journal.pgen.1007273
10.14348/molcells.2014.2239
10.1111/plb.13124
10.3389/fpls.2018.00813
10.1007/s00572-017-0778-8
10.1007/s11104-015-2767-z
10.1016/S1360-1385(01)01923-9
10.1139/m95-015
10.3389/fpls.2016.01314
10.3390/plants11060717
10.1016/j.micres.2018.06.007
10.1126/science.285.5431.1256
10.1016/S1360-1385(00)01838-0
10.1371/journal.pone.0160660
10.3389/fpls.2019.01646
10.1111/ppl.12441
10.1094/MPMI-07-21-0185-FI
10.1139/W09-092
10.1186/s12866-018-1374-6
10.1111/jam.12866
10.1186/s12870-021-02937-3
10.1111/pce.14021
10.1146/annurev.arplant.59.032607.092911
10.1186/s12870-018-1618-5
10.1016/j.plaphy.2014.04.003
10.1073/pnas.2107417118
10.1007/s11274-020-2804-9
10.1016/j.plantsci.2017.07.006
10.1007/s00248-007-9239-9
10.1073/pnas.0504423102
10.1080/15226514.2016.1183583
10.1094/MPMI-21-6-0737
10.3389/fpls.2020.575314
10.1111/pce.12082
10.1016/j.plaphy.2017.07.015
10.1080/21501203.2019.1600063
10.1016/j.pbi.2010.08.014
10.3390/microorganisms8111844
10.1371/journal.pone.0254076
10.1111/1462-2920.14619
10.3389/fpls.2017.01143
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOA
DOI 10.1016/j.csbj.2022.11.046
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 6551
ExternalDocumentID oai_doaj_org_article_69305ba0fb3f4d50822cb799070946d8
10_1016_j_csbj_2022_11_046
S2001037022005396
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
7X8
7S9
L.6
ID FETCH-LOGICAL-c476t-fd6fca263792d190c53105d4c600530c51c64211cc7910fab727cef1b6b5348c3
IEDL.DBID M48
ISSN 2001-0370
IngestDate Wed Aug 27 01:28:02 EDT 2025
Thu Jul 10 18:35:20 EDT 2025
Fri Jul 11 09:47:26 EDT 2025
Tue Jul 01 03:43:00 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Sat Feb 17 16:08:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Plant salt tolerance
Rhizosphere microbe
Saline soil
Microbe-enhanced salt tolerance mechanisms
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c476t-fd6fca263792d190c53105d4c600530c51c64211cc7910fab727cef1b6b5348c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3334-4286
0000-0003-3036-4449
0000-0003-0068-8514
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2022.11.046
PQID 2747003216
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_69305ba0fb3f4d50822cb799070946d8
proquest_miscellaneous_3153207043
proquest_miscellaneous_2747003216
crossref_citationtrail_10_1016_j_csbj_2022_11_046
crossref_primary_10_1016_j_csbj_2022_11_046
elsevier_sciencedirect_doi_10_1016_j_csbj_2022_11_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Computational and structural biotechnology journal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References seedlings under salt stress through enhanced root development, osmolite production, and Na
Del Carmen, Duan, DiBernardo, Zetter, Campos-García, Glick (b0450) 2019; 10
Zhang, Kim, Sun, Dowd, Shi, Paré (b0405) 2008; 21
elimination through root exudates. Molecular Plant-Microbe Interactions 2014;27:503–14. 10.1094/MPMI-09-13-0265-R.
Estrada, Aroca, Maathuis, Barea, Ruiz-Lozano (b0535) 2013; 36
Zhou, Zhu, Xie, Li, Xiao, Ma (b0465) 2017; 8
Zhu (b0090) 2016; 167
Gad M, Nobuhiro S, Sultan C, Ron M. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment 2010;33:453-467 10.1111/j.1365-3040.2009.02041.x.
Vaishnav, Kumari, Jain, Varma, Tuteja, Choudhary (b0365) 2016; 56
Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J.
Liang, Ma, Wan, Liu (b0070) 2018; 495
Parvin, Van Geel, Yeasmin, Verbruggen, Honnay (b0115) 2020; 30
Saleem, Iqbal, Ahmed, Ahmad (b0325) 2021; 28
Adesemoye, Kloepper (b0025) 2009; 85
Yang, Akhtar, Iqbal, Amjad, Naveed, Zahir (b0260) 2016; 43
de Zélicourt, Synek, Saad, Alzubaidy, Jalal, Xie (b0270) 2018; 14
Apse, Aharon, Snedden, Blumwald (b0425) 1999; 285
Egamberdieva, Wirth, Shurigin, Hashem, Abd Allah (b0320) 2017; 8
Glick (b0595) 1995; 41
sp. SA187-induced plant salt stress tolerance. Proceedings of the National Academy of Sciences of the United States of America 2021;118:1–12. 10.1073/pnas.2107417118.
Jisha, Sabu (b0200) 2019; 10
Sharma, Kulkarni, Jha (b0360) 2016; 7
Sukweenadhi, Balusamy, Kim, Lee, Kim, Koh (b0470) 2018; 9
strain-specifically improves growth of
Lamers, Der Meer, Testerink (b0065) 2020; 182
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus
Al-Karaki (b0125) 2000; 10
Platten, Cotsaftis, Berthomieu, Bohnert, Davenport, Fairbairn (b0395) 2006; 11
Gupta, Smith, Boughton, Rupasinghe, Natera, Roessner (b0175) 2021; 72
Yang, Guo (b0010) 2018; 217
Loo, Tajima, Yamada, Kido, Hirase, Ariga (b0610) 2022; 35
Hedrich, Shabala (b0460) 2018; 46
Niu, Li, Paré, Aziz, Wang, Shi (b0410) 2016; 407
Giri, Kapoor, Mukerji (b0140) 2007; 54
Zhang, Wang, Liu, Chen, Ge, Tian (b0170) 2019; 170
Yoo, Weon, Song, Sang (b0475) 2019; 29
Nadeem, Zahir, Naveed, Arshad (b0265) 2007; 53
Oljira, Hussain, Waghmode, Zhao, Sun, Liu (b0030) 2020; 8
Estrada, Aroca, Barea, Ruiz-Lozano (b0530) 2013; 201–202
Gamalero, Glick (b0580) 2015; 169
Munns, Tester (b0005) 2008; 59
Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al.
reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 2005;102:13386–91. 10.1073/pnas.0504423102.
Aroca R, Ruiz-Lozano JM, Zamarreño ángel M, Paz JA, García-Mina JM, Pozo MJ, et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology 2013;170:47–55. 10.1016/j.jplph.2012.08.020.
plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmot. Journal of Plant Physiology 2021;263:153462–153462. 10.1016/j.jplph.2021.153462.
Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells 2014;37:109–17. 10.14348/molcells.2014.2239.
Ondrasek, Rathod, Manohara, Gireesh, Anantha, Sakhare (b0075) 2022; 11
Desai, Mistry, Shah, Chandwani, Amaresan, Supriya (b0250) 2022
Ghorbani, Razavi, Ghasemi Omran, Pirdashti (b0220) 2018; 20
Bishopp, Benková, Helariutta (b0555) 2011; 14
Nadeem, Zahir, Naveed, Arshad (b0245) 2009; 55
Nazarowec-White, Farber (b0280) 1997; 34
Xu, Lei, Pang, Li, Feng, Xu (b0500) 2017; 118
T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology 2019;19:22–22. 10.1186/s12870-018-1618-5.
Chen, Liu, Wu, Zhang, Shen, Zhang (b0440) 2017; 30
Moller, Gilliham, Jha, Mayo, Roy, Coates (b0400) 2009; 21
Zhang S, Gan Y, Xu B. Mechanisms of the IAA and ACC-deaminase producing strain of
Wang, Wang, Li, Wu, Huang (b0150) 2017; 35
Wang, Wang, Feng, Liou, Lin (b0310) 2021; 31
Nascimento, Urón, Glick, Giachini, Rossi (b0355) 2021; 12
Subramanian, Souleimanov, Smith (b0290) 2016; 7
Singh, Singh, Trivedi, Sahu, Paul, Paul (b0340) 2020; 17
Gul Jan, Hamayun, Hussain, Jan, Iqbal, Khan (b0485) 2019; 19
Egamberdieva, Wirth, Bellingrath-Kimura, Mishra, Arora (b0055) 2019
Zhu (b0085) 2002; 53
PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiological Research 2021;244:126671–126671. 10.1016/j.micres.2020.126671.
Andres-Barrao C, Alzubaidy H, Jalal R, Mariappan KG, De Zelicourt A, Bokhari A, et al. Coordinated bacterial and plant sulfur metabolism in
Li, Shao, Xie, Jia, Fu, Xu (b0565) 2021; 44
Etesami, Beattie (b0040) 2018
Singh RP, Jha PN. The PGPR
Rolli, de Zélicourt, Alzubaidy, Karampelias, Parween, Rayapuram (b0615) 2022; 24
Fan, Chen, He, Zhou, Tian, Gao (b0315) 2016; 18
Eroğlu, Cabral, Ravnskov, Bak Topbjerg, Wollenweber (b0110) 2020; 22
Ullah, Bano (b0295) 2015; 61
Subramanian, Ricci, Souleimanov, Smith (b0285) 2016; 11
Choudhury, Rivero, Blumwald, Mittler (b0520) 2017; 90
Barnawal, Bharti, Pandey, Pandey, Chanotiya, Kalra (b0560) 2017; 161
Franken (b0190) 2012; 96
Tchakounté, Berger, Patz, Becker, Fankem, Taffouo (b0020) 2020; 8
Drozdowicz, Rea (b0430) 2001; 6
Deinlein, Stephan, Horie, Luo, Xu, Schroeder (b0060) 2014; 19
Chatterjee, Samaddar, Niinemets, Sa (b0545) 2018; 215
Feng, Zhang, Li, Tian, Tang, Rengel (b0105) 2002; 12
Lugtenberg, Kamilova (b0015) 2009; 63
Sultana, Paul, Parveen, Alam, Rahman, Jannat (b0305) 2020; 66
SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology 2017;8:1945–1945. 10.3389/fmicb.2017.01945.
Wang, Zhai, Ma, Zhang, Wang, Liu (b0145) 2020; 30
Lei, Pang, Feng, Li, Chi, Wang (b0505) 2017; 7
Vaishnav, Kumari, Jain, Varma, Choudhary (b0370) 2015; 119
Ali, Charles, Glick (b0375) 2014; 80
Fatima T, Arora NK.
Chen, Zhang, Zhang, Tang (b0550) 2017; 8
Khan, Asaf, Khan, Adhikari, Jan, Ali (b0235) 2020; 22
Tavares, Nascimento, Glick, Rossi (b0585) 2018; 66
spp. improve growth of
Mahmoud, Slimene, Zribi, Abdelly, Djébali (b0300) 2017; 39
Abdelaziz, Kim, Ali, Fedoroff, Al-Babili (b0415) 2017; 263
Apel, Hirt (b0525) 2004; 55
Rus, Lee, Muñoz-Mayor, Sharkhuu, Miura, Zhu (b0390) 2004; 136
Ali B, Wang X, Saleem MH, Sumaira, Hafeez A, Afridi MS, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 2022;11:345–345. 10.3390/plants11030345.
Singh, Pandey, Jha, Ma (b0240) 2022; 17
Habib, Kausar, Saud (b0255) 2016
Yuan, Pan, Boak, Pierson, Pierson (b0345) 2020; 11
Yoolong, Kruasuwan, Thanh Phạm, Jaemsaeng, Jantasuriyarat, Thamchaipenet (b0605) 2019; 9
Yan, Smith, Glick, Liang (b0455) 2014; 92
potential and significance in plant stress tolerance. Frontiers in Microbiology 2016;7:332–332. 10.3389/fmicb.2016.00332.
Khan, Sahile, Jan, Asaf, Hamayun, Imran (b0330) 2021; 21
Zhu (b0080) 2001; 6
Liu, Siew, Hung, Jiang, Huang (b0490) 2021; 69
Yao, Wu, Zheng, Kaleem, Li (b0350) 2010; 46
Orozco-Mosqueda M del C, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research 2020;235:126439. 10.1016/j.micres.2020.126439.
Yamato, Ikeda, Iwase (b0120) 2008; 18
Baek, Rokibuzzaman, Khan, Kim, Park, Yun (b0445) 2020; 10
Lastochkina O, Aliniaeifard S, Garshina D, Garipova S, Pusenkova L, Allagulova C, et al. Seed priming with endophytic
Jaroszuk-Ściseł, Tyśkiewicz, Nowak, Ozimek, Majewska, Hanaka (b0570) 2019; 20
Kushwaha, Kashyap, Bhardwaj, Kuppusamy, Srivastava, Tiwari (b0035) 2020; 36
Jogawat, Saha, Bakshi, Dayaman, Kumar, Dua (b0210) 2013; 8
Romero-Munar, Baraza, Gulías, Cabot (b0130) 2019; 10
Lanza, Haro, Conchillo, Benito (b0225) 2019; 21
Heydarian, Gruber, Glick, Hegedus (b0600) 2018; 9
Pandey, Garg (b0155) 2017; 27
Harman, Howell, Viterbo, Chet, Lorito (b0160) 2004; 2
Duc, Vo, Haddidi, Daood, Posta (b0135) 2021; 11
Brotman, Landau, Cuadros-Inostroza, Takayuki, Fernie, Chet (b0165) 2013; 9
Das, Roychoudhury (b0515) 2014
Khalvandi, Amerian, Pirdashti, Keramati (b0050) 2021; 16
Chang, Gerhardt, Huang, Yu, Glick, Gerwing (b0385) 2014; 16
Kavi Kishor, Sreenivasulu (b0495) 2014; 37
Evelin, Devi, Gupta, Kapoor (b0095) 2019
Santander, Aroca, Cartes, Vidal, Cornejo (b0420) 2021; 158
Srivastava, Srivastava (b0335) 2020; 10
Chen, Liu, Wu, Veronican Njeri, Shen, Zhang (b0435) 2016; 158
Kazan (b0575) 2015; 20
Vahabi, Dorcheh, Monajembashi, Westermann, Reichelt, Falkenberg (b0205) 2016
Romero-Munar (10.1016/j.csbj.2022.11.046_b0130) 2019; 10
Ali (10.1016/j.csbj.2022.11.046_b0375) 2014; 80
Li (10.1016/j.csbj.2022.11.046_b0565) 2021; 44
Chen (10.1016/j.csbj.2022.11.046_b0435) 2016; 158
Glick (10.1016/j.csbj.2022.11.046_b0595) 1995; 41
Evelin (10.1016/j.csbj.2022.11.046_b0095) 2019
Baek (10.1016/j.csbj.2022.11.046_b0445) 2020; 10
Liu (10.1016/j.csbj.2022.11.046_b0490) 2021; 69
Wang (10.1016/j.csbj.2022.11.046_b0310) 2021; 31
Yang (10.1016/j.csbj.2022.11.046_b0260) 2016; 43
Zhang (10.1016/j.csbj.2022.11.046_b0405) 2008; 21
Munns (10.1016/j.csbj.2022.11.046_b0005) 2008; 59
Apse (10.1016/j.csbj.2022.11.046_b0425) 1999; 285
Sukweenadhi (10.1016/j.csbj.2022.11.046_b0470) 2018; 9
Harman (10.1016/j.csbj.2022.11.046_b0160) 2004; 2
Choudhury (10.1016/j.csbj.2022.11.046_b0520) 2017; 90
Sultana (10.1016/j.csbj.2022.11.046_b0305) 2020; 66
10.1016/j.csbj.2022.11.046_b0380
10.1016/j.csbj.2022.11.046_b0540
Bishopp (10.1016/j.csbj.2022.11.046_b0555) 2011; 14
Estrada (10.1016/j.csbj.2022.11.046_b0530) 2013; 201–202
Tavares (10.1016/j.csbj.2022.11.046_b0585) 2018; 66
Yan (10.1016/j.csbj.2022.11.046_b0455) 2014; 92
Zhu (10.1016/j.csbj.2022.11.046_b0085) 2002; 53
Liang (10.1016/j.csbj.2022.11.046_b0070) 2018; 495
Vaishnav (10.1016/j.csbj.2022.11.046_b0365) 2016; 56
Yoo (10.1016/j.csbj.2022.11.046_b0475) 2019; 29
Wang (10.1016/j.csbj.2022.11.046_b0145) 2020; 30
Nazarowec-White (10.1016/j.csbj.2022.11.046_b0280) 1997; 34
Ondrasek (10.1016/j.csbj.2022.11.046_b0075) 2022; 11
Srivastava (10.1016/j.csbj.2022.11.046_b0335) 2020; 10
Chang (10.1016/j.csbj.2022.11.046_b0385) 2014; 16
Deinlein (10.1016/j.csbj.2022.11.046_b0060) 2014; 19
Singh (10.1016/j.csbj.2022.11.046_b0240) 2022; 17
10.1016/j.csbj.2022.11.046_b0230
de Zélicourt (10.1016/j.csbj.2022.11.046_b0270) 2018; 14
Lugtenberg (10.1016/j.csbj.2022.11.046_b0015) 2009; 63
Saleem (10.1016/j.csbj.2022.11.046_b0325) 2021; 28
Brotman (10.1016/j.csbj.2022.11.046_b0165) 2013; 9
Das (10.1016/j.csbj.2022.11.046_b0515) 2014
Nadeem (10.1016/j.csbj.2022.11.046_b0265) 2007; 53
10.1016/j.csbj.2022.11.046_b0510
Feng (10.1016/j.csbj.2022.11.046_b0105) 2002; 12
Khalvandi (10.1016/j.csbj.2022.11.046_b0050) 2021; 16
Gul Jan (10.1016/j.csbj.2022.11.046_b0485) 2019; 19
Platten (10.1016/j.csbj.2022.11.046_b0395) 2006; 11
Abdelaziz (10.1016/j.csbj.2022.11.046_b0415) 2017; 263
Franken (10.1016/j.csbj.2022.11.046_b0190) 2012; 96
Desai (10.1016/j.csbj.2022.11.046_b0250) 2022
Loo (10.1016/j.csbj.2022.11.046_b0610) 2022; 35
Vaishnav (10.1016/j.csbj.2022.11.046_b0370) 2015; 119
Tchakounté (10.1016/j.csbj.2022.11.046_b0020) 2020; 8
Yoolong (10.1016/j.csbj.2022.11.046_b0605) 2019; 9
10.1016/j.csbj.2022.11.046_b0480
Lamers (10.1016/j.csbj.2022.11.046_b0065) 2020; 182
Kazan (10.1016/j.csbj.2022.11.046_b0575) 2015; 20
Eroğlu (10.1016/j.csbj.2022.11.046_b0110) 2020; 22
Pandey (10.1016/j.csbj.2022.11.046_b0155) 2017; 27
Khan (10.1016/j.csbj.2022.11.046_b0235) 2020; 22
Del Carmen (10.1016/j.csbj.2022.11.046_b0450) 2019; 10
Moller (10.1016/j.csbj.2022.11.046_b0400) 2009; 21
Nadeem (10.1016/j.csbj.2022.11.046_b0245) 2009; 55
Xu (10.1016/j.csbj.2022.11.046_b0500) 2017; 118
Jogawat (10.1016/j.csbj.2022.11.046_b0210) 2013; 8
Etesami (10.1016/j.csbj.2022.11.046_b0040) 2018
Hedrich (10.1016/j.csbj.2022.11.046_b0460) 2018; 46
Yang (10.1016/j.csbj.2022.11.046_b0010) 2018; 217
Jisha (10.1016/j.csbj.2022.11.046_b0200) 2019; 10
Duc (10.1016/j.csbj.2022.11.046_b0135) 2021; 11
Sharma (10.1016/j.csbj.2022.11.046_b0360) 2016; 7
10.1016/j.csbj.2022.11.046_b0215
Al-Karaki (10.1016/j.csbj.2022.11.046_b0125) 2000; 10
Subramanian (10.1016/j.csbj.2022.11.046_b0285) 2016; 11
Oljira (10.1016/j.csbj.2022.11.046_b0030) 2020; 8
Parvin (10.1016/j.csbj.2022.11.046_b0115) 2020; 30
Gamalero (10.1016/j.csbj.2022.11.046_b0580) 2015; 169
Egamberdieva (10.1016/j.csbj.2022.11.046_b0055) 2019
10.1016/j.csbj.2022.11.046_b0180
Yamato (10.1016/j.csbj.2022.11.046_b0120) 2008; 18
10.1016/j.csbj.2022.11.046_b0185
Wang (10.1016/j.csbj.2022.11.046_b0150) 2017; 35
10.1016/j.csbj.2022.11.046_b0100
Rus (10.1016/j.csbj.2022.11.046_b0390) 2004; 136
Subramanian (10.1016/j.csbj.2022.11.046_b0290) 2016; 7
Ullah (10.1016/j.csbj.2022.11.046_b0295) 2015; 61
Giri (10.1016/j.csbj.2022.11.046_b0140) 2007; 54
Lanza (10.1016/j.csbj.2022.11.046_b0225) 2019; 21
Yuan (10.1016/j.csbj.2022.11.046_b0345) 2020; 11
Lei (10.1016/j.csbj.2022.11.046_b0505) 2017; 7
Adesemoye (10.1016/j.csbj.2022.11.046_b0025) 2009; 85
Vahabi (10.1016/j.csbj.2022.11.046_b0205) 2016
Yao (10.1016/j.csbj.2022.11.046_b0350) 2010; 46
Apel (10.1016/j.csbj.2022.11.046_b0525) 2004; 55
Fan (10.1016/j.csbj.2022.11.046_b0315) 2016; 18
Estrada (10.1016/j.csbj.2022.11.046_b0535) 2013; 36
10.1016/j.csbj.2022.11.046_b0195
Zhou (10.1016/j.csbj.2022.11.046_b0465) 2017; 8
10.1016/j.csbj.2022.11.046_b0590
Habib (10.1016/j.csbj.2022.11.046_b0255) 2016
Nascimento (10.1016/j.csbj.2022.11.046_b0355) 2021; 12
Jaroszuk-Ściseł (10.1016/j.csbj.2022.11.046_b0570) 2019; 20
Zhu (10.1016/j.csbj.2022.11.046_b0090) 2016; 167
10.1016/j.csbj.2022.11.046_b0275
Kushwaha (10.1016/j.csbj.2022.11.046_b0035) 2020; 36
Drozdowicz (10.1016/j.csbj.2022.11.046_b0430) 2001; 6
Khan (10.1016/j.csbj.2022.11.046_b0330) 2021; 21
Santander (10.1016/j.csbj.2022.11.046_b0420) 2021; 158
Mahmoud (10.1016/j.csbj.2022.11.046_b0300) 2017; 39
Singh (10.1016/j.csbj.2022.11.046_b0340) 2020; 17
Egamberdieva (10.1016/j.csbj.2022.11.046_b0320) 2017; 8
Chatterjee (10.1016/j.csbj.2022.11.046_b0545) 2018; 215
Barnawal (10.1016/j.csbj.2022.11.046_b0560) 2017; 161
Heydarian (10.1016/j.csbj.2022.11.046_b0600) 2018; 9
10.1016/j.csbj.2022.11.046_b0045
Gupta (10.1016/j.csbj.2022.11.046_b0175) 2021; 72
Kavi Kishor (10.1016/j.csbj.2022.11.046_b0495) 2014; 37
Chen (10.1016/j.csbj.2022.11.046_b0440) 2017; 30
Chen (10.1016/j.csbj.2022.11.046_b0550) 2017; 8
Zhu (10.1016/j.csbj.2022.11.046_b0080) 2001; 6
Zhang (10.1016/j.csbj.2022.11.046_b0170) 2019; 170
Ghorbani (10.1016/j.csbj.2022.11.046_b0220) 2018; 20
Rolli (10.1016/j.csbj.2022.11.046_b0615) 2022; 24
Niu (10.1016/j.csbj.2022.11.046_b0410) 2016; 407
References_xml – volume: 11
  start-page: 372
  year: 2006
  end-page: 374
  ident: b0395
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends Plant Sci
– reference: Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, et al.
– volume: 14
  start-page: 1
  year: 2018
  end-page: 28
  ident: b0270
  article-title: Ethylene induced plant stress tolerance by
  publication-title: PLoS Genet
– volume: 37
  start-page: 300
  year: 2014
  end-page: 311
  ident: b0495
  article-title: Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?
  publication-title: Plant Cell Environ
– start-page: 1
  year: 2022
  end-page: 8
  ident: b0250
  article-title: Salt-tolerant bacteria enhance the growth of
  publication-title: Int J Phytorem
– volume: 20
  start-page: E4923
  year: 2019
  ident: b0570
  article-title: Phytohormones (Auxin, Gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic
  publication-title: Int J Mol Sci
– volume: 85
  start-page: 1
  year: 2009
  end-page: 12
  ident: b0025
  article-title: Plant-microbes interactions in enhanced fertilizer-use efficiency
  publication-title: Appl Microbiol Biotechnol
– volume: 6
  start-page: 206
  year: 2001
  end-page: 211
  ident: b0430
  article-title: Vacuolar H
  publication-title: Trends Plant Sci
– reference: Andres-Barrao C, Alzubaidy H, Jalal R, Mariappan KG, De Zelicourt A, Bokhari A, et al. Coordinated bacterial and plant sulfur metabolism in
– volume: 11
  start-page: 1
  year: 2022
  end-page: 21
  ident: b0075
  article-title: Salt stress in plants and mitigation approaches
  publication-title: Plants
– reference: reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 2005;102:13386–91. 10.1073/pnas.0504423102.
– volume: 10
  start-page: 182
  year: 2019
  end-page: 190
  ident: b0200
  article-title: Multifunctional aspects of
  publication-title: Mycology
– start-page: 1
  year: 2016
  end-page: 10
  ident: b0255
  article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in
  publication-title: Biomed Res Int
– volume: 7
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0360
  article-title: Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut
  publication-title: Front Microbiol
– volume: 66
  start-page: 144
  year: 2020
  end-page: 160
  ident: b0305
  article-title: Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress
  publication-title: Can J Microbiol
– volume: 35
  start-page: 554
  year: 2022
  end-page: 566
  ident: b0610
  article-title: Recognition of microbe- and damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants
  publication-title: Molecular Plant-Microbe Interactions®
– volume: 136
  start-page: 2500
  year: 2004
  end-page: 2511
  ident: b0390
  article-title: AtHKT1 facilitates Na
  publication-title: Plant Physiol
– volume: 20
  start-page: 729
  year: 2018
  end-page: 736
  ident: b0220
  article-title: inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (
  publication-title: Plant Biol
– start-page: 9
  year: 2018
  ident: b0040
  article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops
  publication-title: Front Microbiol
– volume: 39
  year: 2017
  ident: b0300
  article-title: Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars
  publication-title: Acta Physiol Plant
– reference: Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0335
  article-title: Prescience of endogenous regulation in
  publication-title: Sci Rep
– start-page: 2
  year: 2014
  ident: b0515
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental
  publication-title: Science
– reference: Kim K, Jang Y-J, Lee S-M, Oh B-T, Chae J-C, Lee K-J. Alleviation of salt stress by enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells 2014;37:109–17. 10.14348/molcells.2014.2239.
– volume: 24
  start-page: 223
  year: 2022
  end-page: 239
  ident: b0615
  article-title: The Lys-motif receptor LYK4 mediates
  publication-title: Environ Microbiol
– volume: 19
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0485
  article-title: An endophytic isolate of the fungus
  publication-title: BMC Microbiol
– volume: 8
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0550
  article-title: Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K
  publication-title: Front Plant Sci
– volume: 43
  start-page: 632
  year: 2016
  end-page: 642
  ident: b0260
  article-title: Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation
  publication-title: Funct Plant Biol
– volume: 7
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0290
  article-title: Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in
  publication-title: Front Plant Sci
– volume: 7
  start-page: 1
  year: 2017
  end-page: 15
  ident: b0505
  article-title: The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in
  publication-title: Sci Rep
– volume: 27
  start-page: 669
  year: 2017
  end-page: 682
  ident: b0155
  article-title: High effectiveness of
  publication-title: Mycorrhiza
– reference: PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions. Microbiological Research 2021;244:126671–126671. 10.1016/j.micres.2020.126671.
– volume: 285
  start-page: 1256
  year: 1999
  end-page: 1258
  ident: b0425
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na
  publication-title: Science
– reference: SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Frontiers in Microbiology 2017;8:1945–1945. 10.3389/fmicb.2017.01945.
– volume: 36
  start-page: 1
  year: 2020
  end-page: 16
  ident: b0035
  article-title: Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action
  publication-title: World J Microbiol Biotechnol
– reference: elimination through root exudates. Molecular Plant-Microbe Interactions 2014;27:503–14. 10.1094/MPMI-09-13-0265-R.
– reference: T6 in enhancing wheat seedling tolerance to NaCl stress. BMC Plant Biology 2019;19:22–22. 10.1186/s12870-018-1618-5.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0605
  article-title: Modulation of salt tolerance in Thai jasmine rice (
  publication-title: Sci Rep
– volume: 30
  start-page: 341
  year: 2020
  end-page: 355
  ident: b0145
  article-title: Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of
  publication-title: Mycorrhiza
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: b0445
  article-title: Plant-growth promoting
  publication-title: Front Plant Sci
– volume: 96
  start-page: 1455
  year: 2012
  end-page: 1464
  ident: b0190
  article-title: The plant strengthening root endophyte
  publication-title: Appl Microbiol Biotechnol
– volume: 21
  start-page: 3364
  year: 2019
  end-page: 3378
  ident: b0225
  article-title: The endophyte
  publication-title: Environ Microbiol
– volume: 69
  start-page: 913
  year: 2021
  end-page: 921
  ident: b0490
  article-title: 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene in
  publication-title: J Agric Food Chem
– volume: 16
  start-page: 1133
  year: 2014
  end-page: 1147
  ident: b0385
  article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils
  publication-title: Int J Phytorem
– volume: 2
  start-page: 43
  year: 2004
  end-page: 56
  ident: b0160
  article-title: Trichoderma species–opportunistic, avirulent plant symbionts
  publication-title: Nat Rev Microbiol
– volume: 161
  start-page: 502
  year: 2017
  end-page: 514
  ident: b0560
  article-title: Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression
  publication-title: Physiol Plant
– reference: Aroca R, Ruiz-Lozano JM, Zamarreño ángel M, Paz JA, García-Mina JM, Pozo MJ, et al. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology 2013;170:47–55. 10.1016/j.jplph.2012.08.020.
– reference: strain-specifically improves growth of
– volume: 407
  start-page: 217
  year: 2016
  end-page: 230
  ident: b0410
  article-title: Induced growth promotion and higher salt tolerance in the halophyte grass
  publication-title: Plant and Soil
– volume: 201–202
  start-page: 42
  year: 2013
  end-page: 51
  ident: b0530
  article-title: Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity
  publication-title: Plant Sci
– volume: 17
  start-page: 1
  year: 2022
  end-page: 23
  ident: b0240
  article-title: ACC deaminase producing rhizobacterium
  publication-title: PLoS One
– volume: 63
  start-page: 541
  year: 2009
  end-page: 556
  ident: b0015
  article-title: Plant-growth-promoting rhizobacteria
  publication-title: Annu Rev Microbiol
– volume: 66
  start-page: 252
  year: 2018
  end-page: 259
  ident: b0585
  article-title: The expression of an exogenous ACC deaminase by the endophyte
  publication-title: Lett Appl Microbiol
– volume: 30
  start-page: 431
  year: 2020
  end-page: 444
  ident: b0115
  article-title: Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a
  publication-title: Mycorrhiza
– volume: 215
  start-page: 89
  year: 2018
  end-page: 101
  ident: b0545
  article-title: RS16 confers salt tolerance to
  publication-title: Microbiol Res
– reference: Singh RP, Jha PN. The PGPR
– volume: 28
  start-page: 5317
  year: 2021
  end-page: 5324
  ident: b0325
  article-title: Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in
  publication-title: Saudi Journal of Biological Sciences
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: b0090
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 495
  start-page: 286
  year: 2018
  end-page: 291
  ident: b0070
  article-title: Plant salt-tolerance mechanism: A review
  publication-title: Biochem Biophys Res Commun
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0450
  article-title: The production of ACC deaminase and trehalose by the plant growth promoting bacterium
  publication-title: Front Microbiol
– volume: 61
  start-page: 307
  year: 2015
  end-page: 313
  ident: b0295
  article-title: Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (
  publication-title: Can J Microbiol
– volume: 22
  start-page: 863
  year: 2020
  end-page: 871
  ident: b0110
  article-title: Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress
  publication-title: Plant Biol
– volume: 8
  start-page: 1
  year: 2020
  end-page: 19
  ident: b0030
  article-title: enhances net photosynthesis, water use efficiency, and growth of wheat (
  publication-title: Microorganisms
– volume: 55
  start-page: 373
  year: 2004
  end-page: 399
  ident: b0525
  article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
  publication-title: Annu Rev Plant Biol
– volume: 119
  start-page: 539
  year: 2015
  end-page: 551
  ident: b0370
  article-title: Putative bacterial volatile-mediated growth in soybean (
  publication-title: J Appl Microbiol
– volume: 9
  start-page: 1
  year: 2018
  end-page: 17
  ident: b0470
  article-title: A growth-promoting bacteria,
  publication-title: Front Plant Sci
– reference: seedlings under salt stress through enhanced root development, osmolite production, and Na
– start-page: 10
  year: 2019
  ident: b0055
  article-title: Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils
  publication-title: Front Microbiol
– volume: 8
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0320
  article-title: Endophytic bacteria improve plant growth, symbiotic performance of
  publication-title: Front Microbiol
– volume: 11
  start-page: 1
  year: 2016
  end-page: 19
  ident: b0285
  article-title: A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress
  publication-title: PLoS One
– volume: 21
  start-page: 2163
  year: 2009
  end-page: 2178
  ident: b0400
  article-title: Shoot Na
  publication-title: Plant Cell
– reference: sp. SA187-induced plant salt stress tolerance. Proceedings of the National Academy of Sciences of the United States of America 2021;118:1–12. 10.1073/pnas.2107417118.
– reference: Lastochkina O, Aliniaeifard S, Garshina D, Garipova S, Pusenkova L, Allagulova C, et al. Seed priming with endophytic
– volume: 263
  start-page: 107
  year: 2017
  end-page: 115
  ident: b0415
  article-title: The endophytic fungus
  publication-title: Plant Sci
– volume: 31
  start-page: 398
  year: 2021
  end-page: 407
  ident: b0310
  article-title: Biological inoculant of salt-tolerant bacteria for plant growth stimulation under different saline soil conditions
  publication-title: J Microbiol Biotechnol
– volume: 12
  year: 2021
  ident: b0355
  article-title: Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing
  publication-title: Front Microbiol
– volume: 18
  start-page: 241
  year: 2008
  end-page: 249
  ident: b0120
  article-title: Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions
  publication-title: Mycorrhiza
– volume: 18
  start-page: 1113
  year: 2016
  end-page: 1121
  ident: b0315
  article-title: Alleviating salt stress in tomato seedlings using
  publication-title: Int J Phytorem
– volume: 169
  start-page: 13
  year: 2015
  end-page: 22
  ident: b0580
  article-title: Bacterial modulation of plant ethylene levels
  publication-title: Plant Physiol
– volume: 11
  start-page: 1
  year: 2021
  end-page: 18
  ident: b0135
  article-title: Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant
  publication-title: Plant Sci
– reference: Zhang S, Gan Y, Xu B. Mechanisms of the IAA and ACC-deaminase producing strain of
– volume: 46
  start-page: 87
  year: 2018
  end-page: 95
  ident: b0460
  article-title: Stomata in a saline world
  publication-title: Curr Opin Plant Biol
– volume: 41
  start-page: 109
  year: 1995
  end-page: 117
  ident: b0595
  article-title: The enhancement of plant growth by free-living bacteria
  publication-title: Can J Microbiol
– volume: 9
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0600
  article-title: Gene expression patterns in roots of
  publication-title: Front Microbiol
– volume: 56
  start-page: 1274
  year: 2016
  end-page: 1288
  ident: b0365
  article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside
  publication-title: J Basic Microbiol
– start-page: 10
  year: 2019
  ident: b0095
  article-title: Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers
  publication-title: Plant Sci
– volume: 35
  start-page: 36
  year: 2017
  ident: b0150
  article-title: Enhancements of arbuscular mycorrhizal fungi on growth and nitrogen acquisition of
  publication-title: PLoS One
– reference: Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J.
– reference: Fatima T, Arora NK.
– volume: 72
  start-page: 7229
  year: 2021
  end-page: 7246
  ident: b0175
  article-title: Inoculation of barley with
  publication-title: J Exp Bot
– volume: 158
  start-page: 34
  year: 2016
  end-page: 44
  ident: b0435
  article-title: Induced maize salt tolerance by rhizosphere inoculation of
  publication-title: Physiol Plant
– volume: 118
  start-page: 460
  year: 2017
  end-page: 470
  ident: b0500
  article-title: Exogenous application of poly-γ-glutamic acid enhances stress defense in
  publication-title: Plant Physiol Biochem
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  ident: b0085
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu Rev Plant Biol
– volume: 21
  start-page: 1
  year: 2021
  end-page: 15
  ident: b0330
  article-title: Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses
  publication-title: BMC Plant Biol
– volume: 16
  start-page: 1
  year: 2021
  end-page: 21
  ident: b0050
  article-title: Does co-inoculation of mycorrhiza and
  publication-title: PLoS One
– volume: 9
  start-page: e1003221
  year: 2013
  end-page: e
  ident: b0165
  article-title: -plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance
  publication-title: PLoS Pathog
– volume: 10
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0130
  article-title: Arbuscular mycorrhizal fungi confer salt tolerance in
  publication-title: Plant Sci
– volume: 30
  start-page: 423
  year: 2017
  end-page: 432
  ident: b0440
  article-title: Beneficial rhizobacterium
  publication-title: Mol Plant Microbe Interact
– reference: Orozco-Mosqueda M del C, Glick BR, Santoyo G. ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research 2020;235:126439. 10.1016/j.micres.2020.126439.
– volume: 217
  start-page: 523
  year: 2018
  end-page: 539
  ident: b0010
  article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses
  publication-title: New Phytol
– reference: : potential and significance in plant stress tolerance. Frontiers in Microbiology 2016;7:332–332. 10.3389/fmicb.2016.00332.
– volume: 8
  start-page: e26891
  year: 2013
  end-page: e
  ident: b0210
  article-title: rescues growth diminution of rice seedlings during high salt stress
  publication-title: Plant Signal Behav
– start-page: 11
  year: 2016
  ident: b0205
  article-title: Stress promotes
  publication-title: Plant Signal Behav
– volume: 20
  start-page: 219
  year: 2015
  end-page: 229
  ident: b0575
  article-title: Diverse roles of jasmonates and ethylene in abiotic stress tolerance
  publication-title: Trends Plant Sci
– volume: 53
  start-page: 1141
  year: 2007
  end-page: 1149
  ident: b0265
  article-title: Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity
  publication-title: Can J Microbiol
– volume: 44
  start-page: 1663
  year: 2021
  end-page: 1678
  ident: b0565
  article-title: Volatile compounds from beneficial rhizobacteria
  publication-title: Plant Cell Environ
– volume: 170
  start-page: 436
  year: 2019
  end-page: 445
  ident: b0170
  article-title: mitigates salt stress in cucumber via multiple responses
  publication-title: Ecotoxicol Environ Saf
– volume: 182
  start-page: 1624
  year: 2020
  end-page: 1635
  ident: b0065
  article-title: How plants sense and respond to stressful environments
  publication-title: Plant Physiol
– volume: 46
  start-page: 49
  year: 2010
  end-page: 54
  ident: b0350
  article-title: Growth promotion and protection against salt stress by
  publication-title: Eur J Soil Biol
– volume: 34
  start-page: 103
  year: 1997
  end-page: 113
  ident: b0280
  article-title: : A review
  publication-title: Int J Food Microbiol
– volume: 21
  start-page: 737
  year: 2008
  end-page: 744
  ident: b0405
  article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1
  publication-title: Mol Plant Microbe Interact
– reference: plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmot. Journal of Plant Physiology 2021;263:153462–153462. 10.1016/j.jplph.2021.153462.
– volume: 55
  start-page: 1302
  year: 2009
  end-page: 1309
  ident: b0245
  article-title: Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields
  publication-title: Can J Microbiol
– volume: 158
  start-page: 396
  year: 2021
  end-page: 409
  ident: b0420
  article-title: Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions
  publication-title: Plant Physiol Biochem
– volume: 14
  start-page: 10
  year: 2011
  end-page: 16
  ident: b0555
  article-title: Sending mixed messages: Auxin-cytokinin crosstalk in roots
  publication-title: Curr Opin Plant Biol
– volume: 92
  start-page: 775
  year: 2014
  end-page: 781
  ident: b0455
  article-title: Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (
  publication-title: Botany
– volume: 8
  start-page: 1
  year: 2020
  end-page: 16
  ident: b0020
  article-title: Selected rhizosphere bacteria help tomato plants cope with combined phosphorus and salt stresses
  publication-title: Microorganisms
– volume: 19
  start-page: 371
  year: 2014
  end-page: 379
  ident: b0060
  article-title: Plant salt-tolerance mechanisms
  publication-title: Trends Plant Sci
– volume: 11
  start-page: 1
  year: 2020
  end-page: 12
  ident: b0345
  article-title: Phenazine-producing rhizobacteria promote plant growth and reduce redox and osmotic stress in wheat seedlings under saline conditions
  publication-title: Front Plant Sci
– reference: Ali B, Wang X, Saleem MH, Sumaira, Hafeez A, Afridi MS, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 2022;11:345–345. 10.3390/plants11030345.
– volume: 10
  start-page: 51
  year: 2000
  end-page: 54
  ident: b0125
  article-title: Growth of mycorrhizal tomato and mineral acquisition under salt stress
  publication-title: Mycorrhiza
– volume: 6
  start-page: 66
  year: 2001
  end-page: 71
  ident: b0080
  article-title: Plant salt tolerance
  publication-title: Trends Plant Sci
– reference: spp. improve growth of
– volume: 22
  start-page: 850
  year: 2020
  end-page: 862
  ident: b0235
  article-title: Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants
  publication-title: Plant Biol
– volume: 29
  start-page: 1124
  year: 2019
  end-page: 1136
  ident: b0475
  article-title: Induced tolerance to salinity stress by halotolerant bacteria
  publication-title: J Microbiol Biotechnol
– volume: 17
  year: 2020
  ident: b0340
  article-title: Seed biopriming with salt-tolerant endophytic pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (
  publication-title: Int J Environ Res Public Health
– volume: 59
  start-page: 651
  year: 2008
  end-page: 681
  ident: b0005
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu Rev Plant Biol
– volume: 90
  start-page: 856
  year: 2017
  end-page: 867
  ident: b0520
  article-title: Reactive oxygen species, abiotic stress and stress combination
  publication-title: Plant J
– volume: 54
  start-page: 753
  year: 2007
  end-page: 760
  ident: b0140
  article-title: Improved tolerance of
  publication-title: Microb Ecol
– volume: 80
  start-page: 160
  year: 2014
  end-page: 167
  ident: b0375
  article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase
  publication-title: Plant Physiol Biochem
– volume: 8
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0465
  article-title: SA03 confers increased saline–alkaline tolerance in
  publication-title: Front Plant Sci
– volume: 12
  start-page: 185
  year: 2002
  end-page: 190
  ident: b0105
  article-title: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots
  publication-title: Mycorrhiza
– reference: Gad M, Nobuhiro S, Sultan C, Ron M. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment 2010;33:453-467 10.1111/j.1365-3040.2009.02041.x.
– volume: 36
  start-page: 1771
  year: 2013
  end-page: 1782
  ident: b0535
  article-title: Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis
  publication-title: Plant Cell Environ
– volume: 2
  start-page: 43
  year: 2004
  ident: 10.1016/j.csbj.2022.11.046_b0160
  article-title: Trichoderma species–opportunistic, avirulent plant symbionts
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro797
– volume: 495
  start-page: 286
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0070
  article-title: Plant salt-tolerance mechanism: A review
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.11.043
– volume: 201–202
  start-page: 42
  year: 2013
  ident: 10.1016/j.csbj.2022.11.046_b0530
  article-title: Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2012.11.009
– start-page: 10
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0095
  article-title: Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers
  publication-title: Plant Sci
– volume: 11
  start-page: 372
  year: 2006
  ident: 10.1016/j.csbj.2022.11.046_b0395
  article-title: Nomenclature for HKT transporters, key determinants of plant salinity tolerance
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2006.06.001
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0605
  article-title: Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37987-5
– volume: 30
  start-page: 431
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0115
  article-title: Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-020-00957-9
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0030
  article-title: Trichoderma enhances net photosynthesis, water use efficiency, and growth of wheat (Triticum aestivum L.) under salt stress
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8101565
– volume: 20
  start-page: E4923
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0570
  article-title: Phytohormones (Auxin, Gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20194923
– volume: 43
  start-page: 632
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0260
  article-title: Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation
  publication-title: Funct Plant Biol
  doi: 10.1071/FP15265
– volume: 158
  start-page: 396
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0420
  article-title: Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2020.11.025
– volume: 24
  start-page: 223
  year: 2022
  ident: 10.1016/j.csbj.2022.11.046_b0615
  article-title: The Lys-motif receptor LYK4 mediates Enterobacter sp. SA187 triggered salt tolerance in Arabidopsis thaliana
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15839
– volume: 169
  start-page: 13
  year: 2015
  ident: 10.1016/j.csbj.2022.11.046_b0580
  article-title: Bacterial modulation of plant ethylene levels
  publication-title: Plant Physiol
  doi: 10.1104/pp.15.00284
– volume: 56
  start-page: 1274
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0365
  article-title: PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.201600188
– start-page: 1
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0255
  article-title: Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes
  publication-title: Biomed Res Int
  doi: 10.1155/2016/6284547
– volume: 16
  start-page: 1133
  year: 2014
  ident: 10.1016/j.csbj.2022.11.046_b0385
  article-title: Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils
  publication-title: Int J Phytorem
  doi: 10.1080/15226514.2013.821447
– ident: 10.1016/j.csbj.2022.11.046_b0480
  doi: 10.1016/j.jplph.2021.153462
– ident: 10.1016/j.csbj.2022.11.046_b0180
  doi: 10.1094/MPMI-09-13-0265-R
– volume: 167
  start-page: 313
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0090
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 46
  start-page: 49
  year: 2010
  ident: 10.1016/j.csbj.2022.11.046_b0350
  article-title: Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton
  publication-title: Eur J Soil Biol
  doi: 10.1016/j.ejsobi.2009.11.002
– ident: 10.1016/j.csbj.2022.11.046_b0100
  doi: 10.1016/j.jplph.2012.08.020
– volume: 37
  start-page: 300
  year: 2014
  ident: 10.1016/j.csbj.2022.11.046_b0495
  article-title: Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12157
– volume: 66
  start-page: 144
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0305
  article-title: Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress
  publication-title: Can J Microbiol
  doi: 10.1139/cjm-2019-0323
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0550
  article-title: Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01739
– volume: 10
  start-page: 51
  year: 2000
  ident: 10.1016/j.csbj.2022.11.046_b0125
  article-title: Growth of mycorrhizal tomato and mineral acquisition under salt stress
  publication-title: Mycorrhiza
  doi: 10.1007/s005720000055
– volume: 55
  start-page: 373
  year: 2004
  ident: 10.1016/j.csbj.2022.11.046_b0525
  article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.55.031903.141701
– volume: 66
  start-page: 252
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0585
  article-title: The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF1 promotes the early nodulation and growth of common bean
  publication-title: Lett Appl Microbiol
  doi: 10.1111/lam.12847
– volume: 8
  start-page: e26891
  year: 2013
  ident: 10.1016/j.csbj.2022.11.046_b0210
  article-title: Piriformospora indica rescues growth diminution of rice seedlings during high salt stress
  publication-title: Plant Signal Behav
  doi: 10.4161/psb.26891
– volume: 29
  start-page: 1124
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0475
  article-title: Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19–1 and B. mesonae H20–5 in tomato plants
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1904.04026
– volume: 12
  start-page: 185
  year: 2002
  ident: 10.1016/j.csbj.2022.11.046_b0105
  article-title: Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-002-0170-0
– volume: 92
  start-page: 775
  year: 2014
  ident: 10.1016/j.csbj.2022.11.046_b0455
  article-title: Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress
  publication-title: Botany
  doi: 10.1139/cjb-2014-0038
– volume: 182
  start-page: 1624
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0065
  article-title: How plants sense and respond to stressful environments
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.01464
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0335
  article-title: Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-62725-1
– volume: 21
  start-page: 2163
  year: 2009
  ident: 10.1016/j.csbj.2022.11.046_b0400
  article-title: Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.064568
– volume: 30
  start-page: 423
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0440
  article-title: Beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-02-17-0027-R
– volume: 53
  start-page: 247
  year: 2002
  ident: 10.1016/j.csbj.2022.11.046_b0085
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.53.091401.143329
– volume: 17
  start-page: 1
  year: 2022
  ident: 10.1016/j.csbj.2022.11.046_b0240
  article-title: ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant
  publication-title: PLoS One
– volume: 96
  start-page: 1455
  year: 2012
  ident: 10.1016/j.csbj.2022.11.046_b0190
  article-title: The plant strengthening root endophyte Piriformospora indica: Potential application and the biology behind
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4506-1
– volume: 39
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0300
  article-title: Response to salt stress is modulated by growth-promoting rhizobacteria inoculation in two contrasting barley cultivars
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-017-2421-x
– volume: 9
  start-page: e1003221
  year: 2013
  ident: 10.1016/j.csbj.2022.11.046_b0165
  article-title: Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003221
– volume: 69
  start-page: 913
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0490
  article-title: 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene in Pseudomonas azotoformans is associated with the amelioration of salinity stress in tomato
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.0c05628
– ident: 10.1016/j.csbj.2022.11.046_b0510
  doi: 10.1111/j.1365-3040.2009.02041.x
– ident: 10.1016/j.csbj.2022.11.046_b0275
  doi: 10.3390/plants11030345
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0320
  article-title: Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01887
– volume: 136
  start-page: 2500
  year: 2004
  ident: 10.1016/j.csbj.2022.11.046_b0390
  article-title: AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.042234
– volume: 12
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0355
  article-title: Genomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas thivervalensis sc5 reveals its multifaceted roles in soil and in beneficial interactions with plants
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.752288
– volume: 18
  start-page: 241
  year: 2008
  ident: 10.1016/j.csbj.2022.11.046_b0120
  article-title: Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-008-0177-2
– volume: 31
  start-page: 398
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0310
  article-title: Biological inoculant of salt-tolerant bacteria for plant growth stimulation under different saline soil conditions
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.2009.09032
– ident: 10.1016/j.csbj.2022.11.046_b0380
  doi: 10.1016/j.micres.2020.126671
– volume: 22
  start-page: 863
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0110
  article-title: Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre- and post-anthesis salinity stress
  publication-title: Plant Biol
  doi: 10.1111/plb.13123
– volume: 46
  start-page: 87
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0460
  article-title: Stomata in a saline world
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2018.07.015
– volume: 217
  start-page: 523
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0010
  article-title: Elucidating the molecular mechanisms mediating plant salt-stress responses
  publication-title: New Phytol
  doi: 10.1111/nph.14920
– volume: 28
  start-page: 5317
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0325
  article-title: Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum
  publication-title: Saudi Journal of Biological Sciences
  doi: 10.1016/j.sjbs.2021.05.056
– volume: 90
  start-page: 856
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0520
  article-title: Reactive oxygen species, abiotic stress and stress combination
  publication-title: Plant J
  doi: 10.1111/tpj.13299
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0600
  article-title: Gene expression patterns in roots of Camelina sativa with enhanced salinity tolerance arising from inoculation of soil with plant growth promoting bacteria producing 1-aminocyclopropane-1-carboxylate deaminase or expression the corresponding acds gene
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01297
– volume: 72
  start-page: 7229
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0175
  article-title: Inoculation of barley with Trichoderma harzianum T-22 modifies lipids and metabolites to improve salt tolerance
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erab335
– volume: 34
  start-page: 103
  year: 1997
  ident: 10.1016/j.csbj.2022.11.046_b0280
  article-title: Enterobacter sakazakii: A review
  publication-title: Int J Food Microbiol
  doi: 10.1016/S0168-1605(96)01172-5
– volume: 61
  start-page: 307
  year: 2015
  ident: 10.1016/j.csbj.2022.11.046_b0295
  article-title: Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity
  publication-title: Can J Microbiol
  doi: 10.1139/cjm-2014-0668
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0360
  article-title: Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01600
– ident: 10.1016/j.csbj.2022.11.046_b0590
  doi: 10.3389/fmicb.2017.01945
– volume: 35
  start-page: 36
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0150
  article-title: Enhancements of arbuscular mycorrhizal fungi on growth and nitrogen acquisition of Chrysanthemum morifolium under salt stress
  publication-title: PLoS One
– volume: 30
  start-page: 341
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0145
  article-title: Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-020-00954-y
– volume: 53
  start-page: 1141
  year: 2007
  ident: 10.1016/j.csbj.2022.11.046_b0265
  article-title: Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity
  publication-title: Can J Microbiol
  doi: 10.1139/W07-081
– volume: 85
  start-page: 1
  year: 2009
  ident: 10.1016/j.csbj.2022.11.046_b0025
  article-title: Plant-microbes interactions in enhanced fertilizer-use efficiency
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2196-0
– volume: 19
  start-page: 371
  year: 2014
  ident: 10.1016/j.csbj.2022.11.046_b0060
  article-title: Plant salt-tolerance mechanisms
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.02.001
– volume: 20
  start-page: 219
  year: 2015
  ident: 10.1016/j.csbj.2022.11.046_b0575
  article-title: Diverse roles of jasmonates and ethylene in abiotic stress tolerance
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2015.02.001
– ident: 10.1016/j.csbj.2022.11.046_b0195
  doi: 10.3389/fmicb.2016.00332
– volume: 170
  start-page: 436
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0170
  article-title: Trichoderma harzianum mitigates salt stress in cucumber via multiple responses
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2018.11.084
– start-page: 11
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0205
  article-title: Stress promotes Arabidopsis-Piriformospora indica interaction
  publication-title: Plant Signal Behav
– ident: 10.1016/j.csbj.2022.11.046_b0045
  doi: 10.1016/j.micres.2020.126439
– volume: 161
  start-page: 502
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0560
  article-title: Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12614
– volume: 20
  start-page: 729
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0220
  article-title: Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.)
  publication-title: Plant Biol
  doi: 10.1111/plb.12717
– volume: 63
  start-page: 541
  year: 2009
  ident: 10.1016/j.csbj.2022.11.046_b0015
  article-title: Plant-growth-promoting rhizobacteria
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.62.081307.162918
– start-page: 1
  year: 2022
  ident: 10.1016/j.csbj.2022.11.046_b0250
  article-title: Salt-tolerant bacteria enhance the growth of mung bean (Vigna radiata L.) and uptake of nutrients, and mobilize sodium ions under salt stress condition
  publication-title: Int J Phytorem
– volume: 14
  start-page: 1
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0270
  article-title: Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007273
– ident: 10.1016/j.csbj.2022.11.046_b0230
  doi: 10.14348/molcells.2014.2239
– volume: 22
  start-page: 850
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0235
  article-title: Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants
  publication-title: Plant Biol
  doi: 10.1111/plb.13124
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0470
  article-title: A growth-promoting bacteria, Paenibacillus yonginensis DCY84T enhanced salt stress tolerance by activating defense-related systems in panax ginseng
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00813
– volume: 27
  start-page: 669
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0155
  article-title: High effectiveness of Rhizophagus irregularis is linked to superior modulation of antioxidant defence mechanisms in Cajanus cajan (L.) Millsp. genotypes grown under salinity stress
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-017-0778-8
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0135
  article-title: Arbuscular mycorrhizal fungi improve tolerance of the medicinal plant Eclipta prostrata (L.) and induce major changes in polyphenol profiles under salt stresses. Frontiers
  publication-title: Plant Sci
– volume: 407
  start-page: 217
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0410
  article-title: Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2767-z
– volume: 6
  start-page: 206
  year: 2001
  ident: 10.1016/j.csbj.2022.11.046_b0430
  article-title: Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(01)01923-9
– volume: 41
  start-page: 109
  year: 1995
  ident: 10.1016/j.csbj.2022.11.046_b0595
  article-title: The enhancement of plant growth by free-living bacteria
  publication-title: Can J Microbiol
  doi: 10.1139/m95-015
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0290
  article-title: Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01314
– volume: 11
  start-page: 1
  year: 2022
  ident: 10.1016/j.csbj.2022.11.046_b0075
  article-title: Salt stress in plants and mitigation approaches
  publication-title: Plants
  doi: 10.3390/plants11060717
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0130
  article-title: Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax L.) plants grown under low phosphorus by reducing leaf Na+ concentration and improving phosphorus use efficiency. Frontiers
  publication-title: Plant Sci
– volume: 215
  start-page: 89
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0545
  article-title: Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2018.06.007
– start-page: 9
  year: 2018
  ident: 10.1016/j.csbj.2022.11.046_b0040
  article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops
  publication-title: Front Microbiol
– volume: 285
  start-page: 1256
  year: 1999
  ident: 10.1016/j.csbj.2022.11.046_b0425
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.285.5431.1256
– volume: 17
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0340
  article-title: Seed biopriming with salt-tolerant endophytic pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil
  publication-title: Int J Environ Res Public Health
– volume: 6
  start-page: 66
  year: 2001
  ident: 10.1016/j.csbj.2022.11.046_b0080
  article-title: Plant salt tolerance
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(00)01838-0
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0285
  article-title: A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0160660
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0445
  article-title: Plant-growth promoting Bacillus oryzicola yc7007 modulates stress-response gene expression and provides protection from salt stress
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2019.01646
– volume: 158
  start-page: 34
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0435
  article-title: Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9
  publication-title: Physiol Plant
  doi: 10.1111/ppl.12441
– start-page: 2
  year: 2014
  ident: 10.1016/j.csbj.2022.11.046_b0515
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental
  publication-title: Science
– volume: 35
  start-page: 554
  issue: 7
  year: 2022
  ident: 10.1016/j.csbj.2022.11.046_b0610
  article-title: Recognition of microbe- and damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants
  publication-title: Molecular Plant-Microbe Interactions®
  doi: 10.1094/MPMI-07-21-0185-FI
– volume: 55
  start-page: 1302
  year: 2009
  ident: 10.1016/j.csbj.2022.11.046_b0245
  article-title: Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields
  publication-title: Can J Microbiol
  doi: 10.1139/W09-092
– start-page: 10
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0055
  article-title: Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils
  publication-title: Front Microbiol
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0485
  article-title: An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-018-1374-6
– volume: 119
  start-page: 539
  year: 2015
  ident: 10.1016/j.csbj.2022.11.046_b0370
  article-title: Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.12866
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0330
  article-title: Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-021-02937-3
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0505
  article-title: The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+
  publication-title: Sci Rep
– volume: 44
  start-page: 1663
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0565
  article-title: Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodic lateral root development in Arabidopsis
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.14021
– volume: 59
  start-page: 651
  year: 2008
  ident: 10.1016/j.csbj.2022.11.046_b0005
  article-title: Mechanisms of salinity tolerance
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092911
– ident: 10.1016/j.csbj.2022.11.046_b0185
  doi: 10.1186/s12870-018-1618-5
– volume: 80
  start-page: 160
  year: 2014
  ident: 10.1016/j.csbj.2022.11.046_b0375
  article-title: Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2014.04.003
– ident: 10.1016/j.csbj.2022.11.046_b0540
  doi: 10.1073/pnas.2107417118
– volume: 36
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0035
  article-title: Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-020-2804-9
– volume: 263
  start-page: 107
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0415
  article-title: The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2017.07.006
– volume: 54
  start-page: 753
  year: 2007
  ident: 10.1016/j.csbj.2022.11.046_b0140
  article-title: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues
  publication-title: Microb Ecol
  doi: 10.1007/s00248-007-9239-9
– ident: 10.1016/j.csbj.2022.11.046_b0215
  doi: 10.1073/pnas.0504423102
– volume: 18
  start-page: 1113
  year: 2016
  ident: 10.1016/j.csbj.2022.11.046_b0315
  article-title: Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands
  publication-title: Int J Phytorem
  doi: 10.1080/15226514.2016.1183583
– volume: 21
  start-page: 737
  year: 2008
  ident: 10.1016/j.csbj.2022.11.046_b0405
  article-title: Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI-21-6-0737
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0345
  article-title: Phenazine-producing rhizobacteria promote plant growth and reduce redox and osmotic stress in wheat seedlings under saline conditions
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.575314
– volume: 36
  start-page: 1771
  year: 2013
  ident: 10.1016/j.csbj.2022.11.046_b0535
  article-title: Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.12082
– volume: 118
  start-page: 460
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0500
  article-title: Exogenous application of poly-γ-glutamic acid enhances stress defense in Brassica napus L. seedlings by inducing cross-talks between Ca2+, H2O2, brassinolide, and jasmonic acid in leaves
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2017.07.015
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0450
  article-title: The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress
  publication-title: Front Microbiol
– volume: 10
  start-page: 182
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0200
  article-title: Multifunctional aspects of Piriformospora indica in plant endosymbiosis
  publication-title: Mycology
  doi: 10.1080/21501203.2019.1600063
– volume: 14
  start-page: 10
  year: 2011
  ident: 10.1016/j.csbj.2022.11.046_b0555
  article-title: Sending mixed messages: Auxin-cytokinin crosstalk in roots
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2010.08.014
– volume: 8
  start-page: 1
  year: 2020
  ident: 10.1016/j.csbj.2022.11.046_b0020
  article-title: Selected rhizosphere bacteria help tomato plants cope with combined phosphorus and salt stresses
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111844
– volume: 16
  start-page: 1
  year: 2021
  ident: 10.1016/j.csbj.2022.11.046_b0050
  article-title: Does co-inoculation of mycorrhiza and Piriformospora indica fungi enhance the efficiency of chlorophyll fluorescence and essential oil composition in peppermint under irrigation with saline water from the Caspian Sea?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0254076
– volume: 21
  start-page: 3364
  year: 2019
  ident: 10.1016/j.csbj.2022.11.046_b0225
  article-title: The endophyte Serendipita indica reduces the sodium content of Arabidopsis plants exposed to salt stress: fungal ENA ATPases are expressed and regulated at high pH and during plant co-cultivation in salinity
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14619
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.csbj.2022.11.046_b0465
  article-title: Bacillus licheniformis SA03 confers increased saline–alkaline tolerance in chrysanthemum plants by induction of abscisic acid accumulation
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.01143
SSID ssj0000816930
Score 2.452399
SecondaryResourceType review_article
Snippet The world’s population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is...
The world's population continues to increase and thus requires more food production to take place in nonarable land, such as saline soil; therefore, it is...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6543
SubjectTerms biotechnology
crop production
food production
fungi
genome
homeostasis
Microbe-enhanced salt tolerance mechanisms
microbiome
plant growth
Plant salt tolerance
rhizosphere
Rhizosphere microbe
Saline soil
saline soils
salt stress
salt tolerance
species
stress tolerance
sustainable agriculture
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VOdFDVWgr0gJaJG6Vix_7cLgBIkKV4IBAym3lHc-qiVwnqp3_z4ztoMAhvXC0NV6vZ2bnsZ79RoizDCZK50kRFdpApABVNElzjDTkaIMtgkfeGri7N7dP6vdMz7ZafXFNWA8P3DPunFv1aV_EwWdBlZoBysFbsqGWEhNTdsd8yedtJVOdDc4ZZIQ3WIaaIRsPJ2b64i5o_IKSwzT9xRCeHP1ueaUOvP-Vc3pjpjvfM_0sPg1Bo7zsJ7svPmB9ID5uQQl-EbMHLp5rGCQA5V-usvPYSKz_sFTlqiIGyqaoWtkuK-RmGnghH7uSWclNvOSqR34lKcl5zZQ0tGyW8-qreJrePF7fRkPXhAiUNW0UShOgSE1mJ2lJ7h5olcW6VGB4wdFlAny4NQGwFCqEwlMEAxgSb7zOVA7ZNzGqlzUeCpmZBJDigVR7rcpAUjDKmxxTbluFcTkWyYZrDgZIce5sUblN7djCMacdc5pyDUecHoufL8-sekCNndRXLIwXSgbD7m6QirhBRdz_VGQs9EaUbogr-niBhprvfPnpRu6OFh3_SSlqXK4bx6k8mcM02UGTJdxzw8Yq-_4eH_FD7PHU-t2fIzFq_63xmOKh1p90qv8M7IoEfg
  priority: 102
  providerName: Directory of Open Access Journals
Title Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil
URI https://dx.doi.org/10.1016/j.csbj.2022.11.046
https://www.proquest.com/docview/2747003216
https://www.proquest.com/docview/3153207043
https://doaj.org/article/69305ba0fb3f4d50822cb799070946d8
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF5q-6IPYrXiWT224JukXJL9kRNEamkpLfWh9Oi9LdnJrl6JyfWSgv73ziSb1kq5Bx8TNpswk9n5ZjP5PsY-pDAVMovzKJcKIgFORNMkc5GEzGmvc28dbQ2cf1MnM3E6l_MNNsgdBQM2j5Z2pCc1W5X7v25-f8GA_3zfqwWNvcZaL0n2iZFTqCdsCzOTJkWD8wD3u5U5I-oR2nYJnUR6Ev6jeXyaB7mqo_R_kLL-Wby7jHT8gj0PUJIf9L7fZhuuesme_UUw-IrNL6ilriHqAMd_Uu-ddQ131Q_yNV-WaFbe5GXL27p0JLHhPvHLrpGWk7QXX_Z8sOg7vqhoJE7Nm3pR7rDZ8dHl4UkUtBQiEFq1kS-UhzxRqZ4mBYIAwNibyEKAojDEwxjol9cYQCOA8LlFXAPOx1ZZmYoM0tdss6or94bxVMXgECUk0kpReJsjqrEqcwmJWblJMWLxYDUDgWic9C5KM3SUXRuytCFLYwVi0NIj9vHummVPs7F29Fdyxt1IosjuTtSr7yZEnCFPS3w4b1MvCknM9mA1Jl-NFa0qshGTgytNQBs9isCpFmtvvjf43WAo0veVvHL1bWOowMdFMonXjEljUuLQE5G-_c_777KndNRvA71jm-3q1r1HYNTaMds6OLu4Oht3Gwvj7t3_A342DBI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhizosphere+microbes+enhance+plant+salt+tolerance%3A+Toward+crop+production+in+saline+soil&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Liu%2C+Yunpeng&rft.au=Xun%2C+Weibing&rft.au=Chen%2C+Lin&rft.au=Xu%2C+Zhihui&rft.date=2022&rft.pub=Elsevier+B.V&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=20&rft.spage=6543&rft.epage=6551&rft_id=info:doi/10.1016%2Fj.csbj.2022.11.046&rft.externalDocID=S2001037022005396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon