Systems analysis of protective immune responses to RTS,S malaria vaccination in humans

RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving th...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 9; pp. 2425 - 2430
Main Authors Kazmin, Dmitri, Nakaya, Helder I., Lee, Eva K., Johnson, Matthew J., van der Most, Robbert, van den Berg, Robert A., Ballou, W. Ripley, Jongert, Erik, Wille-Reece, Ulrike, Ockenhouse, Christian, Aderem, Alan, Zak, Daniel E., Sadoff, Jerald, Hendriks, Jenny, Wrammert, Jens, Ahmed, Rafi, Pulendran, Bali
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 28.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4⁺ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
AbstractList RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
RTS,S is an advanced malaria vaccine candidate and confers significant protection against infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with -infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4 T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
The RTS,S malaria vaccine is the most advanced malaria vaccine candidate to be tested in humans. Despite its promise, there is little understanding of its mechanism of action. In this work, we describe the use of a systems biological approach to identify “molecular signatures” that are induced rapidly after the standard RTS,S vaccination regimen, consisting of three RTS,S immunizations, or with a different regimen consisting of a primary immunization with recombinant adenovirus 35 (Ad35) expressing the circumsporozoite malaria antigen followed by two immunizations with RTS,S. These results reveal important insights about the innate and adaptive responses to vaccination and identify signatures of protective immunity against malaria. RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium -infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4 + T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ~50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4⁺ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination.
Author Nakaya, Helder I.
Ahmed, Rafi
Jongert, Erik
Sadoff, Jerald
Zak, Daniel E.
Kazmin, Dmitri
Hendriks, Jenny
Pulendran, Bali
Johnson, Matthew J.
Wille-Reece, Ulrike
Ballou, W. Ripley
Lee, Eva K.
van der Most, Robbert
Wrammert, Jens
van den Berg, Robert A.
Ockenhouse, Christian
Aderem, Alan
Author_xml – sequence: 1
  givenname: Dmitri
  surname: Kazmin
  fullname: Kazmin, Dmitri
  organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329
– sequence: 2
  givenname: Helder I.
  surname: Nakaya
  fullname: Nakaya, Helder I.
  organization: School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508, Brazil
– sequence: 3
  givenname: Eva K.
  surname: Lee
  fullname: Lee, Eva K.
  organization: School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332
– sequence: 4
  givenname: Matthew J.
  surname: Johnson
  fullname: Johnson, Matthew J.
  organization: Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108
– sequence: 5
  givenname: Robbert
  surname: van der Most
  fullname: van der Most, Robbert
  organization: GSK Vaccines, Rixensart 1330, Belgium
– sequence: 6
  givenname: Robert A.
  surname: van den Berg
  fullname: van den Berg, Robert A.
  organization: GSK Vaccines, Rockville, MD 20850
– sequence: 7
  givenname: W. Ripley
  surname: Ballou
  fullname: Ballou, W. Ripley
  organization: GSK Vaccines, Rockville, MD 20850
– sequence: 8
  givenname: Erik
  surname: Jongert
  fullname: Jongert, Erik
  organization: GSK Vaccines, Rixensart 1330, Belgium
– sequence: 9
  givenname: Ulrike
  surname: Wille-Reece
  fullname: Wille-Reece, Ulrike
  organization: Program for Appropriate Technology in Health-Malaria Vaccine Initiative, Washington, DC 20001
– sequence: 10
  givenname: Christian
  surname: Ockenhouse
  fullname: Ockenhouse, Christian
  organization: Program for Appropriate Technology in Health-Malaria Vaccine Initiative, Washington, DC 20001
– sequence: 11
  givenname: Alan
  surname: Aderem
  fullname: Aderem, Alan
  organization: Center for Infectious Disease Research, Seattle, WA 98109
– sequence: 12
  givenname: Daniel E.
  surname: Zak
  fullname: Zak, Daniel E.
  organization: Center for Infectious Disease Research, Seattle, WA 98109
– sequence: 13
  givenname: Jerald
  surname: Sadoff
  fullname: Sadoff, Jerald
  organization: Crucell, Leiden 2333, The Netherlands
– sequence: 14
  givenname: Jenny
  surname: Hendriks
  fullname: Hendriks, Jenny
  organization: Crucell, Leiden 2333, The Netherlands
– sequence: 15
  givenname: Jens
  surname: Wrammert
  fullname: Wrammert, Jens
  organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329
– sequence: 16
  givenname: Rafi
  surname: Ahmed
  fullname: Ahmed, Rafi
  organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329
– sequence: 17
  givenname: Bali
  surname: Pulendran
  fullname: Pulendran, Bali
  organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28193898$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrVDEAhYNU7LS6dqUE3HThbfN-bApSfEFBcKrbkEkTm-He5JrkDsy_906nttqFuMoi3zmc5DsCByknD8BLjE4xkvRsTLaeYkEwUxpj9gQsMNK4E0yjA7BAiMhOMcIOwVGta4SQ5go9A4dEYU2VVgvwfbmtzQ8V2mT7bY0V5gDHkpt3LW48jMMwJQ-Lr2NO1VfYMvx6tXy7hIPtbYkWbqxzMdkWc4IxwZtpsKk-B0-D7at_cXceg28f3l9dfOouv3z8fPHusnNMitYFtkJ0xRlzPJBAsHNBM8GJFopiJpDAhDllkfRUuBCQvqZyRbVXjCocFKHH4HzfO06rwV87n1qxvRlLHGzZmmyj-fsmxRvzI28Mp1RxsSs4uSso-efkazNDrM73vU0-T9VgpbAUUvH_QefVWklNZ_TNI3SdpzL_8I6SVOu5VM_U6z_H36_-bWcGzvaAK7nW4sM9gpHZ-Tc7_-bB_5zgjxIutls38-tj_4_cq31uXVsuD0sEk5ojQX8BvnG9_A
CitedBy_id crossref_primary_10_1172_JCI122836
crossref_primary_10_7554_eLife_81401
crossref_primary_10_1128_mBio_01705_20
crossref_primary_10_1038_s41430_024_01545_2
crossref_primary_10_3389_fimmu_2019_00874
crossref_primary_10_3389_fimmu_2020_01181
crossref_primary_10_1002_cti2_1010
crossref_primary_10_1111_febs_16016
crossref_primary_10_1021_acs_bioconjchem_7b00320
crossref_primary_10_1038_s41541_020_0177_6
crossref_primary_10_3389_fimmu_2024_1285785
crossref_primary_10_1371_journal_ppat_1007290
crossref_primary_10_1111_imm_13012
crossref_primary_10_3389_fimmu_2024_1412732
crossref_primary_10_3389_fimmu_2022_840976
crossref_primary_10_1016_j_phrs_2021_105570
crossref_primary_10_1080_14760584_2017_1341316
crossref_primary_10_1007_s40471_021_00271_8
crossref_primary_10_1038_s41598_017_15354_0
crossref_primary_10_1016_j_smim_2018_08_001
crossref_primary_10_1186_s12936_021_03839_3
crossref_primary_10_1038_s41541_021_00372_x
crossref_primary_10_1038_s41541_025_01078_0
crossref_primary_10_1016_j_celrep_2023_113101
crossref_primary_10_1101_cshperspect_a038596
crossref_primary_10_1016_j_coi_2018_04_019
crossref_primary_10_1016_j_celrep_2024_114706
crossref_primary_10_1128_MMBR_00071_17
crossref_primary_10_1093_cid_ciab1017
crossref_primary_10_1016_j_vaccine_2019_07_098
crossref_primary_10_12688_f1000research_22143_1
crossref_primary_10_1371_journal_pntd_0008112
crossref_primary_10_3389_fimmu_2017_00557
crossref_primary_10_1038_s41467_022_29226_3
crossref_primary_10_1126_sciimmunol_abj1181
crossref_primary_10_3390_v10040167
crossref_primary_10_1128_microbiolspec_BAI_0021_2019
crossref_primary_10_1080_14760584_2019_1604231
crossref_primary_10_4049_jimmunol_1701316
crossref_primary_10_1016_j_coi_2018_04_023
crossref_primary_10_1080_17460441_2018_1471056
crossref_primary_10_1126_scitranslmed_aau1458
crossref_primary_10_1038_s41573_021_00163_y
crossref_primary_10_4049_jimmunol_1800323
crossref_primary_10_1016_S1473_3099_22_00139_6
crossref_primary_10_3389_fimmu_2018_00301
crossref_primary_10_1016_j_patter_2022_100473
crossref_primary_10_1016_j_smim_2023_101842
crossref_primary_10_3389_fimmu_2017_01083
crossref_primary_10_15252_msb_20188747
crossref_primary_10_3389_fimmu_2017_01760
crossref_primary_10_1038_ni_3768
crossref_primary_10_1126_science_aay4014
crossref_primary_10_3390_vaccines11040792
crossref_primary_10_3389_fvets_2021_800361
crossref_primary_10_1016_j_cell_2017_04_026
crossref_primary_10_1016_j_ejmech_2019_05_043
crossref_primary_10_1038_s41590_023_01717_5
crossref_primary_10_1016_j_coi_2017_07_010
crossref_primary_10_1080_21645515_2017_1381809
crossref_primary_10_1073_pnas_1822046116
crossref_primary_10_1016_j_smim_2018_05_001
crossref_primary_10_1172_jci_insight_120692
crossref_primary_10_1007_s00281_020_00821_0
crossref_primary_10_1016_j_ebiom_2023_104772
crossref_primary_10_1016_j_vaccine_2024_02_070
crossref_primary_10_1016_j_vaccine_2018_03_091
crossref_primary_10_1038_s41467_024_54605_3
crossref_primary_10_1080_21505594_2019_1708053
crossref_primary_10_1038_s41597_022_01714_7
crossref_primary_10_1126_scitranslmed_aay8924
crossref_primary_10_1038_s41541_023_00702_1
crossref_primary_10_3390_pathogens13060441
crossref_primary_10_1371_journal_pone_0276505
crossref_primary_10_1172_jci_insight_141023
crossref_primary_10_15252_msb_20177881
crossref_primary_10_1155_2019_4291017
crossref_primary_10_1016_j_coi_2022_102234
crossref_primary_10_3389_fimmu_2023_1043109
crossref_primary_10_1016_j_micinf_2024_105318
crossref_primary_10_1016_j_phymed_2019_152905
crossref_primary_10_3389_fimmu_2017_01839
crossref_primary_10_1002_adtp_201800157
crossref_primary_10_3389_fimmu_2020_00669
crossref_primary_10_1016_j_smim_2020_101426
crossref_primary_10_1089_aid_2018_0018
crossref_primary_10_7554_eLife_46149
crossref_primary_10_1016_j_aej_2022_03_058
crossref_primary_10_3389_fimmu_2020_02171
crossref_primary_10_1172_jci_insight_167408
crossref_primary_10_1016_S2666_5247_21_00235_4
crossref_primary_10_3389_fimmu_2017_01276
crossref_primary_10_3390_vaccines10050713
crossref_primary_10_3389_fimmu_2020_624613
crossref_primary_10_1016_j_vaccine_2020_09_071
crossref_primary_10_5808_gi_22049
crossref_primary_10_1016_j_antiviral_2023_105760
crossref_primary_10_3389_fimmu_2021_634832
crossref_primary_10_1126_scitranslmed_aaw9522
crossref_primary_10_1016_j_smim_2020_101422
crossref_primary_10_1186_s12977_017_0380_3
crossref_primary_10_1038_s41565_020_0739_9
crossref_primary_10_1080_21645515_2023_2282693
crossref_primary_10_3390_vaccines9050506
crossref_primary_10_3390_vaccines9060579
crossref_primary_10_1126_scitranslmed_aay8618
crossref_primary_10_1093_infdis_jiy434
crossref_primary_10_3389_fimmu_2022_977472
crossref_primary_10_1038_s41577_024_01041_5
crossref_primary_10_1080_14760584_2021_1882309
crossref_primary_10_1128_JVI_02165_20
crossref_primary_10_1080_21645515_2019_1669415
crossref_primary_10_1002_bit_26890
crossref_primary_10_1016_S1773_035X_22_00098_3
crossref_primary_10_1111_febs_14109
crossref_primary_10_3349_ymj_2018_59_2_176
crossref_primary_10_3390_antib6030011
crossref_primary_10_1080_14760584_2019_1559063
crossref_primary_10_2174_1381612825666190902162105
crossref_primary_10_1038_s41590_022_01328_6
crossref_primary_10_3390_ijms25137095
crossref_primary_10_1038_s41598_019_44924_7
crossref_primary_10_1016_j_pt_2022_10_006
crossref_primary_10_1038_s41590_018_0228_6
crossref_primary_10_1084_jem_20170869
crossref_primary_10_3389_fimmu_2024_1331474
crossref_primary_10_1002_adma_202003310
crossref_primary_10_1371_journal_ppat_1010282
crossref_primary_10_3389_fimmu_2022_1042741
crossref_primary_10_3389_fimmu_2019_00135
crossref_primary_10_1126_scitranslmed_abb4757
crossref_primary_10_1016_j_medj_2021_10_003
crossref_primary_10_3389_fimmu_2018_01248
crossref_primary_10_1007_s40267_022_00937_3
crossref_primary_10_3389_fimmu_2022_848961
crossref_primary_10_1002_cti2_1072
crossref_primary_10_1038_s41598_018_21369_y
crossref_primary_10_2139_ssrn_3946574
crossref_primary_10_1186_s12936_019_2637_x
crossref_primary_10_1097_QAI_0000000000002864
crossref_primary_10_1128_CMR_00100_19
crossref_primary_10_1016_j_aej_2020_07_021
crossref_primary_10_3389_fdata_2021_672460
crossref_primary_10_3390_vaccines11020395
crossref_primary_10_1093_infdis_jiy468
crossref_primary_10_1038_s41541_019_0151_3
crossref_primary_10_1128_IAI_00479_17
crossref_primary_10_1111_imr_12798
crossref_primary_10_1038_s41541_021_00425_1
crossref_primary_10_1186_s12936_019_2953_1
crossref_primary_10_3390_vaccines8040677
crossref_primary_10_1111_pim_12624
crossref_primary_10_7554_eLife_70393
crossref_primary_10_1111_imr_12817
crossref_primary_10_1186_s12936_021_03961_2
crossref_primary_10_3389_fimmu_2019_01087
crossref_primary_10_2217_cer_2021_0073
crossref_primary_10_3389_fimmu_2021_737487
crossref_primary_10_3389_fimmu_2024_1441944
crossref_primary_10_1038_s41577_023_00941_2
crossref_primary_10_3390_vaccines5040032
crossref_primary_10_1002_hep_30894
crossref_primary_10_1016_j_ymthe_2019_01_020
crossref_primary_10_1080_21645515_2023_2204020
crossref_primary_10_1016_j_smim_2018_07_003
crossref_primary_10_1016_j_isci_2020_101509
crossref_primary_10_1038_s41541_025_01089_x
crossref_primary_10_1126_scitranslmed_adl3381
crossref_primary_10_3389_fmicb_2019_01305
crossref_primary_10_1016_j_tips_2021_06_004
crossref_primary_10_1038_nri_2017_106
crossref_primary_10_1111_nyas_14235
crossref_primary_10_1101_cshperspect_a028894
crossref_primary_10_3389_fimmu_2018_00564
crossref_primary_10_1038_s41598_018_35452_x
crossref_primary_10_1016_j_cell_2024_07_021
crossref_primary_10_1038_s41541_018_0078_0
crossref_primary_10_1016_j_smim_2018_10_010
crossref_primary_10_7554_eLife_80652
crossref_primary_10_1038_s41598_019_41205_1
crossref_primary_10_1080_21645515_2019_1697110
crossref_primary_10_1128_cmr_00008_21
crossref_primary_10_30895_2221_996X_2020_20_1_21_29
crossref_primary_10_5334_jors_243
crossref_primary_10_1038_s41598_018_33599_1
crossref_primary_10_3389_fimmu_2021_624191
crossref_primary_10_1080_14760584_2019_1561289
crossref_primary_10_1080_14760584_2024_2382725
crossref_primary_10_1111_imm_12861
crossref_primary_10_3389_ebm_2024_10233
crossref_primary_10_1111_imm_13276
crossref_primary_10_1016_j_xinn_2024_100603
crossref_primary_10_1186_s12936_022_04199_2
crossref_primary_10_1016_j_coi_2020_05_001
crossref_primary_10_1371_journal_ppat_1009363
crossref_primary_10_1038_s41590_018_0231_y
crossref_primary_10_1186_s12977_021_00579_9
crossref_primary_10_1080_07853890_2025_2477300
crossref_primary_10_1016_j_vaccine_2023_12_010
crossref_primary_10_1016_j_ebiom_2023_104947
crossref_primary_10_1038_s41541_019_0134_4
crossref_primary_10_1016_j_vaccine_2020_12_038
crossref_primary_10_1007_s40506_020_00242_5
crossref_primary_10_3389_fimmu_2018_00346
crossref_primary_10_1002_eji_201948234
crossref_primary_10_3389_fimmu_2023_1225025
crossref_primary_10_1016_j_chom_2018_06_008
Cites_doi 10.4161/hv.6.1.9677
10.1038/ni.2067
10.4049/jimmunol.177.2.1229
10.1038/nm.1991
10.1086/600120
10.1128/IAI.01879-06
10.1038/ni.2789
10.1016/S0140-6736(07)61542-6
10.1371/journal.pone.0131571
10.1007/s10439-007-9317-7
10.2217/fmb.15.90
10.1016/S0140-6736(04)17223-1
10.1038/nature09907
10.1093/infdis/171.6.1576
10.1073/pnas.1400476111
10.1126/science.1211548
10.1056/NEJMoa0807381
10.1371/journal.pone.0087463
10.1038/ni.1688
10.1038/nature06890
10.1056/NEJMoa1208394
10.1038/ncomms7375
10.1016/S0140-6736(15)60721-8
10.1002/cyto.a.21015
10.1084/jem.20082292
10.1073/pnas.0506580102
10.1056/NEJMoa0807773
10.4049/jimmunol.1400948
10.1016/j.vaccine.2010.05.033
10.1056/NEJMoa1102287
10.1016/S0140-6736(01)06957-4
10.1084/jem.20011889
10.1371/journal.pmed.1001685
10.1016/j.immuni.2010.10.006
10.1086/650310
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Feb 28, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Feb 28, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1621489114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Virology and AIDS Abstracts

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Systems biology of RTS,S vaccine in humans
EISSN 1091-6490
EndPage 2430
ExternalDocumentID PMC5338562
4318427281
28193898
10_1073_pnas_1621489114
26479506
Genre Research Support, U.S. Gov't, Non-P.H.S
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI090023
– fundername: NIAID NIH HHS
  grantid: U19 AI057266
– fundername: NIAID NIH HHS
  grantid: R38 AI140299
– fundername: NIH HHS
  grantid: P51 OD011132
– fundername: NIAID NIH HHS
  grantid: R37 AI048638
– fundername: HHS | National Institutes of Health (NIH)
  grantid: U19AI057266
– fundername: HHS | National Institutes of Health (NIH)
  grantid: U19AI090023
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c476t-f4b03b544c5f2f21ccf94652968314606124c8a07e36cff09d37b39e84381f823
ISSN 0027-8424
IngestDate Thu Aug 21 18:03:26 EDT 2025
Sun Aug 24 02:56:46 EDT 2025
Fri Jul 11 00:00:42 EDT 2025
Mon Jun 30 08:18:35 EDT 2025
Thu Apr 03 07:00:43 EDT 2025
Thu Apr 24 22:54:29 EDT 2025
Tue Jul 01 03:19:30 EDT 2025
Fri May 30 11:46:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords systems biology
systems vaccinology
vaccine
immune
malaria
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c476t-f4b03b544c5f2f21ccf94652968314606124c8a07e36cff09d37b39e84381f823
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Reviewers: E.H., Drexel University; and R.S., National Institutes of Health.
1D.K. and H.I.N. contributed equally to this work.
Contributed by Rafi Ahmed, January 4, 2017 (sent for review December 19, 2016; reviewed by Elias Haddad and Robert Seder)
Author contributions: D.K., R.v.d.M., R.A.v.d.B., W.R.B., E.J., U.W.-R., C.O., A.A., J.S., J.H., R.A., and B.P. designed research; D.K., H.I.N., E.K.L., M.J.J., and J.W. performed research; J.S. and J.H. contributed new reagents/analytic tools; D.K., H.I.N., A.A., D.E.Z., R.A., and B.P. analyzed data; R.v.d.M. and R.A.v.d.B. contributed to the development of the clinical study; R.A.v.d.B. contributed to the analysis plan; and D.K., H.I.N., and B.P. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/114/9/2425.full.pdf
PMID 28193898
PQID 1873998179
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338562
proquest_miscellaneous_1881767852
proquest_miscellaneous_1868398793
proquest_journals_1873998179
pubmed_primary_28193898
crossref_primary_10_1073_pnas_1621489114
crossref_citationtrail_10_1073_pnas_1621489114
jstor_primary_26479506
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-28
PublicationDateYYYYMMDD 2017-02-28
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_1_2
Gaucher D (e_1_3_4_26_2) 2008; 205
Aponte JJ (e_1_3_4_12_2) 2007; 370
Bejon P (e_1_3_4_11_2) 2008; 359
Agnandji ST (e_1_3_4_8_2) 2015; 10
Abdulla S (e_1_3_4_13_2) 2008; 359
Agnandji ST (e_1_3_4_17_2) 2012; 367
Pulendran B (e_1_3_4_22_2) 2010; 33
Li S (e_1_3_4_29_2) 2014; 15
Gonzalez-Aseguinolaza G (e_1_3_4_36_2) 2002; 195
Gordon DM (e_1_3_4_6_2) 1995; 171
Didierlaurent AM (e_1_3_4_5_2) 2014; 193
Roland J (e_1_3_4_35_2) 2006; 177
Bojang KA (e_1_3_4_9_2) 2001; 358
Roederer M (e_1_3_4_38_2) 2011; 79
O’Brien KL (e_1_3_4_20_2) 2009; 15
Alonso PL (e_1_3_4_10_2) 2004; 364
Ockenhouse CF (e_1_3_4_18_2) 2015; 10
Schoggins JW (e_1_3_4_27_2) 2011; 472
Querec TD (e_1_3_4_24_2) 2009; 10
Lee EK (e_1_3_4_31_2) 2007; 35
Vahey MT (e_1_3_4_32_2) 2010; 201
Cohen J (e_1_3_4_3_2) 2010; 6
Rydyznski C (e_1_3_4_33_2) 2015; 6
Pulendran B (e_1_3_4_23_2) 2014; 111
Wrammert J (e_1_3_4_30_2) 2008; 453
Stewart VA (e_1_3_4_21_2) 2007; 75
Epstein JE (e_1_3_4_19_2) 2011; 334
Subramanian A (e_1_3_4_37_2) 2005; 102
Strategic Advisory Group of Experts (e_1_3_4_2_2) 2011; 90
Nakaya HI (e_1_3_4_25_2) 2011; 12
Zak DE (e_1_3_4_28_2) 2012; 109
Filtjens J (e_1_3_4_34_2) 2014; 9
Kester KE (e_1_3_4_7_2) 2009; 200
RTS,S Clinical Trials Partnership (e_1_3_4_16_2) 2014; 11
Agnandji ST (e_1_3_4_14_2) 2011; 365
The RTS,S Clinical Trial Partnership (e_1_3_4_15_2) 2015; 386
Casares S (e_1_3_4_4_2) 2010; 28
References_xml – volume: 6
  start-page: 90
  year: 2010
  ident: e_1_3_4_3_2
  article-title: From the circumsporozoite protein to the RTS, S/AS candidate vaccine
  publication-title: Hum Vaccin
  doi: 10.4161/hv.6.1.9677
– volume: 12
  start-page: 786
  year: 2011
  ident: e_1_3_4_25_2
  article-title: Systems biology of vaccination for seasonal influenza in humans
  publication-title: Nat Immunol
  doi: 10.1038/ni.2067
– volume: 177
  start-page: 1229
  year: 2006
  ident: e_1_3_4_35_2
  article-title: NK cell responses to Plasmodium infection and control of intrahepatic parasite development
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.2.1229
– volume: 90
  start-page: 681
  year: 2011
  ident: e_1_3_4_2_2
  article-title: Meeting of the Strategic Advisory Group of Experts on immunization, October 2015 - conclusions and recommendations
  publication-title: Wkly Epidemiol Rec
– volume: 15
  start-page: 873
  year: 2009
  ident: e_1_3_4_20_2
  article-title: Adenovirus-specific immunity after immunization with an Ad5 HIV-1 vaccine candidate in humans
  publication-title: Nat Med
  doi: 10.1038/nm.1991
– ident: e_1_3_4_1_2
– volume: 200
  start-page: 337
  year: 2009
  ident: e_1_3_4_7_2
  article-title: Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: Safety, efficacy, and immunologic associates of protection
  publication-title: J Infect Dis
  doi: 10.1086/600120
– volume: 75
  start-page: 2283
  year: 2007
  ident: e_1_3_4_21_2
  article-title: Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone
  publication-title: Infect Immun
  doi: 10.1128/IAI.01879-06
– volume: 15
  start-page: 195
  year: 2014
  ident: e_1_3_4_29_2
  article-title: Molecular signatures of antibody responses derived from a systems biology study of five human vaccines
  publication-title: Nat Immunol
  doi: 10.1038/ni.2789
– volume: 370
  start-page: 1543
  year: 2007
  ident: e_1_3_4_12_2
  article-title: Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: A double blind randomised controlled phase I/IIb trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)61542-6
– volume: 10
  start-page: e0131571
  year: 2015
  ident: e_1_3_4_18_2
  article-title: Ad35.CS.01-RTS,S/AS01 heterologous prime boost vaccine efficacy against sporozoite challenge in healthy malaria-naïve adults
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0131571
– volume: 35
  start-page: 1095
  year: 2007
  ident: e_1_3_4_31_2
  article-title: Large-scale optimization-based classification models in medicine and biology
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-007-9317-7
– volume: 109
  start-page: E3503
  year: 2012
  ident: e_1_3_4_28_2
  article-title: Merck Ad5/HIV induces broad innate immune activation that predicts CD8+ T-cell responses but is attenuated by preexisting Ad5 immunity
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1553
  year: 2015
  ident: e_1_3_4_8_2
  article-title: Clinical development of RTS,S/AS malaria vaccine: A systematic review of clinical Phase I-III trials
  publication-title: Future Microbiol
  doi: 10.2217/fmb.15.90
– volume: 364
  start-page: 1411
  year: 2004
  ident: e_1_3_4_10_2
  article-title: Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: Randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(04)17223-1
– volume: 472
  start-page: 481
  year: 2011
  ident: e_1_3_4_27_2
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 171
  start-page: 1576
  year: 1995
  ident: e_1_3_4_6_2
  article-title: Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine
  publication-title: J Infect Dis
  doi: 10.1093/infdis/171.6.1576
– volume: 111
  start-page: 12300
  year: 2014
  ident: e_1_3_4_23_2
  article-title: Systems vaccinology: Probing humanity’s diverse immune systems with vaccines
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1400476111
– volume: 334
  start-page: 475
  year: 2011
  ident: e_1_3_4_19_2
  article-title: Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity
  publication-title: Science
  doi: 10.1126/science.1211548
– volume: 359
  start-page: 2521
  year: 2008
  ident: e_1_3_4_11_2
  article-title: Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0807381
– volume: 9
  start-page: e87463
  year: 2014
  ident: e_1_3_4_34_2
  article-title: Contribution of the Ly49E natural killer receptor in the immune response to Plasmodium berghei infection and control of hepatic parasite development
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087463
– volume: 10
  start-page: 116
  year: 2009
  ident: e_1_3_4_24_2
  article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans
  publication-title: Nat Immunol
  doi: 10.1038/ni.1688
– volume: 453
  start-page: 667
  year: 2008
  ident: e_1_3_4_30_2
  article-title: Rapid cloning of high-affinity human monoclonal antibodies against influenza virus
  publication-title: Nature
  doi: 10.1038/nature06890
– volume: 367
  start-page: 2284
  year: 2012
  ident: e_1_3_4_17_2
  article-title: A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1208394
– volume: 6
  start-page: 6375
  year: 2015
  ident: e_1_3_4_33_2
  article-title: Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms7375
– volume: 386
  start-page: 31
  year: 2015
  ident: e_1_3_4_15_2
  article-title: Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)60721-8
– volume: 79
  start-page: 167
  year: 2011
  ident: e_1_3_4_38_2
  article-title: SPICE: Exploration and analysis of post-cytometric complex multivariate datasets
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.21015
– volume: 205
  start-page: 3119
  year: 2008
  ident: e_1_3_4_26_2
  article-title: Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses
  publication-title: J Exp Med
  doi: 10.1084/jem.20082292
– volume: 102
  start-page: 15545
  year: 2005
  ident: e_1_3_4_37_2
  article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506580102
– volume: 359
  start-page: 2533
  year: 2008
  ident: e_1_3_4_13_2
  article-title: Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0807773
– volume: 193
  start-page: 1920
  year: 2014
  ident: e_1_3_4_5_2
  article-title: Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1400948
– volume: 28
  start-page: 4880
  year: 2010
  ident: e_1_3_4_4_2
  article-title: The RTS,S malaria vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2010.05.033
– volume: 365
  start-page: 1863
  year: 2011
  ident: e_1_3_4_14_2
  article-title: First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1102287
– volume: 358
  start-page: 1927
  year: 2001
  ident: e_1_3_4_9_2
  article-title: Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: A randomised trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)06957-4
– volume: 195
  start-page: 617
  year: 2002
  ident: e_1_3_4_36_2
  article-title: Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines
  publication-title: J Exp Med
  doi: 10.1084/jem.20011889
– volume: 11
  start-page: e1001685
  year: 2014
  ident: e_1_3_4_16_2
  article-title: Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: A phase 3 randomized, controlled trial in children and young infants at 11 African sites
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001685
– volume: 33
  start-page: 516
  year: 2010
  ident: e_1_3_4_22_2
  article-title: Systems vaccinology
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.10.006
– volume: 201
  start-page: 580
  year: 2010
  ident: e_1_3_4_32_2
  article-title: Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine
  publication-title: J Infect Dis
  doi: 10.1086/650310
SSID ssj0009580
Score 2.6142101
Snippet RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the...
The RTS,S malaria vaccine is the most advanced malaria vaccine candidate to be tested in humans. Despite its promise, there is little understanding of its...
RTS,S is an advanced malaria vaccine candidate and confers significant protection against infection in humans. Little is known about the molecular mechanisms...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2425
SubjectTerms Adaptive Immunity - drug effects
Adenoviridae
Adenoviridae - genetics
Adenoviridae - immunology
Antibodies, Protozoan - biosynthesis
B-Lymphocytes - drug effects
B-Lymphocytes - immunology
B-Lymphocytes - metabolism
Biological Sciences
CD4-Positive T-Lymphocytes - drug effects
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - metabolism
Dendritic Cells - drug effects
Dendritic Cells - immunology
Dendritic Cells - metabolism
Gene Expression Profiling
Gene Expression Regulation
Genetic Vectors - chemistry
Genetic Vectors - immunology
Humans
Immunity (Disease)
Immunity, Innate - drug effects
Immunization
Immunization, Secondary - methods
Immunogenicity, Vaccine
Killer Cells, Natural - drug effects
Killer Cells, Natural - immunology
Killer Cells, Natural - metabolism
Malaria
Malaria Vaccines - administration & dosage
Malaria, Falciparum - immunology
Malaria, Falciparum - parasitology
Malaria, Falciparum - prevention & control
Parasitic protozoa
Plasmodium falciparum
Plasmodium falciparum - immunology
Plasmodium falciparum - pathogenicity
Proteins
Protozoan Proteins - administration & dosage
Protozoan Proteins - genetics
Protozoan Proteins - immunology
Systematic biology
Systems analysis
Vaccination - methods
Vaccines
Vaccines, Synthetic - administration & dosage
Vector-borne diseases
Title Systems analysis of protective immune responses to RTS,S malaria vaccination in humans
URI https://www.jstor.org/stable/26479506
https://www.ncbi.nlm.nih.gov/pubmed/28193898
https://www.proquest.com/docview/1873998179
https://www.proquest.com/docview/1868398793
https://www.proquest.com/docview/1881767852
https://pubmed.ncbi.nlm.nih.gov/PMC5338562
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGDAIDGQkHoZCSho7_nicYNMEo0ysRX2LHMcRETRFa4bE_nrOsZO0Y6DBSxQ5jhX5Lvflu98h9EKlZixzbZPahY5oEoMclCSOOPCOZoRJXth65w8TdjSj7-bpfIjpttUlTT7SF1fWlfwPVWEM6GqrZP-Bsv2iMAD3QF-4AoXhei0ae7jxUK0hi3jgBZsQVNnaD9sWpU2DdVgOn6Y2V-80XChwaSsV_lBaVy4iaEMfbcu-1brFetJruFWXTzDpAoj7QzmKlxGrMApPJkNz4_fqYuFQCt4uquas6mPP6qv6qbzes3AWQzNtlxkEFv4QgfVtvFxtUduf3J9m-XAFqMCh_Ns4EQsWSsSoaxLay2BXSeqZTa5LVOoKo712Tqg7xvlN8oOosu2Ka7UajVkCTp7s1tzA2J58zA5nx8fZ9GA-vYluJeBckC7G00M1i7gDgeLk9aUlN-wXl8J6lXNyOcd2zWiZ3kV3vLeB9x3rbKMbpr6Htjta4T0POv7yPvrseQl3vISXJR54CTtewj0v4WaJgZdenWLPSXiNk3BVY8dJD9Ds8GD65ijyPTciTTlropLmMclTSnVaJmUy1rqUlNnDeUFAqVqDmGqhYm4I02UZy4LwnEgjLFRcKRKyg7bqZW0eIQyj6ViwokiUocZIUcYFBwWSM1OUIAoCNOp2MtMekN72RfmWtYkRnGR267Nh6wO017_w3WGx_HnqTkuafh7Y_VymMQvQbkerzP_J8J7gYKcL0E0Bet4_BjlrD89UbZbndg7sgBSgzv42B9YAoZcmAXroyD98AJje4ByIAPENxugnWJz3zSd19aXFewePTICb8vga3_YE3R5-ul201Zydm6dgNTf5s5bJfwFEIMYN
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systems+analysis+of+protective+immune+responses+to+RTS%2CS+malaria+vaccination+in+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kazmin%2C+Dmitri&rft.au=Nakaya%2C+Helder+I&rft.au=Lee%2C+Eva+K&rft.au=Johnson%2C+Matthew+J&rft.date=2017-02-28&rft.eissn=1091-6490&rft.volume=114&rft.issue=9&rft.spage=2425&rft.epage=2430&rft_id=info:doi/10.1073%2Fpnas.1621489114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon