Systems analysis of protective immune responses to RTS,S malaria vaccination in humans
RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving th...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 9; pp. 2425 - 2430 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
28.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4⁺ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. |
---|---|
AbstractList | RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. RTS,S is an advanced malaria vaccine candidate and confers significant protection against infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with -infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4 T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. The RTS,S malaria vaccine is the most advanced malaria vaccine candidate to be tested in humans. Despite its promise, there is little understanding of its mechanism of action. In this work, we describe the use of a systems biological approach to identify “molecular signatures” that are induced rapidly after the standard RTS,S vaccination regimen, consisting of three RTS,S immunizations, or with a different regimen consisting of a primary immunization with recombinant adenovirus 35 (Ad35) expressing the circumsporozoite malaria antigen followed by two immunizations with RTS,S. These results reveal important insights about the innate and adaptive responses to vaccination and identify signatures of protective immunity against malaria. RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium -infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4 + T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ~50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4+ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the molecular mechanisms driving vaccine immunity. Here, we applied a systems biology approach to study immune responses in subjects receiving three consecutive immunizations with RTS,S (RRR), or in those receiving two immunizations of RTS,S/AS01 following a primary immunization with adenovirus 35 (Ad35) (ARR) vector expressing circumsporozoite protein. Subsequent controlled human malaria challenge (CHMI) of the vaccinees with Plasmodium-infected mosquitoes, 3 wk after the final immunization, resulted in ∼50% protection in both groups of vaccinees. Circumsporozoite protein (CSP)-specific antibody titers, prechallenge, were associated with protection in the RRR group. In contrast, ARR-induced lower antibody responses, and protection was associated with polyfunctional CD4⁺ T-cell responses 2 wk after priming with Ad35. Molecular signatures of B and plasma cells detected in PBMCs were highly correlated with antibody titers prechallenge and protection in the RRR cohort. In contrast, early signatures of innate immunity and dendritic cell activation were highly associated with protection in the ARR cohort. For both vaccine regimens, natural killer (NK) cell signatures negatively correlated with and predicted protection. These results suggest that protective immunity against P. falciparum can be achieved via multiple mechanisms and highlight the utility of systems approaches in defining molecular correlates of protection to vaccination. |
Author | Nakaya, Helder I. Ahmed, Rafi Jongert, Erik Sadoff, Jerald Zak, Daniel E. Kazmin, Dmitri Hendriks, Jenny Pulendran, Bali Johnson, Matthew J. Wille-Reece, Ulrike Ballou, W. Ripley Lee, Eva K. van der Most, Robbert Wrammert, Jens van den Berg, Robert A. Ockenhouse, Christian Aderem, Alan |
Author_xml | – sequence: 1 givenname: Dmitri surname: Kazmin fullname: Kazmin, Dmitri organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329 – sequence: 2 givenname: Helder I. surname: Nakaya fullname: Nakaya, Helder I. organization: School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo 05508, Brazil – sequence: 3 givenname: Eva K. surname: Lee fullname: Lee, Eva K. organization: School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332 – sequence: 4 givenname: Matthew J. surname: Johnson fullname: Johnson, Matthew J. organization: Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108 – sequence: 5 givenname: Robbert surname: van der Most fullname: van der Most, Robbert organization: GSK Vaccines, Rixensart 1330, Belgium – sequence: 6 givenname: Robert A. surname: van den Berg fullname: van den Berg, Robert A. organization: GSK Vaccines, Rockville, MD 20850 – sequence: 7 givenname: W. Ripley surname: Ballou fullname: Ballou, W. Ripley organization: GSK Vaccines, Rockville, MD 20850 – sequence: 8 givenname: Erik surname: Jongert fullname: Jongert, Erik organization: GSK Vaccines, Rixensart 1330, Belgium – sequence: 9 givenname: Ulrike surname: Wille-Reece fullname: Wille-Reece, Ulrike organization: Program for Appropriate Technology in Health-Malaria Vaccine Initiative, Washington, DC 20001 – sequence: 10 givenname: Christian surname: Ockenhouse fullname: Ockenhouse, Christian organization: Program for Appropriate Technology in Health-Malaria Vaccine Initiative, Washington, DC 20001 – sequence: 11 givenname: Alan surname: Aderem fullname: Aderem, Alan organization: Center for Infectious Disease Research, Seattle, WA 98109 – sequence: 12 givenname: Daniel E. surname: Zak fullname: Zak, Daniel E. organization: Center for Infectious Disease Research, Seattle, WA 98109 – sequence: 13 givenname: Jerald surname: Sadoff fullname: Sadoff, Jerald organization: Crucell, Leiden 2333, The Netherlands – sequence: 14 givenname: Jenny surname: Hendriks fullname: Hendriks, Jenny organization: Crucell, Leiden 2333, The Netherlands – sequence: 15 givenname: Jens surname: Wrammert fullname: Wrammert, Jens organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329 – sequence: 16 givenname: Rafi surname: Ahmed fullname: Ahmed, Rafi organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329 – sequence: 17 givenname: Bali surname: Pulendran fullname: Pulendran, Bali organization: Emory Vaccine Center, Emory University, Atlanta, GA 30329 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28193898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrVDEAhYNU7LS6dqUE3HThbfN-bApSfEFBcKrbkEkTm-He5JrkDsy_906nttqFuMoi3zmc5DsCByknD8BLjE4xkvRsTLaeYkEwUxpj9gQsMNK4E0yjA7BAiMhOMcIOwVGta4SQ5go9A4dEYU2VVgvwfbmtzQ8V2mT7bY0V5gDHkpt3LW48jMMwJQ-Lr2NO1VfYMvx6tXy7hIPtbYkWbqxzMdkWc4IxwZtpsKk-B0-D7at_cXceg28f3l9dfOouv3z8fPHusnNMitYFtkJ0xRlzPJBAsHNBM8GJFopiJpDAhDllkfRUuBCQvqZyRbVXjCocFKHH4HzfO06rwV87n1qxvRlLHGzZmmyj-fsmxRvzI28Mp1RxsSs4uSso-efkazNDrM73vU0-T9VgpbAUUvH_QefVWklNZ_TNI3SdpzL_8I6SVOu5VM_U6z_H36_-bWcGzvaAK7nW4sM9gpHZ-Tc7_-bB_5zgjxIutls38-tj_4_cq31uXVsuD0sEk5ojQX8BvnG9_A |
CitedBy_id | crossref_primary_10_1172_JCI122836 crossref_primary_10_7554_eLife_81401 crossref_primary_10_1128_mBio_01705_20 crossref_primary_10_1038_s41430_024_01545_2 crossref_primary_10_3389_fimmu_2019_00874 crossref_primary_10_3389_fimmu_2020_01181 crossref_primary_10_1002_cti2_1010 crossref_primary_10_1111_febs_16016 crossref_primary_10_1021_acs_bioconjchem_7b00320 crossref_primary_10_1038_s41541_020_0177_6 crossref_primary_10_3389_fimmu_2024_1285785 crossref_primary_10_1371_journal_ppat_1007290 crossref_primary_10_1111_imm_13012 crossref_primary_10_3389_fimmu_2024_1412732 crossref_primary_10_3389_fimmu_2022_840976 crossref_primary_10_1016_j_phrs_2021_105570 crossref_primary_10_1080_14760584_2017_1341316 crossref_primary_10_1007_s40471_021_00271_8 crossref_primary_10_1038_s41598_017_15354_0 crossref_primary_10_1016_j_smim_2018_08_001 crossref_primary_10_1186_s12936_021_03839_3 crossref_primary_10_1038_s41541_021_00372_x crossref_primary_10_1038_s41541_025_01078_0 crossref_primary_10_1016_j_celrep_2023_113101 crossref_primary_10_1101_cshperspect_a038596 crossref_primary_10_1016_j_coi_2018_04_019 crossref_primary_10_1016_j_celrep_2024_114706 crossref_primary_10_1128_MMBR_00071_17 crossref_primary_10_1093_cid_ciab1017 crossref_primary_10_1016_j_vaccine_2019_07_098 crossref_primary_10_12688_f1000research_22143_1 crossref_primary_10_1371_journal_pntd_0008112 crossref_primary_10_3389_fimmu_2017_00557 crossref_primary_10_1038_s41467_022_29226_3 crossref_primary_10_1126_sciimmunol_abj1181 crossref_primary_10_3390_v10040167 crossref_primary_10_1128_microbiolspec_BAI_0021_2019 crossref_primary_10_1080_14760584_2019_1604231 crossref_primary_10_4049_jimmunol_1701316 crossref_primary_10_1016_j_coi_2018_04_023 crossref_primary_10_1080_17460441_2018_1471056 crossref_primary_10_1126_scitranslmed_aau1458 crossref_primary_10_1038_s41573_021_00163_y crossref_primary_10_4049_jimmunol_1800323 crossref_primary_10_1016_S1473_3099_22_00139_6 crossref_primary_10_3389_fimmu_2018_00301 crossref_primary_10_1016_j_patter_2022_100473 crossref_primary_10_1016_j_smim_2023_101842 crossref_primary_10_3389_fimmu_2017_01083 crossref_primary_10_15252_msb_20188747 crossref_primary_10_3389_fimmu_2017_01760 crossref_primary_10_1038_ni_3768 crossref_primary_10_1126_science_aay4014 crossref_primary_10_3390_vaccines11040792 crossref_primary_10_3389_fvets_2021_800361 crossref_primary_10_1016_j_cell_2017_04_026 crossref_primary_10_1016_j_ejmech_2019_05_043 crossref_primary_10_1038_s41590_023_01717_5 crossref_primary_10_1016_j_coi_2017_07_010 crossref_primary_10_1080_21645515_2017_1381809 crossref_primary_10_1073_pnas_1822046116 crossref_primary_10_1016_j_smim_2018_05_001 crossref_primary_10_1172_jci_insight_120692 crossref_primary_10_1007_s00281_020_00821_0 crossref_primary_10_1016_j_ebiom_2023_104772 crossref_primary_10_1016_j_vaccine_2024_02_070 crossref_primary_10_1016_j_vaccine_2018_03_091 crossref_primary_10_1038_s41467_024_54605_3 crossref_primary_10_1080_21505594_2019_1708053 crossref_primary_10_1038_s41597_022_01714_7 crossref_primary_10_1126_scitranslmed_aay8924 crossref_primary_10_1038_s41541_023_00702_1 crossref_primary_10_3390_pathogens13060441 crossref_primary_10_1371_journal_pone_0276505 crossref_primary_10_1172_jci_insight_141023 crossref_primary_10_15252_msb_20177881 crossref_primary_10_1155_2019_4291017 crossref_primary_10_1016_j_coi_2022_102234 crossref_primary_10_3389_fimmu_2023_1043109 crossref_primary_10_1016_j_micinf_2024_105318 crossref_primary_10_1016_j_phymed_2019_152905 crossref_primary_10_3389_fimmu_2017_01839 crossref_primary_10_1002_adtp_201800157 crossref_primary_10_3389_fimmu_2020_00669 crossref_primary_10_1016_j_smim_2020_101426 crossref_primary_10_1089_aid_2018_0018 crossref_primary_10_7554_eLife_46149 crossref_primary_10_1016_j_aej_2022_03_058 crossref_primary_10_3389_fimmu_2020_02171 crossref_primary_10_1172_jci_insight_167408 crossref_primary_10_1016_S2666_5247_21_00235_4 crossref_primary_10_3389_fimmu_2017_01276 crossref_primary_10_3390_vaccines10050713 crossref_primary_10_3389_fimmu_2020_624613 crossref_primary_10_1016_j_vaccine_2020_09_071 crossref_primary_10_5808_gi_22049 crossref_primary_10_1016_j_antiviral_2023_105760 crossref_primary_10_3389_fimmu_2021_634832 crossref_primary_10_1126_scitranslmed_aaw9522 crossref_primary_10_1016_j_smim_2020_101422 crossref_primary_10_1186_s12977_017_0380_3 crossref_primary_10_1038_s41565_020_0739_9 crossref_primary_10_1080_21645515_2023_2282693 crossref_primary_10_3390_vaccines9050506 crossref_primary_10_3390_vaccines9060579 crossref_primary_10_1126_scitranslmed_aay8618 crossref_primary_10_1093_infdis_jiy434 crossref_primary_10_3389_fimmu_2022_977472 crossref_primary_10_1038_s41577_024_01041_5 crossref_primary_10_1080_14760584_2021_1882309 crossref_primary_10_1128_JVI_02165_20 crossref_primary_10_1080_21645515_2019_1669415 crossref_primary_10_1002_bit_26890 crossref_primary_10_1016_S1773_035X_22_00098_3 crossref_primary_10_1111_febs_14109 crossref_primary_10_3349_ymj_2018_59_2_176 crossref_primary_10_3390_antib6030011 crossref_primary_10_1080_14760584_2019_1559063 crossref_primary_10_2174_1381612825666190902162105 crossref_primary_10_1038_s41590_022_01328_6 crossref_primary_10_3390_ijms25137095 crossref_primary_10_1038_s41598_019_44924_7 crossref_primary_10_1016_j_pt_2022_10_006 crossref_primary_10_1038_s41590_018_0228_6 crossref_primary_10_1084_jem_20170869 crossref_primary_10_3389_fimmu_2024_1331474 crossref_primary_10_1002_adma_202003310 crossref_primary_10_1371_journal_ppat_1010282 crossref_primary_10_3389_fimmu_2022_1042741 crossref_primary_10_3389_fimmu_2019_00135 crossref_primary_10_1126_scitranslmed_abb4757 crossref_primary_10_1016_j_medj_2021_10_003 crossref_primary_10_3389_fimmu_2018_01248 crossref_primary_10_1007_s40267_022_00937_3 crossref_primary_10_3389_fimmu_2022_848961 crossref_primary_10_1002_cti2_1072 crossref_primary_10_1038_s41598_018_21369_y crossref_primary_10_2139_ssrn_3946574 crossref_primary_10_1186_s12936_019_2637_x crossref_primary_10_1097_QAI_0000000000002864 crossref_primary_10_1128_CMR_00100_19 crossref_primary_10_1016_j_aej_2020_07_021 crossref_primary_10_3389_fdata_2021_672460 crossref_primary_10_3390_vaccines11020395 crossref_primary_10_1093_infdis_jiy468 crossref_primary_10_1038_s41541_019_0151_3 crossref_primary_10_1128_IAI_00479_17 crossref_primary_10_1111_imr_12798 crossref_primary_10_1038_s41541_021_00425_1 crossref_primary_10_1186_s12936_019_2953_1 crossref_primary_10_3390_vaccines8040677 crossref_primary_10_1111_pim_12624 crossref_primary_10_7554_eLife_70393 crossref_primary_10_1111_imr_12817 crossref_primary_10_1186_s12936_021_03961_2 crossref_primary_10_3389_fimmu_2019_01087 crossref_primary_10_2217_cer_2021_0073 crossref_primary_10_3389_fimmu_2021_737487 crossref_primary_10_3389_fimmu_2024_1441944 crossref_primary_10_1038_s41577_023_00941_2 crossref_primary_10_3390_vaccines5040032 crossref_primary_10_1002_hep_30894 crossref_primary_10_1016_j_ymthe_2019_01_020 crossref_primary_10_1080_21645515_2023_2204020 crossref_primary_10_1016_j_smim_2018_07_003 crossref_primary_10_1016_j_isci_2020_101509 crossref_primary_10_1038_s41541_025_01089_x crossref_primary_10_1126_scitranslmed_adl3381 crossref_primary_10_3389_fmicb_2019_01305 crossref_primary_10_1016_j_tips_2021_06_004 crossref_primary_10_1038_nri_2017_106 crossref_primary_10_1111_nyas_14235 crossref_primary_10_1101_cshperspect_a028894 crossref_primary_10_3389_fimmu_2018_00564 crossref_primary_10_1038_s41598_018_35452_x crossref_primary_10_1016_j_cell_2024_07_021 crossref_primary_10_1038_s41541_018_0078_0 crossref_primary_10_1016_j_smim_2018_10_010 crossref_primary_10_7554_eLife_80652 crossref_primary_10_1038_s41598_019_41205_1 crossref_primary_10_1080_21645515_2019_1697110 crossref_primary_10_1128_cmr_00008_21 crossref_primary_10_30895_2221_996X_2020_20_1_21_29 crossref_primary_10_5334_jors_243 crossref_primary_10_1038_s41598_018_33599_1 crossref_primary_10_3389_fimmu_2021_624191 crossref_primary_10_1080_14760584_2019_1561289 crossref_primary_10_1080_14760584_2024_2382725 crossref_primary_10_1111_imm_12861 crossref_primary_10_3389_ebm_2024_10233 crossref_primary_10_1111_imm_13276 crossref_primary_10_1016_j_xinn_2024_100603 crossref_primary_10_1186_s12936_022_04199_2 crossref_primary_10_1016_j_coi_2020_05_001 crossref_primary_10_1371_journal_ppat_1009363 crossref_primary_10_1038_s41590_018_0231_y crossref_primary_10_1186_s12977_021_00579_9 crossref_primary_10_1080_07853890_2025_2477300 crossref_primary_10_1016_j_vaccine_2023_12_010 crossref_primary_10_1016_j_ebiom_2023_104947 crossref_primary_10_1038_s41541_019_0134_4 crossref_primary_10_1016_j_vaccine_2020_12_038 crossref_primary_10_1007_s40506_020_00242_5 crossref_primary_10_3389_fimmu_2018_00346 crossref_primary_10_1002_eji_201948234 crossref_primary_10_3389_fimmu_2023_1225025 crossref_primary_10_1016_j_chom_2018_06_008 |
Cites_doi | 10.4161/hv.6.1.9677 10.1038/ni.2067 10.4049/jimmunol.177.2.1229 10.1038/nm.1991 10.1086/600120 10.1128/IAI.01879-06 10.1038/ni.2789 10.1016/S0140-6736(07)61542-6 10.1371/journal.pone.0131571 10.1007/s10439-007-9317-7 10.2217/fmb.15.90 10.1016/S0140-6736(04)17223-1 10.1038/nature09907 10.1093/infdis/171.6.1576 10.1073/pnas.1400476111 10.1126/science.1211548 10.1056/NEJMoa0807381 10.1371/journal.pone.0087463 10.1038/ni.1688 10.1038/nature06890 10.1056/NEJMoa1208394 10.1038/ncomms7375 10.1016/S0140-6736(15)60721-8 10.1002/cyto.a.21015 10.1084/jem.20082292 10.1073/pnas.0506580102 10.1056/NEJMoa0807773 10.4049/jimmunol.1400948 10.1016/j.vaccine.2010.05.033 10.1056/NEJMoa1102287 10.1016/S0140-6736(01)06957-4 10.1084/jem.20011889 10.1371/journal.pmed.1001685 10.1016/j.immuni.2010.10.006 10.1086/650310 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Feb 28, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Feb 28, 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1621489114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Virology and AIDS Abstracts AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Systems biology of RTS,S vaccine in humans |
EISSN | 1091-6490 |
EndPage | 2430 |
ExternalDocumentID | PMC5338562 4318427281 28193898 10_1073_pnas_1621489114 26479506 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Clinical Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI090023 – fundername: NIAID NIH HHS grantid: U19 AI057266 – fundername: NIAID NIH HHS grantid: R38 AI140299 – fundername: NIH HHS grantid: P51 OD011132 – fundername: NIAID NIH HHS grantid: R37 AI048638 – fundername: HHS | National Institutes of Health (NIH) grantid: U19AI057266 – fundername: HHS | National Institutes of Health (NIH) grantid: U19AI090023 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c476t-f4b03b544c5f2f21ccf94652968314606124c8a07e36cff09d37b39e84381f823 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:03:26 EDT 2025 Sun Aug 24 02:56:46 EDT 2025 Fri Jul 11 00:00:42 EDT 2025 Mon Jun 30 08:18:35 EDT 2025 Thu Apr 03 07:00:43 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Tue Jul 01 03:19:30 EDT 2025 Fri May 30 11:46:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | systems biology systems vaccinology vaccine immune malaria |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c476t-f4b03b544c5f2f21ccf94652968314606124c8a07e36cff09d37b39e84381f823 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Reviewers: E.H., Drexel University; and R.S., National Institutes of Health. 1D.K. and H.I.N. contributed equally to this work. Contributed by Rafi Ahmed, January 4, 2017 (sent for review December 19, 2016; reviewed by Elias Haddad and Robert Seder) Author contributions: D.K., R.v.d.M., R.A.v.d.B., W.R.B., E.J., U.W.-R., C.O., A.A., J.S., J.H., R.A., and B.P. designed research; D.K., H.I.N., E.K.L., M.J.J., and J.W. performed research; J.S. and J.H. contributed new reagents/analytic tools; D.K., H.I.N., A.A., D.E.Z., R.A., and B.P. analyzed data; R.v.d.M. and R.A.v.d.B. contributed to the development of the clinical study; R.A.v.d.B. contributed to the analysis plan; and D.K., H.I.N., and B.P. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/114/9/2425.full.pdf |
PMID | 28193898 |
PQID | 1873998179 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5338562 proquest_miscellaneous_1881767852 proquest_miscellaneous_1868398793 proquest_journals_1873998179 pubmed_primary_28193898 crossref_primary_10_1073_pnas_1621489114 crossref_citationtrail_10_1073_pnas_1621489114 jstor_primary_26479506 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-28 |
PublicationDateYYYYMMDD | 2017-02-28 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_1_2 Gaucher D (e_1_3_4_26_2) 2008; 205 Aponte JJ (e_1_3_4_12_2) 2007; 370 Bejon P (e_1_3_4_11_2) 2008; 359 Agnandji ST (e_1_3_4_8_2) 2015; 10 Abdulla S (e_1_3_4_13_2) 2008; 359 Agnandji ST (e_1_3_4_17_2) 2012; 367 Pulendran B (e_1_3_4_22_2) 2010; 33 Li S (e_1_3_4_29_2) 2014; 15 Gonzalez-Aseguinolaza G (e_1_3_4_36_2) 2002; 195 Gordon DM (e_1_3_4_6_2) 1995; 171 Didierlaurent AM (e_1_3_4_5_2) 2014; 193 Roland J (e_1_3_4_35_2) 2006; 177 Bojang KA (e_1_3_4_9_2) 2001; 358 Roederer M (e_1_3_4_38_2) 2011; 79 O’Brien KL (e_1_3_4_20_2) 2009; 15 Alonso PL (e_1_3_4_10_2) 2004; 364 Ockenhouse CF (e_1_3_4_18_2) 2015; 10 Schoggins JW (e_1_3_4_27_2) 2011; 472 Querec TD (e_1_3_4_24_2) 2009; 10 Lee EK (e_1_3_4_31_2) 2007; 35 Vahey MT (e_1_3_4_32_2) 2010; 201 Cohen J (e_1_3_4_3_2) 2010; 6 Rydyznski C (e_1_3_4_33_2) 2015; 6 Pulendran B (e_1_3_4_23_2) 2014; 111 Wrammert J (e_1_3_4_30_2) 2008; 453 Stewart VA (e_1_3_4_21_2) 2007; 75 Epstein JE (e_1_3_4_19_2) 2011; 334 Subramanian A (e_1_3_4_37_2) 2005; 102 Strategic Advisory Group of Experts (e_1_3_4_2_2) 2011; 90 Nakaya HI (e_1_3_4_25_2) 2011; 12 Zak DE (e_1_3_4_28_2) 2012; 109 Filtjens J (e_1_3_4_34_2) 2014; 9 Kester KE (e_1_3_4_7_2) 2009; 200 RTS,S Clinical Trials Partnership (e_1_3_4_16_2) 2014; 11 Agnandji ST (e_1_3_4_14_2) 2011; 365 The RTS,S Clinical Trial Partnership (e_1_3_4_15_2) 2015; 386 Casares S (e_1_3_4_4_2) 2010; 28 |
References_xml | – volume: 6 start-page: 90 year: 2010 ident: e_1_3_4_3_2 article-title: From the circumsporozoite protein to the RTS, S/AS candidate vaccine publication-title: Hum Vaccin doi: 10.4161/hv.6.1.9677 – volume: 12 start-page: 786 year: 2011 ident: e_1_3_4_25_2 article-title: Systems biology of vaccination for seasonal influenza in humans publication-title: Nat Immunol doi: 10.1038/ni.2067 – volume: 177 start-page: 1229 year: 2006 ident: e_1_3_4_35_2 article-title: NK cell responses to Plasmodium infection and control of intrahepatic parasite development publication-title: J Immunol doi: 10.4049/jimmunol.177.2.1229 – volume: 90 start-page: 681 year: 2011 ident: e_1_3_4_2_2 article-title: Meeting of the Strategic Advisory Group of Experts on immunization, October 2015 - conclusions and recommendations publication-title: Wkly Epidemiol Rec – volume: 15 start-page: 873 year: 2009 ident: e_1_3_4_20_2 article-title: Adenovirus-specific immunity after immunization with an Ad5 HIV-1 vaccine candidate in humans publication-title: Nat Med doi: 10.1038/nm.1991 – ident: e_1_3_4_1_2 – volume: 200 start-page: 337 year: 2009 ident: e_1_3_4_7_2 article-title: Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: Safety, efficacy, and immunologic associates of protection publication-title: J Infect Dis doi: 10.1086/600120 – volume: 75 start-page: 2283 year: 2007 ident: e_1_3_4_21_2 article-title: Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone publication-title: Infect Immun doi: 10.1128/IAI.01879-06 – volume: 15 start-page: 195 year: 2014 ident: e_1_3_4_29_2 article-title: Molecular signatures of antibody responses derived from a systems biology study of five human vaccines publication-title: Nat Immunol doi: 10.1038/ni.2789 – volume: 370 start-page: 1543 year: 2007 ident: e_1_3_4_12_2 article-title: Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: A double blind randomised controlled phase I/IIb trial publication-title: Lancet doi: 10.1016/S0140-6736(07)61542-6 – volume: 10 start-page: e0131571 year: 2015 ident: e_1_3_4_18_2 article-title: Ad35.CS.01-RTS,S/AS01 heterologous prime boost vaccine efficacy against sporozoite challenge in healthy malaria-naïve adults publication-title: PLoS One doi: 10.1371/journal.pone.0131571 – volume: 35 start-page: 1095 year: 2007 ident: e_1_3_4_31_2 article-title: Large-scale optimization-based classification models in medicine and biology publication-title: Ann Biomed Eng doi: 10.1007/s10439-007-9317-7 – volume: 109 start-page: E3503 year: 2012 ident: e_1_3_4_28_2 article-title: Merck Ad5/HIV induces broad innate immune activation that predicts CD8+ T-cell responses but is attenuated by preexisting Ad5 immunity publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1553 year: 2015 ident: e_1_3_4_8_2 article-title: Clinical development of RTS,S/AS malaria vaccine: A systematic review of clinical Phase I-III trials publication-title: Future Microbiol doi: 10.2217/fmb.15.90 – volume: 364 start-page: 1411 year: 2004 ident: e_1_3_4_10_2 article-title: Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: Randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(04)17223-1 – volume: 472 start-page: 481 year: 2011 ident: e_1_3_4_27_2 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 171 start-page: 1576 year: 1995 ident: e_1_3_4_6_2 article-title: Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine publication-title: J Infect Dis doi: 10.1093/infdis/171.6.1576 – volume: 111 start-page: 12300 year: 2014 ident: e_1_3_4_23_2 article-title: Systems vaccinology: Probing humanity’s diverse immune systems with vaccines publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1400476111 – volume: 334 start-page: 475 year: 2011 ident: e_1_3_4_19_2 article-title: Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity publication-title: Science doi: 10.1126/science.1211548 – volume: 359 start-page: 2521 year: 2008 ident: e_1_3_4_11_2 article-title: Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age publication-title: N Engl J Med doi: 10.1056/NEJMoa0807381 – volume: 9 start-page: e87463 year: 2014 ident: e_1_3_4_34_2 article-title: Contribution of the Ly49E natural killer receptor in the immune response to Plasmodium berghei infection and control of hepatic parasite development publication-title: PLoS One doi: 10.1371/journal.pone.0087463 – volume: 10 start-page: 116 year: 2009 ident: e_1_3_4_24_2 article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans publication-title: Nat Immunol doi: 10.1038/ni.1688 – volume: 453 start-page: 667 year: 2008 ident: e_1_3_4_30_2 article-title: Rapid cloning of high-affinity human monoclonal antibodies against influenza virus publication-title: Nature doi: 10.1038/nature06890 – volume: 367 start-page: 2284 year: 2012 ident: e_1_3_4_17_2 article-title: A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants publication-title: N Engl J Med doi: 10.1056/NEJMoa1208394 – volume: 6 start-page: 6375 year: 2015 ident: e_1_3_4_33_2 article-title: Generation of cellular immune memory and B-cell immunity is impaired by natural killer cells publication-title: Nat Commun doi: 10.1038/ncomms7375 – volume: 386 start-page: 31 year: 2015 ident: e_1_3_4_15_2 article-title: Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(15)60721-8 – volume: 79 start-page: 167 year: 2011 ident: e_1_3_4_38_2 article-title: SPICE: Exploration and analysis of post-cytometric complex multivariate datasets publication-title: Cytometry A doi: 10.1002/cyto.a.21015 – volume: 205 start-page: 3119 year: 2008 ident: e_1_3_4_26_2 article-title: Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses publication-title: J Exp Med doi: 10.1084/jem.20082292 – volume: 102 start-page: 15545 year: 2005 ident: e_1_3_4_37_2 article-title: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506580102 – volume: 359 start-page: 2533 year: 2008 ident: e_1_3_4_13_2 article-title: Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants publication-title: N Engl J Med doi: 10.1056/NEJMoa0807773 – volume: 193 start-page: 1920 year: 2014 ident: e_1_3_4_5_2 article-title: Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.1400948 – volume: 28 start-page: 4880 year: 2010 ident: e_1_3_4_4_2 article-title: The RTS,S malaria vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2010.05.033 – volume: 365 start-page: 1863 year: 2011 ident: e_1_3_4_14_2 article-title: First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children publication-title: N Engl J Med doi: 10.1056/NEJMoa1102287 – volume: 358 start-page: 1927 year: 2001 ident: e_1_3_4_9_2 article-title: Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: A randomised trial publication-title: Lancet doi: 10.1016/S0140-6736(01)06957-4 – volume: 195 start-page: 617 year: 2002 ident: e_1_3_4_36_2 article-title: Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines publication-title: J Exp Med doi: 10.1084/jem.20011889 – volume: 11 start-page: e1001685 year: 2014 ident: e_1_3_4_16_2 article-title: Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: A phase 3 randomized, controlled trial in children and young infants at 11 African sites publication-title: PLoS Med doi: 10.1371/journal.pmed.1001685 – volume: 33 start-page: 516 year: 2010 ident: e_1_3_4_22_2 article-title: Systems vaccinology publication-title: Immunity doi: 10.1016/j.immuni.2010.10.006 – volume: 201 start-page: 580 year: 2010 ident: e_1_3_4_32_2 article-title: Expression of genes associated with immunoproteasome processing of major histocompatibility complex peptides is indicative of protection with adjuvanted RTS,S malaria vaccine publication-title: J Infect Dis doi: 10.1086/650310 |
SSID | ssj0009580 |
Score | 2.6142101 |
Snippet | RTS,S is an advanced malaria vaccine candidate and confers significant protection against Plasmodium falciparum infection in humans. Little is known about the... The RTS,S malaria vaccine is the most advanced malaria vaccine candidate to be tested in humans. Despite its promise, there is little understanding of its... RTS,S is an advanced malaria vaccine candidate and confers significant protection against infection in humans. Little is known about the molecular mechanisms... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2425 |
SubjectTerms | Adaptive Immunity - drug effects Adenoviridae Adenoviridae - genetics Adenoviridae - immunology Antibodies, Protozoan - biosynthesis B-Lymphocytes - drug effects B-Lymphocytes - immunology B-Lymphocytes - metabolism Biological Sciences CD4-Positive T-Lymphocytes - drug effects CD4-Positive T-Lymphocytes - immunology CD4-Positive T-Lymphocytes - metabolism Dendritic Cells - drug effects Dendritic Cells - immunology Dendritic Cells - metabolism Gene Expression Profiling Gene Expression Regulation Genetic Vectors - chemistry Genetic Vectors - immunology Humans Immunity (Disease) Immunity, Innate - drug effects Immunization Immunization, Secondary - methods Immunogenicity, Vaccine Killer Cells, Natural - drug effects Killer Cells, Natural - immunology Killer Cells, Natural - metabolism Malaria Malaria Vaccines - administration & dosage Malaria, Falciparum - immunology Malaria, Falciparum - parasitology Malaria, Falciparum - prevention & control Parasitic protozoa Plasmodium falciparum Plasmodium falciparum - immunology Plasmodium falciparum - pathogenicity Proteins Protozoan Proteins - administration & dosage Protozoan Proteins - genetics Protozoan Proteins - immunology Systematic biology Systems analysis Vaccination - methods Vaccines Vaccines, Synthetic - administration & dosage Vector-borne diseases |
Title | Systems analysis of protective immune responses to RTS,S malaria vaccination in humans |
URI | https://www.jstor.org/stable/26479506 https://www.ncbi.nlm.nih.gov/pubmed/28193898 https://www.proquest.com/docview/1873998179 https://www.proquest.com/docview/1868398793 https://www.proquest.com/docview/1881767852 https://pubmed.ncbi.nlm.nih.gov/PMC5338562 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCGDAIDGQkHoZCSho7_nicYNMEo0ysRX2LHMcRETRFa4bE_nrOsZO0Y6DBSxQ5jhX5Lvflu98h9EKlZixzbZPahY5oEoMclCSOOPCOZoRJXth65w8TdjSj7-bpfIjpttUlTT7SF1fWlfwPVWEM6GqrZP-Bsv2iMAD3QF-4AoXhei0ae7jxUK0hi3jgBZsQVNnaD9sWpU2DdVgOn6Y2V-80XChwaSsV_lBaVy4iaEMfbcu-1brFetJruFWXTzDpAoj7QzmKlxGrMApPJkNz4_fqYuFQCt4uquas6mPP6qv6qbzes3AWQzNtlxkEFv4QgfVtvFxtUduf3J9m-XAFqMCh_Ns4EQsWSsSoaxLay2BXSeqZTa5LVOoKo712Tqg7xvlN8oOosu2Ka7UajVkCTp7s1tzA2J58zA5nx8fZ9GA-vYluJeBckC7G00M1i7gDgeLk9aUlN-wXl8J6lXNyOcd2zWiZ3kV3vLeB9x3rbKMbpr6Htjta4T0POv7yPvrseQl3vISXJR54CTtewj0v4WaJgZdenWLPSXiNk3BVY8dJD9Ds8GD65ijyPTciTTlropLmMclTSnVaJmUy1rqUlNnDeUFAqVqDmGqhYm4I02UZy4LwnEgjLFRcKRKyg7bqZW0eIQyj6ViwokiUocZIUcYFBwWSM1OUIAoCNOp2MtMekN72RfmWtYkRnGR267Nh6wO017_w3WGx_HnqTkuafh7Y_VymMQvQbkerzP_J8J7gYKcL0E0Bet4_BjlrD89UbZbndg7sgBSgzv42B9YAoZcmAXroyD98AJje4ByIAPENxugnWJz3zSd19aXFewePTICb8vga3_YE3R5-ul201Zydm6dgNTf5s5bJfwFEIMYN |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systems+analysis+of+protective+immune+responses+to+RTS%2CS+malaria+vaccination+in+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kazmin%2C+Dmitri&rft.au=Nakaya%2C+Helder+I&rft.au=Lee%2C+Eva+K&rft.au=Johnson%2C+Matthew+J&rft.date=2017-02-28&rft.eissn=1091-6490&rft.volume=114&rft.issue=9&rft.spage=2425&rft.epage=2430&rft_id=info:doi/10.1073%2Fpnas.1621489114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |