Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review
Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal e...
Saved in:
Published in | Chemosphere (Oxford) Vol. 218; pp. 845 - 859 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the “structure-property-application” relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs.
•The advantages and disadvantages of carbon-supported hybrids were discussed.•Adsorption and photocatalytic models of VOC removal were reviewed.•The reaction processes and intermediates were proposed.•Major factors controlling adsorptive-photocatalytic reactions were discussed. |
---|---|
AbstractList | Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the "structure-property-application" relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs. Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the “structure-property-application” relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs. •The advantages and disadvantages of carbon-supported hybrids were discussed.•Adsorption and photocatalytic models of VOC removal were reviewed.•The reaction processes and intermediates were proposed.•Major factors controlling adsorptive-photocatalytic reactions were discussed. Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the "structure-property-application" relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs.Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during the past few decades. However, the single method has some problems such as high energy consumption, unfriendly environment, and low removal efficiency. Recently, the integration of adsorption and photocatalytic degradation of VOCs is considered as a promising one. Carbon material, with large surface area, high adsorption capacity, and fast electron transfer ability, is widely used in integrated adsorptive-photocatalytic removal of VOCs. It is thus crucial to digest and summarize recent research advances in carbon-based nanocomposites as the adsorbent-photocatalyst for VOC removal. To satisfy this need, this work provides a critical review of the related literature with focuses on: (1) the advantages and disadvantages of various carbon-based nanocomposites for the applications of VOC adsorption and photocatalytic degradation; (2) models and mechanisms of adsorptive-photocatalytic removal of VOCs according to the material properties; and (3) major factors controlling adsorption-photocatalysis processes of VOCs. The review is aimed to establish the "structure-property-application" relationships for the development of innovative carbon-supported nanocomposites and to promote future research on the integrated adsorptive and photocatalytic removal of VOCs. |
Author | Zou, Weixin Gao, Bin Dong, Lin Ok, Yong Sik |
Author_xml | – sequence: 1 givenname: Weixin surname: Zou fullname: Zou, Weixin organization: School of the Environment, Nanjing University, Nanjing 210093, PR China – sequence: 2 givenname: Bin orcidid: 0000-0003-3769-0191 surname: Gao fullname: Gao, Bin email: bg55@ufl.edu organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA – sequence: 3 givenname: Yong Sik orcidid: 0000-0003-3401-0912 surname: Ok fullname: Ok, Yong Sik organization: Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea – sequence: 4 givenname: Lin orcidid: 0000-0001-8626-5509 surname: Dong fullname: Dong, Lin email: donglin@nju.edu.cn organization: School of the Environment, Nanjing University, Nanjing 210093, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30508803$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFuEzEYhC1URNPCKyBzK4dd7LW93uWCqqiFSpV6Aa6WY_-bONrYi-0t6kvwzDhJKyFOOdnSfDO_NHOBznzwgNAHSmpKaPtpW5sN7EKaNhChbgjtakprKsUrtKCd7Cva9N0ZWhDCRdUKJs7RRUpbQopZ9G_QOSOCdB1hC_TnzmdYR53BYm1TiFN2wWPtLZ42IQejsx6fsjPY7jGrD3IY8GMYy38EHOJa-6KbsJvC7G3CVz8flukjnpPza2x0XAVfrXQqF7z24cAllyF9xtfYRFfC9YgjPDr4_Ra9HvSY4N3ze4l-3N58X36r7h--3i2v7yvDZZurgTWSkZZz0J1gEjjjwrKBGCoZb3phhB1o29h2kII22jKimyJ3khlCmOzYJbo65k4x_JohZbVzycA4ag9hTqppGtJxQvoTUMr7TvCWyIK-f0bn1Q6smqLb6fikXuouwJcjYGJIKcKgjMuHSnPUblSUqP3Aaqv-GVjtB1aUqjJwSej_S3g5cop3efRCaba0HVUyDrwB6yKYrGxwJ6T8Bb_JyUE |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_142791 crossref_primary_10_1016_j_cattod_2020_05_027 crossref_primary_10_1016_j_envres_2024_119720 crossref_primary_10_1016_j_envres_2021_111044 crossref_primary_10_1016_j_apcatb_2019_118025 crossref_primary_10_1016_j_jhazmat_2020_123402 crossref_primary_10_1016_j_jwpe_2024_105369 crossref_primary_10_1016_j_mattod_2021_02_017 crossref_primary_10_1016_j_mineng_2020_106640 crossref_primary_10_1080_03067319_2020_1751146 crossref_primary_10_1016_j_chemosphere_2022_136358 crossref_primary_10_1016_j_jece_2022_107304 crossref_primary_10_1002_cssc_202000601 crossref_primary_10_1016_j_jiec_2024_12_035 crossref_primary_10_1016_j_seppur_2023_124185 crossref_primary_10_1016_j_partic_2020_11_006 crossref_primary_10_1016_j_chemosphere_2022_136350 crossref_primary_10_1098_rsos_211544 crossref_primary_10_1016_j_cej_2022_135747 crossref_primary_10_1080_01932691_2019_1700802 crossref_primary_10_3103_S0361521923010044 crossref_primary_10_3390_catal13020407 crossref_primary_10_1016_j_cej_2020_124275 crossref_primary_10_1016_j_envres_2022_114386 crossref_primary_10_1016_j_apsusc_2022_155851 crossref_primary_10_1016_j_cherd_2025_02_006 crossref_primary_10_1016_j_jenvman_2023_119205 crossref_primary_10_1016_j_jiec_2021_09_032 crossref_primary_10_1016_j_dib_2020_106664 crossref_primary_10_1016_j_cej_2022_139436 crossref_primary_10_1016_j_scitotenv_2020_142673 crossref_primary_10_1016_j_jece_2020_104143 crossref_primary_10_1016_j_chemosphere_2021_130520 crossref_primary_10_1039_D1QI00438G crossref_primary_10_1007_s10311_022_01549_z crossref_primary_10_1088_1755_1315_1135_1_012005 crossref_primary_10_1016_j_envpol_2021_117675 crossref_primary_10_1016_j_apsusc_2022_156012 crossref_primary_10_1021_acs_est_3c00565 crossref_primary_10_1007_s11356_023_31340_8 crossref_primary_10_1016_j_cej_2023_142412 crossref_primary_10_1016_j_jhazmat_2020_122577 crossref_primary_10_3390_catal12111433 crossref_primary_10_1007_s11144_020_01834_4 crossref_primary_10_1016_j_chemosphere_2023_138829 crossref_primary_10_1016_j_eti_2022_102785 crossref_primary_10_1016_j_cej_2022_138351 crossref_primary_10_1016_j_heliyon_2020_e05455 crossref_primary_10_1039_D0RA01105C crossref_primary_10_1016_j_jece_2021_105780 crossref_primary_10_3390_catal10070739 crossref_primary_10_1007_s11356_023_29852_4 crossref_primary_10_1021_acs_iecr_0c03883 crossref_primary_10_2139_ssrn_4118425 crossref_primary_10_1016_j_seppur_2024_126503 crossref_primary_10_1016_j_psep_2021_06_047 crossref_primary_10_1016_j_fuel_2023_130136 crossref_primary_10_1016_j_seppur_2023_124765 crossref_primary_10_1016_j_jaap_2022_105520 crossref_primary_10_1021_acs_inorgchem_4c01469 crossref_primary_10_1007_s10661_023_11858_7 crossref_primary_10_1016_j_chemosphere_2022_133868 crossref_primary_10_1039_D0NJ02081H crossref_primary_10_1016_j_jece_2023_111511 crossref_primary_10_3390_catal11111276 crossref_primary_10_1016_j_fuel_2019_03_053 crossref_primary_10_1016_j_apsusc_2021_148955 crossref_primary_10_1002_adfm_202107922 crossref_primary_10_1515_revic_2023_0015 crossref_primary_10_1016_j_jece_2020_104162 crossref_primary_10_1002_aoc_6053 crossref_primary_10_1016_j_chemosphere_2019_125462 crossref_primary_10_1016_j_fuel_2022_126801 crossref_primary_10_1016_j_cej_2019_123602 crossref_primary_10_1016_j_cej_2019_123842 crossref_primary_10_1016_j_molstruc_2024_137574 crossref_primary_10_1002_admi_202201895 crossref_primary_10_3390_molecules28227658 crossref_primary_10_1016_j_mtcomm_2025_112241 crossref_primary_10_1016_j_chemosphere_2020_125812 crossref_primary_10_1016_j_jenvman_2021_112063 crossref_primary_10_1007_s13201_023_01959_6 crossref_primary_10_1016_j_arabjc_2022_104473 crossref_primary_10_1021_acscatal_0c00693 crossref_primary_10_1002_cptc_202200174 crossref_primary_10_1016_j_jtice_2022_104529 crossref_primary_10_1016_j_envres_2022_113148 crossref_primary_10_1016_j_cej_2024_152965 crossref_primary_10_1016_S1872_2067_20_63769_X crossref_primary_10_1016_j_jallcom_2019_153055 crossref_primary_10_3390_molecules28114342 crossref_primary_10_1016_j_chemosphere_2024_143014 crossref_primary_10_1016_j_colsurfa_2021_126231 crossref_primary_10_1016_j_micromeso_2020_110090 crossref_primary_10_1016_j_molstruc_2021_130023 crossref_primary_10_1021_acs_energyfuels_3c01878 crossref_primary_10_1002_jctb_6188 crossref_primary_10_1016_j_carbpol_2019_115364 crossref_primary_10_1016_j_envint_2019_105453 crossref_primary_10_1016_j_jwpe_2024_106825 crossref_primary_10_3390_nano13030541 crossref_primary_10_1016_j_conbuildmat_2023_134204 crossref_primary_10_1021_acsanm_3c00895 crossref_primary_10_1007_s13762_023_05202_2 crossref_primary_10_1016_j_chemosphere_2024_141197 crossref_primary_10_1016_j_apsusc_2021_150013 crossref_primary_10_1039_D3CY00248A crossref_primary_10_1039_D2JA00184E crossref_primary_10_1016_j_jcis_2024_02_167 crossref_primary_10_1016_j_cej_2022_140461 crossref_primary_10_1016_j_trac_2024_118033 crossref_primary_10_3390_catal11050529 crossref_primary_10_1016_j_apsusc_2023_157968 crossref_primary_10_1039_C9EN00891H crossref_primary_10_1016_j_seppur_2022_122540 crossref_primary_10_1016_j_cej_2020_125759 crossref_primary_10_1016_j_cplett_2024_141654 crossref_primary_10_1016_j_fuel_2023_128012 crossref_primary_10_17798_bitlisfen_982620 crossref_primary_10_1016_j_biortech_2019_122705 crossref_primary_10_1016_j_jwpe_2022_102874 crossref_primary_10_1016_j_chemosphere_2020_129158 crossref_primary_10_1007_s10854_021_07375_3 crossref_primary_10_1016_j_apsusc_2022_154708 crossref_primary_10_1007_s42773_022_00182_x crossref_primary_10_1016_j_envpol_2022_119805 crossref_primary_10_1021_acs_langmuir_2c03308 crossref_primary_10_1016_j_buildenv_2022_109701 crossref_primary_10_3390_app10031019 crossref_primary_10_1016_j_cattod_2022_08_019 crossref_primary_10_1016_j_chemosphere_2020_127529 crossref_primary_10_1016_j_fuel_2020_119691 crossref_primary_10_1007_s11090_021_10195_2 crossref_primary_10_1007_s11356_020_10885_y crossref_primary_10_1007_s11356_024_32973_z crossref_primary_10_1016_j_apcatb_2023_123530 crossref_primary_10_1016_j_seppur_2022_121687 crossref_primary_10_1007_s11356_020_08848_4 crossref_primary_10_1007_s40725_023_00200_6 crossref_primary_10_1016_j_jiec_2020_01_039 crossref_primary_10_1016_j_jphotochem_2023_114847 crossref_primary_10_1080_10962247_2023_2292205 crossref_primary_10_3390_ijms231710003 crossref_primary_10_1007_s13762_024_05893_1 crossref_primary_10_1080_01919512_2022_2163224 crossref_primary_10_1016_j_jenvman_2025_124875 crossref_primary_10_1016_j_scitotenv_2023_169777 crossref_primary_10_1016_j_efmat_2023_02_002 crossref_primary_10_1016_j_apcatb_2020_118667 crossref_primary_10_1016_j_psep_2024_09_110 crossref_primary_10_1016_j_jclepro_2019_07_038 crossref_primary_10_1002_celc_202200919 crossref_primary_10_1007_s13762_022_03922_5 crossref_primary_10_1016_j_apsusc_2021_151920 crossref_primary_10_1016_j_jece_2022_108920 crossref_primary_10_1039_D2CP03606A crossref_primary_10_1016_j_seppur_2024_130874 crossref_primary_10_1038_s41467_021_22839_0 crossref_primary_10_1016_j_cej_2019_02_119 crossref_primary_10_1016_j_optmat_2025_116852 crossref_primary_10_1016_j_mssp_2022_106912 crossref_primary_10_1016_j_nanoen_2024_110518 crossref_primary_10_1016_j_psep_2023_11_071 crossref_primary_10_1016_j_scitotenv_2019_04_418 crossref_primary_10_1080_00194506_2019_1650668 crossref_primary_10_1016_j_surfin_2023_102715 crossref_primary_10_3390_catal15030240 crossref_primary_10_3390_membranes10040070 crossref_primary_10_1016_j_cej_2020_127719 crossref_primary_10_1016_j_jece_2022_107389 crossref_primary_10_1002_adsu_202400594 crossref_primary_10_3390_w14020137 crossref_primary_10_1021_acsomega_0c03648 crossref_primary_10_1016_j_cplett_2020_137202 crossref_primary_10_1016_j_envpol_2020_115023 crossref_primary_10_1016_j_chemosphere_2020_126930 crossref_primary_10_1080_10643389_2020_1854566 crossref_primary_10_1016_j_mcat_2022_112482 crossref_primary_10_1021_acs_jpcc_3c01749 crossref_primary_10_3390_membranes12040360 crossref_primary_10_3390_ijms232214264 crossref_primary_10_1002_smll_202207114 crossref_primary_10_1016_j_cej_2019_122019 crossref_primary_10_1016_j_cej_2023_144326 crossref_primary_10_1016_j_jmst_2022_06_038 crossref_primary_10_1021_acs_est_3c03467 crossref_primary_10_3390_catal12020173 crossref_primary_10_1016_j_fuel_2021_121244 crossref_primary_10_1016_j_jallcom_2019_05_236 crossref_primary_10_3389_fenvc_2020_00006 crossref_primary_10_3390_molecules29051094 crossref_primary_10_1016_j_apcato_2024_206975 crossref_primary_10_1080_10643389_2020_1818490 crossref_primary_10_1016_j_surfin_2023_102824 crossref_primary_10_1002_etc_5127 crossref_primary_10_1007_s10853_021_05868_4 crossref_primary_10_1016_j_chemosphere_2022_135314 crossref_primary_10_1016_j_cej_2024_156830 crossref_primary_10_1016_j_seppur_2024_128098 crossref_primary_10_1016_j_jece_2022_107253 crossref_primary_10_1080_15583724_2022_2082470 crossref_primary_10_1016_j_vacuum_2024_113317 crossref_primary_10_3390_chemengineering5010011 crossref_primary_10_1016_j_indcrop_2023_117000 crossref_primary_10_3390_catal12121676 crossref_primary_10_1016_j_cej_2023_148488 crossref_primary_10_1016_j_jece_2021_106347 crossref_primary_10_1016_j_cogsc_2021_100447 crossref_primary_10_1016_j_jclepro_2024_142567 crossref_primary_10_1016_j_chemosphere_2021_131439 crossref_primary_10_1016_j_surfin_2024_104199 crossref_primary_10_1016_S1872_2067_20_63721_4 crossref_primary_10_1021_acsami_1c16108 crossref_primary_10_3390_su15129274 crossref_primary_10_1007_s11356_023_29305_y crossref_primary_10_1016_j_cej_2023_144437 crossref_primary_10_1016_j_cej_2023_144558 crossref_primary_10_1039_D4NA00517A crossref_primary_10_3389_fchem_2021_748622 crossref_primary_10_1016_j_scitotenv_2023_163914 crossref_primary_10_1016_j_jece_2024_114812 crossref_primary_10_2139_ssrn_4185782 crossref_primary_10_1088_2058_6272_acae56 crossref_primary_10_3390_pr12122746 crossref_primary_10_1016_j_jobab_2023_01_009 crossref_primary_10_1016_j_colcom_2020_100341 crossref_primary_10_1063_5_0033663 crossref_primary_10_1039_D2NJ03733E crossref_primary_10_1016_j_scitotenv_2021_147121 crossref_primary_10_1016_j_seppur_2021_118690 crossref_primary_10_1051_e3sconf_202560301032 crossref_primary_10_1016_j_jksus_2023_102812 crossref_primary_10_1039_D2DT03744K crossref_primary_10_1007_s42864_020_00055_5 crossref_primary_10_1039_D3MA00741C crossref_primary_10_1016_j_apsusc_2020_146633 crossref_primary_10_1016_j_chemphys_2024_112497 crossref_primary_10_1016_j_jphotochemrev_2019_08_003 crossref_primary_10_1016_j_chemosphere_2022_135655 crossref_primary_10_1039_D2MH01583H crossref_primary_10_1016_j_cis_2020_102275 crossref_primary_10_1016_j_buildenv_2024_111237 crossref_primary_10_1002_smll_202300559 crossref_primary_10_1016_j_chemosphere_2023_139636 crossref_primary_10_1039_D3TA07452H crossref_primary_10_1016_j_scitotenv_2020_138475 crossref_primary_10_1016_j_seppur_2024_131121 crossref_primary_10_1021_acscatal_0c02163 crossref_primary_10_1016_j_cej_2021_134429 crossref_primary_10_1039_D2GC01409B crossref_primary_10_1016_j_jphotochem_2020_112760 crossref_primary_10_1016_j_jwpe_2024_106896 crossref_primary_10_1016_j_jhazmat_2020_124497 crossref_primary_10_1016_j_scenv_2024_100084 crossref_primary_10_1016_j_apt_2021_09_041 crossref_primary_10_1016_j_micromeso_2019_05_046 crossref_primary_10_1002_adts_202400676 crossref_primary_10_1002_solr_202200243 crossref_primary_10_1016_j_apsusc_2020_145697 crossref_primary_10_1016_j_jece_2023_111322 crossref_primary_10_1016_j_jece_2025_115802 crossref_primary_10_1021_acs_cgd_9b00170 crossref_primary_10_1016_j_jece_2024_114799 crossref_primary_10_3390_chemengineering6060089 crossref_primary_10_1016_j_chemosphere_2024_142550 crossref_primary_10_1016_j_jece_2023_110908 crossref_primary_10_1016_j_cej_2023_146034 crossref_primary_10_1016_j_apcatb_2021_120606 crossref_primary_10_1016_j_diamond_2024_111467 crossref_primary_10_1016_j_apt_2021_11_025 crossref_primary_10_1016_j_cej_2020_126534 crossref_primary_10_1002_slct_202201409 crossref_primary_10_1039_D0RA02225J crossref_primary_10_1007_s13399_020_00963_z crossref_primary_10_1016_j_buildenv_2023_111108 crossref_primary_10_1016_j_apsusc_2020_146780 crossref_primary_10_1016_j_jece_2021_106145 crossref_primary_10_3390_molecules28093673 crossref_primary_10_1515_gps_2022_0019 crossref_primary_10_1016_j_jclepro_2022_134760 crossref_primary_10_2139_ssrn_3968818 crossref_primary_10_1016_j_cej_2022_135835 crossref_primary_10_1016_j_jenvman_2023_117496 crossref_primary_10_1039_D0CY02358B crossref_primary_10_1016_j_pnsc_2023_08_004 crossref_primary_10_31857_S0023117723010048 crossref_primary_10_1186_s11671_023_03834_4 crossref_primary_10_1007_s11356_023_28759_4 crossref_primary_10_1016_j_jclepro_2020_124251 crossref_primary_10_3390_toxics11030232 crossref_primary_10_1016_j_envpol_2023_122451 crossref_primary_10_1016_j_optmat_2022_113193 crossref_primary_10_1016_j_colsurfa_2020_125848 crossref_primary_10_1016_j_jhazmat_2020_123507 crossref_primary_10_1007_s42765_022_00132_z crossref_primary_10_1016_j_ccr_2020_213738 crossref_primary_10_1016_j_fuel_2019_116485 crossref_primary_10_1016_j_jece_2021_105069 crossref_primary_10_5004_dwt_2021_27633 crossref_primary_10_1016_j_jtice_2023_105160 crossref_primary_10_1021_acs_iecr_2c00039 crossref_primary_10_1016_j_ceja_2021_100152 crossref_primary_10_1016_j_apcatb_2021_121039 crossref_primary_10_1016_j_apcatb_2021_121037 crossref_primary_10_1016_j_cej_2020_126562 crossref_primary_10_1039_D2EM00436D crossref_primary_10_1021_acs_est_2c05444 crossref_primary_10_1039_D0CY00168F crossref_primary_10_1007_s10895_022_02934_1 crossref_primary_10_1039_D3EN00623A crossref_primary_10_3390_ijms252111761 crossref_primary_10_1016_j_indcrop_2024_118053 crossref_primary_10_1016_j_solmat_2020_110773 crossref_primary_10_1016_j_envpol_2024_125216 crossref_primary_10_1080_03067319_2021_1982921 crossref_primary_10_1016_j_chemosphere_2019_125664 crossref_primary_10_1134_S0036024423130113 crossref_primary_10_1016_j_ceramint_2024_10_386 crossref_primary_10_1016_j_apsusc_2021_150550 crossref_primary_10_1016_j_jece_2023_109477 crossref_primary_10_3390_molecules29143279 crossref_primary_10_1016_j_seppur_2022_120639 crossref_primary_10_1016_j_cogsc_2020_100405 crossref_primary_10_1016_j_chemosphere_2021_131110 crossref_primary_10_1016_j_colsurfa_2023_130955 crossref_primary_10_1039_D1EN00955A crossref_primary_10_1016_j_jssc_2019_07_051 |
Cites_doi | 10.1016/j.molcata.2010.10.009 10.1016/j.jphotochem.2016.02.004 10.1016/j.buildenv.2009.07.019 10.1016/j.apcatb.2015.08.047 10.1016/j.carbon.2013.06.017 10.1016/j.seppur.2016.09.040 10.1016/j.chemosphere.2006.03.019 10.1016/j.seppur.2009.02.014 10.1016/j.apsusc.2015.03.100 10.1016/j.carbon.2013.09.069 10.1021/cr900070d 10.1016/j.apsusc.2017.07.209 10.1016/j.cej.2014.10.087 10.1016/j.cej.2017.07.109 10.1016/j.apcatb.2017.05.078 10.1016/j.apcatb.2011.08.023 10.1007/s10450-015-9673-9 10.1007/s12517-018-3548-9 10.1016/j.cej.2017.04.037 10.1021/es00027a006 10.1016/S0008-6223(02)00109-4 10.1016/j.apcatb.2011.06.021 10.1016/j.cej.2017.08.013 10.1016/j.chemosphere.2016.01.043 10.1016/j.apcatb.2015.08.017 10.1021/am1005282 10.1038/nmat1849 10.1016/j.apcatb.2013.04.060 10.1016/j.cej.2018.04.043 10.1039/C5RA28116D 10.1016/j.carbon.2011.02.058 10.1016/j.apcatb.2016.12.035 10.1016/j.jhazmat.2011.08.060 10.1039/C7RA12684K 10.1016/j.atmosenv.2009.01.034 10.1016/j.apcatb.2017.06.070 10.1023/A:1006127516791 10.1021/nn1024219 10.1021/es00005a013 10.1016/j.apcatb.2008.08.003 10.1016/j.chemosphere.2015.04.062 10.1016/j.cej.2015.12.042 10.1016/j.apcata.2014.10.055 10.1021/acs.iecr.7b02526 10.4028/www.scientific.net/MSF.875.1 10.1016/j.jcis.2012.08.038 10.1166/jnn.2018.15216 10.1016/S0008-6223(00)00161-5 10.1016/j.apsusc.2015.08.176 10.1021/acssuschemeng.7b02170 10.1016/j.jhazmat.2015.11.047 10.1021/ie101304a 10.1007/s10450-010-9207-4 10.1021/ie0600341 10.1016/j.jphotochem.2013.02.022 10.1016/j.cej.2013.10.081 10.1016/j.cej.2011.02.040 10.1016/S0360-1323(02)00212-3 10.1016/0045-6535(92)90551-2 10.1002/pssa.201600261 10.1016/j.jhazmat.2017.05.013 10.1016/j.apcatb.2015.07.021 10.1039/C7RA12931A 10.1021/es960535l 10.1021/acsami.6b10653 10.1002/slct.201800908 10.1016/j.envpol.2017.10.037 10.1016/j.jiec.2017.08.026 10.1016/j.jhazmat.2017.03.019 10.1021/ie302207p 10.1021/jp909855p 10.1016/j.apcatb.2009.01.009 10.1016/j.cej.2017.12.059 10.1039/C5RA17882G 10.1073/pnas.0730845100 10.1016/j.apcatb.2016.08.022 10.1016/j.ces.2004.01.073 10.1016/j.apcatb.2017.07.028 10.1002/ep.10077 10.1016/j.atmosenv.2009.03.036 10.1016/j.scitotenv.2012.07.038 10.1016/j.jphotochem.2011.12.006 10.1016/j.seppur.2011.09.054 10.1007/s10450-015-9685-5 10.1021/cm0101069 10.1016/j.atmosenv.2008.07.016 10.1016/j.cej.2014.01.038 10.1016/j.ceramint.2015.04.103 10.1007/BF02705926 10.1016/j.buildenv.2011.07.002 10.1016/j.apcata.2005.04.057 10.1260/0263-6174.29.1.1 10.1016/j.jhazmat.2012.09.024 10.1016/j.fuel.2017.09.046 10.3155/1047-3289.57.4.497 10.1016/j.jhazmat.2014.09.067 10.1016/j.chemosphere.2007.03.053 10.1016/j.cej.2014.10.011 10.1016/j.jfoodeng.2013.07.036 10.1016/j.carbon.2011.02.059 10.1016/j.biombioe.2011.05.007 10.1016/j.jhazmat.2008.04.069 10.1016/j.wasman.2015.04.025 10.1016/j.jphotochem.2018.03.027 10.1016/j.jhazmat.2016.05.056 10.1016/j.apcatb.2013.08.013 10.1002/cctc.201800101 10.1021/ie100114e 10.1038/354056a0 10.1016/j.cattod.2013.12.005 10.1007/s11270-016-2949-1 10.1021/acssuschemeng.7b04435 10.1016/j.jcis.2016.01.005 10.1016/S1004-9541(09)60008-2 10.1016/j.biortech.2013.12.019 10.1016/j.apcatb.2014.11.048 10.1021/am3016476 10.1016/j.jes.2018.01.022 10.1080/10473289.1996.10467525 10.1016/j.cej.2016.04.079 10.1016/S0021-9797(03)00099-7 10.1016/j.cattod.2016.06.026 10.1039/C0CP01139H |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2018.11.175 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 859 |
ExternalDocumentID | 30508803 10_1016_j_chemosphere_2018_11_175 S0045653518322823 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM PKN 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c476t-f32730644ea8537e4345d3f0c1734295c5df162d6f7512ad30a23f0873c003783 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Thu Jul 10 23:13:24 EDT 2025 Fri Jul 11 13:42:31 EDT 2025 Wed Feb 19 02:35:49 EST 2025 Thu Apr 24 23:13:10 EDT 2025 Tue Jul 01 02:33:35 EDT 2025 Fri Feb 23 02:48:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | VOC abatement Photocatalytic degradation Adsorption Modeling Carbon-based nanocomposite |
Language | English |
License | Copyright © 2018. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-f32730644ea8537e4345d3f0c1734295c5df162d6f7512ad30a23f0873c003783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8626-5509 0000-0003-3769-0191 0000-0003-3401-0912 |
PMID | 30508803 |
PQID | 2149854607 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2220840098 proquest_miscellaneous_2149854607 pubmed_primary_30508803 crossref_citationtrail_10_1016_j_chemosphere_2018_11_175 crossref_primary_10_1016_j_chemosphere_2018_11_175 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2018_11_175 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 2019-Mar 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere (Oxford) |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ma, Li, Zhu (bib64) 2011; 49 Sadasivam, Reddy (bib87) 2015; 43 Debono, Thevenet, Gravejat, Hequet, Raillard, Lecoq, Locoge (bib21) 2011; 106 Gao, Chen, Li Puma (bib28) 2009; 89 Lyu, Gao, He, Ding, Tang, Crittenden (bib62) 2017; 5 Huang, Lu, Lin, Mao, Ouyang, Liu, Zhang, Tong (bib38) 2018 Debono, Hequet, Le Coq, Locoge, Thevenet (bib19) 2017; 218 Iijima (bib42) 1991; 354 Shayegan, Haghighat, Lee, Bahloul, Huard (bib92) 2018; 346 Boulamanti, Philippopoulos (bib9) 2009; 43 Fang, Zhan, Ok, Gao (bib26) 2018; 57 Tao, Wu, Mazyck (bib101) 2006; 65 Horikoshi, Sakamoto, Serpone (bib33) 2013; 140–141 Huang, Li, Li, Lin, Liu, Tong (bib40) 2018; 3 Ourrad, Thevenet, Gaudion, Riffault (bib72) 2015; 168–169 Zhai, Yu, Li, Sun, Zhang, Yang (bib119) 2015; 344 Pelizzetti, Minero, Carlin, Borgarello (bib75) 1992; 25 Jo, Yang (bib49) 2009; 66 Li, Zhang, Lai, Zeng (bib54) 2016; 213 Tian, Liao, Ke, Guo, Guo (bib104) 2017; 328 Sun, Gao, Yao, Fang, Zhang, Zhou, Chen, Yang (bib99) 2014; 240 Dao, Luu, Pham, Doan, Nguyen, Nguyen, Duong (bib18) 2016; 7 Jo, Kang (bib47) 2015; 283 Boulamanti, Korologos, Philippopoulos (bib8) 2008; 42 Obee, Brown (bib70) 1995; 29 Kruk, Jaroniec (bib52) 2001; 13 Shi, Wei, Jiang, Han, Gao, Xie (bib95) 2016; 6 Shan, Deng, Zhao, Wang, Wang, Huang, Yu, Winglee, Wiesner (bib90) 2016; 305 Yu, Ma, Liu (bib115) 2011; 13 Yu, Yu, Yu, Kwok, Che, Zhao, Ding, Ge, Wong (bib117) 2005; 289 An, Chen, Nie, Li, Zhang, Liu, Zhao (bib3) 2012; 4 Bradley (bib10) 2011; 29 Xu, Zhuang, Fu (bib112) 2010; 114 Huang, Li, Fan, Zhao, Qiu, Ji, Tong (bib35) 2016; 8 Guo, Shi, Guan, Huang, Liu (bib32) 2017; 173 Xiao, Chen, Cao, Qian, Nie, Yu (bib111) 2015; 41 Zhao, Cai, Zhou, Feng (bib124) 2018; 11 Mo, Zhang, Xu, Lamson, Zhao (bib69) 2009; 43 Cao, Wang, Ao, Wang, Hou, Qian (bib12) 2016; 467 Qijin, Qingming, Bin (bib80) 2012 Shi, Chen, Li, An, Yamashita (bib93) 2017; 281 Zhao, Yang (bib125) 2003; 38 Wang, Raziq, Qu, Qin, Wang, Jing (bib109) 2015; 5 Li, Li, Liu, Xia, Xi (bib55) 2008; 16 Odum, Jungkamp, Griffin, Forstner, Flagan, Seinfeld (bib71) 1997; 31 Ammendola, Raganati, Chirone (bib2) 2017; 322 Kesselmeier, Staudt (bib51) 1999; 33 Cao, Wang, Ao, Wang, Hou, Qian (bib11) 2015; 264 McEvoy, Zhang (bib66) 2016; 321 Yu, Miller, Ikeda-Ohno, Waite (bib114) 2014; 224 Miranda, Romanos, Likodimos, Marques, Favvas, Katsaros, Stefanopoulos, Vilar, Faria, Falaras, Silva (bib68) 2014; 147 Zhang, Gao, Creamer, Cao, Li (bib122) 2017 Yu, Wang, Sun, Ye (bib116) 2018; 73 Allen, Tung, Kaner (bib1) 2009; 110 Lu, Wang, Ma, Yang (bib60) 2010; 45 Hung, Lin (bib41) 2012; 57 Baur, Yuranov, Renken, Kiwi-Minsker (bib7) 2015; 21 Miao, Li, Liu, Zhang (bib67) 2018; 18 Zhang, Gao, Yao, Xue, Inyang (bib121) 2012; 435 Rong, Ryu, Zheng, Zhang (bib84) 2002; 40 Pantuso, Tolaba, Aguerre (bib74) 2014; 122 Guan, Liu, Li, Wang, Zhao (bib31) 2018; 211 Zhang, Tang, Fu, Xu (bib123) 2010; 4 Chiang, Chiang, Huang (bib15) 2001; 39 Pezoti, Cazetta, Bedin, Souza, Martins, Silva, Santos Júnior, Visentainer, Almeida (bib76) 2016; 288 Chen, An, Liu, Liang, Cui (bib13) 2017; 217 Tao, Wu, Mazyck (bib102) 2006; 45 Sleiman, Conchon, Ferronato, Chovelon (bib98) 2009; 86 Maudhuit, Raillard, Héquet, Le Coq, Sablayrolles, Molins (bib65) 2011; 170 Roso, Boaretti, Pelizzo, Lauria, Modesti, Lorenzetti (bib85) 2017; 56 Ao, Lee (bib5) 2005; 60 Jo, Kumar, Isaacs, Lee, Karthikeyan (bib48) 2017; 201 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bib82) 2016; 148 Geng, Guo, Yue (bib30) 2010; 49 Chu, Zheng, Wen, Zhou, Yan, Chen (bib16) 2018; 8 Qian, Gong, Zhang, Yuan (bib79) 2015; 21 Fournel, Mocho, Brown, le Cloirec (bib27) 2010; 16 Falco, Marco-Lozar, Salinas-Torres, Morallon, Cazorla-Amorós, Titirici, Lozano-Castelló (bib25) 2013; 62 Vincent, Marquaire, Zahraa (bib108) 2009; 161 Vandenbroucke, Morent, De Geyter, Leys (bib107) 2011; 195 Sunkara, Zhan, He, McPherson, Piringer, John (bib100) 2010; 2 Zou, Zhang, Liu, Wang, Sun, Wu, Deng, Tang, Gao, Dong (bib128) 2016; 181 Huang, Li, Lin, Tong, Liu (bib37) 2018; 10 Sharma, Sharma, Kumar, Siddiqi, Sharma (bib91) 2016; 875 Yuana, Jing-wena, Liang, Ai-fanga, Haoa (bib118) 2011; 20 Zhang, Du, Zhou, Xu, Dong, Fu, Wang, Su, Yan, Gu (bib120) 2018; 8 Basha, Keane, Morrissey, Nolan, Oelgemöller, Tobin (bib6) 2010; 49 Lyu, Gao, He, Zimmerman, Ding, Huang, Tang (bib63) 2018; 233 Pi, Jiang, Zhou, Zhu, Xiao, Wang, Mao (bib77) 2015; 358 Luo, Yang, Xiao, Bian, Yuan, Liu, Jiang, Pan (bib61) 2015; 262 Chun, Jo (bib17) 2016; 180 Den, Wang (bib22) 2012; 85 Ouzzine, Romero-Anaya, Lillo-Ródenas, Linares-Solano (bib73) 2014; 67 Jiang, Lin, Chen, Zhu, Chang, Wang, Wei, Tang (bib46) 2011; 49 Zhu, Fan, Liu, Yu, Dong, Huo, Yan (bib127) 2018; 358 Thevenet, Guillard, Rousseau (bib103) 2014; 244 Ryu, Farag, Hu, Reddy, Wei, Paré, Kloepper (bib86) 2003; 100 Serpone (bib89) 2007; 10 Deng (bib23) 2018; 337 Kang, Jian-chun, Dan-dan (bib50) 2011; 35 Huang, Xu, Yang, Lin, Liu, Tong (bib39) 2018; 6 Liu, Li, Peng (bib58) 2018; 427 An, Sun, Li, Wan (bib4) 2010; 333 Huang, Hu, Wang, Balogun, Ji, Tong (bib34) 2017; 218 Jahandar Lashaki, Fayaz, Niknaddaf, Hashisho (bib45) 2012; 241–242 Debono, Thévenet, Gravejat, Héquet, Raillard, Le Coq, Locoge (bib20) 2013; 258 Zouzelka, Kusumawati, Remzova, Rathousky, Pauporte (bib129) 2016; 317 Üner, Geçgel, Bayrak (bib105) 2016; 227 Chen, Katsumata, Chiu, Okada, Matsushita, Hsu (bib14) 2015; 490 Huang, Long, Tang, Rui, Balogun, Tong, Ji (bib36) 2016; 181 Iranpour, Cox, Deshusses, Schroeder (bib43) 2005; 24 Simonin (bib97) 2016; 300 Wang, Gao, Zimmerman, Li, Ma, Harris, Migliaccio (bib110) 2015; 134 Sidheswaran, Destaillats, Sullivan, Cohn, Fisk (bib96) 2012; 47 Rong, Ryu, Zheng, Zhang (bib83) 2003; 261 Zhu, Liu, Qian, Zhou, Zhang, Chen (bib126) 2014; 154 Li, Lu, Ke, Guo, Guo (bib56) 2017; 333 Selishchev, Kolinko, Kozlov (bib88) 2012; 229 Li, Gao, Chen, Mokaya, Sotiropoulos, Li Puma (bib57) 2011; 110 Yang, Chen, Zhu, Zhang, Zhu (bib113) 2017; 205 Jacoby, Blake, Boulter, Vargo, George, Dolberg (bib44) 1996; 46 Low, Boonamnuayvitaya (bib59) 2013; 127 Qin, Chen, Sun, Sun, Shen (bib81) 2017; 330 Van Durme, Dewulf, Sysmans, Leys, Van Langenhove (bib106) 2007; 68 Shi, Cui, Chen, Fu, Xu, Luo, Ye (bib94) 2012; 388 Lee, Lee, Lee (bib53) 2006; 23 Geim, Novoselov (bib29) 2007; 6 Dibble, Raupp (bib24) 1992; 26 Huang (10.1016/j.chemosphere.2018.11.175_bib36) 2016; 181 Chen (10.1016/j.chemosphere.2018.11.175_bib13) 2017; 217 Tian (10.1016/j.chemosphere.2018.11.175_bib104) 2017; 328 Pelizzetti (10.1016/j.chemosphere.2018.11.175_bib75) 1992; 25 Kang (10.1016/j.chemosphere.2018.11.175_bib50) 2011; 35 Maudhuit (10.1016/j.chemosphere.2018.11.175_bib65) 2011; 170 Üner (10.1016/j.chemosphere.2018.11.175_bib105) 2016; 227 Gao (10.1016/j.chemosphere.2018.11.175_bib28) 2009; 89 Xiao (10.1016/j.chemosphere.2018.11.175_bib111) 2015; 41 Wang (10.1016/j.chemosphere.2018.11.175_bib109) 2015; 5 Van Durme (10.1016/j.chemosphere.2018.11.175_bib106) 2007; 68 Debono (10.1016/j.chemosphere.2018.11.175_bib19) 2017; 218 Guo (10.1016/j.chemosphere.2018.11.175_bib32) 2017; 173 Xu (10.1016/j.chemosphere.2018.11.175_bib112) 2010; 114 Lee (10.1016/j.chemosphere.2018.11.175_bib53) 2006; 23 Zou (10.1016/j.chemosphere.2018.11.175_bib128) 2016; 181 Zhang (10.1016/j.chemosphere.2018.11.175_bib122) 2017 Zhai (10.1016/j.chemosphere.2018.11.175_bib119) 2015; 344 Huang (10.1016/j.chemosphere.2018.11.175_bib40) 2018; 3 Bradley (10.1016/j.chemosphere.2018.11.175_bib10) 2011; 29 Sharma (10.1016/j.chemosphere.2018.11.175_bib91) 2016; 875 Baur (10.1016/j.chemosphere.2018.11.175_bib7) 2015; 21 Yu (10.1016/j.chemosphere.2018.11.175_bib117) 2005; 289 Debono (10.1016/j.chemosphere.2018.11.175_bib20) 2013; 258 Li (10.1016/j.chemosphere.2018.11.175_bib57) 2011; 110 Jiang (10.1016/j.chemosphere.2018.11.175_bib46) 2011; 49 Liu (10.1016/j.chemosphere.2018.11.175_bib58) 2018; 427 Pantuso (10.1016/j.chemosphere.2018.11.175_bib74) 2014; 122 Huang (10.1016/j.chemosphere.2018.11.175_bib37) 2018; 10 Sun (10.1016/j.chemosphere.2018.11.175_bib99) 2014; 240 Selishchev (10.1016/j.chemosphere.2018.11.175_bib88) 2012; 229 Sidheswaran (10.1016/j.chemosphere.2018.11.175_bib96) 2012; 47 Li (10.1016/j.chemosphere.2018.11.175_bib54) 2016; 213 Obee (10.1016/j.chemosphere.2018.11.175_bib70) 1995; 29 Hung (10.1016/j.chemosphere.2018.11.175_bib41) 2012; 57 Jo (10.1016/j.chemosphere.2018.11.175_bib49) 2009; 66 Chen (10.1016/j.chemosphere.2018.11.175_bib14) 2015; 490 Miranda (10.1016/j.chemosphere.2018.11.175_bib68) 2014; 147 Qin (10.1016/j.chemosphere.2018.11.175_bib81) 2017; 330 Shi (10.1016/j.chemosphere.2018.11.175_bib94) 2012; 388 Yu (10.1016/j.chemosphere.2018.11.175_bib115) 2011; 13 Mo (10.1016/j.chemosphere.2018.11.175_bib69) 2009; 43 Ourrad (10.1016/j.chemosphere.2018.11.175_bib72) 2015; 168–169 Sadasivam (10.1016/j.chemosphere.2018.11.175_bib87) 2015; 43 Lu (10.1016/j.chemosphere.2018.11.175_bib60) 2010; 45 Pi (10.1016/j.chemosphere.2018.11.175_bib77) 2015; 358 Chu (10.1016/j.chemosphere.2018.11.175_bib16) 2018; 8 Shi (10.1016/j.chemosphere.2018.11.175_bib93) 2017; 281 Yuana (10.1016/j.chemosphere.2018.11.175_bib118) 2011; 20 Miao (10.1016/j.chemosphere.2018.11.175_bib67) 2018; 18 Serpone (10.1016/j.chemosphere.2018.11.175_bib89) 2007; 10 Iijima (10.1016/j.chemosphere.2018.11.175_bib42) 1991; 354 Odum (10.1016/j.chemosphere.2018.11.175_bib71) 1997; 31 Rajapaksha (10.1016/j.chemosphere.2018.11.175_bib82) 2016; 148 Den (10.1016/j.chemosphere.2018.11.175_bib22) 2012; 85 Zhao (10.1016/j.chemosphere.2018.11.175_bib124) 2018; 11 Shan (10.1016/j.chemosphere.2018.11.175_bib90) 2016; 305 Chun (10.1016/j.chemosphere.2018.11.175_bib17) 2016; 180 Basha (10.1016/j.chemosphere.2018.11.175_bib6) 2010; 49 Simonin (10.1016/j.chemosphere.2018.11.175_bib97) 2016; 300 Tao (10.1016/j.chemosphere.2018.11.175_bib101) 2006; 65 Zhang (10.1016/j.chemosphere.2018.11.175_bib123) 2010; 4 Rong (10.1016/j.chemosphere.2018.11.175_bib84) 2002; 40 Qian (10.1016/j.chemosphere.2018.11.175_bib79) 2015; 21 Deng (10.1016/j.chemosphere.2018.11.175_bib23) 2018; 337 Dibble (10.1016/j.chemosphere.2018.11.175_bib24) 1992; 26 Huang (10.1016/j.chemosphere.2018.11.175_bib34) 2017; 218 Li (10.1016/j.chemosphere.2018.11.175_bib56) 2017; 333 McEvoy (10.1016/j.chemosphere.2018.11.175_bib66) 2016; 321 Jacoby (10.1016/j.chemosphere.2018.11.175_bib44) 1996; 46 Ao (10.1016/j.chemosphere.2018.11.175_bib5) 2005; 60 Yu (10.1016/j.chemosphere.2018.11.175_bib116) 2018; 73 An (10.1016/j.chemosphere.2018.11.175_bib3) 2012; 4 Wang (10.1016/j.chemosphere.2018.11.175_bib110) 2015; 134 Zouzelka (10.1016/j.chemosphere.2018.11.175_bib129) 2016; 317 Pezoti (10.1016/j.chemosphere.2018.11.175_bib76) 2016; 288 Shi (10.1016/j.chemosphere.2018.11.175_bib95) 2016; 6 Zhao (10.1016/j.chemosphere.2018.11.175_bib125) 2003; 38 Huang (10.1016/j.chemosphere.2018.11.175_bib38) 2018 Allen (10.1016/j.chemosphere.2018.11.175_bib1) 2009; 110 Roso (10.1016/j.chemosphere.2018.11.175_bib85) 2017; 56 Geng (10.1016/j.chemosphere.2018.11.175_bib30) 2010; 49 Vincent (10.1016/j.chemosphere.2018.11.175_bib108) 2009; 161 Boulamanti (10.1016/j.chemosphere.2018.11.175_bib8) 2008; 42 Cao (10.1016/j.chemosphere.2018.11.175_bib12) 2016; 467 Zhang (10.1016/j.chemosphere.2018.11.175_bib121) 2012; 435 Jo (10.1016/j.chemosphere.2018.11.175_bib48) 2017; 201 Geim (10.1016/j.chemosphere.2018.11.175_bib29) 2007; 6 Rong (10.1016/j.chemosphere.2018.11.175_bib83) 2003; 261 Yang (10.1016/j.chemosphere.2018.11.175_bib113) 2017; 205 Ammendola (10.1016/j.chemosphere.2018.11.175_bib2) 2017; 322 Debono (10.1016/j.chemosphere.2018.11.175_bib21) 2011; 106 Huang (10.1016/j.chemosphere.2018.11.175_bib39) 2018; 6 Zhang (10.1016/j.chemosphere.2018.11.175_bib120) 2018; 8 Low (10.1016/j.chemosphere.2018.11.175_bib59) 2013; 127 Cao (10.1016/j.chemosphere.2018.11.175_bib11) 2015; 264 Sleiman (10.1016/j.chemosphere.2018.11.175_bib98) 2009; 86 Kruk (10.1016/j.chemosphere.2018.11.175_bib52) 2001; 13 Falco (10.1016/j.chemosphere.2018.11.175_bib25) 2013; 62 Li (10.1016/j.chemosphere.2018.11.175_bib55) 2008; 16 Lyu (10.1016/j.chemosphere.2018.11.175_bib63) 2018; 233 Qijin (10.1016/j.chemosphere.2018.11.175_bib80) 2012 Shayegan (10.1016/j.chemosphere.2018.11.175_bib92) 2018; 346 Jo (10.1016/j.chemosphere.2018.11.175_bib47) 2015; 283 Vandenbroucke (10.1016/j.chemosphere.2018.11.175_bib107) 2011; 195 Yu (10.1016/j.chemosphere.2018.11.175_bib114) 2014; 224 Zhu (10.1016/j.chemosphere.2018.11.175_bib126) 2014; 154 Dao (10.1016/j.chemosphere.2018.11.175_bib18) 2016; 7 Luo (10.1016/j.chemosphere.2018.11.175_bib61) 2015; 262 Tao (10.1016/j.chemosphere.2018.11.175_bib102) 2006; 45 Iranpour (10.1016/j.chemosphere.2018.11.175_bib43) 2005; 24 Guan (10.1016/j.chemosphere.2018.11.175_bib31) 2018; 211 Horikoshi (10.1016/j.chemosphere.2018.11.175_bib33) 2013; 140–141 Huang (10.1016/j.chemosphere.2018.11.175_bib35) 2016; 8 Fournel (10.1016/j.chemosphere.2018.11.175_bib27) 2010; 16 Kesselmeier (10.1016/j.chemosphere.2018.11.175_bib51) 1999; 33 Lyu (10.1016/j.chemosphere.2018.11.175_bib62) 2017; 5 Fang (10.1016/j.chemosphere.2018.11.175_bib26) 2018; 57 Chiang (10.1016/j.chemosphere.2018.11.175_bib15) 2001; 39 Boulamanti (10.1016/j.chemosphere.2018.11.175_bib9) 2009; 43 Sunkara (10.1016/j.chemosphere.2018.11.175_bib100) 2010; 2 Ouzzine (10.1016/j.chemosphere.2018.11.175_bib73) 2014; 67 An (10.1016/j.chemosphere.2018.11.175_bib4) 2010; 333 Jahandar Lashaki (10.1016/j.chemosphere.2018.11.175_bib45) 2012; 241–242 Thevenet (10.1016/j.chemosphere.2018.11.175_bib103) 2014; 244 Ryu (10.1016/j.chemosphere.2018.11.175_bib86) 2003; 100 Ma (10.1016/j.chemosphere.2018.11.175_bib64) 2011; 49 Zhu (10.1016/j.chemosphere.2018.11.175_bib127) 2018; 358 |
References_xml | – volume: 16 start-page: 147 year: 2010 end-page: 153 ident: bib27 article-title: Modeling breakthrough curves of volatile organic compounds on activated carbon fibers publication-title: Adsorption – volume: 321 start-page: 161 year: 2016 end-page: 170 ident: bib66 article-title: Synthesis and characterization of Ag/AgBr–activated carbon composites for visible light induced photocatalytic detoxification and disinfection publication-title: J. Photochem. Photobiol. Chem. – volume: 211 start-page: 241 year: 2018 end-page: 250 ident: bib31 article-title: The temperature effect on the methane and CO publication-title: Fuel – volume: 6 start-page: 2751 year: 2018 end-page: 2757 ident: bib39 article-title: Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles publication-title: ACS Sustain. Chem. Eng. – volume: 346 start-page: 578 year: 2018 end-page: 589 ident: bib92 article-title: Effect of surface fluorination of P25-TiO publication-title: Chem. Eng. J. – volume: 43 start-page: 2229 year: 2009 end-page: 2246 ident: bib69 article-title: Photocatalytic purification of volatile organic compounds in indoor air: a literature review publication-title: Atmos. Environ. – volume: 227 start-page: 1 year: 2016 end-page: 15 ident: bib105 article-title: Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis publication-title: Water, Air, Soil Pollut. – volume: 244 start-page: 50 year: 2014 end-page: 58 ident: bib103 article-title: Acetylene photocatalytic oxidation using continuous flow reactor: gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation publication-title: Chem. Eng. J. – volume: 7 year: 2016 ident: bib18 article-title: Low-temperature synthesis and investigations on photocatalytic activity of nanoparticles BiFeO publication-title: Adv. Nat. Sci. Nanosci. – volume: 49 start-page: 11302 year: 2010 end-page: 11309 ident: bib6 article-title: Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, indomethacin using novel photocatalytic adsorbents (IPCAs) publication-title: Ind. Eng. Chem. Res. – volume: 20 start-page: 018 year: 2011 ident: bib118 article-title: Adsorption and photocatalytic degradation of sulfamethazine in soil publication-title: Hubei Agric. Sci. – volume: 21 start-page: 333 year: 2015 end-page: 341 ident: bib79 article-title: Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study publication-title: Adsorption – volume: 47 start-page: 357 year: 2012 end-page: 367 ident: bib96 article-title: Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters publication-title: Build. Environ. – volume: 56 start-page: 9980 year: 2017 end-page: 9992 ident: bib85 article-title: Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 3168 year: 2009 end-page: 3174 ident: bib9 article-title: Photocatalytic degradation of C5–C7 alkanes in the gas–phase publication-title: Atmos. Environ. – volume: 10 start-page: 1982 year: 2018 end-page: 1987 ident: bib37 article-title: Enhanced efficiency of electron-hole separation in Bi publication-title: ChemCatChem – volume: 62 start-page: 346 year: 2013 end-page: 355 ident: bib25 article-title: Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature publication-title: Carbon – volume: 240 start-page: 574 year: 2014 end-page: 578 ident: bib99 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. – volume: 4 start-page: 5988 year: 2012 end-page: 5996 ident: bib3 article-title: Synthesis of carbon nanotube–anatase TiO publication-title: ACS Appl. Mater. Interfaces – volume: 170 start-page: 464 year: 2011 end-page: 470 ident: bib65 article-title: Adsorption phenomena in photocatalytic reactions: the case of toluene, acetone and heptane publication-title: Chem. Eng. J. – volume: 8 start-page: 2426 year: 2018 end-page: 2432 ident: bib16 article-title: Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere publication-title: RSC Adv. – volume: 89 start-page: 503 year: 2009 end-page: 509 ident: bib28 article-title: Carbon nanotubes/titanium dioxide (CNTs/TiO publication-title: Appl. Catal. B Environ. – volume: 205 start-page: 228 year: 2017 end-page: 237 ident: bib113 article-title: 3D-3D porous Bi publication-title: Appl. Catal. B Environ. – volume: 161 start-page: 1173 year: 2009 end-page: 1181 ident: bib108 article-title: Photocatalytic degradation of gaseous 1-propanol using an annular reactor: kinetic modelling and pathways publication-title: J. Hazard Mater. – volume: 467 start-page: 129 year: 2016 end-page: 139 ident: bib12 article-title: Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: graphene oxide/magnetite/cerium-doped titania publication-title: J. Colloid Interface Sci. – volume: 35 start-page: 3643 year: 2011 end-page: 3647 ident: bib50 article-title: Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification publication-title: Biomass Bioenergy – volume: 31 start-page: 1890 year: 1997 end-page: 1897 ident: bib71 article-title: Aromatics, reformulated gasoline, and atmospheric organic aerosol formation publication-title: Environ. Sci. Technol. – volume: 110 start-page: 132 year: 2009 end-page: 145 ident: bib1 article-title: Honeycomb carbon: a review of graphene publication-title: Chem. Rev. – volume: 33 start-page: 23 year: 1999 end-page: 88 ident: bib51 article-title: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology publication-title: J. Atmos. Chem. – volume: 181 start-page: 495 year: 2016 end-page: 503 ident: bib128 article-title: Engineering the Cu publication-title: Appl. Catal. B Environ. – volume: 46 start-page: 891 year: 1996 end-page: 898 ident: bib44 article-title: Heterogeneous photocatalysis for control of volatile organic compounds in indoor air publication-title: Air Waste Manag. – volume: 289 start-page: 186 year: 2005 end-page: 196 ident: bib117 article-title: Enhancement of photocatalytic activity of mesoporous TiO publication-title: Appl. Catal. Gen. – volume: 354 start-page: 56 year: 1991 ident: bib42 article-title: Helical microtubules of graphitic carbon publication-title: Nature – volume: 127 start-page: 142 year: 2013 end-page: 149 ident: bib59 article-title: Enhancing the photocatalytic activity of TiO publication-title: J. Environ. Manag. – volume: 147 start-page: 65 year: 2014 end-page: 81 ident: bib68 article-title: Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO publication-title: Appl. Catal. B Environ. – volume: 233 start-page: 54 year: 2018 end-page: 63 ident: bib63 article-title: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms publication-title: Environ. Pollut. – volume: 195 start-page: 30 year: 2011 end-page: 54 ident: bib107 article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement publication-title: J. Hazard Mater. – volume: 134 start-page: 257 year: 2015 end-page: 262 ident: bib110 article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass publication-title: Chemosphere – volume: 114 start-page: 2669 year: 2010 end-page: 2676 ident: bib112 article-title: New insight for enhanced photocatalytic activity of TiO publication-title: J. Phys. Chem. C – volume: 5 start-page: 9568 year: 2017 end-page: 9585 ident: bib62 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: ACS Sustain. Chem. Eng. – volume: 328 start-page: 962 year: 2017 end-page: 976 ident: bib104 article-title: Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene publication-title: Chem. Eng. J. – volume: 213 start-page: 3157 year: 2016 end-page: 3164 ident: bib54 article-title: Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal publication-title: Phys. Status Solidi – volume: 49 start-page: 2873 year: 2011 end-page: 2875 ident: bib64 article-title: Removal of low-concentration formaldehyde in air by adsorption on activated carbon modified by hexamethylene diamine publication-title: Carbon – volume: 29 start-page: 1 year: 2011 end-page: 28 ident: bib10 article-title: Recent developments in the physical adsorption of toxic organic vapours by activated carbons publication-title: Adsorpt. Sci. Technol. – volume: 85 start-page: 101 year: 2012 end-page: 111 ident: bib22 article-title: Enhancement of adsorptive chemical filters via titania photocatalysts to remove vapor-phase toluene and isopropanol publication-title: Separ. Purif. Technol. – volume: 57 start-page: 15 year: 2018 end-page: 21 ident: bib26 article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass publication-title: J. Ind. Eng. Chem. – volume: 57 start-page: 497 year: 2012 end-page: 506 ident: bib41 article-title: Prediction of the adsorption capacity for volatile organic compounds onto activated carbons by the dubinin–radushkevich–Langmuir model publication-title: Air Waste Manag. – volume: 29 start-page: 1223 year: 1995 end-page: 1231 ident: bib70 article-title: TiO publication-title: Environ. Sci. Technol. – volume: 875 start-page: 1 year: 2016 end-page: 15 ident: bib91 article-title: Exclusion of organic dye using neoteric activated carbon prepared from cornulaca monacantha stem: equilibrium and thermodynamics studies publication-title: Mater. Sci. Forum – volume: 4 start-page: 7303 year: 2010 end-page: 7314 ident: bib123 article-title: TiO publication-title: ACS Nano – start-page: 15360 year: 2012 end-page: 15373 ident: bib80 article-title: Adsorption and photocatalytic oxidation of methanol–benzene binary mixture in an annular fluidized bed photocatalytic reactor publication-title: Ind. Eng. Chem. Res. – volume: 100 start-page: 4927 year: 2003 end-page: 4932 ident: bib86 article-title: Bacterial volatiles promote growth in Arabidopsis publication-title: Proc. Nat. Acad. Sci. – volume: 8 start-page: 3611 year: 2018 end-page: 3618 ident: bib120 article-title: Cu publication-title: RSC Adv. – volume: 39 start-page: 523 year: 2001 end-page: 534 ident: bib15 article-title: Effects of pore structure and temperature on VOC adsorption activated carbon publication-title: Carbon – volume: 66 start-page: 438 year: 2009 end-page: 442 ident: bib49 article-title: Granular-activated carbon adsorption followed by annular-type photocatalytic system for control of indoor aromatic compounds publication-title: Separ. Purif. Technol. – year: 2018 ident: bib38 article-title: Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants publication-title: J. Mater. Chem. – volume: 49 start-page: 4644 year: 2010 end-page: 4652 ident: bib30 article-title: Adsorption and photocatalytic degradation kinetics of gaseous cyclohexane in an annular fluidized bed photocatalytic reactor publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 27859 year: 2016 end-page: 27867 ident: bib35 article-title: Defect engineering of bismuth oxyiodide by IO publication-title: ACS ACS Appl. Mater. Interfaces – start-page: 102 year: 2017 end-page: 123 ident: bib122 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard Mater. – volume: 180 start-page: 740 year: 2016 end-page: 750 ident: bib17 article-title: Adsorption and photocatalysis of 2-ethyl-1-hexanol over graphene oxide–TiO publication-title: Appl. Catal. B Environ. – volume: 262 start-page: 1275 year: 2015 end-page: 1283 ident: bib61 article-title: A novel biotemplated synthesis of TiO publication-title: Chem. Eng. J. – volume: 45 start-page: 5110 year: 2006 end-page: 5116 ident: bib102 article-title: Microwave-Assisted preparation of TiO publication-title: Ind. Eng. Chem. Res. – volume: 322 start-page: 302 year: 2017 end-page: 313 ident: bib2 article-title: CO publication-title: Chem. Eng. J. – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: bib29 article-title: The rise of graphene publication-title: Nat. Mater. – volume: 344 start-page: 101 year: 2015 end-page: 106 ident: bib119 article-title: Visible-light photocatalytic activity of graphene oxide-wrapped Bi publication-title: Appl. Surf. Sci. – volume: 68 start-page: 1821 year: 2007 end-page: 1829 ident: bib106 article-title: Abatement and degradation pathways of toluene in indoor air by positive corona discharge publication-title: Chemosphere – volume: 241–242 start-page: 154 year: 2012 end-page: 163 ident: bib45 article-title: Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon publication-title: J. Hazard Mater. – volume: 49 start-page: 2693 year: 2011 end-page: 2701 ident: bib46 article-title: TiO publication-title: Carbon – volume: 18 start-page: 3982 year: 2018 end-page: 3990 ident: bib67 article-title: MnO publication-title: J. Nanosci. Nanotechnol. – volume: 333 start-page: 128 year: 2010 end-page: 135 ident: bib4 article-title: Gas-phase photocatalytic degradation and detoxification of o-toluidine: degradation mechanism and Salmonella mutagenicity assessment of mixed gaseous intermediates publication-title: J. Mol. Catal. Chem. – volume: 201 start-page: 159 year: 2017 end-page: 168 ident: bib48 article-title: Cobalt promoted TiO publication-title: Appl. Catal. B Environ. – volume: 490 start-page: 1 year: 2015 end-page: 9 ident: bib14 article-title: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation publication-title: Appl. Catal. Gen. – volume: 229 start-page: 11 year: 2012 end-page: 19 ident: bib88 article-title: Influence of adsorption on the photocatalytic properties of TiO publication-title: J. Photochem. Photobiol. Chem. – volume: 283 start-page: 680 year: 2015 end-page: 688 ident: bib47 article-title: Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation publication-title: J. Hazard Mater. – volume: 42 start-page: 7844 year: 2008 end-page: 7850 ident: bib8 article-title: The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase publication-title: Atmos. Environ. – volume: 435 start-page: 567 year: 2012 end-page: 572 ident: bib121 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Sci. Total Environ. – volume: 65 start-page: 35 year: 2006 end-page: 42 ident: bib101 article-title: Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration publication-title: Chemosphere – volume: 45 start-page: 615 year: 2010 end-page: 621 ident: bib60 article-title: The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde publication-title: Build. Environ. – volume: 140–141 start-page: 646 year: 2013 end-page: 651 ident: bib33 article-title: Formation and efficacy of TiO publication-title: Appl. Catal. B Environ. – volume: 3 start-page: 7423 year: 2018 end-page: 7428 ident: bib40 article-title: Ultrathin Bi publication-title: ChemistrySelect – volume: 181 start-page: 779 year: 2016 end-page: 787 ident: bib36 article-title: Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO publication-title: Appl. Catal. B Environ. – volume: 288 start-page: 778 year: 2016 end-page: 788 ident: bib76 article-title: NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies publication-title: Chem. Eng. J. – volume: 281 start-page: 621 year: 2017 end-page: 629 ident: bib93 article-title: Fabrication of Au/TiO publication-title: Catal. Today – volume: 305 start-page: 156 year: 2016 end-page: 163 ident: bib90 article-title: Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling publication-title: J. Hazard Mater. – volume: 13 start-page: 3491 year: 2011 end-page: 3501 ident: bib115 article-title: Enhanced photocatalytic activity of mesoporous TiO publication-title: Phys. Chem. Chem. Phys. – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bib82 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 110 start-page: 50 year: 2011 end-page: 57 ident: bib57 article-title: Carbon nanotube/titanium dioxide (CNT/TiO publication-title: Appl. Catal. B Environ. – volume: 24 start-page: 254 year: 2005 end-page: 267 ident: bib43 article-title: Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal publication-title: Environ. Prog. Sustain. – volume: 21 start-page: 479 year: 2015 end-page: 488 ident: bib7 article-title: Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface morphology publication-title: Adsorption – volume: 10 start-page: 111 year: 2007 end-page: 115 ident: bib89 article-title: Some remarks on so-called heterogeneous photocatalysis and on the mechanical application of the Langmuir-hinshelwood kinetic model publication-title: J. Adv. Oxid. Technol. – volume: 218 start-page: 359 year: 2017 end-page: 369 ident: bib19 article-title: VOC ternary mixture effect on ppb level photocatalytic oxidation: removal kinetic, reaction intermediates and mineralization publication-title: Appl. Catal. B Environ. – volume: 300 start-page: 254 year: 2016 end-page: 263 ident: bib97 article-title: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics publication-title: Chem. Eng. J. – volume: 154 start-page: 209 year: 2014 end-page: 214 ident: bib126 article-title: Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal publication-title: Bioresour. Technol. – volume: 264 start-page: 113 year: 2015 end-page: 124 ident: bib11 article-title: Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene–TiO publication-title: Chem. Eng. J. – volume: 2 start-page: 2854 year: 2010 end-page: 2862 ident: bib100 article-title: Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons publication-title: ACS Appl. Mater. Interfaces – volume: 86 start-page: 159 year: 2009 end-page: 165 ident: bib98 article-title: Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization publication-title: Appl. Catal. B Environ. – volume: 388 start-page: 201 year: 2012 end-page: 208 ident: bib94 article-title: TiO publication-title: J. Colloid Interface Sci. – volume: 122 start-page: 68 year: 2014 end-page: 71 ident: bib74 article-title: A BET approach to multilayer adsorption in swelling products publication-title: J. Food Eng. – volume: 258 start-page: 17 year: 2013 end-page: 29 ident: bib20 article-title: Gas phase photocatalytic oxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance publication-title: J. Photochem. Photobiol. Chem. – volume: 60 start-page: 103 year: 2005 end-page: 109 ident: bib5 article-title: Indoor air purification by photocatalyst TiO publication-title: Chem. Eng. Sci. – volume: 224 start-page: 122 year: 2014 end-page: 131 ident: bib114 article-title: Photodegradation of contaminants using Ag@AgCl/rGO assemblages: possibilities and limitations publication-title: Catal. Today – volume: 106 start-page: 600 year: 2011 end-page: 608 ident: bib21 article-title: Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination publication-title: Appl. Catal. B Environ. – volume: 6 start-page: 25255 year: 2016 end-page: 25266 ident: bib95 article-title: Biomass-derived multifunctional TiO publication-title: RSC Adv. – volume: 358 start-page: 231 year: 2015 end-page: 239 ident: bib77 article-title: g-C publication-title: Appl. Surf. Sci. – volume: 427 start-page: 608 year: 2018 end-page: 616 ident: bib58 article-title: A facile preparation of TiO publication-title: Appl. Surf. Sci. – volume: 218 start-page: 700 year: 2017 end-page: 708 ident: bib34 article-title: Low concentration nitric acid facilitate rapid electron–hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde publication-title: Appl. Catal. B Environ. – volume: 333 start-page: 88 year: 2017 end-page: 98 ident: bib56 article-title: Synergetic effect between adsorption and photodegradation on nanostructured TiO publication-title: J. Hazard Mater. – volume: 11 start-page: 203 year: 2018 ident: bib124 article-title: Isothermal methane adsorption experiments at different temperature stages using the monolayer adsorption principle publication-title: Arab. J. Geosci. – volume: 317 start-page: 52 year: 2016 end-page: 59 ident: bib129 article-title: Photocatalytic activity of porous multiwalled carbon nanotube-TiO publication-title: J. Hazard Mater. – volume: 168–169 start-page: 183 year: 2015 end-page: 194 ident: bib72 article-title: Limonene photocatalytic oxidation at ppb levels: assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation publication-title: Appl. Catal. B Environ. – volume: 40 start-page: 2291 year: 2002 end-page: 2300 ident: bib84 article-title: Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde publication-title: Carbon – volume: 261 start-page: 207 year: 2003 end-page: 212 ident: bib83 article-title: Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde publication-title: J. Colloid Interface Sci. – volume: 23 start-page: 773 year: 2006 end-page: 778 ident: bib53 article-title: Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor publication-title: Kor. J. Chem. Eng. – volume: 26 start-page: 492 year: 1992 end-page: 495 ident: bib24 article-title: Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated air streams publication-title: Environ. Sci. Technol. – volume: 38 start-page: 645 year: 2003 end-page: 654 ident: bib125 article-title: Photocatalytic oxidation for indoor air purification: a literature review publication-title: Build. Environ. – volume: 16 start-page: 871 year: 2008 end-page: 875 ident: bib55 article-title: Effect of relative humidity on adsorption of formaldehyde on modified activated carbons publication-title: Chin. J. Chem. Eng. – volume: 358 start-page: 284 year: 2018 end-page: 293 ident: bib127 article-title: Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-Mercaptobenzothiazole degradation activity publication-title: J. Photochem. Photobiol. Chem. – volume: 5 start-page: 85061 year: 2015 end-page: 85064 ident: bib109 article-title: Role of quaternary N in N-doped graphene–Fe publication-title: RSC Adv. – volume: 13 start-page: 3169 year: 2001 end-page: 3183 ident: bib52 article-title: Gas adsorption characterization of ordered organic−inorganic nanocomposite materials publication-title: Chem. Mater. – volume: 73 start-page: 138 year: 2018 end-page: 146 ident: bib116 article-title: Enhanced photocatalytic activity of rGO/TiO publication-title: J. Environ. Sci. (China) – volume: 43 start-page: 218 year: 2015 end-page: 229 ident: bib87 article-title: Adsorption and transport of methane in biochars derived from waste wood publication-title: Waste Manag. – volume: 217 start-page: 65 year: 2017 end-page: 80 ident: bib13 article-title: Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy publication-title: Appl. Catal. B Environ. – volume: 41 start-page: 10087 year: 2015 end-page: 10094 ident: bib111 article-title: Enhanced sunlight-driven photocatalytic activity of graphene oxide/Bi publication-title: Ceram. Int. – volume: 67 start-page: 104 year: 2014 end-page: 118 ident: bib73 article-title: Spherical activated carbon as an enhanced support for TiO publication-title: Carbon – volume: 330 start-page: 804 year: 2017 end-page: 812 ident: bib81 article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation publication-title: Chem. Eng. J. – volume: 25 start-page: 343 year: 1992 end-page: 351 ident: bib75 article-title: Photocatalytic soil decontamination publication-title: Chemosphere – volume: 173 start-page: 295 year: 2017 end-page: 303 ident: bib32 article-title: Carbon dots/g-C publication-title: Separ. Purif. Technol. – volume: 337 start-page: 220 year: 2018 end-page: 227 ident: bib23 article-title: Developing a Langmuir-type excitation equilibrium equation to describe the effect of light intensity on the kinetics of the photocatalytic oxidation publication-title: Chem. Eng. J. – volume: 333 start-page: 128 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib4 article-title: Gas-phase photocatalytic degradation and detoxification of o-toluidine: degradation mechanism and Salmonella mutagenicity assessment of mixed gaseous intermediates publication-title: J. Mol. Catal. Chem. doi: 10.1016/j.molcata.2010.10.009 – volume: 321 start-page: 161 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib66 article-title: Synthesis and characterization of Ag/AgBr–activated carbon composites for visible light induced photocatalytic detoxification and disinfection publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2016.02.004 – volume: 45 start-page: 615 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib60 article-title: The effect of activated carbon adsorption on the photocatalytic removal of formaldehyde publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.07.019 – volume: 181 start-page: 779 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib36 article-title: Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.08.047 – volume: 62 start-page: 346 year: 2013 ident: 10.1016/j.chemosphere.2018.11.175_bib25 article-title: Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature publication-title: Carbon doi: 10.1016/j.carbon.2013.06.017 – volume: 173 start-page: 295 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib32 article-title: Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2016.09.040 – volume: 65 start-page: 35 year: 2006 ident: 10.1016/j.chemosphere.2018.11.175_bib101 article-title: Removal of methanol from pulp and paper mills using combined activated carbon adsorption and photocatalytic regeneration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.03.019 – volume: 66 start-page: 438 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib49 article-title: Granular-activated carbon adsorption followed by annular-type photocatalytic system for control of indoor aromatic compounds publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2009.02.014 – volume: 344 start-page: 101 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib119 article-title: Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.100 – volume: 67 start-page: 104 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib73 article-title: Spherical activated carbon as an enhanced support for TiO2/AC photocatalysts publication-title: Carbon doi: 10.1016/j.carbon.2013.09.069 – volume: 110 start-page: 132 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib1 article-title: Honeycomb carbon: a review of graphene publication-title: Chem. Rev. doi: 10.1021/cr900070d – volume: 427 start-page: 608 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib58 article-title: A facile preparation of TiO2/ACF with C-Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.209 – volume: 262 start-page: 1275 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib61 article-title: A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.10.087 – volume: 328 start-page: 962 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib104 article-title: Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.109 – volume: 217 start-page: 65 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib13 article-title: Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.078 – volume: 110 start-page: 50 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib57 article-title: Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.08.023 – volume: 7 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib18 article-title: Low-temperature synthesis and investigations on photocatalytic activity of nanoparticles BiFeO3 for methylene blue and methylene orange degradation and some toxic organic compounds publication-title: Adv. Nat. Sci. Nanosci. – volume: 21 start-page: 333 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib79 article-title: Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study publication-title: Adsorption doi: 10.1007/s10450-015-9673-9 – volume: 11 start-page: 203 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib124 article-title: Isothermal methane adsorption experiments at different temperature stages using the monolayer adsorption principle publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-3548-9 – volume: 322 start-page: 302 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib2 article-title: CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: thermodynamics and kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.037 – volume: 26 start-page: 492 year: 1992 ident: 10.1016/j.chemosphere.2018.11.175_bib24 article-title: Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated air streams publication-title: Environ. Sci. Technol. doi: 10.1021/es00027a006 – volume: 40 start-page: 2291 year: 2002 ident: 10.1016/j.chemosphere.2018.11.175_bib84 article-title: Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde publication-title: Carbon doi: 10.1016/S0008-6223(02)00109-4 – volume: 106 start-page: 600 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib21 article-title: Toluene photocatalytic oxidation at ppbv levels: kinetic investigation and carbon balance determination publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.06.021 – volume: 10 start-page: 111 year: 2007 ident: 10.1016/j.chemosphere.2018.11.175_bib89 article-title: Some remarks on so-called heterogeneous photocatalysis and on the mechanical application of the Langmuir-hinshelwood kinetic model publication-title: J. Adv. Oxid. Technol. – volume: 330 start-page: 804 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib81 article-title: Pyrolysis temperature-induced changes in the catalytic characteristics of rice husk-derived biochar during 1,3-dichloropropene degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.013 – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib82 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 181 start-page: 495 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib128 article-title: Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.08.017 – volume: 2 start-page: 2854 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib100 article-title: Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am1005282 – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.chemosphere.2018.11.175_bib29 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 140–141 start-page: 646 year: 2013 ident: 10.1016/j.chemosphere.2018.11.175_bib33 article-title: Formation and efficacy of TiO2/AC composites prepared under microwave irradiation in the photoinduced transformation of the 2-propanol VOC pollutant in air publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.04.060 – volume: 346 start-page: 578 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib92 article-title: Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.043 – volume: 6 start-page: 25255 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib95 article-title: Biomass-derived multifunctional TiO2/carbonaceous aerogel composite as a highly efficient photocatalyst publication-title: RSC Adv. doi: 10.1039/C5RA28116D – volume: 49 start-page: 2873 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib64 article-title: Removal of low-concentration formaldehyde in air by adsorption on activated carbon modified by hexamethylene diamine publication-title: Carbon doi: 10.1016/j.carbon.2011.02.058 – volume: 205 start-page: 228 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib113 article-title: 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.12.035 – volume: 127 start-page: 142 year: 2013 ident: 10.1016/j.chemosphere.2018.11.175_bib59 article-title: Enhancing the photocatalytic activity of TiO2 co-doping of graphene-Fe3+ ions for formaldehyde removal publication-title: J. Environ. Manag. – volume: 195 start-page: 30 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib107 article-title: Non-thermal plasmas for non-catalytic and catalytic VOC abatement publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2011.08.060 – volume: 8 start-page: 3611 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib120 article-title: Cu2(OH)PO4/reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of 2,4-dichlorophenol under infrared light irradiation publication-title: RSC Adv. doi: 10.1039/C7RA12684K – volume: 43 start-page: 2229 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib69 article-title: Photocatalytic purification of volatile organic compounds in indoor air: a literature review publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.01.034 – volume: 218 start-page: 359 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib19 article-title: VOC ternary mixture effect on ppb level photocatalytic oxidation: removal kinetic, reaction intermediates and mineralization publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.06.070 – volume: 33 start-page: 23 year: 1999 ident: 10.1016/j.chemosphere.2018.11.175_bib51 article-title: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology publication-title: J. Atmos. Chem. doi: 10.1023/A:1006127516791 – volume: 4 start-page: 7303 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib123 article-title: TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2−graphene truly different from other TiO2− carbon composite materials? publication-title: ACS Nano doi: 10.1021/nn1024219 – volume: 29 start-page: 1223 year: 1995 ident: 10.1016/j.chemosphere.2018.11.175_bib70 article-title: TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene publication-title: Environ. Sci. Technol. doi: 10.1021/es00005a013 – volume: 86 start-page: 159 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib98 article-title: Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2008.08.003 – volume: 134 start-page: 257 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib110 article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.04.062 – volume: 288 start-page: 778 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib76 article-title: NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.042 – volume: 490 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib14 article-title: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2014.10.055 – volume: 56 start-page: 9980 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib85 article-title: Nanostructured photocatalysts based on different oxidized graphenes for VOCs removal publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02526 – volume: 875 start-page: 1 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib91 article-title: Exclusion of organic dye using neoteric activated carbon prepared from cornulaca monacantha stem: equilibrium and thermodynamics studies publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.875.1 – volume: 388 start-page: 201 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib94 article-title: TiO2/activated carbon fibers photocatalyst: effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.08.038 – volume: 18 start-page: 3982 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib67 article-title: MnO2/MWCNTs nanocomposites as highly efficient catalyst for indoor formaldehyde removal publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.15216 – volume: 39 start-page: 523 year: 2001 ident: 10.1016/j.chemosphere.2018.11.175_bib15 article-title: Effects of pore structure and temperature on VOC adsorption activated carbon publication-title: Carbon doi: 10.1016/S0008-6223(00)00161-5 – volume: 358 start-page: 231 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib77 article-title: g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.176 – volume: 5 start-page: 9568 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib62 article-title: Ball-milled carbon nanomaterials for energy and environmental applications publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02170 – volume: 305 start-page: 156 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib90 article-title: Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.11.047 – volume: 49 start-page: 11302 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib6 article-title: Studies on the adsorption and kinetics of photodegradation of pharmaceutical compound, indomethacin using novel photocatalytic adsorbents (IPCAs) publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101304a – volume: 16 start-page: 147 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib27 article-title: Modeling breakthrough curves of volatile organic compounds on activated carbon fibers publication-title: Adsorption doi: 10.1007/s10450-010-9207-4 – volume: 45 start-page: 5110 year: 2006 ident: 10.1016/j.chemosphere.2018.11.175_bib102 article-title: Microwave-Assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0600341 – volume: 258 start-page: 17 year: 2013 ident: 10.1016/j.chemosphere.2018.11.175_bib20 article-title: Gas phase photocatalytic oxidation of decane at ppb levels: removal kinetics, reaction intermediates and carbon mass balance publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2013.02.022 – volume: 240 start-page: 574 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib99 article-title: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.081 – volume: 170 start-page: 464 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib65 article-title: Adsorption phenomena in photocatalytic reactions: the case of toluene, acetone and heptane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.040 – volume: 38 start-page: 645 year: 2003 ident: 10.1016/j.chemosphere.2018.11.175_bib125 article-title: Photocatalytic oxidation for indoor air purification: a literature review publication-title: Build. Environ. doi: 10.1016/S0360-1323(02)00212-3 – volume: 25 start-page: 343 year: 1992 ident: 10.1016/j.chemosphere.2018.11.175_bib75 article-title: Photocatalytic soil decontamination publication-title: Chemosphere doi: 10.1016/0045-6535(92)90551-2 – volume: 213 start-page: 3157 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib54 article-title: Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal publication-title: Phys. Status Solidi doi: 10.1002/pssa.201600261 – start-page: 102 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib122 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.05.013 – volume: 180 start-page: 740 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib17 article-title: Adsorption and photocatalysis of 2-ethyl-1-hexanol over graphene oxide–TiO2 hybrids post-treated under various thermal conditions publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.021 – volume: 8 start-page: 2426 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib16 article-title: Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere publication-title: RSC Adv. doi: 10.1039/C7RA12931A – volume: 31 start-page: 1890 year: 1997 ident: 10.1016/j.chemosphere.2018.11.175_bib71 article-title: Aromatics, reformulated gasoline, and atmospheric organic aerosol formation publication-title: Environ. Sci. Technol. doi: 10.1021/es960535l – volume: 20 start-page: 018 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib118 article-title: Adsorption and photocatalytic degradation of sulfamethazine in soil publication-title: Hubei Agric. Sci. – volume: 8 start-page: 27859 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib35 article-title: Defect engineering of bismuth oxyiodide by IO3- doping for increasing charge transport in photocatalysis publication-title: ACS ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10653 – volume: 3 start-page: 7423 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib40 article-title: Ultrathin Bi2MoO6 nanosheets for photocatalysis: performance enhancement by atomic interfacial engineering publication-title: ChemistrySelect doi: 10.1002/slct.201800908 – volume: 233 start-page: 54 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib63 article-title: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.037 – volume: 57 start-page: 15 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib26 article-title: Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.08.026 – volume: 333 start-page: 88 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib56 article-title: Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.03.019 – start-page: 15360 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib80 article-title: Adsorption and photocatalytic oxidation of methanol–benzene binary mixture in an annular fluidized bed photocatalytic reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302207p – volume: 114 start-page: 2669 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib112 article-title: New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of benzene and methyl orange publication-title: J. Phys. Chem. C doi: 10.1021/jp909855p – volume: 89 start-page: 503 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib28 article-title: Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2009.01.009 – volume: 337 start-page: 220 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib23 article-title: Developing a Langmuir-type excitation equilibrium equation to describe the effect of light intensity on the kinetics of the photocatalytic oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.059 – volume: 5 start-page: 85061 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib109 article-title: Role of quaternary N in N-doped graphene–Fe2O3 nanocomposites as efficient photocatalysts for CO2 reduction and acetaldehyde degradation publication-title: RSC Adv. doi: 10.1039/C5RA17882G – volume: 100 start-page: 4927 year: 2003 ident: 10.1016/j.chemosphere.2018.11.175_bib86 article-title: Bacterial volatiles promote growth in Arabidopsis publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0730845100 – volume: 201 start-page: 159 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib48 article-title: Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.08.022 – volume: 60 start-page: 103 year: 2005 ident: 10.1016/j.chemosphere.2018.11.175_bib5 article-title: Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.01.073 – volume: 218 start-page: 700 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib34 article-title: Low concentration nitric acid facilitate rapid electron–hole separation in vacancy-rich bismuth oxyiodide for photo-thermo-synergistic oxidation of formaldehyde publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.07.028 – volume: 24 start-page: 254 year: 2005 ident: 10.1016/j.chemosphere.2018.11.175_bib43 article-title: Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal publication-title: Environ. Prog. Sustain. doi: 10.1002/ep.10077 – volume: 43 start-page: 3168 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib9 article-title: Photocatalytic degradation of C5–C7 alkanes in the gas–phase publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.03.036 – volume: 435 start-page: 567 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib121 article-title: Synthesis, characterization, and environmental implications of graphene-coated biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.07.038 – volume: 229 start-page: 11 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib88 article-title: Influence of adsorption on the photocatalytic properties of TiO2/AC composite materials in the acetone and cyclohexane vapor photooxidation reactions publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2011.12.006 – volume: 85 start-page: 101 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib22 article-title: Enhancement of adsorptive chemical filters via titania photocatalysts to remove vapor-phase toluene and isopropanol publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2011.09.054 – volume: 21 start-page: 479 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib7 article-title: Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface morphology publication-title: Adsorption doi: 10.1007/s10450-015-9685-5 – volume: 13 start-page: 3169 year: 2001 ident: 10.1016/j.chemosphere.2018.11.175_bib52 article-title: Gas adsorption characterization of ordered organic−inorganic nanocomposite materials publication-title: Chem. Mater. doi: 10.1021/cm0101069 – volume: 42 start-page: 7844 year: 2008 ident: 10.1016/j.chemosphere.2018.11.175_bib8 article-title: The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.07.016 – volume: 244 start-page: 50 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib103 article-title: Acetylene photocatalytic oxidation using continuous flow reactor: gas phase and adsorbed phase investigation, assessment of the photocatalyst deactivation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.01.038 – volume: 41 start-page: 10087 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib111 article-title: Enhanced sunlight-driven photocatalytic activity of graphene oxide/Bi2WO6 nanoplates by silicon modification publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.04.103 – volume: 23 start-page: 773 year: 2006 ident: 10.1016/j.chemosphere.2018.11.175_bib53 article-title: Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor publication-title: Kor. J. Chem. Eng. doi: 10.1007/BF02705926 – volume: 47 start-page: 357 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib96 article-title: Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.07.002 – volume: 289 start-page: 186 year: 2005 ident: 10.1016/j.chemosphere.2018.11.175_bib117 article-title: Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2005.04.057 – volume: 29 start-page: 1 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib10 article-title: Recent developments in the physical adsorption of toxic organic vapours by activated carbons publication-title: Adsorpt. Sci. Technol. doi: 10.1260/0263-6174.29.1.1 – volume: 241–242 start-page: 154 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib45 article-title: Effect of the adsorbate kinetic diameter on the accuracy of the Dubinin-Radushkevich equation for modeling adsorption of organic vapors on activated carbon publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2012.09.024 – volume: 211 start-page: 241 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib31 article-title: The temperature effect on the methane and CO2 adsorption capacities of Illinois coal publication-title: Fuel doi: 10.1016/j.fuel.2017.09.046 – volume: 57 start-page: 497 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib41 article-title: Prediction of the adsorption capacity for volatile organic compounds onto activated carbons by the dubinin–radushkevich–Langmuir model publication-title: Air Waste Manag. doi: 10.3155/1047-3289.57.4.497 – volume: 283 start-page: 680 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib47 article-title: Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.09.067 – volume: 68 start-page: 1821 year: 2007 ident: 10.1016/j.chemosphere.2018.11.175_bib106 article-title: Abatement and degradation pathways of toluene in indoor air by positive corona discharge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.03.053 – volume: 264 start-page: 113 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib11 article-title: Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene–TiO2 composite photocatalyst: mechanism and intermediates analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.10.011 – volume: 122 start-page: 68 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib74 article-title: A BET approach to multilayer adsorption in swelling products publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2013.07.036 – volume: 49 start-page: 2693 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib46 article-title: TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants publication-title: Carbon doi: 10.1016/j.carbon.2011.02.059 – volume: 35 start-page: 3643 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib50 article-title: Preparation of activated carbon with highly developed mesoporous structure from Camellia oleifera shell through water vapor gasification and phosphoric acid modification publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.05.007 – volume: 161 start-page: 1173 year: 2009 ident: 10.1016/j.chemosphere.2018.11.175_bib108 article-title: Photocatalytic degradation of gaseous 1-propanol using an annular reactor: kinetic modelling and pathways publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2008.04.069 – volume: 43 start-page: 218 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib87 article-title: Adsorption and transport of methane in biochars derived from waste wood publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.04.025 – volume: 358 start-page: 284 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib127 article-title: Fabrication of the metal-free biochar-based graphitic carbon nitride for improved 2-Mercaptobenzothiazole degradation activity publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2018.03.027 – volume: 317 start-page: 52 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib129 article-title: Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.05.056 – volume: 147 start-page: 65 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib68 article-title: Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.08.013 – volume: 10 start-page: 1982 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib37 article-title: Enhanced efficiency of electron-hole separation in Bi2O2CO3 for photocatalysis via acid treatment publication-title: ChemCatChem doi: 10.1002/cctc.201800101 – volume: 49 start-page: 4644 year: 2010 ident: 10.1016/j.chemosphere.2018.11.175_bib30 article-title: Adsorption and photocatalytic degradation kinetics of gaseous cyclohexane in an annular fluidized bed photocatalytic reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100114e – volume: 354 start-page: 56 year: 1991 ident: 10.1016/j.chemosphere.2018.11.175_bib42 article-title: Helical microtubules of graphitic carbon publication-title: Nature doi: 10.1038/354056a0 – volume: 224 start-page: 122 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib114 article-title: Photodegradation of contaminants using Ag@AgCl/rGO assemblages: possibilities and limitations publication-title: Catal. Today doi: 10.1016/j.cattod.2013.12.005 – volume: 227 start-page: 1 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib105 article-title: Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-016-2949-1 – volume: 6 start-page: 2751 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib39 article-title: Efficient charges separation using advanced BiOI-based hollow spheres decorated with palladium and manganese dioxide nanoparticles publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b04435 – volume: 467 start-page: 129 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib12 article-title: Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: graphene oxide/magnetite/cerium-doped titania publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.01.005 – volume: 16 start-page: 871 year: 2008 ident: 10.1016/j.chemosphere.2018.11.175_bib55 article-title: Effect of relative humidity on adsorption of formaldehyde on modified activated carbons publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(09)60008-2 – volume: 154 start-page: 209 year: 2014 ident: 10.1016/j.chemosphere.2018.11.175_bib126 article-title: Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.12.019 – volume: 168–169 start-page: 183 year: 2015 ident: 10.1016/j.chemosphere.2018.11.175_bib72 article-title: Limonene photocatalytic oxidation at ppb levels: assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.11.048 – volume: 4 start-page: 5988 year: 2012 ident: 10.1016/j.chemosphere.2018.11.175_bib3 article-title: Synthesis of carbon nanotube–anatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3016476 – volume: 73 start-page: 138 year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib116 article-title: Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2018.01.022 – volume: 46 start-page: 891 year: 1996 ident: 10.1016/j.chemosphere.2018.11.175_bib44 article-title: Heterogeneous photocatalysis for control of volatile organic compounds in indoor air publication-title: Air Waste Manag. doi: 10.1080/10473289.1996.10467525 – volume: 300 start-page: 254 year: 2016 ident: 10.1016/j.chemosphere.2018.11.175_bib97 article-title: On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.079 – year: 2018 ident: 10.1016/j.chemosphere.2018.11.175_bib38 article-title: Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants publication-title: J. Mater. Chem. – volume: 261 start-page: 207 year: 2003 ident: 10.1016/j.chemosphere.2018.11.175_bib83 article-title: Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(03)00099-7 – volume: 281 start-page: 621 year: 2017 ident: 10.1016/j.chemosphere.2018.11.175_bib93 article-title: Fabrication of Au/TiO2 nanowires@carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.026 – volume: 13 start-page: 3491 year: 2011 ident: 10.1016/j.chemosphere.2018.11.175_bib115 article-title: Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C0CP01139H |
SSID | ssj0001659 |
Score | 2.671427 |
SecondaryResourceType | review_article |
Snippet | Volatile organic compounds (VOCs) are harmful for human and surrounding ecosystem, and a great number of VOC abatement technologies have been developed during... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 845 |
SubjectTerms | Adsorption carbon Carbon-based nanocomposite ecosystems electron transfer energy humans Modeling nanocomposites photocatalysis Photocatalytic degradation surface area VOC abatement volatile organic compounds |
Title | Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review |
URI | https://dx.doi.org/10.1016/j.chemosphere.2018.11.175 https://www.ncbi.nlm.nih.gov/pubmed/30508803 https://www.proquest.com/docview/2149854607 https://www.proquest.com/docview/2220840098 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIqAXVAqUhVK5Egc4uHViO3ERl9Wq1RakcqGoN8vrD2hV4tVme-ilP4HfzEyctCABqsRtP-zImpnMPCfP8wh57SQK0vDAilp4JrXiTCsVGY-wGQF8ixAX2RbH1fREfjhVpytkMpyFQVpln_tzTu-ydf_LXm_NvfnZGZ7xRTQiVBeUusSOn1LWGOW717c0j6JSGQJLxXD0A7Jzy_ECu3xPLZ7fx46ZhYYEslsg5fDPNepvGLSrRYfr5FEPIuk4r_MxWQnNBnk4GbTbNsj9g64Z9dUT8uNo6AfhqfVtWnQpgtrG0_m3tEzd45sruA71OCwrLNEUKaQt-HwRaNZ9chTJ56jB1NI3Xz5N2rcUKfNfqbOLWWoYVkNPG9ukbhy-k27f0TF1vZQCzWdknpKTw4PPkynrNRiYA1suWRSAbwC2yGChsNdBCqm8iNyBb6GUKad8LKrSV7EG6GC94LaEv3UtHLa20eIZWW1SE54TGiK3Ra1jVUsnLUexUUg2s8oDxog8lCOiB6sb1zcoR52MCzMw0c7NLw4z6DDYwBhw2IiUN1PnuUvHXSa9H1xrfgs5A9XkLtN3hnAw4F18z2KbkC5bU8KuUytZ8fofY8qSw96a7-sR2cyxdLNysArkfi5e_N8CX5I1-LafCXNbZHW5uAyvAEEtZ9vdLbJN7o2PPk6PfwIhjhyP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VImgvCMpreboSSHBI6zh2kiI4VEurXVrKpUW9uV4_oKhNVput0F76E_pn-IPM5NGCBKgS6i1K7MjyON_MxJ_nA3hhJQnScB_FWeIimSse5UqFiAdMRjC-pRCX2BY76WBPfthX-3PwozsLQ7TKFvsbTK_Rur2z2s7m6vjwkM74UjSSqHpR5qJTsN7ys--Yt1Xvhu_RyC-F2NzY7Q-iVlogsjJLp1FI0G2jN5beoL_KvEykckngFoeMCK2sciFOhUtDhh7RuIQbgY_zLLFUsSVP8L3X4LpEuCDZhJXTC15JnKom5pYqouHdhOULUhka4risqGAAleiMc0SslZg4jn92in8Lemvnt3kbbrVRK1tvJuYOzPliCRb6nVjcEtzYqKtfz-7C2bArQOGYcVU5qTGJmcKx8ddyWtb_i2b4HuaoWSPpxMrAECfx-sizRmjKMmK7k-hTxV59_tSvXjPi6H9h1kxGZRGR-3WsMEVZt6NN8OoNW2e21W5gzaGce7B3JZa5D_NFWfiHwHzgJs7ykGbSSsNJ3RTRbZQ6DGoC96IHeTfr2rYV0UmY40h31Ldv-heDaTIYZkwaDdYDcd513JQFuUynt51p9W9rXKP7ukz35W45aLQubeyYwpcnlRaY5uZKpjz7RxshOCbzfC3vwYNmLZ2PHGcFnQ1PHv3fAJ_DwmD347beHu5sPYZFfLLWsPWewPx0cuKfYvg2HT2rPxcGB1f9ff4ElgBVRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+adsorption+and+photocatalytic+degradation+of+volatile+organic+compounds+%28VOCs%29+using+carbon-based+nanocomposites%3A+A+critical+review&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Zou%2C+Weixin&rft.au=Gao%2C+Bin&rft.au=Ok%2C+Yong+Sik&rft.au=Dong%2C+Lin&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0045-6535&rft.eissn=1879-1298&rft.volume=218&rft.spage=845&rft.epage=859&rft_id=info:doi/10.1016%2Fj.chemosphere.2018.11.175&rft.externalDocID=S0045653518322823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |