Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa
Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen Pseudomonas aeruginosa produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through io...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 11; pp. 2892 - 2897 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
14.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen Pseudomonas aeruginosa produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC from Geobacter metallireducens and Paraburkholderia phytofirmans coupled with structure-guided disulfide cross-linking in P. aeruginosa suggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to the Escherichia coli amyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal β-barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria. |
---|---|
AbstractList | Pseudomonas aeruginosa
biofilms are exceedingly difficult to eradicate once established. This resilience is facilitated, in part, by the secretion of polysaccharides that contribute to biofilm structural integrity. The cationic exopolysaccharide PEL plays an important role in disease pathogenesis; however, the mechanisms underlying its biosynthesis are poorly understood. In this work, we identify the
pel
operon in more than 125 proteobacteria, demonstrating that its distribution was previously underestimated. We show that the essential outer membrane-anchored protein PelC forms a 12-subunit ring with an electronegative surface that we propose guides PEL toward the membrane-embedded secretion channel. Our work provides insight into a widespread outer membrane infrastructure unobserved in any other currently identified polysaccharide biosynthetic apparatus.
Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen
Pseudomonas aeruginosa
produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC from
Geobacter metallireducens
and
Paraburkholderia phytofirmans
coupled with structure-guided disulfide cross-linking in
P. aeruginosa
suggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to the
Escherichia coli
amyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal β-barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria. Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen Pseudomonas aeruginosa produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC from Geobacter metallireducens and Paraburkholderia phytofirmans coupled with structure-guided disulfide cross-linking in P. aeruginosa suggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to the Escherichia coli amyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal β-barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria. Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen Pseudomonas aeruginosa produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC from Geobacter metallireducens and Paraburkholderia phytofirmans coupled with structure-guided disulfide cross-linking in P. aeruginosa suggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to the Escherichia coli amyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal beta -barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria. Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen Pseudomonas aeruginosa produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC from Geobacter metallireducens and Paraburkholderia phytofirmans coupled with structure-guided disulfide cross-linking in P. aeruginosa suggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to the Escherichia coli amyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal β-barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria. Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen produces the cationic exopolysaccharide Pel, which protects bacteria from aminoglycoside antibiotics and contributes to biofilm architecture through ionic interactions with extracellular DNA. A bioinformatics analysis of genome databases suggests that gene clusters for Pel biosynthesis are present in >125 bacterial species, yet little is known about how this biofilm exopolysaccharide is synthesized and exported from the cell. In this work, we characterize PelC, an outer membrane lipoprotein essential for Pel production. Crystal structures of PelC from and coupled with structure-guided disulfide cross-linking in suggest that PelC assembles into a 12- subunit ring-shaped oligomer. In this arrangement, an aromatic belt in proximity to its lipidation site positions the highly electronegative surface of PelC toward the periplasm. PelC is structurally similar to the amyloid exporter CsgG; however, unlike CsgG, PelC does not possess membrane-spanning segments required for polymer export across the outer membrane. We show that the multidomain protein PelB with a predicted C-terminal β-barrel porin localizes to the outer membrane, and propose that PelC functions as an electronegative funnel to guide the positively charged Pel polysaccharide toward an exit channel formed by PelB. Together, our findings provide insight into the unique molecular architecture and export mechanism of the Pel apparatus, a widespread exopolysaccharide secretion system found in environmental and pathogenic bacteria. |
Author | Almblad, Henrik Harrison, Joe J. Robinson, Howard Howell, P. Lynne Whitfield, Gregory B. Marmont, Lindsey S. Whitney, John C. Parsek, Matthew R. Rich, Jacquelyn D. |
Author_xml | – sequence: 1 givenname: Lindsey S. surname: Marmont fullname: Marmont, Lindsey S. organization: Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4 – sequence: 2 givenname: Jacquelyn D. surname: Rich fullname: Rich, Jacquelyn D. organization: Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4 – sequence: 3 givenname: John C. surname: Whitney fullname: Whitney, John C. organization: Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4 – sequence: 4 givenname: Gregory B. surname: Whitfield fullname: Whitfield, Gregory B. organization: Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4 – sequence: 5 givenname: Henrik surname: Almblad fullname: Almblad, Henrik organization: Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4 – sequence: 6 givenname: Howard surname: Robinson fullname: Robinson, Howard organization: Photon Science Division, Brookhaven National Laboratory, Upton, NY 11973-5000 – sequence: 7 givenname: Matthew R. surname: Parsek fullname: Parsek, Matthew R. organization: Department of Microbiology, University of Washington, Seattle, WA 98195-7242 – sequence: 8 givenname: Joe J. surname: Harrison fullname: Harrison, Joe J. organization: Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4 – sequence: 9 givenname: P. Lynne surname: Howell fullname: Howell, P. Lynne organization: Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28242707$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi3Uim4LZ04gS1y4pPW3nQsSWvElVWoPcLYcZ7LrVRIHO6nov8fLlpb21JPHM8-8mpn3FB2NcQSE3lByTonmF9Po8jlVlCuiKBUv0IqSmlZK1OQIrQhhujKCiRN0mvOOEFJLQ16iE2aYYJroFZqu-rCJA6TgcR-mOKU4QxjxNfRrvFlCC3kf4yn2t9l5v3Wp5DD8nmKasfMp5oznLeC4zJDwAEOT3Fi-Hb7OsLRxiGVE7CAtmzDG7F6h4871GV7fvWfo55fPP9bfqsurr9_Xny4rL7SaK4CWQSN942raaUmM5FQ2zrembbkxRIlGCqoF7zjzoHXjGmW8aThzhDkj-Bn6eNCdlmaA1sM4J9fbKYXBpVsbXbCPK2PY2k28sZJLI4gsAh_uBFL8tUCe7RCyh74v68UlW2pqzQtZ02egmhmtidIFff8E3cUljeUShTK01lTLPXVxoP7eN0F3Pzcldm-83RtvH4wvHe_-X_ee_-d0Ad4egF2eY3qoK2EIU4r_AUBUt50 |
CitedBy_id | crossref_primary_10_1038_s41467_022_35131_6 crossref_primary_10_1038_s41594_021_00569_7 crossref_primary_10_3390_genes9020113 crossref_primary_10_3389_fmicb_2021_666522 crossref_primary_10_1002_prot_26434 crossref_primary_10_1016_j_mib_2024_102476 crossref_primary_10_1074_jbc_RA120_014555 crossref_primary_10_1002_mbo3_857 crossref_primary_10_1073_pnas_1801336115 crossref_primary_10_1128_spectrum_00296_23 crossref_primary_10_3390_genes12010069 crossref_primary_10_3390_polym14204253 crossref_primary_10_7554_eLife_59776 crossref_primary_10_1016_j_micres_2023_127539 crossref_primary_10_1371_journal_ppat_1008281 crossref_primary_10_1038_s41522_023_00375_7 crossref_primary_10_1093_femsre_fuad060 crossref_primary_10_1038_s41467_020_16144_5 crossref_primary_10_1038_s42003_022_03453_2 crossref_primary_10_1016_j_sbi_2018_05_001 crossref_primary_10_1074_jbc_M117_812842 crossref_primary_10_1128_JB_00684_19 crossref_primary_10_3389_fmicb_2018_03263 crossref_primary_10_1038_s41598_023_35056_0 crossref_primary_10_3390_jof8040336 |
Cites_doi | 10.1128/IAI.67.10.5427-5433.1999 10.1093/bioinformatics/btn524 10.1016/S0378-1119(98)00130-9 10.1002/ijch.201200096 10.1128/AEM.03666-12 10.1099/mic.0.27410-0 10.1016/0076-6879(94)35157-0 10.1074/jbc.M112.375378 10.1107/S0909049503023938 10.1128/AEM.01828-09 10.1038/nature12155 10.1038/nprot.2009.2 10.1073/pnas.1503058112 10.1038/35023079 10.1128/JB.186.14.4457-4465.2004 10.1038/nprot.2006.24 10.1111/j.1365-2958.2011.07706.x 10.1016/j.str.2009.11.015 10.1146/annurev.micro.60.080805.142106 10.1093/nar/gkh340 10.1107/S0907444904019158 10.1016/S0076-6879(97)76066-X 10.1128/mr.60.3.539-574.1996 10.1099/mic.0.040196-0 10.1128/jb.176.10.2828-2834.1994 10.1021/bi980809c 10.1128/JB.01562-09 10.1099/jmm.0.05069-0 10.1016/S0076-6879(99)10008-9 10.1111/j.1462-2920.2007.01554.x 10.1093/bioinformatics/bts199 10.1038/nbt1183-784 10.1016/j.chom.2015.07.006 10.1093/bioinformatics/btg180 10.1128/JB.02150-12 10.1007/978-1-4939-0473-0_22 10.1016/j.mimet.2005.06.001 10.1107/S0907444909042073 10.1186/1471-2180-5-30 10.1016/S1286-4579(00)01259-4 10.1038/nature05267 10.1038/nature13768 10.1016/S0969-2126(01)00656-6 10.1128/JB.00953-06 10.1128/JB.00996-08 10.1111/j.1462-2920.2011.02657.x 10.1038/46594 10.3389/fmicb.2011.00167 10.1016/j.sbi.2009.04.003 10.1021/bi0344228 10.1146/annurev-micro-090110-102859 10.1128/JB.186.9.2724-2734.2004 10.1111/j.1462-5822.2011.01704.x 10.1073/pnas.1222655110 10.1021/pr1002438 10.1110/ps.8.10.2065 10.1074/jbc.M411374200 10.1016/j.biochi.2007.04.002 10.1107/S0907444909052925 10.7554/eLife.01456 10.1111/j.1365-2958.2005.04552.x 10.1371/journal.ppat.1001264 10.1002/jcc.20084 10.1128/JB.00119-09 10.1074/jbc.M115.711762 10.1128/JB.00193-15 10.1046/j.1365-2958.2003.03877.x 10.1093/nar/gkq869 10.1093/nar/gkq399 10.1107/S0021889804018047 10.1038/nprot.2015.115 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 14, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 14, 2017 |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1613606114 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | PelC dodecamer guides PEL secretion |
EISSN | 1091-6490 |
EndPage | 2897 |
ExternalDocumentID | 4321283763 10_1073_pnas_1613606114 28242707 26480266 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM111244 – fundername: NIAID NIH HHS grantid: R01 AI077628 – fundername: CIHR grantid: 43998 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada) grantid: 43998 – fundername: Office of Extramural Research, National Institutes of Health (OER) grantid: 2R01AI077628 – fundername: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada) grantid: 435631 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c476t-eed2eb5cba91f75085315bacd8dd388064b541743f32ce77bab68c8b32a02a843 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:08:15 EDT 2024 Thu Oct 24 23:30:48 EDT 2024 Fri Aug 16 21:01:05 EDT 2024 Thu Oct 10 20:18:26 EDT 2024 Fri Dec 06 02:53:04 EST 2024 Wed Oct 16 00:59:31 EDT 2024 Wed Dec 11 00:36:31 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | X-ray crystallography Pseudomonas aeruginosa exopolysaccharides biofilms PEL |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c476t-eed2eb5cba91f75085315bacd8dd388064b541743f32ce77bab68c8b32a02a843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Scott J. Hultgren, Washington University School of Medicine, St. Louis, MO, and approved January 31, 2017 (received for review August 18, 2016) 2Present address: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1. Author contributions: L.S.M., J.D.R., J.C.W., G.B.W., M.R.P., J.J.H., and P.L.H. designed research; L.S.M., J.D.R., J.C.W., G.B.W., H.A., H.R., and J.J.H. performed research; L.S.M., J.D.R., J.C.W., G.B.W., H.A., H.R., M.R.P., J.J.H., and P.L.H. analyzed data; and L.S.M., J.J.H., and P.L.H. wrote the paper. |
ORCID | 0000-0003-0368-9539 |
OpenAccessLink | https://www.pnas.org/content/pnas/114/11/2892.full.pdf |
PMID | 28242707 |
PQID | 1881971757 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5358405 proquest_miscellaneous_1897384091 proquest_miscellaneous_1872877067 proquest_journals_1881971757 crossref_primary_10_1073_pnas_1613606114 pubmed_primary_28242707 jstor_primary_26480266 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-14 |
PublicationDateYYYYMMDD | 2017-03-14 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Academy of Sciences |
References | 15907219 - BMC Microbiol. 2005 May 23;5:30 21298031 - PLoS Pathog. 2011 Jan 27;7(1):e1001264 12912839 - Bioinformatics. 2003 Aug 12;19(12):1572-4 15034147 - Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 10984043 - Nature. 2000 Aug 31;406(6799):959-64 17114249 - J Bacteriol. 2007 Feb;189(3):750-60 21991261 - Front Microbiol. 2011 Aug 22;2:167 17086202 - Nature. 2006 Nov 9;444(7116):226-9 21645131 - Mol Microbiol. 2011 Jul;81(2):486-99 14731271 - Mol Microbiol. 2004 Feb;51(3):675-90 26299432 - Cell Host Microbe. 2015 Sep 9;18(3):307-19 24818912 - Methods Mol Biol. 2014;1149:271-9 15501828 - J Biol Chem. 2004 Dec 24;279(52):54881-6 10548052 - Protein Sci. 1999 Oct;8(10):2065-71 17524545 - Biochimie. 2007 Aug;89(8):903-15 15813726 - Mol Microbiol. 2005 Apr;56(2):309-22 23504011 - J Bacteriol. 2013 May;195(10):2329-39 8840786 - Microbiol Rev. 1996 Sep;60(3):539-74 20154133 - J Bacteriol. 2010 Apr;192(8):2085-92 25897033 - J Bacteriol. 2015 Jul;197(13):2190-200 23435893 - Appl Environ Microbiol. 2013 May;79(9):2968-78 20057044 - Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 19481444 - Curr Opin Struct Biol. 2009 Jun;19(3):341-8 15090514 - J Bacteriol. 2004 May;186(9):2724-34 20929876 - Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600 15758243 - Microbiology. 2005 Mar;151(Pt 3):985-97 16704339 - Annu Rev Microbiol. 2006;60:131-47 10967285 - Microbes Infect. 2000 Jul;2(9):1051-60 11591349 - Structure. 2001 Oct;9(10):941-53 20159471 - Structure. 2010 Feb 10;18(2):265-73 20932056 - J Proteome Res. 2010 Dec 3;9(12):6135-47 9778346 - Biochemistry. 1998 Oct 20;37(42):14713-8 22605337 - J Biol Chem. 2012 Jul 6;287(28):23582-93 19329647 - J Bacteriol. 2009 Jun;191(11):3492-503 18776008 - J Bacteriol. 2008 Nov;190(21):6961-9 8057911 - Methods Enzymol. 1994;235:386-405 15231777 - J Bacteriol. 2004 Jul;186(14):4457-65 10586886 - Nature. 1999 Nov 25;402(6760):434-9 12676867 - J Med Microbiol. 2003 Apr;52(Pt 4):295-301 26311845 - Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11353-8 22176658 - Environ Microbiol. 2012 Aug;14(8):1913-28 15987659 - J Microbiol Methods. 2006 Mar;64(3):391-7 15572765 - Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 19247286 - Nat Protoc. 2009;4(3):363-71 10496925 - Infect Immun. 1999 Oct;67(10):5427-33 21951860 - Cell Microbiol. 2012 Jan;14(1):95-106 17406227 - Nat Protoc. 2006;1(1):153-61 25219853 - Nature. 2014 Dec 11;516(7530):250-3 18770545 - Curr Protoc Microbiol. 2005 Jul;Chapter 1:Unit 1B.1 23530206 - Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6133-8 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 19948863 - Appl Environ Microbiol. 2010 Jan;76(2):441-50 9661666 - Gene. 1998 May 28;212(1):77-86 14646132 - J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):49-52 21663440 - Annu Rev Microbiol. 2011;65:239-59 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 20466768 - Microbiology. 2010 Sep;156(Pt 9):2757-69 22543367 - Bioinformatics. 2012 Jun 15;28(12):1647-9 10547784 - Methods Enzymol. 1999;310:91-109 27754618 - Methods Enzymol. 1997;276:307-26 20124702 - Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 23657259 - Nature. 2013 May 16;497(7449):388-91 18842600 - Bioinformatics. 2008 Dec 1;24(23):2803-4 12899633 - Biochemistry. 2003 Aug 12;42(31):9453-65 26492139 - Nat Protoc. 2015 Nov;10(11):1820-41 8188584 - J Bacteriol. 1994 May;176(10):2828-34 18279344 - Environ Microbiol. 2008 Jun;10(6):1419-32 26957546 - J Biol Chem. 2016 May 6;291(19):10046-57 24040512 - Elife. 2013 Sep 10;2:e01456 Lee JE (e_1_3_4_46_2) 2001; 9 Winsor GL (e_1_3_4_26_2) 2011; 39 Otwinowski Z (e_1_3_4_56_2) 1997; 276 Celniker G (e_1_3_4_62_2) 2013; 53 Kearse M (e_1_3_4_52_2) 2012; 28 Colvin KM (e_1_3_4_18_2) 2012; 14 Goyal P (e_1_3_4_31_2) 2014; 516 Häussler S (e_1_3_4_16_2) 2003; 52 Okuda S (e_1_3_4_36_2) 2011; 65 Edgar RC (e_1_3_4_27_2) 2004; 32 Thein M (e_1_3_4_68_2) 2010; 9 Ghafoor A (e_1_3_4_21_2) 2013; 79 Fong JCN (e_1_3_4_10_2) 2010; 156 Choi KH (e_1_3_4_48_2) 2006; 64 Almblad H (e_1_3_4_51_2) 2015; 197 Starkey M (e_1_3_4_13_2) 2009; 191 Whitney JC (e_1_3_4_22_2) 2012; 287 Ronquist F (e_1_3_4_55_2) 2003; 19 Morin A (e_1_3_4_57_2) 2013; 2 Barnhart MM (e_1_3_4_40_2) 2006; 60 de Lorenzo V (e_1_3_4_49_2) 1994; 235 Kelley LA (e_1_3_4_54_2) 2009; 4 Choi K-H (e_1_3_4_73_2) 2005; 5 Macedo-Ribeiro S (e_1_3_4_34_2) 1999; 402 Hmelo LR (e_1_3_4_44_2) 2015; 10 Keiski C-L (e_1_3_4_37_2) 2010; 18 Winsor GL (e_1_3_4_53_2) 2008; 24 Simon R (e_1_3_4_71_2) 1983; 1 Terashima H (e_1_3_4_29_2) 2013; 110 Kleinschmidt JH (e_1_3_4_39_2) 1999; 8 Martinez RM (e_1_3_4_30_2) 2010; 192 Yau WM (e_1_3_4_35_2) 1998; 37 Pape T (e_1_3_4_58_2) 2004; 37 Emsley P (e_1_3_4_60_2) 2004; 60 Friedman L (e_1_3_4_25_2) 2004; 186 Adams PD (e_1_3_4_61_2) 2010; 66 Ashkenazy H (e_1_3_4_63_2) 2010; 38 Chen VB (e_1_3_4_69_2) 2010; 66 Bobrov AG (e_1_3_4_5_2) 2008; 10 Parise G (e_1_3_4_7_2) 2007; 189 Jorth P (e_1_3_4_14_2) 2015; 18 Merritt JH (e_1_3_4_67_2) 2011 O’Toole GA (e_1_3_4_66_2) 1999; 310 Koo J (e_1_3_4_33_2) 2008; 190 Franklin MJ (e_1_3_4_11_2) 2011; 2 Vasseur P (e_1_3_4_24_2) 2007; 89 Colvin KM (e_1_3_4_17_2) 2011; 7 e_1_3_4_47_2 Cramton SE (e_1_3_4_6_2) 1999; 67 Colvin KM (e_1_3_4_23_2) 2013; 195 Conlan S (e_1_3_4_38_2) 2003; 42 Salamitou S (e_1_3_4_65_2) 1994; 176 Hoang TT (e_1_3_4_70_2) 1998; 212 Dong C (e_1_3_4_32_2) 2006; 444 Mishra M (e_1_3_4_2_2) 2012; 14 Friedman L (e_1_3_4_9_2) 2004; 51 Ferreira AS (e_1_3_4_8_2) 2010; 76 Jennings LK (e_1_3_4_19_2) 2015; 112 Stover CK (e_1_3_4_43_2) 2000; 406 Govan JR (e_1_3_4_15_2) 1996; 60 Vasseur P (e_1_3_4_20_2) 2005; 151 Choi KH (e_1_3_4_45_2) 2006; 1 Zhao K (e_1_3_4_50_2) 2013; 497 Lyczak JB (e_1_3_4_1_2) 2000; 2 Vuong C (e_1_3_4_3_2) 2004; 279 Terwilliger T (e_1_3_4_59_2) 2004; 11 Irie Y (e_1_3_4_72_2) 2014; 1149 Hasegawa H (e_1_3_4_28_2) 2009; 19 Nenninger AA (e_1_3_4_41_2) 2011; 81 Pettersen EF (e_1_3_4_64_2) 2004; 25 Ramsey DM (e_1_3_4_12_2) 2005; 56 Wang Y (e_1_3_4_42_2) 2016; 291 Wang X (e_1_3_4_4_2) 2004; 186 |
References_xml | – volume: 67 start-page: 5427 year: 1999 ident: e_1_3_4_6_2 article-title: The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation publication-title: Infect Immun doi: 10.1128/IAI.67.10.5427-5433.1999 contributor: fullname: Cramton SE – volume: 24 start-page: 2803 year: 2008 ident: e_1_3_4_53_2 article-title: The Burkholderia Genome database: Facilitating flexible queries and comparative analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn524 contributor: fullname: Winsor GL – volume: 212 start-page: 77 year: 1998 ident: e_1_3_4_70_2 article-title: A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants publication-title: Gene doi: 10.1016/S0378-1119(98)00130-9 contributor: fullname: Hoang TT – volume: 53 start-page: 199 year: 2013 ident: e_1_3_4_62_2 article-title: ConSurf: Using evolutionary data to raise testable hypotheses about protein function publication-title: Isr J Chem doi: 10.1002/ijch.201200096 contributor: fullname: Celniker G – volume: 79 start-page: 2968 year: 2013 ident: e_1_3_4_21_2 article-title: Role of PelF in pel polysaccharide biosynthesis in Pseudomonas aeruginosa publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03666-12 contributor: fullname: Ghafoor A – volume: 151 start-page: 985 year: 2005 ident: e_1_3_4_20_2 article-title: The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation publication-title: Microbiology doi: 10.1099/mic.0.27410-0 contributor: fullname: Vasseur P – volume: 235 start-page: 386 year: 1994 ident: e_1_3_4_49_2 article-title: Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons publication-title: Methods Enzymol doi: 10.1016/0076-6879(94)35157-0 contributor: fullname: de Lorenzo V – volume: 287 start-page: 23582 year: 2012 ident: e_1_3_4_22_2 article-title: Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa publication-title: J Biol Chem doi: 10.1074/jbc.M112.375378 contributor: fullname: Whitney JC – volume: 11 start-page: 49 year: 2004 ident: e_1_3_4_59_2 article-title: SOLVE and RESOLVE: Automated structure solution, density modification and model building publication-title: J Synchrotron Radiat doi: 10.1107/S0909049503023938 contributor: fullname: Terwilliger T – volume: 76 start-page: 441 year: 2010 ident: e_1_3_4_8_2 article-title: Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01828-09 contributor: fullname: Ferreira AS – volume: 497 start-page: 388 year: 2013 ident: e_1_3_4_50_2 article-title: Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms publication-title: Nature doi: 10.1038/nature12155 contributor: fullname: Zhao K – volume: 4 start-page: 363 year: 2009 ident: e_1_3_4_54_2 article-title: Protein structure prediction on the web: A case study using the Phyre server publication-title: Nat Protoc doi: 10.1038/nprot.2009.2 contributor: fullname: Kelley LA – volume: 112 start-page: 11353 year: 2015 ident: e_1_3_4_19_2 article-title: Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1503058112 contributor: fullname: Jennings LK – volume: 406 start-page: 959 year: 2000 ident: e_1_3_4_43_2 article-title: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen publication-title: Nature doi: 10.1038/35023079 contributor: fullname: Stover CK – volume: 186 start-page: 4457 year: 2004 ident: e_1_3_4_25_2 article-title: Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix publication-title: J Bacteriol doi: 10.1128/JB.186.14.4457-4465.2004 contributor: fullname: Friedman L – volume: 1 start-page: 153 year: 2006 ident: e_1_3_4_45_2 article-title: mini-Tn7 insertion in bacteria with single attTn7 sites: Example Pseudomonas aeruginosa publication-title: Nat Protoc doi: 10.1038/nprot.2006.24 contributor: fullname: Choi KH – volume: 81 start-page: 486 year: 2011 ident: e_1_3_4_41_2 article-title: CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07706.x contributor: fullname: Nenninger AA – volume: 18 start-page: 265 year: 2010 ident: e_1_3_4_37_2 article-title: AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin publication-title: Structure doi: 10.1016/j.str.2009.11.015 contributor: fullname: Keiski C-L – volume: 60 start-page: 131 year: 2006 ident: e_1_3_4_40_2 article-title: Curli biogenesis and function publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.60.080805.142106 contributor: fullname: Barnhart MM – volume: 32 start-page: 1792 year: 2004 ident: e_1_3_4_27_2 article-title: MUSCLE: Multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh340 contributor: fullname: Edgar RC – volume: 60 start-page: 2126 year: 2004 ident: e_1_3_4_60_2 article-title: Coot: Model-building tools for molecular graphics publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444904019158 contributor: fullname: Emsley P – volume: 276 start-page: 307 year: 1997 ident: e_1_3_4_56_2 article-title: Processing of X-ray diffraction data collected in oscillation mode publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)76066-X contributor: fullname: Otwinowski Z – ident: e_1_3_4_47_2 – volume: 60 start-page: 539 year: 1996 ident: e_1_3_4_15_2 article-title: Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia publication-title: Microbiol Rev doi: 10.1128/mr.60.3.539-574.1996 contributor: fullname: Govan JR – volume: 156 start-page: 2757 year: 2010 ident: e_1_3_4_10_2 article-title: Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis publication-title: Microbiology doi: 10.1099/mic.0.040196-0 contributor: fullname: Fong JCN – volume: 176 start-page: 2828 year: 1994 ident: e_1_3_4_65_2 article-title: Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome publication-title: J Bacteriol doi: 10.1128/jb.176.10.2828-2834.1994 contributor: fullname: Salamitou S – volume: 37 start-page: 14713 year: 1998 ident: e_1_3_4_35_2 article-title: The preference of tryptophan for membrane interfaces publication-title: Biochemistry doi: 10.1021/bi980809c contributor: fullname: Yau WM – volume: 192 start-page: 2085 year: 2010 ident: e_1_3_4_30_2 article-title: Role of FlgT in anchoring the flagellum of Vibrio cholerae publication-title: J Bacteriol doi: 10.1128/JB.01562-09 contributor: fullname: Martinez RM – volume: 52 start-page: 295 year: 2003 ident: e_1_3_4_16_2 article-title: Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection publication-title: J Med Microbiol doi: 10.1099/jmm.0.05069-0 contributor: fullname: Häussler S – volume: 310 start-page: 91 year: 1999 ident: e_1_3_4_66_2 article-title: Genetic approaches to study of biofilms publication-title: Methods Enzymol doi: 10.1016/S0076-6879(99)10008-9 contributor: fullname: O’Toole GA – volume: 10 start-page: 1419 year: 2008 ident: e_1_3_4_5_2 article-title: Insights into Yersinia pestis biofilm development: Topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01554.x contributor: fullname: Bobrov AG – volume: 28 start-page: 1647 year: 2012 ident: e_1_3_4_52_2 article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 contributor: fullname: Kearse M – volume: 1 start-page: 784 year: 1983 ident: e_1_3_4_71_2 article-title: A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria publication-title: Nat Biotechnol doi: 10.1038/nbt1183-784 contributor: fullname: Simon R – volume: 18 start-page: 307 year: 2015 ident: e_1_3_4_14_2 article-title: Regional isolation drives bacterial diversification within cystic fibrosis lungs publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.006 contributor: fullname: Jorth P – year: 2011 ident: e_1_3_4_67_2 article-title: Growing and analyzing static biofilms publication-title: Curr Protoc in Micro contributor: fullname: Merritt JH – volume: 19 start-page: 1572 year: 2003 ident: e_1_3_4_55_2 article-title: MrBayes 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 contributor: fullname: Ronquist F – volume: 195 start-page: 2329 year: 2013 ident: e_1_3_4_23_2 article-title: PelA deacetylase activity is required for Pel polysaccharide synthesis in Pseudomonas aeruginosa publication-title: J Bacteriol doi: 10.1128/JB.02150-12 contributor: fullname: Colvin KM – volume: 1149 start-page: 271 year: 2014 ident: e_1_3_4_72_2 article-title: LC/MS/MS-based quantitative assay for the secondary messenger molecule, c-di-GMP publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-0473-0_22 contributor: fullname: Irie Y – volume: 64 start-page: 391 year: 2006 ident: e_1_3_4_48_2 article-title: A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2005.06.001 contributor: fullname: Choi KH – volume: 66 start-page: 12 year: 2010 ident: e_1_3_4_69_2 article-title: MolProbity: All-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909042073 contributor: fullname: Chen VB – volume: 5 start-page: 30 year: 2005 ident: e_1_3_4_73_2 article-title: An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants publication-title: BMC Microbiol doi: 10.1186/1471-2180-5-30 contributor: fullname: Choi K-H – volume: 2 start-page: 1051 year: 2000 ident: e_1_3_4_1_2 article-title: Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist publication-title: Microbes Infect doi: 10.1016/S1286-4579(00)01259-4 contributor: fullname: Lyczak JB – volume: 444 start-page: 226 year: 2006 ident: e_1_3_4_32_2 article-title: Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein publication-title: Nature doi: 10.1038/nature05267 contributor: fullname: Dong C – volume: 516 start-page: 250 year: 2014 ident: e_1_3_4_31_2 article-title: Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG publication-title: Nature doi: 10.1038/nature13768 contributor: fullname: Goyal P – volume: 9 start-page: 941 year: 2001 ident: e_1_3_4_46_2 article-title: Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase reveals similarity to the purine nucleoside phosphorylases publication-title: Structure doi: 10.1016/S0969-2126(01)00656-6 contributor: fullname: Lee JE – volume: 189 start-page: 750 year: 2007 ident: e_1_3_4_7_2 article-title: Role of a putative polysaccharide locus in Bordetella biofilm development publication-title: J Bacteriol doi: 10.1128/JB.00953-06 contributor: fullname: Parise G – volume: 190 start-page: 6961 year: 2008 ident: e_1_3_4_33_2 article-title: PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa type IV pilus secretin publication-title: J Bacteriol doi: 10.1128/JB.00996-08 contributor: fullname: Koo J – volume: 14 start-page: 1913 year: 2012 ident: e_1_3_4_18_2 article-title: The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2011.02657.x contributor: fullname: Colvin KM – volume: 402 start-page: 434 year: 1999 ident: e_1_3_4_34_2 article-title: Crystal structures of the membrane-binding C2 domain of human coagulation factor V publication-title: Nature doi: 10.1038/46594 contributor: fullname: Macedo-Ribeiro S – volume: 2 start-page: 167 year: 2011 ident: e_1_3_4_11_2 article-title: Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, Alginate, Pel, and Psl publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00167 contributor: fullname: Franklin MJ – volume: 19 start-page: 341 year: 2009 ident: e_1_3_4_28_2 article-title: Advances and pitfalls of protein structural alignment publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2009.04.003 contributor: fullname: Hasegawa H – volume: 42 start-page: 9453 year: 2003 ident: e_1_3_4_38_2 article-title: Folding of a monomeric porin, OmpG, in detergent solution publication-title: Biochemistry doi: 10.1021/bi0344228 contributor: fullname: Conlan S – volume: 65 start-page: 239 year: 2011 ident: e_1_3_4_36_2 article-title: Lipoprotein sorting in bacteria publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-090110-102859 contributor: fullname: Okuda S – volume: 186 start-page: 2724 year: 2004 ident: e_1_3_4_4_2 article-title: The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation publication-title: J Bacteriol doi: 10.1128/JB.186.9.2724-2734.2004 contributor: fullname: Wang X – volume: 14 start-page: 95 year: 2012 ident: e_1_3_4_2_2 article-title: Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2011.01704.x contributor: fullname: Mishra M – volume: 110 start-page: 6133 year: 2013 ident: e_1_3_4_29_2 article-title: Insight into the assembly mechanism in the supramolecular rings of the sodium-driven Vibrio flagellar motor from the structure of FlgT publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1222655110 contributor: fullname: Terashima H – volume: 9 start-page: 6135 year: 2010 ident: e_1_3_4_68_2 article-title: Efficient subfractionation of gram-negative bacteria for proteomics studies publication-title: J Proteome Res doi: 10.1021/pr1002438 contributor: fullname: Thein M – volume: 8 start-page: 2065 year: 1999 ident: e_1_3_4_39_2 article-title: Outer membrane protein A of E. coli folds into detergent micelles, but not in the presence of monomeric detergent publication-title: Protein Sci doi: 10.1110/ps.8.10.2065 contributor: fullname: Kleinschmidt JH – volume: 279 start-page: 54881 year: 2004 ident: e_1_3_4_3_2 article-title: A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence publication-title: J Biol Chem doi: 10.1074/jbc.M411374200 contributor: fullname: Vuong C – volume: 89 start-page: 903 year: 2007 ident: e_1_3_4_24_2 article-title: PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport publication-title: Biochimie doi: 10.1016/j.biochi.2007.04.002 contributor: fullname: Vasseur P – volume: 66 start-page: 213 year: 2010 ident: e_1_3_4_61_2 article-title: PHENIX: A comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 contributor: fullname: Adams PD – volume: 2 start-page: e01456 year: 2013 ident: e_1_3_4_57_2 article-title: Collaboration gets the most out of software publication-title: eLife doi: 10.7554/eLife.01456 contributor: fullname: Morin A – volume: 56 start-page: 309 year: 2005 ident: e_1_3_4_12_2 article-title: Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04552.x contributor: fullname: Ramsey DM – volume: 7 start-page: e1001264 year: 2011 ident: e_1_3_4_17_2 article-title: The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001264 contributor: fullname: Colvin KM – volume: 25 start-page: 1605 year: 2004 ident: e_1_3_4_64_2 article-title: UCSF Chimera--a visualization system for exploratory research and analysis publication-title: J Comput Chem doi: 10.1002/jcc.20084 contributor: fullname: Pettersen EF – volume: 191 start-page: 3492 year: 2009 ident: e_1_3_4_13_2 article-title: Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung publication-title: J Bacteriol doi: 10.1128/JB.00119-09 contributor: fullname: Starkey M – volume: 291 start-page: 10046 year: 2016 ident: e_1_3_4_42_2 article-title: Structural basis for translocation of a biofilm-supporting exopolysaccharide across the bacterial outer membrane publication-title: J Biol Chem doi: 10.1074/jbc.M115.711762 contributor: fullname: Wang Y – volume: 197 start-page: 2190 year: 2015 ident: e_1_3_4_51_2 article-title: The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic Di-GMP publication-title: J Bacteriol doi: 10.1128/JB.00193-15 contributor: fullname: Almblad H – volume: 51 start-page: 675 year: 2004 ident: e_1_3_4_9_2 article-title: Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03877.x contributor: fullname: Friedman L – volume: 39 start-page: D596 year: 2011 ident: e_1_3_4_26_2 article-title: Pseudomonas Genome Database: Improved comparative analysis and population genomics capability for Pseudomonas genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq869 contributor: fullname: Winsor GL – volume: 38 start-page: W529 year: 2010 ident: e_1_3_4_63_2 article-title: ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq399 contributor: fullname: Ashkenazy H – volume: 37 start-page: 843 year: 2004 ident: e_1_3_4_58_2 article-title: HKL2MAP: A graphical user interface for macromolecular phasing with SHELX programs publication-title: J Appl Cryst doi: 10.1107/S0021889804018047 contributor: fullname: Pape T – volume: 10 start-page: 1820 year: 2015 ident: e_1_3_4_44_2 article-title: Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange publication-title: Nat Protoc doi: 10.1038/nprot.2015.115 contributor: fullname: Hmelo LR |
SSID | ssj0009580 |
Score | 2.4304893 |
Snippet | Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen Pseudomonas aeruginosa produces... Secreted polysaccharides are important functional and structural components of bacterial biofilms. The opportunistic pathogen produces the cationic... Pseudomonas aeruginosa biofilms are exceedingly difficult to eradicate once established. This resilience is facilitated, in part, by the secretion of... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2892 |
SubjectTerms | Bacteria Biofilms Biological Sciences Biosynthesis Crystal structure Deoxyribonucleic acid DNA Escherichia coli Genomes Geobacter metallireducens Pseudomonas aeruginosa |
Title | Oligomeric lipoprotein PelC guides Pel polysaccharide export across the outer membrane of Pseudomonas aeruginosa |
URI | https://www.jstor.org/stable/26480266 https://www.ncbi.nlm.nih.gov/pubmed/28242707 https://www.proquest.com/docview/1881971757 https://search.proquest.com/docview/1872877067 https://search.proquest.com/docview/1897384091 https://pubmed.ncbi.nlm.nih.gov/PMC5358405 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB21PXFBFCgESmUkDuWQ3Y1jx86xWlFVSIU9UKm3yHa8S6SsEzUbCf6-YyfZtghx4JbEE8nyjP3eyONngE9ZjiugSJLYCu23GYWJ9YLzOGW5zIzMEXX92eHrb9nVDft6y28PgE9nYULRvtHVzNXbmat-htrKdmvmU53YfHW95CnC5oLPD-EQ4XdK0fdKu3I4d0Jx-WWUTXo-Ip23TnUzpDgpsnbMA7wQsESIEv4u2UeoNBQm_o1y_lk5-QiKLl_A85FDkouhr8dwYN1LOB5naUfORynpz6-g_V5XmyZsypC6apugylA5srL1kmz6qkRzfCZtU__ulPFHsPAbsb88KycqdJYgRSSNv_mBbO0Wk2uHr2uy6mxfNhjEqiPK3vWbyjWdeg03l19-LK_i8Y6F2DCR7WKESGo1N1rlyRrZA6J3wrUypSxLrxOTMc2Zz1rWKTVWCK10Jo3UKVULqiRLT-DINc6-BUJpbpPE0nUu0NPGKplqUSYlekrnkrEIzqcxLtpBSqMIW-AiLbxnigfPRHASfLC383V4mC1mEZxOTinGyYb_SaQ1mJZyEcHHfTNOE7_3gYPS9N5GYG4oEJv_ZYM99wlvEsGbwc8PHRgDJQLxJAL2Bl6m-2kLRm-Q6x6j9d1___kenlFPJnwVITuFo91dbz8gFdrpMw9E_CxMgHsneAmk |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Bb9MwFH4a4wAXxIBBYICROIxD2jq2Y-eIKqYC6-hhk3aLbMftIqVJtDQS-_d7TpNuQ4gDtyR-liy_Z7_v5T1_BvgcJ7gDSkpDJ41PM0obmokQIeOJiq1K0Ov6s8Pzs3h2wX9ciss9EMNZmK5o35p8VBbrUZlfdbWV9dqOhzqx8WI-FQzd5kSMH8FjwWRChyB9x7WrtidPItyAecQHRh_JxnWpmxGCHIa4HSMBTwWs0ElJf5vsPb-0LU38G-j8s3bynjM6eQ7PehRJvm5HewB7rnwBB_06bchxTyb95SXUv4p8VXVpGVLkddXxMuQlWbhiSlZtnqE4PpO6Km4abf0hLPxG3G-Py4nuBksQJJLK3_1A1m6N4XWJr0uyaFybVWjGuiHaXbervKwa_QouTr6dT2dhf8tCaLmMNyE6ycgZYY1O6BLxA_pvKoy2mcoyzxQTcyO4j1uWLLJOSqNNrKwyLNKTSCvODmG_rEr3BkgUJY5SFy0Tibq2TitmZEYz1JVJFOcBHA9znNZbMo20S4JLlnrNpHeaCeCw08FOzlfiYbwYB3A0KCXtlxv2UwhsMDAVMoBPu2ZcKD77gZNStV5GYnQo0Tv_SwZH7kNeGsDrrZ7vBtAbSgDygQXsBDxR98MWtN-OsLu317f_3fMjPJmdz0_T0-9nP9_BUwRtsf-_TPkR7G-uW_cegdHGfOiWwS3-TgwW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLokAhUMBIHMohm40fsXNEC6vyaNkDlXqLbMfZRso6UbOR4N8zzmO7RYgDtySeSCPPjOcbefwZoXdJCiugiOPQCu23GYUJ9ZzzkLJUJkamkHX92eGz8-T0gn255Jd7V331TftGlzNXbWauvOp7K5uNiaY-sWh1tuAU0uacR01eRHfRPU7ByaZCfce3K4fTJwQWYUbYxOojaNQ41c4A6FDA7lANeDpgCYlK-Btl93LT0J74N-D5Z__kXkJaPkIPRySJPwwaH6I71j1Gh2OstvhkJJR-_wQ136tyXfdbM7gqm7rnZigdXtlqgdddmYM4POOmrn61yviDWPAN258em2PVK4sBKOLa3_-AN3YDJbaD1wKvWtvlNbiyarGy1926dHWrnqKL5acfi9NwvGkhNEwk2xASJbGaG63SuAAMATk85lqZXOa5Z4tJmObM1y4FJcYKoZVOpJGaEjUnSjJ6hA5c7exzhAlJbRxbUqQC7G2sklSLPM7BXjqVjAXoZJrjrBkINbJ-I1zQzFsmu7FMgI56G-zkfDce1IxJgI4no2RjyMF_EsANFKdcBOjtbhiCxe-AwKTUnZcRUCEKyND_kgHNfdkbB-jZYOcbBUZHCZC45QE7AU_WfXsEfLgn7R599sV___kG3V99XGbfPp9_fYkeEI8ufFshO0YH2-vOvgJstNWv-yj4DdG7DSY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oligomeric+lipoprotein+PelC+guides+Pel+polysaccharide+export+across+the+outer+membrane+of+Pseudomonas+aeruginosa&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Marmont%2C+Lindsey+S.&rft.au=Rich%2C+Jacquelyn+D.&rft.au=Whitney%2C+John+C.&rft.au=Whitfield%2C+Gregory+B.&rft.date=2017-03-14&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=11&rft.spage=2892&rft.epage=2897&rft_id=info:doi/10.1073%2Fpnas.1613606114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1613606114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |