Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum
Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay d...
Saved in:
Published in | Journal of toxicological sciences Vol. 35; no. 6; pp. 835 - 841 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Society of Toxicology
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS. |
---|---|
AbstractList | Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS. Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Parameciumcaudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 [mu]M) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 [mu]M PFOA for 1, 3 and 24 hr and to 10 [mu]M PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 [mu]M GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS. Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS. |
Author | Saito, Norimitsu Jin, Yihe Liu, Wei Kawamoto, Kosuke Oami, Kazunori Oashi, Takahiro Sato, Itaru Tsuda, Shuji |
Author_xml | – sequence: 1 fullname: Sato, Itaru organization: Department of Veterinary Medicine, Faculty of Agriculture, Iwate University – sequence: 1 fullname: Oashi, Takahiro organization: Department of Veterinary Medicine, Faculty of Agriculture, Iwate University – sequence: 1 fullname: Kawamoto, Kosuke organization: Department of Applied Veterinary Science, The Doctoral Course of the United Graduate School of Veterinary Science, Gifu University – sequence: 1 fullname: Jin, Yihe organization: Department of Environmental Science and Technology, Dalian University of Technology – sequence: 1 fullname: Tsuda, Shuji organization: Department of Veterinary Medicine, Faculty of Agriculture, Iwate University – sequence: 1 fullname: Oami, Kazunori organization: Graduate School of Life and Environmental Sciences, University of Tsukuba – sequence: 1 fullname: Saito, Norimitsu organization: Research Institute for Environmental Sciences and Public Health of Iwate Prefecture – sequence: 1 fullname: Liu, Wei organization: Department of Environmental Science and Technology, Dalian University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21139333$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0d9rFDEQB_AgFXutvvgHSN60wp7J5jabfZKjWhWKPVCfw2wya3Psbq75gfTFv93U6xUUwZeEMJ8ZyHxPyNHsZyTkOWfLmgv-ZpviUjRLJZpHZMGVYpXoVHdEFkwoVXHRsGNyEuOWsbplzeoJOa45F50QYkF-bjAMY_bBe5Ng9s5QMM7SV5uLq_UZ7XOis09094dCGvM4-BkS_oZfzmi89j_Q0nef19TCBN-RupkaP2GiECPcUj_TDQSY0Lg8UQPZQsrTU_J4gDHis_v7lHy7eP_1_GN1efXh0_n6sjKrVqYKsbZgbW3UqpMSZM_5wBs7qA5aicYYMOXVi6EWHNueSSu7lpUiY0bUCsQpebmfuwv-JmNMenLR4DiWz_gctWr4quWNUP-XXLZdLeWdfHEvcz-h1bvgJgi3-rDcAtgemOBjDDho4xIk5-cUwI2aM32Xny75adHokl9pef1Xy2HqP_HbPd7GVDb-QCEkZ0Y8ULk_SsdDxVxD0DiLX5qXs4A |
CitedBy_id | crossref_primary_10_1021_acs_analchem_9b03494 crossref_primary_10_2131_fts_3_143 crossref_primary_10_1039_D1RA04097A crossref_primary_10_2131_jts_41_SP27 crossref_primary_10_1016_j_scitotenv_2019_135334 crossref_primary_10_1002_etc_700 crossref_primary_10_1016_j_chemosphere_2014_03_099 crossref_primary_10_1016_j_chemosphere_2020_127573 crossref_primary_10_1016_j_jhazmat_2023_132287 crossref_primary_10_1007_s11356_016_6055_0 crossref_primary_10_1016_j_aquatox_2014_07_020 crossref_primary_10_1111_jeu_12463 crossref_primary_10_1016_j_chemosphere_2018_09_170 crossref_primary_10_1051_kmae_2017058 crossref_primary_10_1016_j_chemosphere_2015_02_041 crossref_primary_10_1016_j_envpol_2013_04_031 crossref_primary_10_2903_j_efsa_2018_5194 crossref_primary_10_3923_ajbmb_2011_275_283 crossref_primary_10_1016_j_ecoenv_2014_09_017 crossref_primary_10_1016_j_eti_2016_10_003 crossref_primary_10_1080_02757540_2022_2094371 crossref_primary_10_1016_j_scitotenv_2020_144577 crossref_primary_10_1534_genetics_114_163287 crossref_primary_10_1021_acs_est_5b00530 crossref_primary_10_1016_j_bios_2012_02_043 crossref_primary_10_3390_toxics13010047 crossref_primary_10_3390_toxics11060543 |
Cites_doi | 10.1155/2003/135859 10.1074/jbc.M209264200 10.1016/0304-3835(91)90063-N 10.1021/es034727+ 10.1093/nar/23.15.2995 10.2131/jts.32.249 10.1093/carcin/14.6.1115 10.1016/j.anl.2009.04.016 10.1093/toxsci/kfg121 10.1074/jbc.275.8.5323 10.1093/toxsci/68.1.249 10.1021/es0626234 10.1016/S0300-483X(02)00511-5 10.1093/mutage/13.3.263 10.1539/joh.46.141 10.1093/mutage/13.1.67 10.1007/BF00193969 10.1093/toxsci/69.1.244 10.1021/es001834k 10.2131/jts.34.569 10.1539/joh.46.49 10.2131/jts.33.155 10.1146/annurev.biochem.63.1.915 10.1042/bj2610707 10.1016/j.taap.2003.11.031 10.1080/10408440490464705 10.1002/tox.20062 10.1093/toxsci/kfl014 10.1093/toxsci/kfg122 |
ContentType | Journal Article |
Copyright | 2010 The Japanese Society of Toxicology |
Copyright_xml | – notice: 2010 The Japanese Society of Toxicology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7ST 7TM 7U7 C1K SOI |
DOI | 10.2131/jts.35.835 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Toxicology Abstracts Environment Abstracts Nucleic Acids Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Toxicology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1880-3989 |
EndPage | 841 |
ExternalDocumentID | 21139333 10_2131_jts_35_835 article_jts_35_6_35_6_835_article_char_en |
Genre | Journal Article |
GroupedDBID | .55 123 29L 2WC 36B 53G ABDBF ACPRK ACUHS ADBBV AEGXH AENEX AFRAH AL- ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESX F5P GX1 HH5 JSF JSH KQ8 OK1 OVT RJT RNS RZJ SV3 TR2 TUS X7M XSB ~8M 3O- AAYXX CITATION TKC CGR CUY CVF ECM EIF NPM 7X8 7ST 7TM 7U7 C1K SOI |
ID | FETCH-LOGICAL-c476t-ee2dadd2c84966a6b11f15df89a76ecccac5dfb3f231e7b06d69709a700c328a3 |
ISSN | 0388-1350 1880-3989 |
IngestDate | Fri Jul 11 16:11:05 EDT 2025 Fri Jul 11 08:48:02 EDT 2025 Thu Apr 03 07:10:01 EDT 2025 Tue Jul 01 03:04:30 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Wed Sep 03 06:30:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c476t-ee2dadd2c84966a6b11f15df89a76ecccac5dfb3f231e7b06d69709a700c328a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jts/35/6/35_6_835/_article/-char/en |
PMID | 21139333 |
PQID | 816792668 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_851471538 proquest_miscellaneous_816792668 pubmed_primary_21139333 crossref_citationtrail_10_2131_jts_35_835 crossref_primary_10_2131_jts_35_835 jstage_primary_article_jts_35_6_35_6_835_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of toxicological sciences |
PublicationTitleAlternate | J Toxicol Sci |
PublicationYear | 2010 |
Publisher | The Japanese Society of Toxicology |
Publisher_xml | – name: The Japanese Society of Toxicology |
References | Martin, J.W., Smithwick, M.M., Braune, B.M., Hoekstra, P.F., Muir, D.C. and Mabury, S.A. (2004): Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ. Sci. Technol., 38, 373-380. 3M Company. (2003): Environmental and health assessment of perfluorooctanesulfonate and its salts. US EPA Administrative Record, AR-226-1486. Health Protection Agency. (2009): PFOS/PFOA-Toxicological overview. Available at: http://www.hpa.nhs.uk/Topics/ChemicalsAndPoisons/CompendiumOfChemicalHazards/PFOSOrPFOA/ToxicologicalOverview/. Bertoncini, C.R. and Meneghini, R. (1995): DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3’-phosphoglycolate termini. Nucleic Acids Res., 23, 2995-3002. Aoyama, K., Iwahori, K. and Miyata, N. (2003): Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair. Mutat. Res., 538, 155-162. Sato, I., Kawamoto, K., Nishikawa, Y., Tsuda, S., Yoshida, M., Yaegashi, K., Saito, N., Liu, W. and Jin, Y. (2009): Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J. Toxicol. Sci., 34, 569-574. Bailly, V., Derydt, M. and Verly, W.G. (1989): Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. Biochem. J., 261, 707-713. Saito, N., Harada, K., Inoue, K., Sasaki, K., Yoshinaga, T. and Koizumi, A. (2004): Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J. Occup. Health, 46, 49-59. Harada, K., Saito, N., Inoue, K., Yoshinaga, T., Watanabe, T., Sasaki, S., Kamiyama, S. and Koizumi, A. (2004): The influence of time, sex and geographic factors on levels of perfluorooctane sulfonate and perfluorooctanoate in human serum over the last 25 years. J. Occup. Health, 46, 141-147. Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L. and Stevenson, L.A. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol. Sci., 74, 382-392. Lau, C., Butenhoff, J.L. and Rogers, J.M. (2004): The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol. Appl. Pharmacol., 198, 231-241. Kennedy, G.L., Butenhoff, J.L., Olsen, G.W., O’Connor, J.C., Seacat, A.M., Perkins, R.G., Biegel, L.B., Murphy, S.R. and Farrar, D.G. (2004): The toxicology of perfluorooctanoate. Crit. Rev. Toxicol., 34, 351-384. Nakamura, J., La, D.K. and Swenberg, J.A. (2000): 5’-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J. Biol. Chem., 275, 5323-5328. Takeuchi, T. and Morimoto, K. (1993): Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi’s anemia patients due to possible catalase deficiency. Carcinogenesis, 14, 1115-1120. Demple, B. and Harrison, L. (1994): Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem., 63, 915-948. Kranendonk, M., Mesquita, P., Laires, A., Vermeulen, N.P. and Rueff, J. (1998): Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens. Mutagenesis, 13, 263-269. Cheng, B., Yang, X., An, L., Gao, B. and Liu, X. (2010): Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level. Auris Nasus Larynx, 37, 89-94. Yao, X. and Zhong, L. (2005): Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid. Mutat. Res., 587, 38-44. Vanden Heuvel, J.P., Thompson, J.T., Frame, S.R. and Gillies, P.J. (2006): Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol. Sci., 92, 476-489. Giesy, J.P. and Kannan, K. (2001): Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol., 35, 1339-1342. Kawamoto, K., Nishikawa, Y., Oami, K., Jin, Y., Sato, I., Saito, N. and Tsuda, S. (2008): Effects of perfluorooctane sulfonate (PFOS) on swimming behavior and membrane potential of paramecium caudatum. J. Toxicol. Sci., 33, 155-161. Young, C.J., Furdui, V.I., Franklin, J., Koerner, R.M., Muir, D.C. and Mabury, S.A. (2007): Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. Environ. Sci. Technol., 41, 3455-3461. Hashimoto, K., Takasaki, W., Sato, I. and Tsuda, S. (2007): DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats. J. Toxicol. Sci., 32, 249-259. U.S. EPA (2005): Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. Available at: http://www.epa.gov/. Gregus, Z. (2008): Mechanisms of toxicity. In Casarett and Doull’s toxicology the basic science of poisons (Klassen, C.D., ed.), pp.45-106, McGraw-Hill, New York. Nakamura, J. and Swenberg, J.A. (1999): Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res., 59, 2522-2526. Oami, K. (1996): Membrane potential responses controlling chemodispersal of Paramecium caudatum from quinine. J. Comp. Physiol. A, 178, 307-316. Seacat, A.M., Thomford, P.J., Hansen, K.J., Olsen, G.W., Case, M.T. and Butenhoff, J.L. (2002): Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol. Sci., 68, 249-264. Lah, B., Malovrh, S., Narat, M., Cepeljnik, R. and Marinsek-Logar, R. (2004): Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. Environ. Toxicol., 19, 545-553. Seacat, A.M., Thomford, P.J., Hansen, K.J., Clemen, L.A., Eldridge, S.R., Elcombe, C.R. and Butenhoff, J.L. (2003): Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology, 183, 117-131. Abdellatif, A., Al-tonsy, A.H., Awad, M.E., Roberfroid, M. and Khan, M.N. (2003-2004): Peroxisomal enzymes and 8-hydroxydeoxyguanosine in rat liver treated with perfluorooctanoic acid. Dis. Markers, 19, 19-25. Takagi, A., Sai, K., Umemura, T., Hasegawa, R. and Kurokawa, Y. (1991): Short-term exposure to the peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett., 57, 55-60. Butenhoff, J., Costa, G., Elcombe, C., Farrar, D., Hansen, K., Iwai, H., Jung, R., Kennedy, G.Jr., Lieder, P., Olsen, G. and Thomford, P. (2002): Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol. Sci., 69, 244-257. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. and Nagano, T. (2003): Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175. Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Barbee, B.D., Richards, J.H., Butenhoff, J.L., Stevenson, L.A. and Lau, C. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol. Sci., 74, 369-381. Anderson, D. and Plewa, M.J. (1998): The International Comet Assay Workshop. Mutagenesis, 13, 67-73. 22 24 25 26 27 28 29 AOYAMA K (2) 2003; 538 30 31 10 32 (5) 1989; 261 11 33 12 34 13 14 36 15 16 NAKAMURA J (23) 1999; 59 17 18 19 YAO XIAOFENG (35) 2005; 587 1 3 4 6 7 8 9 20 21 |
References_xml | – reference: Nakamura, J. and Swenberg, J.A. (1999): Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res., 59, 2522-2526. – reference: Vanden Heuvel, J.P., Thompson, J.T., Frame, S.R. and Gillies, P.J. (2006): Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol. Sci., 92, 476-489. – reference: Harada, K., Saito, N., Inoue, K., Yoshinaga, T., Watanabe, T., Sasaki, S., Kamiyama, S. and Koizumi, A. (2004): The influence of time, sex and geographic factors on levels of perfluorooctane sulfonate and perfluorooctanoate in human serum over the last 25 years. J. Occup. Health, 46, 141-147. – reference: Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L. and Stevenson, L.A. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol. Sci., 74, 382-392. – reference: Kawamoto, K., Nishikawa, Y., Oami, K., Jin, Y., Sato, I., Saito, N. and Tsuda, S. (2008): Effects of perfluorooctane sulfonate (PFOS) on swimming behavior and membrane potential of paramecium caudatum. J. Toxicol. Sci., 33, 155-161. – reference: Lau, C., Butenhoff, J.L. and Rogers, J.M. (2004): The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol. Appl. Pharmacol., 198, 231-241. – reference: Martin, J.W., Smithwick, M.M., Braune, B.M., Hoekstra, P.F., Muir, D.C. and Mabury, S.A. (2004): Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ. Sci. Technol., 38, 373-380. – reference: Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. and Nagano, T. (2003): Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175. – reference: Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Barbee, B.D., Richards, J.H., Butenhoff, J.L., Stevenson, L.A. and Lau, C. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol. Sci., 74, 369-381. – reference: Lah, B., Malovrh, S., Narat, M., Cepeljnik, R. and Marinsek-Logar, R. (2004): Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. Environ. Toxicol., 19, 545-553. – reference: U.S. EPA (2005): Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. Available at: http://www.epa.gov/. – reference: Seacat, A.M., Thomford, P.J., Hansen, K.J., Olsen, G.W., Case, M.T. and Butenhoff, J.L. (2002): Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol. Sci., 68, 249-264. – reference: Demple, B. and Harrison, L. (1994): Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem., 63, 915-948. – reference: Abdellatif, A., Al-tonsy, A.H., Awad, M.E., Roberfroid, M. and Khan, M.N. (2003-2004): Peroxisomal enzymes and 8-hydroxydeoxyguanosine in rat liver treated with perfluorooctanoic acid. Dis. Markers, 19, 19-25. – reference: Takagi, A., Sai, K., Umemura, T., Hasegawa, R. and Kurokawa, Y. (1991): Short-term exposure to the peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett., 57, 55-60. – reference: Cheng, B., Yang, X., An, L., Gao, B. and Liu, X. (2010): Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level. Auris Nasus Larynx, 37, 89-94. – reference: 3M Company. (2003): Environmental and health assessment of perfluorooctanesulfonate and its salts. US EPA Administrative Record, AR-226-1486. – reference: Anderson, D. and Plewa, M.J. (1998): The International Comet Assay Workshop. Mutagenesis, 13, 67-73. – reference: Gregus, Z. (2008): Mechanisms of toxicity. In Casarett and Doull’s toxicology the basic science of poisons (Klassen, C.D., ed.), pp.45-106, McGraw-Hill, New York. – reference: Bertoncini, C.R. and Meneghini, R. (1995): DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3’-phosphoglycolate termini. Nucleic Acids Res., 23, 2995-3002. – reference: Yao, X. and Zhong, L. (2005): Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid. Mutat. Res., 587, 38-44. – reference: Kennedy, G.L., Butenhoff, J.L., Olsen, G.W., O’Connor, J.C., Seacat, A.M., Perkins, R.G., Biegel, L.B., Murphy, S.R. and Farrar, D.G. (2004): The toxicology of perfluorooctanoate. Crit. Rev. Toxicol., 34, 351-384. – reference: Seacat, A.M., Thomford, P.J., Hansen, K.J., Clemen, L.A., Eldridge, S.R., Elcombe, C.R. and Butenhoff, J.L. (2003): Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology, 183, 117-131. – reference: Saito, N., Harada, K., Inoue, K., Sasaki, K., Yoshinaga, T. and Koizumi, A. (2004): Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J. Occup. Health, 46, 49-59. – reference: Health Protection Agency. (2009): PFOS/PFOA-Toxicological overview. Available at: http://www.hpa.nhs.uk/Topics/ChemicalsAndPoisons/CompendiumOfChemicalHazards/PFOSOrPFOA/ToxicologicalOverview/. – reference: Kranendonk, M., Mesquita, P., Laires, A., Vermeulen, N.P. and Rueff, J. (1998): Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens. Mutagenesis, 13, 263-269. – reference: Sato, I., Kawamoto, K., Nishikawa, Y., Tsuda, S., Yoshida, M., Yaegashi, K., Saito, N., Liu, W. and Jin, Y. (2009): Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J. Toxicol. Sci., 34, 569-574. – reference: Aoyama, K., Iwahori, K. and Miyata, N. (2003): Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair. Mutat. Res., 538, 155-162. – reference: Takeuchi, T. and Morimoto, K. (1993): Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi’s anemia patients due to possible catalase deficiency. Carcinogenesis, 14, 1115-1120. – reference: Giesy, J.P. and Kannan, K. (2001): Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol., 35, 1339-1342. – reference: Butenhoff, J., Costa, G., Elcombe, C., Farrar, D., Hansen, K., Iwai, H., Jung, R., Kennedy, G.Jr., Lieder, P., Olsen, G. and Thomford, P. (2002): Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol. Sci., 69, 244-257. – reference: Bailly, V., Derydt, M. and Verly, W.G. (1989): Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. Biochem. J., 261, 707-713. – reference: Oami, K. (1996): Membrane potential responses controlling chemodispersal of Paramecium caudatum from quinine. J. Comp. Physiol. A, 178, 307-316. – reference: Hashimoto, K., Takasaki, W., Sato, I. and Tsuda, S. (2007): DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats. J. Toxicol. Sci., 32, 249-259. – reference: Nakamura, J., La, D.K. and Swenberg, J.A. (2000): 5’-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J. Biol. Chem., 275, 5323-5328. – reference: Young, C.J., Furdui, V.I., Franklin, J., Koerner, R.M., Muir, D.C. and Mabury, S.A. (2007): Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. Environ. Sci. Technol., 41, 3455-3461. – ident: 3 doi: 10.1155/2003/135859 – ident: 29 doi: 10.1074/jbc.M209264200 – ident: 30 doi: 10.1016/0304-3835(91)90063-N – ident: 21 doi: 10.1021/es034727+ – ident: 33 – ident: 6 doi: 10.1093/nar/23.15.2995 – ident: 13 doi: 10.2131/jts.32.249 – ident: 14 – ident: 31 doi: 10.1093/carcin/14.6.1115 – ident: 8 doi: 10.1016/j.anl.2009.04.016 – ident: 32 doi: 10.1093/toxsci/kfg121 – volume: 587 start-page: 38 issn: 0027-5107 issue: 1-2 year: 2005 ident: 35 – ident: 22 doi: 10.1074/jbc.275.8.5323 – ident: 28 doi: 10.1093/toxsci/68.1.249 – ident: 36 doi: 10.1021/es0626234 – ident: 27 doi: 10.1016/S0300-483X(02)00511-5 – ident: 17 doi: 10.1093/mutage/13.3.263 – volume: 538 start-page: 155 issn: 0027-5107 issue: 1/2 year: 2003 ident: 2 – ident: 12 doi: 10.1539/joh.46.141 – ident: 4 doi: 10.1093/mutage/13.1.67 – ident: 24 doi: 10.1007/BF00193969 – ident: 7 doi: 10.1093/toxsci/69.1.244 – ident: 1 – ident: 10 doi: 10.1021/es001834k – ident: 26 doi: 10.2131/jts.34.569 – ident: 11 – ident: 25 doi: 10.1539/joh.46.49 – ident: 15 doi: 10.2131/jts.33.155 – ident: 9 doi: 10.1146/annurev.biochem.63.1.915 – volume: 261 start-page: 707 issn: 0264-6021 issue: 3 year: 1989 ident: 5 doi: 10.1042/bj2610707 – ident: 19 doi: 10.1016/j.taap.2003.11.031 – ident: 16 doi: 10.1080/10408440490464705 – ident: 18 doi: 10.1002/tox.20062 – ident: 34 doi: 10.1093/toxsci/kfl014 – volume: 59 start-page: 2522 issn: 0008-5472 issue: 11 year: 1999 ident: 23 – ident: 20 doi: 10.1093/toxsci/kfg122 |
SSID | ssj0027054 |
Score | 1.9869034 |
Snippet | Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global... |
SourceID | proquest pubmed crossref jstage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 835 |
SubjectTerms | Alkanesulfonic Acids - toxicity Caprylates - toxicity Comet Assay Deoxyguanosine - analogs & derivatives Deoxyguanosine - metabolism DNA Damage DNA, Protozoan - genetics Environmental Pollutants - toxicity Fluorocarbons - toxicity Mutagens - toxicity Paramecium Paramecium caudatum Paramecium caudatum - drug effects Paramecium caudatum - genetics Paramecium caudatum - metabolism PFOA PFOS Reactive Oxygen Species - metabolism |
Title | Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum |
URI | https://www.jstage.jst.go.jp/article/jts/35/6/35_6_835/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/21139333 https://www.proquest.com/docview/816792668 https://www.proquest.com/docview/851471538 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of Toxicological Sciences, 2010/12/01, Vol.35(6), pp.835-841 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwgEJId6UlyzBgapKN4lbxzlW7FYLW9pK20q9RY7jsmG3CWoSLewB_jpjO4_ug-fFau2JFXm-jGfG4xmE3hDpwNqHtuXDbmH1B0RaIQ2FFfHQB0OOMo-py8kfJ_Rg0f-wHCxbrR9bUUtFHvbE-bX3Sv6Hq9AHfFW3ZP-Bs_Wk0AG_gb_QAoeh_Ssez-RmdVqkoPwK0PFSlXpVxNorMBtNh8rgD4u8m6Q6O_EWpVRB6SvlN5cl8ZEizo7TM9A_9ybDbsTXKpjHBKkrt3CW8W_qYGHGVTSXiIt1V_Ai4nmZyuGqfpunX2NRi9Zyp22OjvgZB5RoR-1hmhUnNcCmqryThhE_4cfxJm0G1ib0gJ8XSbqJq_5xXOhIQRlvuzAuhIMYqQtCxCK-qSVUiWWTxaSE37aMZeVIuV2bvFmXdwLXIXonyLMeGfTqR7bTbU-mwWgxHgfz_eX8Brrpgp2hSmDsvT9sLHZbl9Gr38_kt1Vz7zYzX9Bobn0Gpf6T_LW9ovWW-T10t2QIHhr03EctmTxAd4y3FptLaA_R9ytIwgpJ-K3CUQcDijCgCF9CEa5RpAmPOtggCAOCsEEQjhOsEYQ1gnCa4AZBuELQI7QY7c_fHVhlZQ5L9D2aW1K6EWyMrmB9MJc5DR1n5QyiFfO5R0EoCC7gX0hWYD1IL7RpRH3PhkHbFsRlnDxGO0mayKcIC9tnrs_AcqWiD9oxJ0L6kSd8L4oix6Vt1KlWNxBl2npVPeU0APNVcSIATgRkEAAn2uh1TfvFJGu5looZJtU05Qdc0VDTAGk9oq5AgsRpI1yxNQAxrM7WYLXTIguYOs4EZZf9hgRsE08pGG30xCCifgHXAUOMEPLszw8_R7ebT-gF2sk3hXwJenEevtLY_QlbmL8s |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfluorooctanoic+acid+%28PFOA%29+but+not+perfluorooctane+sulfonate+%28PFOS%29+showed+DNA+damage+in+comet+assay+on+Paramecium+caudatum&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Kawamoto%2C+Kosuke&rft.au=Oashi%2C+Takahiro&rft.au=Oami%2C+Kazunori&rft.au=Liu%2C+Wei&rft.date=2010-12-01&rft.issn=1880-3989&rft.volume=35&rft.issue=6&rft.spage=835&rft.epage=841&rft_id=info:doi/10.2131%2Fjts.35.835&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon |