Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum

Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay d...

Full description

Saved in:
Bibliographic Details
Published inJournal of toxicological sciences Vol. 35; no. 6; pp. 835 - 841
Main Authors Sato, Itaru, Oashi, Takahiro, Kawamoto, Kosuke, Jin, Yihe, Tsuda, Shuji, Oami, Kazunori, Saito, Norimitsu, Liu, Wei
Format Journal Article
LanguageEnglish
Published Japan The Japanese Society of Toxicology 01.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.
AbstractList Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.
Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Parameciumcaudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 [mu]M) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 [mu]M PFOA for 1, 3 and 24 hr and to 10 [mu]M PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 [mu]M GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.
Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global environment including wildlife and human. In this study, we investigated the genotoxicity of PFOS and PFOA using the novel in vivo comet assay developed for Paramecium caudatum. For the comet assay, large nuclei squeezed out of the paramecia with 0.25 M sucrose containing 0.6% Triton X-100 were embedded in a layer of agarose gel placed over the slide glass. N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) and 2-aminoanthracene (2-AA) were successfully used for positive controls. Productions of 8-hydroxydeoxyguanosine (8-OH-dG) and intracellular reactive oxygen species (ROS) were also measured in paramecia. PFOS did not cause DNA damage on any conditions examined. On the other hand, 12 and 24 hr exposure to PFOA (100 µM) increased DNA migration in electrophoresis condition at pH 13, but not at pH 12.1, suggesting that the DNA damage may be alkali labile site (such as apurinic/apyrimidinic (AP) site). Exposure of paramecia to 100 µM PFOA for 1, 3 and 24 hr and to 10 µM PFOA for 24 hr significantly increased intracellular ROS. Under the same condition, however, 8-OH-dG level was not affected by PFOA. The PFOA-induced DNA damage was not abolished by the application of 100 µM GSH which completely inhibited the increase of intracellular ROS. In conclusion, the PFOA-induced in vivo DNA damage was first shown in paramecia, and the DNA damage might not be directly attributable to increase in intracellular ROS.
Author Saito, Norimitsu
Jin, Yihe
Liu, Wei
Kawamoto, Kosuke
Oami, Kazunori
Oashi, Takahiro
Sato, Itaru
Tsuda, Shuji
Author_xml – sequence: 1
  fullname: Sato, Itaru
  organization: Department of Veterinary Medicine, Faculty of Agriculture, Iwate University
– sequence: 1
  fullname: Oashi, Takahiro
  organization: Department of Veterinary Medicine, Faculty of Agriculture, Iwate University
– sequence: 1
  fullname: Kawamoto, Kosuke
  organization: Department of Applied Veterinary Science, The Doctoral Course of the United Graduate School of Veterinary Science, Gifu University
– sequence: 1
  fullname: Jin, Yihe
  organization: Department of Environmental Science and Technology, Dalian University of Technology
– sequence: 1
  fullname: Tsuda, Shuji
  organization: Department of Veterinary Medicine, Faculty of Agriculture, Iwate University
– sequence: 1
  fullname: Oami, Kazunori
  organization: Graduate School of Life and Environmental Sciences, University of Tsukuba
– sequence: 1
  fullname: Saito, Norimitsu
  organization: Research Institute for Environmental Sciences and Public Health of Iwate Prefecture
– sequence: 1
  fullname: Liu, Wei
  organization: Department of Environmental Science and Technology, Dalian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21139333$$D View this record in MEDLINE/PubMed
BookMark eNqF0d9rFDEQB_AgFXutvvgHSN60wp7J5jabfZKjWhWKPVCfw2wya3Psbq75gfTFv93U6xUUwZeEMJ8ZyHxPyNHsZyTkOWfLmgv-ZpviUjRLJZpHZMGVYpXoVHdEFkwoVXHRsGNyEuOWsbplzeoJOa45F50QYkF-bjAMY_bBe5Ng9s5QMM7SV5uLq_UZ7XOis09094dCGvM4-BkS_oZfzmi89j_Q0nef19TCBN-RupkaP2GiECPcUj_TDQSY0Lg8UQPZQsrTU_J4gDHis_v7lHy7eP_1_GN1efXh0_n6sjKrVqYKsbZgbW3UqpMSZM_5wBs7qA5aicYYMOXVi6EWHNueSSu7lpUiY0bUCsQpebmfuwv-JmNMenLR4DiWz_gctWr4quWNUP-XXLZdLeWdfHEvcz-h1bvgJgi3-rDcAtgemOBjDDho4xIk5-cUwI2aM32Xny75adHokl9pef1Xy2HqP_HbPd7GVDb-QCEkZ0Y8ULk_SsdDxVxD0DiLX5qXs4A
CitedBy_id crossref_primary_10_1021_acs_analchem_9b03494
crossref_primary_10_2131_fts_3_143
crossref_primary_10_1039_D1RA04097A
crossref_primary_10_2131_jts_41_SP27
crossref_primary_10_1016_j_scitotenv_2019_135334
crossref_primary_10_1002_etc_700
crossref_primary_10_1016_j_chemosphere_2014_03_099
crossref_primary_10_1016_j_chemosphere_2020_127573
crossref_primary_10_1016_j_jhazmat_2023_132287
crossref_primary_10_1007_s11356_016_6055_0
crossref_primary_10_1016_j_aquatox_2014_07_020
crossref_primary_10_1111_jeu_12463
crossref_primary_10_1016_j_chemosphere_2018_09_170
crossref_primary_10_1051_kmae_2017058
crossref_primary_10_1016_j_chemosphere_2015_02_041
crossref_primary_10_1016_j_envpol_2013_04_031
crossref_primary_10_2903_j_efsa_2018_5194
crossref_primary_10_3923_ajbmb_2011_275_283
crossref_primary_10_1016_j_ecoenv_2014_09_017
crossref_primary_10_1016_j_eti_2016_10_003
crossref_primary_10_1080_02757540_2022_2094371
crossref_primary_10_1016_j_scitotenv_2020_144577
crossref_primary_10_1534_genetics_114_163287
crossref_primary_10_1021_acs_est_5b00530
crossref_primary_10_1016_j_bios_2012_02_043
crossref_primary_10_3390_toxics13010047
crossref_primary_10_3390_toxics11060543
Cites_doi 10.1155/2003/135859
10.1074/jbc.M209264200
10.1016/0304-3835(91)90063-N
10.1021/es034727+
10.1093/nar/23.15.2995
10.2131/jts.32.249
10.1093/carcin/14.6.1115
10.1016/j.anl.2009.04.016
10.1093/toxsci/kfg121
10.1074/jbc.275.8.5323
10.1093/toxsci/68.1.249
10.1021/es0626234
10.1016/S0300-483X(02)00511-5
10.1093/mutage/13.3.263
10.1539/joh.46.141
10.1093/mutage/13.1.67
10.1007/BF00193969
10.1093/toxsci/69.1.244
10.1021/es001834k
10.2131/jts.34.569
10.1539/joh.46.49
10.2131/jts.33.155
10.1146/annurev.biochem.63.1.915
10.1042/bj2610707
10.1016/j.taap.2003.11.031
10.1080/10408440490464705
10.1002/tox.20062
10.1093/toxsci/kfl014
10.1093/toxsci/kfg122
ContentType Journal Article
Copyright 2010 The Japanese Society of Toxicology
Copyright_xml – notice: 2010 The Japanese Society of Toxicology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TM
7U7
C1K
SOI
DOI 10.2131/jts.35.835
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Toxicology Abstracts
Environment Abstracts
Nucleic Acids Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

Toxicology Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1880-3989
EndPage 841
ExternalDocumentID 21139333
10_2131_jts_35_835
article_jts_35_6_35_6_835_article_char_en
Genre Journal Article
GroupedDBID .55
123
29L
2WC
36B
53G
ABDBF
ACPRK
ACUHS
ADBBV
AEGXH
AENEX
AFRAH
AL-
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESX
F5P
GX1
HH5
JSF
JSH
KQ8
OK1
OVT
RJT
RNS
RZJ
SV3
TR2
TUS
X7M
XSB
~8M
3O-
AAYXX
CITATION
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7TM
7U7
C1K
SOI
ID FETCH-LOGICAL-c476t-ee2dadd2c84966a6b11f15df89a76ecccac5dfb3f231e7b06d69709a700c328a3
ISSN 0388-1350
1880-3989
IngestDate Fri Jul 11 16:11:05 EDT 2025
Fri Jul 11 08:48:02 EDT 2025
Thu Apr 03 07:10:01 EDT 2025
Tue Jul 01 03:04:30 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Wed Sep 03 06:30:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c476t-ee2dadd2c84966a6b11f15df89a76ecccac5dfb3f231e7b06d69709a700c328a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.jstage.jst.go.jp/article/jts/35/6/35_6_835/_article/-char/en
PMID 21139333
PQID 816792668
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_851471538
proquest_miscellaneous_816792668
pubmed_primary_21139333
crossref_citationtrail_10_2131_jts_35_835
crossref_primary_10_2131_jts_35_835
jstage_primary_article_jts_35_6_35_6_835_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of toxicological sciences
PublicationTitleAlternate J Toxicol Sci
PublicationYear 2010
Publisher The Japanese Society of Toxicology
Publisher_xml – name: The Japanese Society of Toxicology
References Martin, J.W., Smithwick, M.M., Braune, B.M., Hoekstra, P.F., Muir, D.C. and Mabury, S.A. (2004): Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ. Sci. Technol., 38, 373-380.
3M Company. (2003): Environmental and health assessment of perfluorooctanesulfonate and its salts. US EPA Administrative Record, AR-226-1486.
Health Protection Agency. (2009): PFOS/PFOA-Toxicological overview. Available at: http://www.hpa.nhs.uk/Topics/ChemicalsAndPoisons/CompendiumOfChemicalHazards/PFOSOrPFOA/ToxicologicalOverview/.
Bertoncini, C.R. and Meneghini, R. (1995): DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3’-phosphoglycolate termini. Nucleic Acids Res., 23, 2995-3002.
Aoyama, K., Iwahori, K. and Miyata, N. (2003): Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair. Mutat. Res., 538, 155-162.
Sato, I., Kawamoto, K., Nishikawa, Y., Tsuda, S., Yoshida, M., Yaegashi, K., Saito, N., Liu, W. and Jin, Y. (2009): Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J. Toxicol. Sci., 34, 569-574.
Bailly, V., Derydt, M. and Verly, W.G. (1989): Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. Biochem. J., 261, 707-713.
Saito, N., Harada, K., Inoue, K., Sasaki, K., Yoshinaga, T. and Koizumi, A. (2004): Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J. Occup. Health, 46, 49-59.
Harada, K., Saito, N., Inoue, K., Yoshinaga, T., Watanabe, T., Sasaki, S., Kamiyama, S. and Koizumi, A. (2004): The influence of time, sex and geographic factors on levels of perfluorooctane sulfonate and perfluorooctanoate in human serum over the last 25 years. J. Occup. Health, 46, 141-147.
Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L. and Stevenson, L.A. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol. Sci., 74, 382-392.
Lau, C., Butenhoff, J.L. and Rogers, J.M. (2004): The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol. Appl. Pharmacol., 198, 231-241.
Kennedy, G.L., Butenhoff, J.L., Olsen, G.W., O’Connor, J.C., Seacat, A.M., Perkins, R.G., Biegel, L.B., Murphy, S.R. and Farrar, D.G. (2004): The toxicology of perfluorooctanoate. Crit. Rev. Toxicol., 34, 351-384.
Nakamura, J., La, D.K. and Swenberg, J.A. (2000): 5’-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J. Biol. Chem., 275, 5323-5328.
Takeuchi, T. and Morimoto, K. (1993): Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi’s anemia patients due to possible catalase deficiency. Carcinogenesis, 14, 1115-1120.
Demple, B. and Harrison, L. (1994): Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem., 63, 915-948.
Kranendonk, M., Mesquita, P., Laires, A., Vermeulen, N.P. and Rueff, J. (1998): Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens. Mutagenesis, 13, 263-269.
Cheng, B., Yang, X., An, L., Gao, B. and Liu, X. (2010): Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level. Auris Nasus Larynx, 37, 89-94.
Yao, X. and Zhong, L. (2005): Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid. Mutat. Res., 587, 38-44.
Vanden Heuvel, J.P., Thompson, J.T., Frame, S.R. and Gillies, P.J. (2006): Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol. Sci., 92, 476-489.
Giesy, J.P. and Kannan, K. (2001): Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol., 35, 1339-1342.
Kawamoto, K., Nishikawa, Y., Oami, K., Jin, Y., Sato, I., Saito, N. and Tsuda, S. (2008): Effects of perfluorooctane sulfonate (PFOS) on swimming behavior and membrane potential of paramecium caudatum. J. Toxicol. Sci., 33, 155-161.
Young, C.J., Furdui, V.I., Franklin, J., Koerner, R.M., Muir, D.C. and Mabury, S.A. (2007): Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. Environ. Sci. Technol., 41, 3455-3461.
Hashimoto, K., Takasaki, W., Sato, I. and Tsuda, S. (2007): DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats. J. Toxicol. Sci., 32, 249-259.
U.S. EPA (2005): Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. Available at: http://www.epa.gov/.
Gregus, Z. (2008): Mechanisms of toxicity. In Casarett and Doull’s toxicology the basic science of poisons (Klassen, C.D., ed.), pp.45-106, McGraw-Hill, New York.
Nakamura, J. and Swenberg, J.A. (1999): Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res., 59, 2522-2526.
Oami, K. (1996): Membrane potential responses controlling chemodispersal of Paramecium caudatum from quinine. J. Comp. Physiol. A, 178, 307-316.
Seacat, A.M., Thomford, P.J., Hansen, K.J., Olsen, G.W., Case, M.T. and Butenhoff, J.L. (2002): Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol. Sci., 68, 249-264.
Lah, B., Malovrh, S., Narat, M., Cepeljnik, R. and Marinsek-Logar, R. (2004): Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. Environ. Toxicol., 19, 545-553.
Seacat, A.M., Thomford, P.J., Hansen, K.J., Clemen, L.A., Eldridge, S.R., Elcombe, C.R. and Butenhoff, J.L. (2003): Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology, 183, 117-131.
Abdellatif, A., Al-tonsy, A.H., Awad, M.E., Roberfroid, M. and Khan, M.N. (2003-2004): Peroxisomal enzymes and 8-hydroxydeoxyguanosine in rat liver treated with perfluorooctanoic acid. Dis. Markers, 19, 19-25.
Takagi, A., Sai, K., Umemura, T., Hasegawa, R. and Kurokawa, Y. (1991): Short-term exposure to the peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett., 57, 55-60.
Butenhoff, J., Costa, G., Elcombe, C., Farrar, D., Hansen, K., Iwai, H., Jung, R., Kennedy, G.Jr., Lieder, P., Olsen, G. and Thomford, P. (2002): Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol. Sci., 69, 244-257.
Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. and Nagano, T. (2003): Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175.
Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Barbee, B.D., Richards, J.H., Butenhoff, J.L., Stevenson, L.A. and Lau, C. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol. Sci., 74, 369-381.
Anderson, D. and Plewa, M.J. (1998): The International Comet Assay Workshop. Mutagenesis, 13, 67-73.
22
24
25
26
27
28
29
AOYAMA K (2) 2003; 538
30
31
10
32
(5) 1989; 261
11
33
12
34
13
14
36
15
16
NAKAMURA J (23) 1999; 59
17
18
19
YAO XIAOFENG (35) 2005; 587
1
3
4
6
7
8
9
20
21
References_xml – reference: Nakamura, J. and Swenberg, J.A. (1999): Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res., 59, 2522-2526.
– reference: Vanden Heuvel, J.P., Thompson, J.T., Frame, S.R. and Gillies, P.J. (2006): Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-α, -β, and -γ, liver X receptor-β, and retinoid X receptor-α. Toxicol. Sci., 92, 476-489.
– reference: Harada, K., Saito, N., Inoue, K., Yoshinaga, T., Watanabe, T., Sasaki, S., Kamiyama, S. and Koizumi, A. (2004): The influence of time, sex and geographic factors on levels of perfluorooctane sulfonate and perfluorooctanoate in human serum over the last 25 years. J. Occup. Health, 46, 141-147.
– reference: Lau, C., Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Stanton, M.E., Butenhoff, J.L. and Stevenson, L.A. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol. Sci., 74, 382-392.
– reference: Kawamoto, K., Nishikawa, Y., Oami, K., Jin, Y., Sato, I., Saito, N. and Tsuda, S. (2008): Effects of perfluorooctane sulfonate (PFOS) on swimming behavior and membrane potential of paramecium caudatum. J. Toxicol. Sci., 33, 155-161.
– reference: Lau, C., Butenhoff, J.L. and Rogers, J.M. (2004): The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicol. Appl. Pharmacol., 198, 231-241.
– reference: Martin, J.W., Smithwick, M.M., Braune, B.M., Hoekstra, P.F., Muir, D.C. and Mabury, S.A. (2004): Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ. Sci. Technol., 38, 373-380.
– reference: Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. and Nagano, T. (2003): Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem., 278, 3170-3175.
– reference: Thibodeaux, J.R., Hanson, R.G., Rogers, J.M., Grey, B.E., Barbee, B.D., Richards, J.H., Butenhoff, J.L., Stevenson, L.A. and Lau, C. (2003): Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol. Sci., 74, 369-381.
– reference: Lah, B., Malovrh, S., Narat, M., Cepeljnik, R. and Marinsek-Logar, R. (2004): Detection and quantification of genotoxicity in wastewater-treated Tetrahymena thermophila using the comet assay. Environ. Toxicol., 19, 545-553.
– reference: U.S. EPA (2005): Draft risk assessment of the potential human health effects associated with exposure to perfluorooctanoic acid and its salts. Available at: http://www.epa.gov/.
– reference: Seacat, A.M., Thomford, P.J., Hansen, K.J., Olsen, G.W., Case, M.T. and Butenhoff, J.L. (2002): Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol. Sci., 68, 249-264.
– reference: Demple, B. and Harrison, L. (1994): Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem., 63, 915-948.
– reference: Abdellatif, A., Al-tonsy, A.H., Awad, M.E., Roberfroid, M. and Khan, M.N. (2003-2004): Peroxisomal enzymes and 8-hydroxydeoxyguanosine in rat liver treated with perfluorooctanoic acid. Dis. Markers, 19, 19-25.
– reference: Takagi, A., Sai, K., Umemura, T., Hasegawa, R. and Kurokawa, Y. (1991): Short-term exposure to the peroxisome proliferators, perfluorooctanoic acid and perfluorodecanoic acid, causes significant increase of 8-hydroxydeoxyguanosine in liver DNA of rats. Cancer Lett., 57, 55-60.
– reference: Cheng, B., Yang, X., An, L., Gao, B. and Liu, X. (2010): Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level. Auris Nasus Larynx, 37, 89-94.
– reference: 3M Company. (2003): Environmental and health assessment of perfluorooctanesulfonate and its salts. US EPA Administrative Record, AR-226-1486.
– reference: Anderson, D. and Plewa, M.J. (1998): The International Comet Assay Workshop. Mutagenesis, 13, 67-73.
– reference: Gregus, Z. (2008): Mechanisms of toxicity. In Casarett and Doull’s toxicology the basic science of poisons (Klassen, C.D., ed.), pp.45-106, McGraw-Hill, New York.
– reference: Bertoncini, C.R. and Meneghini, R. (1995): DNA strand breaks produced by oxidative stress in mammalian cells exhibit 3’-phosphoglycolate termini. Nucleic Acids Res., 23, 2995-3002.
– reference: Yao, X. and Zhong, L. (2005): Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid. Mutat. Res., 587, 38-44.
– reference: Kennedy, G.L., Butenhoff, J.L., Olsen, G.W., O’Connor, J.C., Seacat, A.M., Perkins, R.G., Biegel, L.B., Murphy, S.R. and Farrar, D.G. (2004): The toxicology of perfluorooctanoate. Crit. Rev. Toxicol., 34, 351-384.
– reference: Seacat, A.M., Thomford, P.J., Hansen, K.J., Clemen, L.A., Eldridge, S.R., Elcombe, C.R. and Butenhoff, J.L. (2003): Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology, 183, 117-131.
– reference: Saito, N., Harada, K., Inoue, K., Sasaki, K., Yoshinaga, T. and Koizumi, A. (2004): Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. J. Occup. Health, 46, 49-59.
– reference: Health Protection Agency. (2009): PFOS/PFOA-Toxicological overview. Available at: http://www.hpa.nhs.uk/Topics/ChemicalsAndPoisons/CompendiumOfChemicalHazards/PFOSOrPFOA/ToxicologicalOverview/.
– reference: Kranendonk, M., Mesquita, P., Laires, A., Vermeulen, N.P. and Rueff, J. (1998): Expression of human cytochrome P450 1A2 in Escherichia coli: a system for biotransformation and genotoxicity studies of chemical carcinogens. Mutagenesis, 13, 263-269.
– reference: Sato, I., Kawamoto, K., Nishikawa, Y., Tsuda, S., Yoshida, M., Yaegashi, K., Saito, N., Liu, W. and Jin, Y. (2009): Neurotoxicity of perfluorooctane sulfonate (PFOS) in rats and mice after single oral exposure. J. Toxicol. Sci., 34, 569-574.
– reference: Aoyama, K., Iwahori, K. and Miyata, N. (2003): Application of Euglena gracilis cells to comet assay: evaluation of DNA damage and repair. Mutat. Res., 538, 155-162.
– reference: Takeuchi, T. and Morimoto, K. (1993): Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi’s anemia patients due to possible catalase deficiency. Carcinogenesis, 14, 1115-1120.
– reference: Giesy, J.P. and Kannan, K. (2001): Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol., 35, 1339-1342.
– reference: Butenhoff, J., Costa, G., Elcombe, C., Farrar, D., Hansen, K., Iwai, H., Jung, R., Kennedy, G.Jr., Lieder, P., Olsen, G. and Thomford, P. (2002): Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol. Sci., 69, 244-257.
– reference: Bailly, V., Derydt, M. and Verly, W.G. (1989): Delta-elimination in the repair of AP (apurinic/apyrimidinic) sites in DNA. Biochem. J., 261, 707-713.
– reference: Oami, K. (1996): Membrane potential responses controlling chemodispersal of Paramecium caudatum from quinine. J. Comp. Physiol. A, 178, 307-316.
– reference: Hashimoto, K., Takasaki, W., Sato, I. and Tsuda, S. (2007): DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats. J. Toxicol. Sci., 32, 249-259.
– reference: Nakamura, J., La, D.K. and Swenberg, J.A. (2000): 5’-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress. J. Biol. Chem., 275, 5323-5328.
– reference: Young, C.J., Furdui, V.I., Franklin, J., Koerner, R.M., Muir, D.C. and Mabury, S.A. (2007): Perfluorinated acids in Arctic snow: new evidence for atmospheric formation. Environ. Sci. Technol., 41, 3455-3461.
– ident: 3
  doi: 10.1155/2003/135859
– ident: 29
  doi: 10.1074/jbc.M209264200
– ident: 30
  doi: 10.1016/0304-3835(91)90063-N
– ident: 21
  doi: 10.1021/es034727+
– ident: 33
– ident: 6
  doi: 10.1093/nar/23.15.2995
– ident: 13
  doi: 10.2131/jts.32.249
– ident: 14
– ident: 31
  doi: 10.1093/carcin/14.6.1115
– ident: 8
  doi: 10.1016/j.anl.2009.04.016
– ident: 32
  doi: 10.1093/toxsci/kfg121
– volume: 587
  start-page: 38
  issn: 0027-5107
  issue: 1-2
  year: 2005
  ident: 35
– ident: 22
  doi: 10.1074/jbc.275.8.5323
– ident: 28
  doi: 10.1093/toxsci/68.1.249
– ident: 36
  doi: 10.1021/es0626234
– ident: 27
  doi: 10.1016/S0300-483X(02)00511-5
– ident: 17
  doi: 10.1093/mutage/13.3.263
– volume: 538
  start-page: 155
  issn: 0027-5107
  issue: 1/2
  year: 2003
  ident: 2
– ident: 12
  doi: 10.1539/joh.46.141
– ident: 4
  doi: 10.1093/mutage/13.1.67
– ident: 24
  doi: 10.1007/BF00193969
– ident: 7
  doi: 10.1093/toxsci/69.1.244
– ident: 1
– ident: 10
  doi: 10.1021/es001834k
– ident: 26
  doi: 10.2131/jts.34.569
– ident: 11
– ident: 25
  doi: 10.1539/joh.46.49
– ident: 15
  doi: 10.2131/jts.33.155
– ident: 9
  doi: 10.1146/annurev.biochem.63.1.915
– volume: 261
  start-page: 707
  issn: 0264-6021
  issue: 3
  year: 1989
  ident: 5
  doi: 10.1042/bj2610707
– ident: 19
  doi: 10.1016/j.taap.2003.11.031
– ident: 16
  doi: 10.1080/10408440490464705
– ident: 18
  doi: 10.1002/tox.20062
– ident: 34
  doi: 10.1093/toxsci/kfl014
– volume: 59
  start-page: 2522
  issn: 0008-5472
  issue: 11
  year: 1999
  ident: 23
– ident: 20
  doi: 10.1093/toxsci/kfg122
SSID ssj0027054
Score 1.9869034
Snippet Persistent perfluorinated organic compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are distributed widely in the global...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 835
SubjectTerms Alkanesulfonic Acids - toxicity
Caprylates - toxicity
Comet Assay
Deoxyguanosine - analogs & derivatives
Deoxyguanosine - metabolism
DNA Damage
DNA, Protozoan - genetics
Environmental Pollutants - toxicity
Fluorocarbons - toxicity
Mutagens - toxicity
Paramecium
Paramecium caudatum
Paramecium caudatum - drug effects
Paramecium caudatum - genetics
Paramecium caudatum - metabolism
PFOA
PFOS
Reactive Oxygen Species - metabolism
Title Perfluorooctanoic acid (PFOA) but not perfluorooctane sulfonate (PFOS) showed DNA damage in comet assay on Paramecium caudatum
URI https://www.jstage.jst.go.jp/article/jts/35/6/35_6_835/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/21139333
https://www.proquest.com/docview/816792668
https://www.proquest.com/docview/851471538
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of Toxicological Sciences, 2010/12/01, Vol.35(6), pp.835-841
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKwgEJId6UlyzBgapKN4lbxzlW7FYLW9pK20q9RY7jsmG3CWoSLewB_jpjO4_ug-fFau2JFXm-jGfG4xmE3hDpwNqHtuXDbmH1B0RaIQ2FFfHQB0OOMo-py8kfJ_Rg0f-wHCxbrR9bUUtFHvbE-bX3Sv6Hq9AHfFW3ZP-Bs_Wk0AG_gb_QAoeh_Ssez-RmdVqkoPwK0PFSlXpVxNorMBtNh8rgD4u8m6Q6O_EWpVRB6SvlN5cl8ZEizo7TM9A_9ybDbsTXKpjHBKkrt3CW8W_qYGHGVTSXiIt1V_Ai4nmZyuGqfpunX2NRi9Zyp22OjvgZB5RoR-1hmhUnNcCmqryThhE_4cfxJm0G1ib0gJ8XSbqJq_5xXOhIQRlvuzAuhIMYqQtCxCK-qSVUiWWTxaSE37aMZeVIuV2bvFmXdwLXIXonyLMeGfTqR7bTbU-mwWgxHgfz_eX8Brrpgp2hSmDsvT9sLHZbl9Gr38_kt1Vz7zYzX9Bobn0Gpf6T_LW9ovWW-T10t2QIHhr03EctmTxAd4y3FptLaA_R9ytIwgpJ-K3CUQcDijCgCF9CEa5RpAmPOtggCAOCsEEQjhOsEYQ1gnCa4AZBuELQI7QY7c_fHVhlZQ5L9D2aW1K6EWyMrmB9MJc5DR1n5QyiFfO5R0EoCC7gX0hWYD1IL7RpRH3PhkHbFsRlnDxGO0mayKcIC9tnrs_AcqWiD9oxJ0L6kSd8L4oix6Vt1KlWNxBl2npVPeU0APNVcSIATgRkEAAn2uh1TfvFJGu5looZJtU05Qdc0VDTAGk9oq5AgsRpI1yxNQAxrM7WYLXTIguYOs4EZZf9hgRsE08pGG30xCCifgHXAUOMEPLszw8_R7ebT-gF2sk3hXwJenEevtLY_QlbmL8s
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perfluorooctanoic+acid+%28PFOA%29+but+not+perfluorooctane+sulfonate+%28PFOS%29+showed+DNA+damage+in+comet+assay+on+Paramecium+caudatum&rft.jtitle=Journal+of+toxicological+sciences&rft.au=Kawamoto%2C+Kosuke&rft.au=Oashi%2C+Takahiro&rft.au=Oami%2C+Kazunori&rft.au=Liu%2C+Wei&rft.date=2010-12-01&rft.issn=1880-3989&rft.volume=35&rft.issue=6&rft.spage=835&rft.epage=841&rft_id=info:doi/10.2131%2Fjts.35.835&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0388-1350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0388-1350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0388-1350&client=summon